
1 
 

Laser Fabrication of Polymer Ferroelectric Nanostructures 

for Non-volatile Organic Memory Devices 

Daniel E. Martínez-Tong
1,ǂ,*

, Álvaro Rodríguez-Rodríguez
1
, Aurora Nogales

1
, Mari 

Cruz García-Gutiérrez
1
, Francesc Pérez-Murano

2
, Jordi Llobet

2
, Tiberio A. Ezquerra

1
 

and Esther Rebollar
3,*

 

1
Instituto de Estructura de la Materia (IEM-CSIC). C/ Serrano 121. Madrid, 28006. 

Spain 

2
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus UAB 08193, 

Cerdanyola del Vallès (Bellaterra) Barcelona, Spain 

3
Instituto de Química Física Rocasolano (IQFR-CSIC). C/ Serrano 119. Madrid, 28006. 

Spain 

*Corresponding authors: danmarti@ulb.ac.be 

                                         e.rebollar@iqfr.csic.es 

ǂ
Present address:

 
Département de Physique, Faculté des Sciences, Université libre de 

Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium 

 

 

 

Abstract 

Polymer ferroelectric laser induced periodic surface structures (LIPSS) have been 

prepared on ferroelectric thin films of a poly(vinylidene fluoride- trifluoro ethylene) 

copolymer. Although not absorbing light at the laser wavelength, LIPSS on the 

copolymer can be obtained by forming a bilayer with other light absorbing polymer. 

The ferroelectric nature of the structured bilayer was proven by piezoresponse force 

microscopy measurements. Ferroelectric hysteresis was found on both bilayer and laser 

structured bilayer. We show that it is possible to write ferroelectric information at the 

nanoscale. The laser structured ferroelectric bilayer showed an increase in the 

information storage density of an order of magnitude in comparison to the original 

bilayer.  
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1. Introduction 

In recent years, research on ferroelectric polymers has been focused towards the 

development of functional prototypes for all-organic electronics. Functional devices, 

such as diodes
1-2

 and transistors
3-5

, have been fabricated in a layer-by-layer approach by 

combining thin films of ferroelectric polymers with other materials like semiconducting 

polymers
4
 and inorganic alloys

6
. Moreover, the use of nanopatterned surfaces in these 

devices has shown to improve the ferroelectric response of the polymers
7-8

, enhance the 

storage information density by controlling molecular architecture
9-12

, and also allow the 

possibility of preparing 3-dimensional nanostructures, such as multiple-gate 

transistors
13-15

.  

Surface nanostructuring of polymers can be accomplished with a great variety of 

procedures, such as nanoimprint lithography (NIL)
16-17

, photolithography
18

, laser 

interference
19

 and optical near-fields
20-21

. Also, laser induced periodic surface structures 

(LIPSS) can be prepared on polymer thin films
22-23

. LIPSS can appear after irradiation 

of solid surfaces by intense laser pulses, as a result of the interference between the 

incoming and the surface-scattered waves of the laser. This causes an heterogeneous 

energy intensity distribution, which together with a feedback mechanism, results in a 

periodic enhancement of the irradiation intensity
24

. The final outcome is the appearance 

of spontaneous periodic surface nanostructures, with periodicities closely related to the 

wavelength of the irradiating laser
24-26

. Contrary to other techniques, LIPSS are 

prepared without the requirement of direct physical contact and clean environments. 

Also, it avoids problems like tearing during demolding and mold imperfections found in 

NIL structures
4
. 
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The development of LIPSS on a polymer surface is related to both irradiation conditions 

and surface properties. Laser wavelength, fluence, pulse duration, polarization, angle of 

incidence and repetition rate, dictate the morphology of the resulting structures
22-23, 27-28

 

and allow the possibility of fabricating different geometrical arrays such as nanogratings 

and nanodots
29

. Typically in polymers, using nanosecond laser pulses,  LIPSS are 

formed parallel to the polarization of the laser with a period L described by L=/(n-

sin) where  is the laser wavelength, n is the effective refraction index and  is the 

incidence angle
30

.  On the other hand, the polymer surface must fulfill certain 

conditions, such as light absorption at the specific wavelength and surface roughness on 

the order of the few nanometers. Previously, we have reported the formation of LIPSS 

on thin films of poly(ethylene terephthalate), poly(trimethylene terephthalate) and 

poly(bisphenol-A carbonate), using nanosecond (ns) pulses in the ultraviolet region
22

. 

However, in the case of the poly(vinylidene fluoride) (PVDF), no structuring could be 

achieved, due the poorly absorption of this polymer, at the same irradiation conditions, 

and its semicrystalline spherulitic morphology, which introduced further hindrances into 

the reorganization of the material as well as higher roughness
22

. The limitation of LIPSS 

method for nanostructuring non-absorbing polymers has been reported also by other 

authors
31

. For this reason LIPSS formation was ruled out as a procedure to prepare 

ferroelectric nanostructures on PVDF and its copolymers.  

In this work, we demonstrate two main effects. First, the possibility of LIPSS formation 

on non-absorbing polymer thin films using ns laser pulses. In order to overcome the 

absorption limitation, we have prepared bilayer polymer thin films in which the bottom 

layer absorbs light at the specific wavelength, while the top layer is formed by the non-

absorbing polymer of interest. We have selected the two functional polymer materials: 

P3HT as bottom absorbing layer, and P(VDF-TrFE) as non-absorbing top layer. 
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Second, we proved that laser nanopatterning of the P(VDF-TrFE) is achievable without 

compromising its ferroelectric response. We created nanostructures of P(VDF-TrFE) 

whose storage information density increases in about one order of magnitude, in 

comparison to the non-structured bilayer. This validates the potential of our procedure 

in order to develop non-volatile organic memory devices. 

2. Experimental section 

2. 1. Materials. Poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) was 

purchased from Piezotech S.A.S. Molar concentration of the random copolymer is 

76:24 (VDF:TrFE content) and its molecular weight is Mw = 367 kg/mol, Mw/Mn = 

1.72, melting temperature  = 148 ± 1
o
C . Poly(3-hexylthiophene) (P3HT) was purchased 

from Ossila (Batch M106, tradename lisicon®, molecular weight Mw = 34100 g/mol, 

Mw/Mn = 1.7),  melting temperature = 235 ± 5 ºC. 

2.2. Polymer thin films. Polymers were used as received. Single-layer (SL) and Bilayer 

(BL) thin films were prepared by spin coating. For SL films, 0.2 mL of polymer 

solution was deposited on top of a 2x2 cm
2
 square conductive silicon wafer (resistivity 

0.001-0.005  cm) and rotated at 2400 rpm for 2 minutes. Specifically, P(VDF-TrFE) 

was dissolved in 2-butanone (C4H8O) (5 mg/mL), at 72 ºC, under continuous stirring for 

3 hours. P3HT was dissolved in chloroform (CHCl3) (24 mg/mL), at room temperature. 

Dissolution was achieved immediately within a few minutes.  

The protocol for preparation of BL thin films is described next, and is similar to 

previous reports 
32-33

. Solution concentrations were kept equal to the ones presented for 

SL films. First, a thin film of P3HT was spin coated on a 2x2cm
2
 conductive silicon 

wafer. Afterwards, the P(VDF-TrFE) solution was coated on top of the P3HT film. In 

both cases, a fixed rotation speed of 2400 rpm for 2 minutes was used. In order to 
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determine whether the 2-butanone had any effect on the P3HT, we performed a 

solubility test. The P3HT solution showed no coloration of the colorless 2-butanone 

after stirring, as previously reported in the literature
32

. This indicates the non-soluble 

character of the semiconducting polymer in the solvent.  

2.3. Laser irradiation. Laser irradiation was carried out in ambient air, at normal 

incidence, with the linearly polarized laser beam of a Q-switched Nd:YAG laser (Lotis 

TII LS-2131M, pulse duration τ = 8 ns, full width at half-maximum) at a repetition rate 

of 10 Hz. Second harmonic, at a wavelength () of 532 nm, was used for the 

experiments. At this wavelength, P3HT has an absorption coefficient
34-35

 of 2x10
5
 cm

-1
, 

while the PVDF based copolymer
22

 has one in the order of 10
2
 cm

-1
. This great 

difference among the absorption coefficients, at  = 532 nm, indicates that in the bilayer 

geometry, light will pass through the top P(VDF-TrFE) layer without significant loss of 

energy, and reach the bottom P3HT film, where it will be absorbed. The fluences of 

irradiation were determined by measuring the laser energy in front of the sample with a 

joulemeter (Gentec-E, QE25SP-H-MB-D0) and calculating the area of the irradiated 

spots.  

2.4. Atomic Force Microscopy (AFM). Morphology of the polymer SL and BL thin 

films was characterized by atomic force microscopy (AFM). A Multimode 8 AFM with 

a Nanoscope V controller (Bruker) was used under tapping mode with NSG-30 probes 

(NT-MDT). Square images with 512x512 pixels resolution were taken. Analysis of size 

and shape of the nanometric features was performed with the NanoScope Analysis 1.50 

software (Bruker). 

2.5. Piezoresponse Force Microscopy (PFM). PFM measurements were carried out by 

means of a Nanoscope V AFM (Bruker), in the piezoresponse mode. The topography 
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and the ferroelectric signals were acquired simultaneously. The microscope was used in 

contact mode, with a low deflection set-point (0.3 V) in order to avoid damaging the 

samples. Conductive PtIr covered probes (SCM-PIC, Bruker, k = 0.2 N/m) were used. 

Through the PFM technique, hysteresis cycles were recorded applying a tip bias ramp 

from -12 V to 12 V at a frequency of 0.1 Hz and collection of 1024 samples. Local 

poling was carried out using the tip as the top electrode. In every case, a DC bias (± 12 

V) was applied for 5 minutes. The control of points and lines drawn in the ferroelectric 

phase was made by means of the Point and Shoot protocol, available in the Nanoscope 

8.15 software. The PFM out-of-plane signal was taken applying an AC voltage of 2 V at 

a frequency of 60 kHz between sample and tip. Measured amplitudes are related to the 

local electromechanical response of the sample surface during application of an AC 

voltage.  

2.6. Electrostatic Force Microscopy (EFM). Electrical measurements on the sample 

surface were also performed using the Nanoscope V AFM (Bruker). EFM images were 

taken using a double pass approach
36-38

. In this work, EFM experiments were carried 

out using Pt-Ir covered Si probes (SCM-PIT, Bruker, k = 4 N/m). Lift height was kept 

constant at 80 nm above each point on the surface, and the applied tip voltage was +5 V. 

Lift height was chosen in order to avoid effect of the topography. 

2.7. Conductive Atomic Force Microscopy (C-AFM). Electrical measurements were 

performed with conductive probes (Pt-Ir covered Si cantilevers with a low spring 

constant, k = 0.2 Nm
-1

, SCM-PIC by Bruker) in contact mode by measuring 

simultaneously both topography and electrical current images. In these measurements, 

the conducting probe makes contact with the sample, acting like a nanoelectrode, and 

maps a current image at a fixed bias of -5V. The current was measured by a 

preamplifier. 
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2.8. Cross sectional SEM. For the characterization of the bilayer thickness, cross-

sectional scanning electron microscope (SEM) images were performed with a focused 

ion beam (FIB, CrossBeam 1560 XB, Zeiss). For fabricating the cross-sections, the FIB 

was operated at 30 keV for accelerating the gallium ion beam. In order to avoid damage 

to the polymer layers, small apertures were selected to provide a beam current of 50 pA. 

The sample was not covered with any metal layer during the FIB milling. The same 

equipment was used for obtaining the high resolution SEM images. The conditions for 

the imaging were 5 keV, 30 m of aperture, a working distance of 5.1 mm. The images 

were obtained using the InLens detector to enhance material contrast and resolution. 

3. Results and discussion 

3.1. Polymer bilayers 

AFM topography images of the polymer thin films are shown in figure 1, before and 

after laser irradiation. Figures 1a and 1b shows 5x5 m
2
 AFM topography images of the 

as prepared P(VDF-TrFE) and P3HT SL films, respectively. In both cases, the AFM 

image shows a continuous surface without dewetting and/or agglomerates. The P(VDF-

TrFE) SL film exhibits a roughness of 1.0 ± 0.5 nm, while the P3HT SL film shows one 

of 4 ± 1 nm. These two polymers are semicrystalline, thus the roughness can be related 

to the presence of crystallites on the surface. Thickness of the films was measured by 

AFM. A scratch was made on the surface of the films and the step between the silicon 

surface and the polymer layer was quantified in different locations of several samples. 

The P(VDF-TrFE) SL thin film showed a thickness of hP(VDF-TrFE) = 35 ± 5 nm. The 

thickness of the P3HT SL thin film was found to be hP3HT = 140 ± 10 nm.  

Figure 1c shows a 5x5 m
2
 AFM topography image of the bilayer film. The resulting 

surface does not exhibit either signs of dewetting or mechanical instabilities as reported 
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in other cases
39-40

 
41-42

 . Also, it is worth noticing that our bilayers were prepared 

without requiring any external element to improve its mechanical stability in contrast to 

previous reports in the literature
43

. Roughness of the BL surface was quantified to be 

1.2 ± 0.5 nm, comparable to the original P(VDF-TrFE) thin film. Step measurements of 

the bilayer film showed that the total thickness was hbilayer = 200 ± 50 nm. In principle, 

this value is compatible with the addition of the individual thicknesses of every layer. 

However, in order to reach a more precise characterization of thickness and continuity 

of the upper polymer layer we have accomplished cross-sectional SEM measurements 

which are shown in figure 2.  The two polymers appear as continuous layers of different 

electronic density in figure 2a.  The thickness of the bilayer polymer film estimated by 

SEM gives values of 150 ± 30 nm while upper and bottom layer exhibit thicknesses of 

38 ± 5 nm and 120 ± 10 nm respectively. This result and the fact that the AFM 

topography image does not show signs of phase separation allows us concluding that the 

bilayer consists of two separate and continuous polymer layers one on top of the other 

in agreement with previous reports
32-33

.  
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Figure 1. AFM topography images, before (left column) and after (right column) laser 

irradiation of single layer thin films of P(VDF-TrFE) (a,d) and P3HT (b,e) and of a 

P(VDF-TrFE)/ P3HT thin bilayer film (c,f). LIPSS are formed on the P3HT thin film 

and on the bilayer. The height profile along a 5 m line is shown below every image. 
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Figure 2. Cross-section SEM images of a P(VDF-TrFE)/ P3HT thin bilayer film before 

(a) and after (b) irradiation.  

 

3.2. Laser Induced Periodic Surface Structures (LIPSS) 

Irradiation parameters (fluence and number of pulses) were chosen according to 

previously reported systematic experiments related to LIPSS formation on P3HT
44

. 

Right column of figure 1 shows 5x5 m
2
 AFM topography images of SL and BL films 

after laser irradiation, at a fluence of 27 mJ·cm
-2

 and for 3600 pulses in every case. 

Figure 1d shows the result of laser irradiation on the P(VDF-TrFE) SL film. No 

development of nanostructures or any other surface features is observed while its 

roughness was found to remain around 1 nm. The absence of surface structures on this 

copolymer can be related to its weak optical absorption
22

. Increasing the laser beam 

fluence did not allow the formation of any structuring until high fluence values, close to 
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700 mJ·cm
-2

, led to swelling of the film. Similar results have been previously reported 

for non-absorbing polymers
45

 such as PVDF
46

.  

Comparison between figures 1b and 1e evidences the morphology changes in the P3HT 

SL film. After laser irradiation, the formation of LIPSS is observed on its surface. The 

nanostructures consist of elongated ridges along a specific direction, giving raise to the 

development of nanogratings. The height of the nanostructures was found to be 100 ± 

20 nm, while their period was about 460 ± 10 nm. As in our case the laser fluence is 

well below the ablation threshold, the structuring of the surface takes place without 

material removal
23

.  

Figure 1f shows a 5x5 m
2
 AFM topography image of the BL film, after laser 

irradiation. It can be seen that surface structuring took place and continuous linear 

nanostructures, with quantitative geometrical features similar to those of the P3HT, are 

observed. The continuity of the nanostructured upper polymer layer is corroborated by 

the cross-section SEM image shown in figure 2b. However, in order to rule out the 

possibility of discontinuity of the ferroelectric upper layer we have also performed both 

EFM and C-AFM measurements. The results are shown in figures S1 and S2 of the 

supplementary information. The EFM images reveal a fairly constant value of the 

electrostatic signal on either ridges or trench regions, with some contrast among them. 

The SEM images (figure 2b and figure S3, Supplementary Information) reveal that the 

trench regions of the nanostructure present some holes. Therefore, in a first approach, 

the contrast of the electrostatic field observed in the EFM images can be associated with 

this effect. Moreover, C-AFM images show that samples are non-conducting, 

confirming that the upper layer must be the P(VDF-TrFE) film, homogeneously 

covering the P3HT. 
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Since the P(VDF-TrFE) thin film did not show LIPSS at similar irradiation conditions 

(figure 1d) the development of the LIPSS on the bilayer must be associated with the 

P3HT bottom layer. As the P(VDF-TrFE) does not absorb light at the irradiating laser 

wavelength, the laser beam pass through the upper polymer layer without significantly 

altering its energy or polarization before reaching the P3HT bottom layer. Here, 

structuring takes place just as in the SL film heating the P3HT above its melting 

temperature in such a way that the polymer segments acquire enough mobility as to 

rearrange following the modulation imposed by the laser. Afterwards, heat dissipation 

from the P3HT allows cooling and fixing the nanostructure of the bottom layer while 

heating the P(VDF-TrFE) on top. This heat transfer is expected to melt the ferroelectric 

polymer, gaining mobility and accommodating on the pattern of the bottom layer. The 

possibility of forming a nanostructured bilayer on which the top non-absorbing layer 

follows the bottom one is new and differs from previous reports in the literature. For 

example, Zhao and collaborators
47

 prepared surface patterns by laser irradiation on thin 

layers of poly(methyl methacrylate) (PMMA) on azobenzene liquid crystalline (LCP) 

polymer films. These authors found that the LCP single layer film reorganized 

following a grating-like structure after laser irradiation, using ns pulses. However, when 

dealing with the PMMA/LCP bilayer structure, the upper, non-absorbing layer of 

PMMA did not followed the LCP pattern but developed wavelike surface structures, 

whose periods did not relate to the wavelength of the laser pulse. Thus, by using this 

simple approach it is possible to form LIPSS on non-absorbing polymers. 

In figure 1f, the LIPSS generated on the BL film show also the development of droplet-

like structures on top. These are evidenced by the bright spots in the image and could be 

related to agglomeration of P(VDF-TrFE) appearing during the melting and 

recrystallization process. These features, which are also visualized in the SEM images 
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(figure S2, Supplementary Information), exhibit a round top with mean diameters 

ranging from 100 – 200 nm and heights from 20 – 50 nm.  

3.3. Ferroelectric response of nanostructured bilayer films 

Figure 3 shows the PFM phase shifts as a function of an applied tip bias, for the 

prepared samples. As obtaining accurate electric field on films with complicated 

morphology can be misleading we have represented the phase shift as a function of the 

nominal applied voltage bias. In PFM, ferroelectric materials are characterized by 

hysteresis cycles with a 180º shift of the PFM phase
48

. These changes are related to the 

flipping of polymer dipoles in the vertical direction, with respect to the sample surface 

(out-of-plane polarization), as in the charge displacement versus applied electric field 

measurements on thin film capacitors
49

. The value of the electric field where the shift of 

the PFM phase takes place is known as the coercive field (Ec). As expected from its 

chemical composition, the P3HT sample (black line, figure 3a) shows no ferroelectric 

hysteresis, but simply a sudden transition from one state to other, consequence of the 

polarization of the tip and charge injection. Results for the P(VDF-TrFE) SL film are 

depicted in figure 3a with red lines. In this case, the ferroelectricity of the copolymer is 

evidenced by the 180º PFM phase shift transition observed at non-zero field values. The 

coercive field can be estimated to be Ec = (25 ± 6) MV/m, considering hP(VDF-TrFE) = 35 

± 5 nm. This value is similar to those found in previous works for continuous films of 

this ferroelectric copolymer
10, 48

, although smaller than previously reported values for 

thicker films
50

. In a first approach we can attribute this fact to differences in crystallinity 

depending on thickness. Finally, the non-irradiated bilayer film exhibits also a 

ferroelectric response, as evidenced from the hysteresis cycle shown by the blue curve 

in figure 3a. In this case, the coercive field was found to be around Ec = (19 ± 4) MV/m. 
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Figure 3. (a) PFM phase shift as a function of applied electric field for P3HT SL film 

(black), P(VDF-TrFE) SL film (red) and polymer bilayer (blue). Both P(VDF-TrFE) 

and bilayer film show ferroelectric hysteresis. (b) PFM phase shift as a function of 

applied bias for the LIPSS on the bilayer film (green) and continuous bilayer (blue) for 

comparison. 

 

The ferroelectric response of the LIPSS BL film is shown in figure 3b (green line). Data 

of the non-irradiated BL film is included for comparison. The presence of hysteresis 

indicates that the LIPSS have a ferroelectric response, with a coercive field close to Ec = 

(10 ± 4) MV/m. Hysteresis cycles were taken on several areas of the LIPSS BL and 

found to be equivalent. Evidence of ferroelectricity in the nanostructured layer further 

supports that the top layer follows the topography of the P3HT one. In addition, since 

the ferroelectricity of P(VDF-TrFE) depends strongly on its crystalline structure
49

, 

figure 3 suggests that laser irradiation did not inhibit the recrystallization of the P(VDF-

TrFE) copolymer.  
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3.4. Ferroelectric information storage on polymer bilayers 

Recently, PFM has also been used to store nanoscale information on ferroelectric 

organic films
10, 48, 51-56

, using the tip as a stylus to write the information by applying a 

bias above the coercive field. Reading is attained by the piezoelectric response of the 

sample, which gives different contrast between written and unwritten zones
53

 or by the 

difference in the electrical current that flows through the material
2, 4

. Figure 4 shows 

5x1 m
2
 PFM images, where the ferroelectric state of the non-irradiated bilayer film, 

before and after poling for 5 minutes at a +12 V bias, is observed. For the electric 

poling, the tip was fixed at a certain position on the bilayer surface, while the bias was 

applied. The magnitude of the physical contact between tip and surface was controlled 

by setting a low cantilever set-point. 

 

Figure 4. (Left column) Topography, PFM amplitude and PFM phase shift of the 

bilayer film before poling. (Right column) Topography, PFM amplitude and PFM phase 

shift of the bilayer film after poling at 3 points, for 5 minutes at +12 V. Panels third and 

fifth from top is the amplitude and phase shift across a single line indicated in the height 

image. 
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Left column of Figure 4 shows the topographic and ferroelectric state of the bilayer 

before poling. Both, PFM amplitude and phase shift, show no contrast along the whole 

area. This indicates a non-preferential orientation of the polymer dipoles in the as casted 

film. Right column of Figure 4 shows the topography and ferroelectric response of the 

polymer bilayer after poling in three selected positions. The topography image shows 

that in every case, the tip-surface interaction lead to indentation of the surface. 

Nonetheless, PFM amplitude and phase shift images show the development of 

ferroelectric contrast in the poled areas. The phase shift after poling is significantly 

smaller than the one observed in the hysteresis experiments (figure 3). This effect has 

been previously reported
10-11, 48

 and has been related to the fact that the average vertical 

orientation of the dipole moments does not change significantly by the application of 

the electric field. It is known that P(VDF-TrFE) crystals in thin films and in gratings are 

embedded in amorphous phase and they exhibit a needle like morphology which adopt a 

variety of orientations from flat-on to edge-on
10

. Therefore the value of the phase 

change can be attributed to the fact that the electric field is not applied over a single 

crystal but over a polycrystalline sample where crystals adopt different orientations. 

This fact makes phase change to be less than that expected for a single crystal. 

In all three cases, the magnitude of the ferroelectric contrast seems to be comparable. 

However, the surface extension of the ferroelectric response varies from point to point. 

One might argue that this difference can be related to the indentation of the probe into 

the surface and the possible damage it may have caused to the ferroelectric top layer. 

The profile along the written spots, in the ferroelectric channels, show that the dipole 

orientation caused by the applied tip bias extends from 400 to 800 nm. This result is in 

agreement with previous PFM studies in P(VDF-TrFE) SL thin films
51

. Considering the 
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spreading of the ferroelectric information in the bilayer film, information storage 

density can be estimated as around 2 ± 1 Gbit/inch
2
.   

Figure 5 shows the LIPSS BL film, before and after poling at three spots, at +12 V for 5 

minutes. In this case, besides setting a low deflection cantilever set-point, the PFM 

study was carried out scanning the tip in a direction parallel to the LIPSS, thus possible 

damage due to tip-surface interaction was minimized
10

. Before poling, the left column 

of figure 5 shows that the irradiated structures have no preferential ferroelectric 

response. This indicates that the laser induced ripples do not align the P(VDF-TrFE) 

dipole moment in any preferential direction. However, it is interesting noticing that in 

the P(VDF-TrFE) droplets, on top of the LIPPS, the ferroelectric amplitude signal 

seems to have a lower value. This could serve as an indication of different crystallinity 

inside the droplets. The ferroelectric response of the LIPSS, after poling, is shown in the 

right column of figure 5. First, it is possible to observe that no change in the 

morphology of the nanostructures was generated by the tip interaction as evidenced in 

the topography image. Then, the PFM amplitude image shows the three written points 

on the LIPSS. The magnitude of the ferroelectric signal is comparable to the one in the 

continuous BL film. Nonetheless, the surface extension of the ferroelectric domains 

decreases significantly in comparison to the non-irradiated film. In the LIPSS, the 

electrical poling generates circular domains of about 100 to 200 nm in diameter, which 

correspond to an information density of 35 ± 5 Gbit/inch
2
. It is worth mentioning the 

presence of some dots on the trench region. This is due to the nanometric control 

limitations of the piezoelectric scanner in the point and shoot protocol. Nevertheless, 

this proves that the material is also ferroelectric on the trench, further supporting the 

continuity of the upper polymer layer. The hindrance of the ferroelectric interaction in 

confined polymer structures, has been previously reported in nanogratings generated by 
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nanoimprint lithography
10-11, 48

 and attributed to the development of a higher proportion 

of edge-on lamellae, due to the confinement of the polymer crystals. Moreover, we have 

performed PFM measurements to test the dipole moment retention of the LIPSS bilayer. 

As presented in figure S4 (please refer to the supplementary information), four different 

points were poled at + 12 V (left side points) and – 12 V (right side points) for 5 

minutes each. Then, we measured both the PFM amplitude and phase signals18 h after 

poling. First, it is possible to affirm that, at laboratory times, the laser-structured bilayer 

retains the dipole information since both PFM signals did not show any quantitative 

variation with time. Second, we further highlight that poling with positive or negative 

bias do not strongly affect the absolute magnitude of the PFM amplitude signal (about 

3-5 mV), while the direction of both amplitude and phase show the characteristic 

behavior reported previously in the literature
48

. 

 

Figure 5. (Left column) Topography, PFM amplitude and PFM phase shift of the 

LIPSS on the bilayer film before poling. (Right column) Topography, PFM amplitude 

and PFM phase shift of the of the LIPSS of the bilayer film after poling at 3 points, for 

5 minutes at +12 V. Panels third and fifth from top is the amplitude and phase shift 

across a single line indicated in the height image. 
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4. Conclusions 

Laser induced periodic surface structures can be prepared on polymer thin films, in spite 

of the absence of light absorption at the wavelength of the irradiating laser, by using a 

bilayer approach. We have shown that the structuring of a P3HT layer, by laser 

irradiation at  = 532 nm, covered by a ferroelectric P(VDF-TrFE) thin layer allowed 

developing surface nanogratings. This approach will be useful not only for the case of 

P(VDF-TrFE) but for any other non-absorbing polymer making the technique more 

versatile and thus paving the way for a wider range of applications. The LIPSS preserve 

the ferroelectric properties of the P(VDF-TrFE), as evidenced by the hysteresis cycles 

recorded by PFM. The laser fabricated nanogratings showed an increase of the storage 

information density of about one order of magnitude, in comparison to the non-

structured bilayer.  
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