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Abstract The southwestern Iberian Peninsula is an important biogeographic region, showing high 

biodiversity levels and hosting several putative glacial refugia for European flora. Here, we study 

the genetic diversity and structure of the Mediterranean, thermophilous plant Cheirolophus 

sempervirens (Asteraceae) across its whole distribution range in SW Iberia, as a tool to disentangle 

some of the general biogeographic patterns shaping this southern refugia hotspot. Null genetic 

diversity was observed in the cpDNA sequencing screening. Nonetheless, AFLP data revealed high 

levels of among-population genetic differentiation correlated to their geographic location. Our 

results suggest longer species persistence in southern Iberian refugia during glacial periods and 

subsequent founder effects northwards due to colonizations in warmer stages (i.e. the southern 

richness to northern purity pattern). Additionally, our phylogeographic analyses indicate the 

presence of two separate genetic lineages within Ch. sempervirens, supporting the hypothesis of 

multiple minor refugia for SW Iberia in agreement with the refugia within refugia model. 

 

Key words: AFLP, genetic diversity, genetic structure, glacial refugia, Mediterranean, Pleistocene 

climatic oscillations, southern Europe. 
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The Iberian Peninsula is a widely recognized hotspot of biodiversity (Médail & Quezél, 1999), and 

represents a key area from a biogeographic point of view (Nieto Feliner, 2014). In this way, the 

scientific community has largely proven the significant role played by this region as a major 

refugium for flora and fauna during Pleistocene glaciations (Taberlet et al., 1998; Hewitt, 2011). 

Until recently, it was widely agreed that the entire Iberia acted -similarly to other Mediterranean 

peninsulas such as the Italian or the Balkan- as a single refugium for biodiversity during the coldest 

periods of climatic oscillations (e.g. Hewitt, 2001). However, in recent times, the idea of multiple 

refugia occurring within the Iberian Peninsula (i.e. the refugia within refugia model) has been 

largely supported by several works reviewing phylogeographic patterns of different plant and 

animal taxa (e.g. Olalde et al., 2002; Gómez & Lunt, 2007; Médail & Diadema, 2009). Indeed, even 

considering multiple independent refugia would not adequately reflect the complexity of the 

biogeographic processes that occurred in Southern European peninsulas during Pleistocene climatic 

oscillations (Nieto Feliner, 2011), and the relationship among minor refugia nested within the so-

called larger refugia (e.g. big peninsulas) still remains under discussion (Hewitt, 2001).  

 

Many studies dealing with the effects of Pleistocene glaciations in European flora have focused on 

temperate or alpine species that survived in Mediterranean refugia during colder periods, but whose 

distribution range after Ice Ages extended across the continent, including glaciated areas (e.g. 

Taberlet et al., 1998, Comps et al., 2001; Weiss & Ferrand, 2007; Sanz et al., 2014). Only recently, 

the evolutionary history of plant species exclusively occurring along the European southern 

peninsulas (e.g. in the Balkan (Surina et al., 2011; Grdiša et al., 2014) or the Italian (Španiel et al., 

2011; Hardion et al., 2014)) has been investigated, deeply contributing to better understanding the 

biogeographic patterns that influenced these refugia hotspots during Pleistocene climatic 

oscillations. Focusing on the Iberian Peninsula, similar phylogeographic studies have lately zoomed 

in endemic and subendemic taxa from the Pyrenees (e.g. Segarra-Moragues et al., 2007), the  
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Central Range (e.g. García-Fernández et al., 2013) or the Mediterranean coast (e.g. Garnatje et al., 

2013), all of them considered refugia-rich areas according to the recent reviews by Gómez & Lunt 

(2007) or Médail & Diadema (2009) (Fig. 1). These fine-scale works have been useful to reveal a 

significant diversity of processes and patterns occurring on Mediterranean minor refugia during 

climatic oscillations, comparatively more complex than those observed in non-Mediterranean 

refugia (Nieto-Feliner, 2014). The southwestern half of the Iberian Peninsula (hereafter SW Iberia) 

also hosts multiple regional Pleistocene refugia according to the aforementioned review studies (see 

Fig. 1). In addition, many endemic species (García-Barros et al., 2002) – as well as numerous 

subendemic plants whose only Eurasian populations occur on this particular area (Rodriguez-

Sanchez et al., 2008) – inhabit along the SW coast of Spain and Portugal. However, very scarce 

phylogeographic attention has been paid on this region to date, so the effects of climatic oscillations 

on the flora from SW Iberia are still poorly understood. 

 

 The effects of Quaternary climatic oscillations in the flora of southern European refugia have been 

proposed to be less drastic – and therefore more complex – than in northern regions, where 

extinction was the dominant process (Birks & Willis, 2008; Nieto Feliner, 2011). In this regard, 

thermophilous plants are considered to be particularly interesting for the study of the climatically-

buffered Mediterranean refugia, since they are likely to be more severely affected by glaciations 

than cold-adapted taxa (Hewitt, 2000; Stewart et al., 2010). Recent biogeographical works 

investigating the complex effects of climatic oscillations on various lowland southern refugia 

successfully employed thermophilous plants (e.g. Arundo plinii Turra (Hardion et al., 2014); 

Cheirolophus intybaceus (Lam.) Dostál (Garnatje et al., 2013); Tanacetum cinerariifolium Sch.Bip. 

(Grdiša et al., 2014)) as models of study. Thermophilous species from lowland or coastal habitats 

are likely to respond to climatic oscillations with geographical (mostly latitudinal) range shifts – 

contributing to the so-called southern richness to northern purity pattern (hereafter SR-NP; Hewitt,  

http://www.ipni.org/ipni/idPlantNameSearch.do?id=192734-1&back_page=%2Fipni%2FeditAdvPlantNameSearch.do%3Ffind_infragenus%3D%26find_isAPNIRecord%3Dtrue%26find_geoUnit%3D%26find_includePublicationAuthors%3Dtrue%26find_addedSince%3D%26find_family%3D%26find_genus%3DCheirolophus%26find_sortByFamily%3Dtrue%26find_isGCIRecord%3Dtrue%26find_infrafamily%3D%26find_rankToReturn%3Dall%26find_publicationTitle%3D%26find_authorAbbrev%3D%26find_infraspecies%3D%26find_includeBasionymAuthors%3Dtrue%26find_modifiedSince%3D%26find_isIKRecord%3Dtrue%26find_species%3Dintybaceus%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=252275-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DTanacetum%2Bcinerariifolium%2B%26output_format%3Dnormal
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2000) genetic diversity pattern. In contrast, cold-resistant or alpine taxa are believed to respond with 

elevation range shifts limited by their island-like environment (i.e. “island in the sky”, Hewitt, 

2001), resulting on genetic structure distributed in different isolated refugia with equivalent 

diversity levels (Surina et al., 2011). Consequently, lowland and coastal flora from Mediterranean 

regions such as SW Iberia should fit better to the SR-NP genetic pattern rather than to the 

equivalent isolated refugia pattern. However, the response to this phylogeographical and 

microevolutionary processes in southern European species yet remains poorly studied (Hewitt, 

2011). 

 

Cheirolophus sempervirens (L.) Pomel (Asteraceae) is a species particularly well suited for testing 

biogeographical hypotheses related to the effects of Pleistocene climatic oscillations in lowland 

flora from SW Iberia. This is a thermophylous shrub with a narrow cold tolerance, inhabiting humid 

valleys and montane stage with clear maritime influence (Susanna, 1991). The species is a 

subendemism occurring exclusively in the SW Iberian Peninsula, excepting for a few isolated 

populations cited from the northern mountains of Algeria. Interestingly, the distribution of Ch. 

sempervirens in the Iberian Peninsula shows a linear distribution, following moist and warm 

locations close to the coast from Malaga to Coimbra (see Fig. 1) and extending along 500 km of 

latitudinal range. Additional isolated locations have been cited in more inland regions –i.e. 

Salamanca- or in northern latitudes – i.e. Galicia – of the Iberian Peninsula, but these citations are 

thought to be either misidentifications (Susanna, 1991) or have not been found in recent field 

surveys (D. Vitales, pers. comm.). Similarly to the rest of the members of the genus, Ch. 

sempervirens has an outcrossing pollination and produces seeds that disperse by gravity very close 

to the mother plant (Ruiz de Clavijo & Devesa, 2013). The evolutionary history of Cheirolophus 

has been recently studied (Vitales et al., 2014b) and – as reported for other Mediterranean taxa (e.g. 

Migliore et al., 2012; Besnard et al., 2013; Fiz-Palacios & Valcárcel, 2013) – the time-calibrated  
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phylogeny describes the first divergence of the main Mediterranean lineages of the genus close to 

the onset of the Mediterranean climate (ca. 3.1 Ma, late Pliocene) and their diversification during 

the Quaternary (around 1.3 Ma). The divergence among Cheirolophus sempervirens and its closely 

related taxa Ch. mauritanicus (Font Quer) Susanna from northern Morocco – considered Ch. 

sempervirens subsp. mauritanicus (Font Quer) M. Ibn Tattou by other authors (Fennane & Ibn 

Tattou, 1998) – was reported to occur very recently (ca. 80.000 years ago). Therefore, we may 

hypothesize that the genetic diversity showed by Ch. sempervirens should have been shaped by the 

climatic fluctuations of the last glacial period (0.126–0.0117 Ma), affecting the Mediterranean 

region during this episode of earth history (Thompson, 2005). 

 

In this context, the main goal of our study was to analyze the phylogeography of Ch. sempervirens 

across its whole distribution range in SW Iberia as a complement to disentangle some general 

biogeographic patterns affecting this southern refugia hotspot. Specifically, we proposed to: i) test 

whether Ch. sempervirens shows signs of the SR-NP genetic diversity pattern reported, based on 

other plant taxa, in other southern European refugia, and ii) investigate whether the 

phylogeographical structure of this thermophylous species fits the refugia within refugia model 

proposed for the Iberian Peninsula. 

 

Material and Methods 

Sampling strategy 

Cheirolophus sempervirens was sampled from 10 populations located on SW Iberian Peninsula, 

covering a most of the distribution range of the species. The number of analysed individuals per 

population ranged between 5 and 10 depending on population size and uneven success of laboratory 

procedures. Details of locations and number of sampled individuals of each population are listed in 

Table 1 and Fig. 1. Leaf material was immediately dried in silica-gel and stored at room temperature  
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(20 - 25ºC) until DNA extraction.  

 

DNA isolation, AFLP fingerprinting and DNA sequencing 

Total genomic DNA was extracted from fragments of silica-gel-dried leaf tissue following the 

protocol of Doyle & Doyle (1987) with slight modifications. DNA samples were cleaned using 

QIAquick columns (Qiagen, Valencia, CA, USA) and their quality and DNA concentration was 

determined using NanoDrop ND-1000 spectrophotometry (ThermoScientific, Wilmington, DE, 

USA).  

The AFLP technique was carried out following the protocol described in Vos et al. (1995) with 

some modifications (see Vitales et al., 2014a). After a primer trial involving 12 selective primers, 

three primer pairs were finally chosen: EcoRI-AC/MseI-CTT; EcoRI-AG/MseI-CTC; and EcoRI-

AT/MseI-CAG. The success of each step was tested by running the PCR products on a 1.5% agarose 

gel. Fragments were run on an ABI Prism® 3100 Genetic Analyzer (Applied Biosystems Inc., 

Foster City, CA, USA) with 10 μL High Dye (deionized formamide) and 0.2 μL GeneScanTM 500 

ROXTM Size Standard per sample. Amplified fragments were genotyped using 

GeneMarker®AFLP/Genotyping software (version 1.9; SoftGenetics, LLC, State College, PA, 

USA). AFLP error rates were calculated following Bonin et al. (2004). Twenty random samples per 

primer combination were replicated to ensure reproducibility, repeating all parts of the AFLP 

protocol. All alleles with an error rate >5% were eliminated. In addition, those individuals that did 

not produce scorable patterns for all three primer combinations were also excluded. Out of the 93 

attempted individuals, 85 (91 %) were retained in further data analysis. 

We also conducted a screening test for DNA sequencing involving four highly variable 

chloroplast markers (rpoB-trnD, rps16-trnK, rpl32-trnL and trnS-trnC), which were sequenced for 

a few individuals of different populations. All these regions were newly amplified and sequenced 

for nine individuals from Andalusia, Algarve, Centro and Coimbra regions following protocols in  
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Vitales et al. (2013).  

 

Data analysis 

Based on AFLP data, the unbiased heterozygosity within populations (Hj), the average gene 

diversity within populations (Hw), and total gene diversity in the species (Ht) were calculated using 

the software TFPGA v. 1.3 (Miller, 1997). Additionally, the band richness (Br) (Coart et al., 2005) 

and the percentage of polymorphic loci (PLP) with a significance of 1% (P = 0.99) were calculated 

according to the rarefaction method of Hurlbert (Petit et al., 1998), and conditioned to the smallest 

population size (N = 5) with the software AFLPDIV v. 1.0. We also conducted measures of genetic 

rarity: the number of private alleles in each population; and the frequency-down-weighted marker 

values (DW) index of Schönswetter & Tribsch (2005), calculated as ratio of means –which makes 

the measure less sensitive to differences in sample size between localities– using AFLPDAT 

(Ehrich, 2006). R software (R Development Core Team, 2015) was used to perform Spearman rank 

correlation analyses between the genetic diversity (Hj) of populations and their latitude, as well as 

between the DW index of populations and their latitude. Pairwise FST values were estimated for 

each pair of populations studied with AFLP SURV 1.0 (Weir & Cockerham, 1984). Significance 

was evaluated through 10000 permutations. Finally, we conducted AMOVA analyses by using 

ARLEQUIN 3.5 (Excoffier et al., 2005) to estimate genetic differentiation attributable to 

population subdivision. To further characterize the spatial genetic distribution in this species, we 

performed Mantel tests based on genetic distance matrices constructed with FST values between 

populations and on geographical matrices calculated by the Euclidean distance (X and Y 

coordinates) between populations using ArcGIS 9.1 (ESRI, Redlands, CA, USA). Mantel tests were 

performed on ARLEQUIN 3.5 with 100000 permutations and considering a p-value limit of 0.05.  

 

 Population genetic structure revealed by AFLP was investigated using phylogenetic,  
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clustering and multivariate analysis. We used the Neighbor-Net method (Bryant & Moulton, 2004) 

carried out with SplitsTree v.4.10 (Huson & Bryant, 2006) to construct a distance-based network 

using the Jaccard coefficient (Jaccard, 1901), which is restricted to shared band presence rather 

than shared absence. A Neighbor-Joining (NJ) analysis of the same matrix, with 1000 bootstrap 

replicates, was also performed using SplitsTree 4.10. Bayesian clustering analyses were carried out 

using STRUCTURE 2.3 (Hubisz et al., 2009). We considered the admixture ancestry model and the 

correlated allele frequencies. Ten independent simulations were run for each possible number of 

genetic groups (K) (from K = 1 to 10), using a burn-in period of 10
5
 generations and run lengths of 

5x10
5
. STRUCTURE HARVESTER (Earl & von Holdt, 2011) was employed to estimate the 

number of genetic groups (K): we selected the K value that maximizes the probability of the data 

L(K) and we also considered the criterion proposed by (Evanno et al., 2005) based on the rate of 

change in the probability between successive K values, ∆K. Similarities among individuals were 

also studied via Principal Coordinate Analysis (PCoA, Gower (1966)) using the Jaccard distance, in 

order to detect other possible relations that could not be visualized with assignment methods or 

phylogenetic analyses. This procedure was carried out with R software (R Development Core 

Team, 2015) using the vegan package (Oksanen et al., 2008).  

 

 

Results 

Initially, 221 alleles were obtained from automatic genotyping of Cheirolophus sempervirens AFLP 

profiles. After manual correction, error rates calculation, elimination of small and troublesome 

alleles and low intensity peaks, a final matrix with 195 (88.2%) alleles was considered for 

subsequent analyses. The final data sets showed an error rate of 2.6%, which is below the maximum 

error rate percentage accepted for good AFLP reproducibility (5%) (Pompanon et al., 2005). None 

of the chloroplast regions analysed in the screening test yielded any variability among or within Ch.  
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sempervirens populations. 

 Population genetic diversity measures are shown in Table1. Average gene diversity per 

population (Hw) was 0.0455 ± 0.0245, being the results of the different genetic diversity index (Hj, 

PLP and Br) consistent among them. Private alleles were irregularly distributed across the studied 

populations: AND population showed five private fragments; ALG, ODE and MIL presented two; 

SET and COI showed one; and no private alleles were found in the rest of populations. The 

frequency-down-weighted marker values (DW) also demonstrated considerable variation among 

populations, ranging between 567.466 (AND) and 164.459 (NAZ). Total genetic diversity for AFLP 

markers resulted to be Ht = 0.1602, and the AMOVA analysis revealed that most of the variability in 

Ch. sempervirens was attributable to differences among populations (73.62%, P < 0.001; Table 2). 

Using the matrix of inter-population FST distances, and the matrix of geographical distances (in 

kilometres), the Mantel test indicated a significant correlation between genetic and geographical 

distances (r = 0.516, P < 0.05). Spearman rank correlation analyses revealed that within-population 

genetic diversity (Hj) in Ch. sempervirens was not associated to the latitude of populations (r = -

0.224, P > 0.05, Fig. 2A; PLP and Br similar results, data not shown). In contrast, the same test 

indicated a significant negative correlation between the DW index and the latitudinal distribution of 

this species (r = -0.903, P < 0.05; Fig. 2B). 

According to the Bayesian analysis of population genetic structure conducted with 

STRUCTURE, the populations of Ch. sempervirens showed the highest L(K) and ∆K values for K = 

2 and K = 5 (see Fig. S1). For K = 2, populations from south-western Portugal (Algarve and 

Alentejo Litoral) clustered separately from the rest of populations, whereas the one from Setubal 

Peninsula (SET) showed a considerable level of admixture among the two genetic groups (Fig. 3A). 

For K = 5, populations north of the river Tagus remained together while most of the others –

excepting both populations located in Alentejo Litoral (ODE and MIL) which remained linked- 

constituted independent clusters (Fig. 3B). The Neighbor-Net (NN) and the Neighbor-Joining (NJ)  
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analyses showed considerably resolved phylogenetic reconstructions (NN, Fig. 4; NJ, Fig 

S2), highly congruent with the genetic structure revealed by STRUCTURE. 

The PCoA using the first two principal coordinates explained 52.2% of the total variation in 

the data and confirmed several relationships detected in the phylogenetic and cluster analyses (Fig. 

S3). The first coordinate (accounting for 38.6% of the total variation) distinguished two main 

groups of species: the south-western populations occurring on Algarve and Alentejo Litoral clearly 

segregated from the rest of populations, being SET from Setubal Peninsula intermediate between 

the two groups. The second coordinate (representing 13.6% of variation) mainly segregated the 

population from Andalusia (AND) in a different cluster. The five genetic groups proposed by 

STRUCTURE could also be recognized in this PCoA analysis (Fig. S3). 

  

 

Discussion 

The null genetic diversity observed in the cpDNA sequencing survey of Cheirolophus sempervirens 

could be related to the putative recent evolutionary history of this species (Vitales et al., 2014b). In 

contrast, AFLP analyses provided considerable information on the magnitude and pattern of genetic 

variation existing in ten populations covering the whole distribution range of Ch. sempervirens in 

SW Iberian Peninsula. This result reinforces the idea that AFLP is a particularly suitable tool to 

perform phylogeographic analyses when other molecular markers (such as cpDNA sequencing) 

provide insufficient information (Després et al., 2003; Meudt et al., 2007). Overall, the data 

revealed high levels of genetic differentiation among populations and low genetic diversity within 

populations. This pattern indicates a strong genetic structure among Ch. sempervirens populations, 

which seems to be correlated to their geographic distance according to the Mantel test. 
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Southern richness versus northern purity in southwestern Iberian Peninsula 

The results of our study on Ch. sempervirens support the hypothesis of longer species persistence in 

southern Iberian refugia, and founder effects in northward colonizations (i.e. the SR-NP pattern). A 

significant association between the genetic rarity index DW and the latitude of populations was 

clearly observed in our analyses (Fig. 2B). Similarly, private alleles were much more frequent in the 

five southernmost populations (12 private alleles in total) than in the five northern populations (only 

one private allele). The abundance of rare and private alleles has been proposed as a characteristic 

signal of populations with a long in situ history, most probably going back to the last glaciation 

(Schönswetter & Tribsch, 2005; Ehrich et al., 2008). Indeed, genetic rarity measures such as the DW 

or the private alleles have been successfully employed to infer the glacial refugia patterns in 

numerous plants from different parts of the globe (e.g Mráz et al. (2007) in the Alps; Pérez-Collazos 

et al. (2009) in the Iberian Peninsula; Tremetsberger et al. (2009) in South America; Li et al. (2011) 

in Asia). Conversely, intra-population genetic diversity indexes did not show any correlation with 

the latitude of populations in Ch. sempervirens (Hj, Fig. 2A; PLP and Br, data not shown). Genetic 

rarity indexes have been seen as better indicators of historical processes rather than genetic diversity 

indexes, which mirror contemporary processes such as connectivity of populations and population 

sizes (Comps et al., 2001; Widmer & Lexer, 2001; Paun et al., 2008). In this way, the irregular 

distribution of within-population genetic diversity measures observed in Ch. sempervirens could be 

explained by the differences in regional abundance and population size between the studied 

localities (D. Vitales, pers. comm.).  

A similar outcome suggesting the southern survival of the species during the last Pleistocene 

glaciations and the more recent formation of the northern populations was also supported by the 

genetic structure of Ch. sempervirens. The five genetic clusters proposed by STRUCTURE (Fig. 

3B) and recovered as well in the PCoA (Fig. S3) and the networking (Fig. 4) analyses showed a 

marked SR-NP distribution pattern. Specifically, the southernmost populations constituted four of  
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these genetic groups (almost one group per population), whereas the five northern populations were 

grouped in one single genetic cluster. Populations located in refugial regions are expected to present 

greater genetic structuring than those located in recolonized areas (Hampe & Petit, 2005; but see 

also De Lafontaine et al. (2013) for a contrasting pattern). Indeed, the occurrence of larger number 

of genetic lineages in areas rich in glacial refugia has been reported in former studies analyzing the 

phylogeography of different plant species (e.g. Schönswetter et al., 2003; Picó et al., 2008). In 

summary, both within-population indexes (i.e. genetic rarity) and genetic structure inferences 

suggest that Ch. sempervirens from SW Iberia responded to Pleistocene climatic oscillations with 

latitudinal range shifts, somewhat mirroring the performance of lowland flora from other southern 

European refugia. 

 

Refugia within refugia in the southwestern Iberian Peninsula 

 

As reported for several organisms from worldwide distributed in different refugia hotspots (see 

Weiss & Ferrand, 2007; Shafer et al., 2010; Qiu et al., 2011 for some reviews) and particularly from 

Southern European refugia (Gómez & Lunt, 2007), the current genetic structure of Ch. 

sempervirens suggest the survival of the species in various glacial refugia across SW Iberia (i.e. the 

refugia within refugia model). This multiple refugia pattern is clearly depicted by one of the best 

clustering model (K = 2) proposed by STRUCTURE (Fig. 3A) and supported as well by the other 

methodological approaches employed to study the phylogeography of Ch. sempervirens. At K = 2, 

the populations from Algarve and Alentejo Litoral (ALG, ODE and MIL) clustered in a 

differentiated group (lineage 1), a genetic segregation further supported with the high bootstrap 

(97%) assigned by the NJ analysis to the branch segregating those three southern Portuguese 

populations (Fig. 4). This phylogeographic split – together with the high genetic rarity levels 

showed by these populations – indicate that SW Iberian corner may be acting as an isolated glacial  
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refugium for Ch. sempervirens, a pattern already reported in other Iberian endemic plants such as 

Senecio gallicus Chaix (Comes & Abbott, 1998). The complementary genetic cluster at K = 2 

groups the five northernmost populations with the southernmost one from Malaga (Andalusia; 

AND), constituting an additional genetic lineage within this species (lineage 2). In this case, 

according to the higher genetic rarity values showed by Andalusian population (Table 1), the 

refugial area of this second plylogeographic lineage should be found in this southern region of 

Spain. Therefore, our data suggest that at least two independent refugia – probably located in 

southern Portugal and in southern Spain – may have played a primary role in the evolutionary 

history of Ch. sempervirens during Pleistocene climatic oscillations.  

 

Notwithstanding, several authors have recently warned that the model of multiple independent 

refugia might be an oversimplification (Nieto Feliner, 2011; de Lafontaine et al., 2013), postulating 

that recurrent isolation and admixture processes would have shaped a more complex 

phylogeographic scenario in Pleistocene refugia hotspots. According as well to the K = 2 model of 

STRUCTURE, the population from Setubal Peninsula (SET), located halfway from Algarve- 

Alentejo Litoral localities (lineage 1) and from the rest of northern populations (lineage 2), showed 

significant admixture between both genetic lineages. Likewise, the NN and the PCoA results also 

indicated that SET population shows an intermediate position between both main genetic clusters. 

On the one hand, this result may suggest that Tagus river may act in Ch. sempervirens both as a soft 

barrier and as a secondary contact zone of lineages diversified in different phases of climatic 

oscillation cycles. Indeed, river basins have been proposed as genetic barriers in other plants 

affected by Pleistocene glaciations in southern European refugia (e.g. Picó et al., 2008; Grdiša et al., 

2014). On the other hand, intermediate genetic position and admixture clustering pattern in SET 

population could also be interpreted as this one being the source of northern populations, which 

subsequently could have lost part of their genetic diversity in stepping stone founder effects.  
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However, in this latter scenario, the genetic link between northern and AND populations would 

remain unexplained.   

 

Conclusions 

 

Regarding the last advances in Mediterranean phylogeography, the existence of regional refugia 

with accurate delimitation (as proposed by Médail & Diadema (2009)) has been considered too 

simplistic by several authors (e.g. Nieto Feliner, 2011, 2014). According to our results, these fixed 

refugia are again discredited, because most of them include populations of Ch. sempervirens with a 

putative post-glacial origin (e.g. COI, FIG or SET) rather than populations with high conservation 

of genetic rarity (e.g. MIL, ODE, AND). Consequently, this representation of delimited universal 

refugia for every Mediterranean taxa does not seem to be applicable to Ch. sempervirens, 

supporting the individualistic response of species to changes in climate conditions (Stewart et al. 

2010). In our work, the limited sampling has shed light into the general phylogeographic patterns 

showed by this lowland plant from SW Iberia, but prevent us to infer more precise details about its 

evolutionary history. Therefore, caution must be taken when hypothesizing on the mode and 

location of particular phylogeographic events that affected this (and other) species during the last 

Pleistocene glaciations. Further studies in the southwestern Iberian refugia will be necessary to test 

whether the phylogeographic history of Ch. sempervirens is idiosyncratic or represent more general 

patterns. 
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Table 1 Sampling information and genetic diversity indexes of Cheirolophus sempervirens from the 

Iberian Peninsula. Code, locality, geographical coordinates, number of sampled individuals (N), and 

genetic diversity indexes assessed by AFLP in 10 populations of Ch. sempervirens from the Iberian 

Peninsula. Genetic indices: heterozygosity (Hj); percentage of polymorphic loci (PLP); band 

richness [Br]; frequency-down-weighted marker values index (DW); and private alleles. 

 

 

 

 

 

 

Table 2  Analyses of molecular variance (AMOVA) of Cheirolophus sempervirens populations based on 

AFLP markers   

Source of variation 
Degrees of 

freedom 

Sum of 

squares 

Variance 

components 

Percentage of 

variation 

P 

Among populations 9 805.76 10.15 73.62 <0.001 

Within populations 75 272.80 3.64 26.38 <0.001 

Total 84 1078.56 13.79   

Code Locality 
Latitude 

゜N 

Longitude 

゜W 
N Hj PLP Br DW 

Private 

alleles 

AND Andalusia: Málaga, Ronda 36.692 5.266 7 0.0321 0.077 1.064 567.466 5 

ALG Algarve: Aljezur 37.308 8.802 10 0.0340 0.082 1.060 436.645 2 

ODE Alentejo Litoral: Odemira 37.638 8.620 9 0.0743 0.168 1.124 359.830 2 

MIL Alentejo Litoral: Milfontes 37.726 8.769 10 0.0429 0.102 1.070 307.222 2 

SET Centro: Setubal, Sesimbra 38.458 9.113 9 0.0526 0.117 1.100 284.285 1 

LIS Centro: Lisboa, Sintra 38.788 9.403 5 0.0820 0.168 1.168 243.147 0 

FOZ Leiria: Foz do Arelho 39.428 9.187 9 0.0262 0.066 1.050 186.496 0 

NAZ Leiria: Nazaré 39.607 9.079 10 0.0072 0.020 1.016 164.459 0 

COI Baixo Mondego: Coimbra 40.185 8.436 6 0.0741 0.148 1.134 207.150 1 

FIG Baixo Mondego: Figueira da Foz 40.202 8.899 10 0.0304 0.082 1.064 199.991 0 
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FIGURE LEGENDS 

 

Fig. 1. Map of geographic distribution and sampled populations of Cheirolophus sempervirens in 

the Iberian Peninsula. Dashed line indicates distribution range of Ch. sempervirens. Shaded areas 

correspond to putative glacial refugia identified by Médail & Diadema (2009) in this region. 

 

 

Fig. 2. A, The genetic diversity (Hj) and B, the genetic rarity (DW) of each sampled population of 

Cheirolophus sempervirens along their latitudinal distribution in the Iberian Peninsula, calculated 

using amplified fragment length polymorphism (AFLP). The Spearman rank correlation index and 

the p-value are also indicated. 

 

Fig. 3. Bayesian estimation of genetic structure within Cheirolophus sempervirens inferred with 

STRUCTURE from AFLP data, according to the best models [(A) K = 2 and (B) K = 5] proposed 

by STRUCTURE HARVESTER.  

 

Fig. 4. Neighbor-Net based on Jaccard distance obtained from 85 individuals of ten sampled 

populations of Cheirolophus sempervirens. Bootstrap values above 50% derived from a Neighbor-

Joining analysis are given for the main branches. 

 

Fig. S1. Plots with the estimates of the number of K groups based on the ∆K statistic of Evanno et 

al. (2005) (A) and the mean likelihood Ln(K) calculated with STRUCTURE HARVESTER (B). 
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Fig. S2. Neighbor-Joining tree of 85 Cheirolophus sempervirens individuals from the 10 sampled 

populations. Bootstrap values greater than 50% that were obtained after 1000 permutations are 

indicated on the branches. 

 

Fig. S3. Principal coordinates (PCoA) plot of AFLP data for the Cheirolophus sempervirens 

populations included in this study. Different symbols correspond to different populations as shown 

in the legend in the right side. 

 


