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2 

Abstract 16 

The impact of acid incorporation (acetic+lactic, 0.5%) into rice starch-based doughs 17 

enriched with different proteins (egg albumin, calcium caseinate, pea protein and soy 18 

protein isolates) at different doses (0, 5 and 10%) has been investigated on dough 19 

viscoelastic and pasting profiles. Oscillatory (stress and frequency sweeps) and creep-20 

recovery tests were used to characterise the fundamental viscoelastic behaviour of the 21 

doughs, and thermomechanical assays were performed to assess dough viscometric 22 

performance. Supplementation of gluten-free doughs with proteins from vegetal sources 23 

led to more structured dough matrices (higher viscoelastic moduli and steady 24 

viscosities, and lower tan , instantaneous and retarded elastic compliances) effect being 25 

magnified with protein dose. Acid addition decreased these effects. Incorporation of 26 

proteins from animal source resulted in different viscoelastic behaviours according to 27 

the protein type, dosage and acidification, especially for casein. Acidification conferred 28 

lower dough deformation and notably higher steady viscosity and viscoelastic moduli 29 

for 5 %-casein-added dough. Protein-acid interaction favoured higher viscosity profiles, 30 

particularly for doughs with proteins of vegetable origin and lower dosage. Dough 31 

acidification decreased the pasting temperatures and the amylose retrogradation. 32 

Acidification of protein-enriched rice-starch doughs allowed manipulation of its 33 

viscometric and rheological properties which is of relevant importance in gluten-free 34 

bread development.  35 

 36 

 37 
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Abbreviations: 41 

a: Exponent from fitting power law to G’ data 42 

b: Exponent from fitting power law to G’’ data 43 

BD: Breakdown viscosity 44 

c: Exponent from fitting power law to tan  data 45 

FV: Final Viscosity 46 

'

1G : Elastic modulus at a frequency of 1 Hz obtained from fitting power law to G’ data 47 

''

1G :Viscous modulus at a frequency of 1 Hz obtained from fitting power law to G’’ data 48 

J0c: Instantaneous compliance obtained from creep test 49 

J0r: Instantaneous compliance obtained from recovery phase 50 

J1c: Retarded compliance obtained from creep test  51 

J1r: Retarded compliance obtained from the recovery phase. 52 

LVR: Linear Viscoelastic Region 53 

1c: Retardation time in the creep phase 54 

1r: Retardation time in the recovery phase 55 

0: Steady state viscosity 56 

PV: Peak Viscosity 57 

PT: Pasting Temperature 58 

SB: Setback 59 

(tan )1: Loss tangent at a frequency of 1 Hz obtained from fitting power low to tan  60 

data 61 

TV: Through Viscosity 62 

: Oscillation Frequency 63 

 64 

 65 
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1. Introduction 66 

Gluten-free (GF) products are a growing sector in the food industry, and the related 67 

research constitutes a prioritised and challenging topic in cereal-based goods area. The 68 

unequivocal need for The development of new GF products is emerging not only 69 

because daily dietary requirements for essential nutrients of celiac disease patients are 70 

not fully covered at present by existing products (Mandala and & Kapsokefalou, 2011). 71 

The target group of GF products is currently expanding to adhere join, in addition to 72 

celiac patients (1-3% of the population), people looking for nonallergenic ingredients, 73 

leading to a new market that needs a variety of products. Also, GF products can 74 

function as prototypes/templates for the development of other products addressed to 75 

specific vulnerable groups of population with special nutritional needs (e.g., diabetics). 76 

GF product approaches include: (1) reformulations (e.g., high-fiber gluten-free versions 77 

of traditional antecedents), (2) new forms of existing products (e.g., frozen and part-78 

baked), (3) repackaging of existing products, and (4) innovative products (e.g., use of 79 

novel cereals) (Kelly, Moore, Elke, & Arendt et al., 2008). Concerning the first 80 

approach, complex formulations that appear promising in terms of technological 81 

improvement and nutritional quality have been developed so far, with variable 82 

success/failure regarding sensory appreciation and technological constraints. The 83 

formulations mainly involve the incorporation of starches of different origin, other non-84 

gluten proteins such as dairy proteins, gums, and their combinations (Mariotti, 85 

Lucisano, Pagani, & Ng et al., 2009). These ingredients can mimic the viscoelastic 86 

properties of gluten and may result in improved structure, mouthfeel, acceptability, and 87 

shelf life of these products (Gallagher, Gonnley, & Arendt et al.,, 2004).  88 

Rice flour is considered one of the most suitable cereal flour for preparing gluten-free 89 

products associated to its several significant properties such as natural, hypoallergenic, 90 

colorless, and bland taste. It has also very low level of protein, sodium, fat, fiber and 91 

high amount of easily digested carbohydrates. Since most of the rice contain relatively 92 

small amount of prolamin (2.5–3.5%) (Gujral and & Rosell, 2004), it is necessary to use 93 

some sort of gum, emulsifier, enzymes or dairy products together with rice flour for 94 

achieving desired viscoelastic mixture (Demirkesen, Mert, Sumnu, & Sahin et al.,, 95 

2010). Gum type additives, such as hydroxyl propyl methyl cellulose (HPMC) 96 

(Sivaramakrishnan, Senge, & Chattopadhyay et al.,, 2004) and the enzyme glucose 97 

oxidase (Gujral and & Rosell, 2004) resulted in successful formation of rice bread 98 

Formatted: Strikethrough
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showing the optimum volume expansion and a general improvement of bread quality, 99 

respectively (Nikolić, Dodić, Mitrović, & Lazić,  et al., 2011). Proteins from different 100 

sources can be added to increase both nutritional and functional values of GF products. 101 

Protein incorporation leads to the formation of a continuous protein phase (Moore, 102 

Tilman, Dockery, & Arendt et al., 2004), and are added to GF applications (Crockett, Ie, 103 

& Vodovotz et al., 2011) to increase elastic modulus by cross linking, to improve 104 

perceived quality by enhancing Maillard browning and flavour, to improve structure 105 

with gelation and to aid in foaming (Moore, Dal Bello, & Arendt et al., 2008). These 106 

result in bread with increased loaf volume, improved crumb regularity and improved 107 

sensory characteristics (Moore et al., 2008). The use of dairy powder in gluten-free 108 

baked product formulations has resulted in improved volume as well as better 109 

appearance and sensory aspects of the loaves (Gallagher et al., 2004). Soy protein 110 

isolate and dried egg white solids were investigated due to their foam-stabilizing 111 

activity and use in GF applications (Marco and & Rosell, 2008; Moore et al., 2004). 112 

According to Stathopoulos (2008), the most used ingredients in gluten-free baked 113 

product formulations are caseinates, skim milk powder, dry milk, whey protein 114 

concentrate and milk protein isolate. It follows that the selection of the proteins used in 115 

a gluten-free formulation is a critical issue (Mandala and & Kapsokefalou, 2011). 116 

Soybean protein isolates increases the nutritional value of rice cassava bread and 117 

increases elastic modulus, resulting in enhanced gas retention and loaf volume, and 118 

improves water binding in the bread loaves. Other authors stated that the addition of 119 

soybean protein isolate to an HPMC-treated rice cassava bread reduced dough stability 120 

by suppressing HPMC functionality, altering water distribution within the dough, 121 

weakening HPMC interactions with the starch matrix and reducing foam stability 122 

(Crockett et al., 2011). Green pea protein has been used in less extent than the soybean 123 

protein in GF breads evidencing also an increase in the elastic modulus (Marco and & 124 

Rosell, 2008). Acetic and lactic acids confer suitable properties to final breads in terms 125 

of odour and taste either when produced by the exogenous microflora or added to 126 

breadmaking matrices, increasing in addition protease and amylase activities that lead to 127 

a retarded staling during storage (Moore et al., 2008). 128 

The combined effect of acid addition and protein supplementation in GF matrices has 129 

not been described so far despite inter ande intra-molecular interactions established 130 

between exogenous proteins and starch molecules that are the main responsible for 131 

dough structurization, certainly depend on dough pH. In addition, despite several 132 
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rheological techniques, including oscillation, stress relaxation, creep and creep-recovery 133 

measurements have been used extensively for assessing fundamental mechanical 134 

properties of gluten, the use of dynamic rheometry in studies of GF-dough rheological 135 

behavior has only been applied over the last decade (Lazaridou, Duta, Papageorgiou, 136 

Belc, & Biliaderis et al., 2007; Ronda, Pérez-Quirce, Angioloni, & Collar et al., 2013). 137 

Fundamental and empirical rheological properties of doughs inform about interactions 138 

among ingredients and the creation of structure at macromolecular and macroscopic 139 

levels, respectively. In addition, quality attributes of breads such as volume and texture 140 

can be correlated with dough rheological properties (Sahin, 2008; Pérez-Quirce, Collar, 141 

& Ronda, 2014).  142 

This paper is intended to know the impact of acid incorporation (acetic:lactic, 0.1:0.4 %, 143 

w:wg/100 g starch+protein basis) into GF rice starch-based dough matrices enriched 144 

with different proteins (egg albumin, calcium caseinate, pea protein and soy protein 145 

isolates) at different doses on dough viscoelastic, and pasting profiles, prior to assess 146 

comparatively the structure promoting ability in GF matrices of exogenous proteins in 147 

absence/presence of acid. 148 

  149 

2. Material and methods 150 

2.1. Materials 151 

Rice starch (9.9 % moisture, 0.2 % ash and 0.5 % protein) from Ferrer Alimentación 152 

S.A. (Barcelona, Spain), and salt, sugar (Azucarera Ebro, Spain) and sunflower oil 153 

(branded Coosur Premium) purchased from the local market, were used to make gluten-154 

free doughs. Hydroxypropylmethylcellulose (HPMC, Methocel K4M Food Grade) was 155 

provided by Dow Chemical (Midland, EEUU). Proteins used in gluten-free 156 

formulations were: soybean isolate Supro 500-E IP from Proveedora hispano-holandesa 157 

S.A. (Barcelona, Spain), calcium caseinate from Armor proteines (Saint-Brice-en-158 

Coglès, France), egg albumin in dry powder from Eurovo (Valladolid, Spain) and pea 159 

protein isolate branded Pisane C9, from Cosucra (Warcoing, Belgium). Acetic acid and 160 

lactic acid (analytical grade; Panreac, Barcelona) were used as a source of hydrogen 161 

ions.  162 

 163 

2.2. Methods 164 
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2.2.1. Dough preparation  165 

A straight dough process was performed using the following formula on a 100 g rice 166 

starch (or rice starch+protein) basis: 6 g/100 g% oil, 5 % g sucrose, 1.5 % g salt, 2 % g 167 

HPMC and 80 % g water. All proteins were added at 0 %, , 5 % and 10 % g/100 gw/w 168 

(starch+protein basis) levels. Doughs were supplemented with (0.1 % g/100 g + 0.4) % 169 

g/100 g (w/w starch+protein basis) of acetic and lactic acid, respectively, when acid-170 

treatment was applied. The experimental design is shown in Table 1. GF dough-making 171 

was achieved by blending first solid ingredients and oil in a kitchen-aid professional 172 

mixer (KPM5). Then water was added and hand mixed. Finally the dough was mixed 173 

with dough hook at a speed 4 for 8 min. Acid blend, when added, was diluted in a small 174 

part of water (7 % of total) and adjusted to the dough before the mixer was powered on.  175 

 176 

2.3 Dough measurements 177 

Oscillatory and creep recovery tests 178 

Oscillatory and creep-recovery tests were carried out with a RheoStress 1 rheometer 179 

(Thermo Haake, Karlsruhe, Germany) with parallel plate geometry (60 mm diameter) of 180 

serrated surface and with 3 mm gap. The excess of batter was removed and vaseline oil 181 

was applied to cover the exposed sample surfaces. Before the measurement, the batter 182 

was rested for 10 min to allow relaxation. Frequency sweeps were carried out from 20 183 

to 0.1 Hz in the linear viscoelastic region (LVR) previously established for each batter 184 

by means of stress sweeps from 0.1 to 1000 Pa at 1 Hz. The frequency sweeps of all 185 

batters were carried out at stress values between 2 Pa and 10 Pa. Temperature was 25 186 

ºC. Frequency sweep data were fitted to the power law model as in previous works 187 

(Ronda et al., 2013):  188 
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The coefficients '

1G , ''

1G , and (tan )1, represent the elastic and viscous moduli and the 190 

loss tangent at a frequency of 1 Hz. The a, b and c exponents quantify the dependence 191 

degree of dynamic moduli and the loss tangent with the oscillation frequency, . Creep 192 

tests were performed by imposing a sudden step shear stress in the LVR for 150 s. In 193 

the recovery phase the stress was suddenly removed and the sample was allowed for 194 

300 s to recover the elastic (instantaneous and retarded) part of the deformation. Each 195 

test was performed in triplicate. The data from creep tests were modelled to the 4-196 

parameter Burgers model (Lazaridou et al., 2007) given by: 197 
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In the equation, Jc (t) is the creep compliance (strain divided by stress), J0c is the 199 

instantaneous compliance, J1c is the retarded elastic compliance or viscoelastic 200 

compliances, 1c is the retardation time and 0 gives information about the steady state 201 

viscosity. Similar equations were used for the recovery compliance Jr(t). As there is no 202 

viscous flow in the recovery phase, equations consist only of parameters describing the 203 

elastic response after removal of the shear stress. The data from creep tests were 204 

modelled to the 3-parameter Burgers model given by: 205 
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 206 

Jmax is the maximum creep compliance obtained at the end of the creep step.  207 

Thermoviscous test: Viscometric profile 208 

Viscometric profiles (gelatinization, pasting, and setback properties) of formulated 209 

starch rice doughs were obtained with a Rapid Visco Analyser (RVA-4, Newport 210 

Scientific, Warriewood, Australia) using ICC Standard 162. Freeze-dried hydrated 211 

samples (3.5 g, 14 % moisture basis) were transferred into canisters and ≈25 ± 0.1 mL 212 
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of distilled water were added and processed following standard method. The pasting 213 

temperature (PT), peak time (when peak viscosity occurred) (VT), peak viscosity (PV), 214 

holding strength or trough viscosity (TV), breakdown (BD), final viscosity (FV) and 215 

setback (final viscosity minus peak viscosity) (SB) were calculated from the pasting 216 

curve (Collar, 2003) using Thermocline v. 2.2 software. For each viscometric 217 

measurement, 3 samples were used. 218 

 219 

2.4. Statistical analysis 220 

Statgraphics Centurion v.6 (Bitstream, Cambridge, MN, USA) was used for 221 

multivariate non-linear regression and Pearson correlation matrix. STATISTICA 222 

package (Tulsa, OK, EEUU) v.6, allowed performance of MANOVA analysis, and LSD 223 

(Least Significant Difference) test was used to evaluate significant differences (p<0.05) 224 

between samples. 225 

 226 

3. Results and discussion 227 

Table 2 and 3 show the single and 2nd order interactive effects of protein and acid 228 

addition on pH and rheological and pasting properties of GF doughs. Protein presence 229 

increased the dough pH between 7 % and 12 % with respect to the control dough, 230 

depending on the dose. The lower increase was obtained with albumin. The acidification 231 

of protein-enriched doughs resulted in pH values 15 % – 34 % higher than the acid-232 

added control dough. 233 

3.1. Fundamental rheology 234 

3.1.1. Dynamic oscillatory rheology 235 
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Protein–enriched rice starch-based doughs were submitted to both stress and frequency 236 

sweeps in the linear visco-elastic region (LVR), which oscillatory rheological behaviour 237 

for selected samples is illustrated in Figures 1.a. and 1.b., respectively. Stress sweep 238 

tests allowed to know the maximum stress (τmax) that GF matrices can tolerate in the 239 

LVR -from 6 to 108 Pa- providing structure preservation. Lower τmax values 240 

corresponded to control samples without protein addition and to albumin-enriched 241 

samples regardless either acid or protein level addition, whereas higher τmax were 242 

obtained for no acid/10 g/100 g% pea protein or 10 g/100 g% soya protein enrichment 243 

and for acid/10 g/100 g% casein incorporation. Except for the egg albumin, the presence 244 

of protein encompassed a significant (p<0.01) increase in τmax values as a result of 245 

dough structurization. Increased dosage from 5 to 10 g/100 g% promoted τmax for 246 

doughs enriched with vegetal proteins (+63 % soya, +89 % pea), whereas only acidified 247 

matrices containing casein underwent a relevant structure promotion with protein dose 248 

(+160 %). For vegetal proteins, dough acidification led to a weakening effect regardless 249 

the dose, and consequently to a decrease in τmax, more prominent in pea enriched 250 

samples (-54 %) than in soya samples (-37 %). Samples supplemented with casein 251 

proteins observed a strengthening effect in acid medium when added at 10 g/100 g% 252 

(+37 %), but underwent weakening impact with acid addition when added at 5 g/100 253 

g% to the doughs (-47 %).  254 

Frequency sweep tests of unacidified and acidified 5 g/100 g% casein added dough 255 

matrices are illustrated in Figure 1.b. Visco-elastic behaviour of dough samples 256 

corresponded with no exception to solid-like samples with storage modulus values (G’1) 257 

higher (from 2568 to 70665 Pa) than loss modulus values (G’’1) (from 477 to 10465 258 

Pa), slight frequency dependence, and values for tan δ (G’’/G’) under 1, in good 259 

accordance with earlier results found for rice doughs enriched with protein isolates 260 
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(Gujral and & Rosell, 2004). In this work, protein addition affected dough 261 

viscoelasticity, the extent of the changes being dependent on the type and the dose of 262 

protein and on the absence/presence of acid (Table 2), and on the interactive effects of 263 

protein x acid (Table 3). Interactions between starch and proteins depend upon the 264 

molecular structure of protein, the starch: state of the granules and the 265 

amylose/amylopectin ratio, the composition of protein and starch, as well as the phase 266 

transition temperatures of starch gelatinization and protein denaturation. There is also an 267 

electrostatic association between the two polymers. Anionic polysaccharide and protein 268 

are incompatible at pH values above the protein's isoelectric point (point of minimum 269 

solubility, pH ~ 5.1) and completely compatible below it due to the net opposite charges 270 

they carry (Rao, 2007). Factors affecting protein-polysaccharide compatibility and the 271 

characteristics of their complexes include the molecular characteristics of the two 272 

molecules (e.g., molecular weight, net charge, and chain flexibility), the pH, ionic 273 

strength, temperature, the protein/polysaccharide ratio, rate of acidification, and rate of 274 

shear during acidification (Rao, 2007). Vegetal proteins significantly increased (p<0.01) 275 

both the elastic and viscous components in doughs (Table 2), increments being larger in 276 

soya protein samples (+143 % G’, +94 % G’’) than in pea protein matrices (+109 % G’, 277 

+78 % G’’) by increasing the dose from 5 to 10 g/100 g%, starch-protein basis. Acid 278 

addition modulated dough viscoelasticity in soya protein matrices at higher dose, so that 279 

a weakening effect denoted by a significant drop in G’ (-61 %) and G’’ (-40 %) with a 280 

concomitant increase in tan  (+52 %) was observed (Table 3). Animal proteins 281 

significantly modified mechanical spectra of protein-enriched matrices depending on 282 

the type of protein, when compared to both unacidified and acidified control doughs. 283 

Casein addition observed a dependence on the frequency for both dynamic moduli 284 

(Figure 1.b), a higher consistency than the control and albumin enriched samples, but a 285 
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lower predominance of G’1 over G’’1, (higher tan  values) compatible with a more 286 

viscous nature (Table 2). The acidification of casein supplemented samples increased G’ 287 

(+52 %) when added at 5 g/100 g% and decreased G’’ depending on the dose of 288 

addition (-34 % at 5 g/100 g%, -25 % at 10 g/100 g%) (Table 3). Doughs enriched with 289 

albumin exhibited a different behaviour with lower mechanical spectra profiles than 290 

unsupplemented protein-samples, regardless the dose of addition and the 291 

absence/presence of acid (Table 2 and Table 3). Slight dependence of the moduli on 292 

angular frequency (a and b values ranged 0.11-0.28) and values of phase shift tangent 293 

(tan ) varying in the range 0.1 < tan  < 0.4 are both characteristic features for the 294 

systems which so called weak gels (elastic behaviour). This is in agreement with earlier 295 

observations regarding viscoelastic properties of GF dough (Witczak, Korus, Ziobro, & 296 

Juszczak et al., 2010). Significant variation in dough viscoelastic moduli was also 297 

observed by Nunes, Ryan, and Arendt et al. (2009) who supplemented GF bakery 298 

products with milk and whey proteins. In the case of albumin a significant decrease of 299 

G’ and G’’ was accompanied with a slight, but statistically significant increase of phase 300 

shift tangent when added at 5 g/100 g%. All other protein preparations caused 301 

significant increase of moduli G’ and G’’ (Table 2). Although the addition of pea 302 

protein resulted in a significant growth of G’ and G’’, it caused only a slight shift of 303 

phase shift tangent in the range of low frequencies, in accordance with previous reports 304 

(Ziobro, Witczak, Juszczak, & Korusa et al., 2013). In oscillatory studies, Crockett et al. 305 

(2011) observed an increase of storage modulus accompanied by the drop in phase shift 306 

tangent of the dough supplemented with soy protein isolate, which was potentially due 307 

to protein aggregation within the medium. The application of casein significantly 308 

modified rheological image of dough structure, shifting its properties toward values 309 

typical for strong gels, probably caused by its special arrangement, in which regularly 310 
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occurring amino acid sequence favoured the formation of tight polypeptide-strands 311 

stabilized by covalent and hydrogen bonds, as described for collagen (Gómez-Guillén, 312 

Giménez, López-Caballero, & Montero et al., 2011). Current results in agreement with 313 

previous studies (Crockett et al., 2011; Ziobro et al., 2013) are compatible with the 314 

creation of a robust crosslinked structure by added proteins, especially supported in the 315 

case of soya protein by glicinin and a high water retention ability (Crockett et al., 2011). 316 

In studies using acid in rice flour based doughs, chemical acidification encompassed a 317 

dough softening effect highly dependent on both the final dough pH and the type of acid 318 

(Blanco, Ronda, Pérez, & Pando et al., 2011). Some authors have reported an increase 319 

in wheat flour dough stiffness (viscosity or complex shear modulus) with decreasing pH 320 

in the range 6-5.6 to 4 (Jekle and & Becker, 2012) probably as result of the change in 321 

the conformation of the proteins. The decreased pH would lead to the change in the 322 

overall net charge from neutral (near the isoelectronic point) to positive. A neutral 323 

charge causes less repulsion forces and less space for water molecules between the 324 

proteins. This repulsion forces increase with increasing charge and more water 325 

molecules can be attached to the protein strands whereby less mobile water is available 326 

in the dough system (Jekle and & Becker, 2012). 327 

3.1.2. Creep-recovery tests 328 

Creep-recovery tests were also conducted on formulated GF doughs. Stress applied in 329 

the LVR ranged from 2 Pa to 10 Pa, and were maintained for 150 s, sufficient for the 330 

sample to reach the steady-state flow. Creep-recovery curves of GF doughs exhibited a 331 

typical viscoelastic behaviour combining both viscous fluid and elastic components 332 

(Figure 1.c), similar to the corresponding curves obtained previously for rice flour 333 
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(Sivaramakrishnan et al., 2004) and other gluten-free doughs (Lazaridou et al., 2007; 334 

Ronda et al., 2013).  335 

Creep parameters for all GF dough formulations are summarized in Table 2. Major 336 

impact on creep-recovery parameters was associated to vegetal proteins and albumin 337 

incorporation. Increased vegetal protein incorporation led to significantly lower 338 

instantaneous (J0) and retarded (J1) elastic compliance in both creep and recovery phases 339 

associated to a lower dough deformation submitted to a constant stress, and a higher 340 

recovery when stress is removed, respectively. Maximum depletion in compliance 341 

values was observed for soya protein enriched matrices at 10 g/100 g% of addition: -70 342 

% (J0c), -54 % (J1c), -70 % (J0r), -72 % (J1r). For animal protein supplemented doughs, 343 

albumin incorporation notably promoted J values compared to control doughs, increases 344 

being magnified with protein dosage; whereas casein inclusion in dough formulation 345 

only affected J0c when added at 10 g/100 g%, encompassing a 40 % decrease in values 346 

(Table 2).  347 

Addition of protein from both animal and vegetal source encompassed higher 348 

retardation times in the creep phase (1c) and lower retardation times in the recovery 349 

phase (1r), indicating a slower and quicker retarded elastic response, respectively 350 

(Table 2). pH decrease as a result of acidification significantly affected major creep-351 

recovery parameters (Table 3). In unacidified doughs, J1c values were higher in presence 352 

of animal proteins but similar or even 50-60 % lower in presence of vegetal proteins, in 353 

accordance with a higher deformation at a constant stress with time for animal proteins 354 

encompassing a lower dough consistency. Dough acidification led to a decrease in J1c 355 

when albumin or casein was incorporated while for vegetal protein addition, the 356 

opposite effect was observed. Protein addition to unacidified matrices significantly 357 

increased values of λ1c except for doughs supplemented with 5 g/100 g% pea protein. 358 
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Acidification induced longer λ1c with respect to control doughs only in doughs 359 

formulated with casein, pea protein or soya protein added at 10 g/100 g% (Table 3). 360 

Viscosity at steady state (µ0) marked increased with soya protein addition although 361 

decreased with the remaining proteins. It decreased notably with dough acidification in 362 

soya protein presence (-67 % for 5 g/100 g% and -72 % for 10 g/100 g%) and slightly, 363 

but significantly, in presence of 10 g/100 g% pea protein and 5 g/100 g% albumin. Rice 364 

starch control dough also showed a decreased viscosity at lower pH. Doughs with 10 365 

g/100 g% albumin, 5 % or 10 % casein or 5 g/100 g% pea protein observed the opposite 366 

trend. In acidified doughs, vegetal protein incorporation led to increased values for µ0 367 

while animal proteins, except casein at 5 g/100 g% dose, encompassed a significant 368 

decrease (Table 3). As it was established for cake batters (Sahi and Alava, 2003) there is 369 

probably an optimum consistency for gluten-free doughs, more similar to batters than to 370 

wheat doughs, to achieve breads of high volume. A proper consistency, with high 371 

enough G’ and G’’ moduli and viscosity, µ0 , helps to hold the carbon dioxide produced 372 

during fermentation. Too strength doughs, with too low J0 and J1 compliances, can 373 

restrict dough expansion and lead to less developed breads (Pérez-Quirce et al., 2014). 374 

3.2. Visco-metric profile 375 

Impact of protein addition and acidification (Table 2) and interactive effects of protein x 376 

acid (Table 3) on the RVA primary parameters evidenced significant changes on the 377 

pasting and gelling behaviour of protein-enriched rice starch-based matrices. Major 378 

single effects on cooking and cooling parameters were provided by casein and vegetal 379 

proteins, especially by pea protein (Table 2). Pasting occurs when the starch granules 380 

absorb sufficient water and swell after gelatinization. The initial increase in viscosity 381 

with temperature during heating could be attributed to the increase in the leachates from 382 
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the starch granules and the formation of a homogeneous mass resulting from the 383 

remaining fragile starch granules (Atwell, Hood, Lineback, Marston, & Zobel et al., 384 

1988). A sharp decrease in peak viscosity was observed with the addition of casein and 385 

vegetal proteins with a concomitant general increase in pasting temperature, with 386 

changes being magnified with increased dose of protein (Table 2). The importance of 387 

protein in the initialization of pasting (Meadows,  2002) as well as in peak and final 388 

viscosity (Fitzgerald, Martin, Ward, Park, & Shead et al., 2003) has been strongly 389 

evidenced in rice. In addition, protein-starch linkages established in presence of proteins 390 

stabilise starch structure, and hence delayed the gelatinization process (Crockett et al., 391 

2011). Lower values for pasting viscosities are an indication of a reduction in starch 392 

available for gelatinization. This reduction is likely due to a general reduction in the 393 

starch content of the pastes because of replacement with proteins that can additionally 394 

retain water from the starch granules. The reduction of available water in the system 395 

would reduce initial starch granule swelling and, hence, add to the explanation of lower 396 

peak viscosities of the pastes. In addition to the retention of the integrity of the starch 397 

granules, it is suggested that a reduction in pasting characteristics may be associated 398 

with a reduced enthalpy of starch gelatinization as observed in dietary enriched biscuits 399 

(Brennan and & Samyue, 2004). Acidification decreased pasting temperature in protein-400 

free and protein-enriched doughs with the exception of both soya and pea proteins 401 

added at 10 g/100 g%. Effects of acid incorporation on peak viscosity revealed a 402 

decrease in protein-free doughs and an increase in protein enriched doughs with the 403 

exception of soya protein, where no significant effects were observed. The viscosity of 404 

the paste that had been gelatinized in acetic/lactic acid solution was decreased by 405 

shearing thinning effect caused by stirring in the RVA test. Takahashi (1974) mentioned 406 

that the part where the molecular associative strength was weak in starch granule 407 
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collapsed and dispersed when gelatinized starch paste was sheared by mechanical 408 

power. In the presence of acetic/lactic acid, the structure of the starch became more 409 

fragile by stirring, resulting in the decrease of viscosity and the increase of breakdown. 410 

It was considered that the residual proteins prevented the increase in viscosity and the 411 

collapse of starch granules during heating. Proteins mainly exist among the starch 412 

granules as protein bodies. Proteins around starch granules might indirectly disturb the 413 

gelatinization of starch (Ohishi, Kasai, Shimada, & Hatae et al., 2007). 414 

Upon subsequent cooling, a gel is formed that consists of an amylose matrix in which 415 

amylopectin enriched granules are embedded (Miles, Morris, Orford, & Ring et al., 416 

1985). Effects of protein supplementation and acidification on the parameters 417 

characterizing the gelling process were particularly significant for the final viscosity on 418 

cooling (Table 2, Table 3). This parameter sharply decreased in presence of increasing 419 

amounts of either vegetal or animal protein except for albumin. Dough acidification 420 

promoted the decrease in final viscosity values for unsupplemented and supplemented 421 

protein matrices particularly for soya protein, except for casein-enriched samples that 422 

underwent an increase (Table 3). In earlier reports, final viscosity of the rice paste with 423 

acetic acid was lower than that with distilled water. It was suggested that cooked rice 424 

with acetic acid might exhibit less tendency to retrogradation when rice was soaked in 425 

acetic acid solution; proteins were eluted from rice grains and degraded by aspartic 426 

proteinase and carboxypeptidase (Ohishi et al., 2007). The different nature of added 427 

proteins may be responsible for the different behaviour. General results are in 428 

accordance with those reported by others for protein isolates (Ribotta and & Rosell, 429 

2010) and acetic acid incorporation (Ohishi et al., 2007).  430 

3.3. Correlations between fundamental and empirical rheological parameters 431 
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Multivariate data handling of rheological variables supplied useful information on the 432 

significantly correlated viscoelastic and viscometric characteristics of GF dough 433 

samples. Using Pearson correlation analysis, a range of correlation coefficients (r) (from 434 

0.46 to 0.95) was obtained for the relationships between fundamental and empirical 435 

properties of protein-free and protein-supplemented rice starch-based matrices 436 

with/without acid addition (Table 4). A significant interdependence (0.51<r<0.98) 437 

within both rheometer and mimetic measurements was found. This is especially true for 438 

parameters retrieved from the same fundamental (oscillatory measurements and creep-439 

recovery features) and mimetic (pasting and gelling) tests. Storage and loss moduli, 440 

indicators of dough strengthened structure and solid-like behavior, strongly correlated 441 

(p<0.001, r=0.81). The loss tangent tan  indicating solid-like or liquid like nature, is 442 

highly connected to the “a” exponent (p<0.001, r=0.98), indicating a correspondence 443 

between less structured doughs with high viscous nature  expliciting elastic component 444 

G’ more dependent on the frequency. As expected, a strong correlation was found 445 

between creep compliance parameters and the recovery phase counterparts (p<0.001), 446 

since the creep-recovery tests were carried out in the LVR (data not shown). In addition 447 

it was observed that factors increasing viscosity at the steady state (µ0) decreased 448 

compliance values J0 (r=-0.56) and J1 (r=-0.66), in good accordance with previous 449 

observations (Lazaridou et al., 2007; Ronda et al., 2013), and increased G’1. The larger 450 

the maximum stress max providing structure integrity, the greater are the dynamic 451 

moduli, the poorer are the instantaneous and retarded compliance, and the lower is the 452 

visco-metric profile of the corresponding doughs. 453 

4. Conclusions  454 
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A gluten-free formulation based on rice starch can be obtained with a suitable 455 

combination of different proteins (egg albumin, calcium caseinate, pea protein and soy 456 

protein isolates) and acid. Supplementation of GF doughs with proteins from vegetal 457 

sources led to more structured dough matrices (higher viscoelastic moduli and steady 458 

viscosities, and lower tan , instantaneous and retarded elastic compliances) effect being 459 

magnified with protein dose. Acid addition produced weakening of the structure dough 460 

matrices. Acidification of soya-added doughs decreased G’ and G’’ (20–60 % 461 

depending on the dose) and the steady viscosity (60-70 %) and increased the loss 462 

tangent (up to 50 %) and the elastic compliances, J0c (30 – 120 %) and J1c (30 % - 230 463 

%). The effect of acidification on pea protein-enriched doughs was similar although the 464 

changes in viscoelastic moduli and loss tangent did not result significant. Incorporation 465 

of proteins from animal source resulted in different viscoelastic behaviours according to 466 

the protein type, dosage and acidification, especially for casein. Acidification conferred 467 

lower dough deformation and notably higher steady viscosity, G’ and G’’ for dough 468 

with 5 g/100 g% casein. Protein-acid interaction favoured higher viscosity profiles, 469 

particularly for doughs with proteins of vegetable origin and lower dosage. Dough 470 

acidification decreased the pasting temperatures and the amylose retrogradation. It can 471 

be concluded that acidification of protein-enriched rice-starch doughs allows 472 

manipulation of dough rheological properties which is of relevant importance in GF 473 

bread development. 474 
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Table 1.- Experimental design 

Fórmula 
Protein Acetic/Lactic 

acid CA EA SPI PPI 

1 0 10 0 0 0.1/0.4 

2 0 5 0 0 0 

3 0 0 10 0 0 

4 0 0 5 0 0 

5 0 10 0 0 0 

6 0 5 0 0 0.1/0.4 

7 0 0 0 0 0 

8 0 0 5 0 0.1/0.4 

9 0 0 0 5 0 

10 0 0 0 10 0.1/0.4 

11 0 0 0 0 0.1/0.4 

12 10 0 0 0 0.1/0.4 

13 5 0 0 0 0 

14 5 0 0 0 0.1/0.4 

15 0 0 0 5 0.1/0.4 

16 0 0 10 0 0.1/0.4 

17 0 0 0 10 0 

18 10 0 0 0 0 

CA: Calcium Caseinate; EA: Egg Albumin;  

SPI: Soya Protein Isolate; PPI: Pea Protein Isolate 

Amounts are in % w/w, starch +protein basis 
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Table 2. Single effects of design factors  at different levels on the dynamic oscillatory, creep-recovery, visco-

metric parameters and pH  of protein-enriched rice starch-based gluten-free doughs. 

Parameter Unit 
Overall 

Mean 

Level 

 

Egg 

albumin 

Calcium  

caseinate 

Isolated pea 

protein 

Isolated soya 

protein 
Acid 

Dynamic Oscillatory Rheometry         

G’1 Pa 21858 0 14382 b 14382 a 14382 a 14382 a ns 

  

 

 

ns 

 

 

 

ns 

   1 3945 a 19330 a 17987 a 23138 a 

   2 3042 a 28690 b 37600 b 56313 b 

 

G’’1 

 

Pa 

 

4152 

 

0 

 

2738 

 

b 

 

2738 

 

a 

 

2738 

 

a 

 

2738 

 

a 

   1 888 a 5443 b 3519 b 4104 a 

   2 603 a 9146 c 6254 c 7952 b 

 

tan  

  

0.2070 

 

0 

 

0.19 

 

a 

 

0.19 

 

a 

 

0.19 

 

b 

 

0.19 

 

b 

   1 0.23 b 0.31 b 0.20 b 0.18 ab 

     2 0.20 a 0.32 b 0.17 a 0.15 a 

 

Creep recovery test          

Joc Pa-1 1.19 x10-4 0 0.99 x 10-4 a 0.99 x 10-4 b 0.99 x 10-4 c 0.99 x 10-4 c ns 

  

 

 

ns 

   1 2.70 x 10-4 b 0.81 x 10-4 b 0.64 x 10-4 b 0.55 x 10-4 b 

   2 3.84 x 10-4 c 0.53 x 10-4 a 0.34 x 10-4 a 0.30 x 10-4 a 

 

J1c 

 

Pa-1 

 

1.14 x 10-4 

 

0 

 

0.54 x 10-4 

 

a 

 

ns 
 

 

0.54 x 10-4 

 

c 

 

0.54 x 10-4 

 

b 

   1 2.64 x 10-4 b    0.41 x 10-4 b 0.33 x 10-4 a 

   2 3.44 x 10-4 c    0.24 x 10-4 a 0.25 x 10-4 a 

 

1c 

 

s 

 

20 

 

0 

 

17 

 

a 

 

17 

 

a 

 

17 

 

a 

 

17 

 

a 

 

22.37 

 

b 

   1 21 b 18 a 18 b 29 b 18.57 a 

   2 17 a 21 b 20 c 24 ab   

 

0 

 

Pa·s 

 

3.69 x 106 

 

0 

 

4.33 x 106 

 

b 

 

4.33 x 106 

 

b 

 

4.33 x 106 

 

a 

 

ns 
 

 

ns 

 

 

 

ns 

 

 

 

ns 

 

 

 

ns 

 

   1 0.63 x 106 a 3.02 x 106 ab 3.34 x 106 a    

   2 0.40 x 106 a 0.86 x 106 a 5.50 x 106 b    

 

Jor 

 

Pa-1 

 

1.45 x 10-4 

 

0 

 

1.14 x 10-4 

 

a 

 

ns 
 

 

1.14 x 10-4 

 

c 

 

1.14 x 10-4 

 

c 

   1 3.23 x 10-4 b    0.71 x 10-4 b 0.59 x 10-4 b 

   2 4.67 x 10-4 c    0.39 x 10-4 a 0.36 x 10-4 a 

 

J1r 

 

Pa-1 

 

1.16 x 10-4 

 

0 

 

0.90 x 10-4 

 

a 

 

ns 
 

 

0.90 x 10-4 

 

c 

 

0.90 x 10-4 

 

b 

   1 2.26 x 10-4 b    0.42 x 10-4 b 0.35 x 10-4 a 

   2 3.17 x 10-4 c    0.27 x 10-4 a 0.25 x 10-4 a 

 

1r 

 

s 

 

77 

 

0 

 

121 

 

b 

 

121 

 

b 

 

121 

 

b 

 

121 

 

b 

   1 65 a 97 ab 60 a 65 a 

   2 63 a 69 a 72 a 83 a 

 

Viscometric profile             

PV mPa.s 2340 0 ns  2860 c 2860 c 2860 b     ns 

 

 

 

    ns 

 

 

 

    ns 

 

 

   1    2222 b 2426 b 2518 a  

   2    1665 a 2035 a 2294 a  

 

TV 

 

mPa.s 

 

1804 

 

0 

 

    2429 

 

 b 

 

2429 

 

c 

 

2429 

 

c 

 

2429 

 

c 
 

   1     2225 ab 1821 b 1679 b 1955 b  

   2     1986  a 1377 a 1216 a 1545 a  

 

FV 

 

mPa.s 

 

2683 

 

0 

 

ns 

  

 

 

ns 

  

 

3228 

 

c 

 

3228 

 

c 

 

3228 

 

b 
 

   1 2655 b 2557 b 2822 ab  

   2 2164 a 2090 a 2349 a   

 

PT 

 

ºC 

 

81.54 

 

0 

 

79.31 

 

a 

 

79.31 

 

a 

 

79.31 

 

a 

 

82.87 

 

b 

   1 83.94 b 77.78 a 82.03 b 80.21 a 

   2 87.30 c 79.63 a 83.69 b   
 

pH of the medium  

pH  5.20 0 4.54 a 4.54 a 4.54 a 4.54 a 5.73 b 

   1 5.08 b 5.22 b 5.23 b 5.16 b 4.73 a 

   2 5.27 c 5.47 c 5.53 c 5.43 ab   

Levels: 0, absence; 1, 5% protein addition (starch + protein basis) or acetic/lactic acid addition (0.1/0.4, w/w, starch + protein 

basis); 2, 10% protein addition (starch + protein basis). ns: non significant effects p>0.05. Within each parameter, different 

letters in the corresponding column mean statistically differences between means at p<0.05.  

Abbreviations used for the measured parameters are presented in the materials and methods section. 
 

 
 



Table 3. Selected second order interactive effects (protein x acid) on the dynamic oscillatory, creep-recovery,  

visco-metric parameters and pH of protein-enriched rice starch-based gluten-free doughs 

Parameter  Unit 
Overall 

Mean 

Level 

protein 

Level 

acid 

Albumin 

x acid 

Caseinate 

 x acid  

Pea protein  

x acid 

Soya protein 

x acid 

Dynamic Oscillatory Rheometry 

G’1 Pa 21858 0 0 ns 15763 a ns 15763   a 

   0 1  11620 a  11620   a 

   1 0  15360 a  27920   b 

   1 1  23300 b  20748   ab 

   2 0  30480 c  70665   c 

      2 1  26900 bc  27610   b 

G’’1 Pa 4152 0 0 ns 2852 a ns 2852   ab 

   0 1  2511 a  2511   a 

   1 0  6568 c  4903   c 

   1 1  4317 b  3705   b 

   2 0  10465 e  9184   d 

      2 1  7826 d  5487   c 

tan   0.2070 0 0 ns 0.18 a ns 0.18   b 

   0 1  0.22 b  0.22   c 

   1 0  0.43 e  0.18   b 

   1 1  0.19 a  0.18   b 

   2 0  0.34 d  0.13   a 

      2 1  0.29 c  0.20   bc 

Creep recovery test         

Joc Pa-1 1.19 x 10-4 0 0 0.88 x 10-4 a 0.88 x 10-4 c 0.88 x 10-4 e 0.88 x 10-4 e 

   0 1 1.10 x 10-4 b 1.10 x 10-4 e 1.10 x 10-4 f 1.10 x 10-4 f 

   1 0 2.45 x 10-4 c 1.05 x 10-4 d 0.57 x 10-4 c 0.47 x 10-4 c 

   1 1 2.96 x 10-4 d 0.57 x 10-4 b 0.71 x 10-4 d 0.62 x 10-4 d 

   2 0 4.52 x 10-4 f 0.54 x 10-4 ab 0.31 x 10-4 a 0.19 x 10-4 a 

    2 1 3.16 x 10-4 e 0.51 x 10-4 a 0.36 x 10-4 b 0.42 x 10-4 b 

J1c Pa-1 1.14 x 10-4 0 0 0.44 x 10-4 a 0.44 x 10-4 b 0.44 x 10-4 d 0.44 x 10-4 d 

   0 1 0.65 x 10-4 b 0.65 x 10-4 c 0.65 x 10-4 e 0.65 x 10-4 e 

   1 0 2.69 x 10-4 d 2.38 x 10-4 f 0.40 x 10-4 c 0.29 x 10-4 b 

   1 1 2.60 x 10-4 cd 0.37 x 10-4 a 0.43 x 10-4 d 0.38 x 10-4 c 

   2 0 4.33 x 10-4 e 1.27 x 10-4 e 0.23 x 10-4 a 0.12 x 10-4 a 

    2 1 2.55 x 10-4 c 0.85 x 10-4 d 0.26 x 10-4 b 0.39 x 10-4 c 

1c s 20 0 0        16 a ns  ns          16 a 

   0 1       17 ab             17 ab 

   1 0       22 c             40 e 

   1 1       19 b             18 b 

   2 0       19 b             25 d 

    2 1       16 a             22 c 

0 Pa·s 3.69 x 106 0 0 5.79 x 106 f 5.79 x 106 f 5.79 x 106 f 5.79 x 106 d 

   0 1 2.87 x 106 e 2.87 x 106 d 2.87 x 106 a 2.87 x 106 a 

   1 0 0.67 x 106 d 0.56 x 106 a 3.08 x 106 b 9.09 x 106 e 

   1 1 0.60 x 106 c 5.47 x 106 e 3.61 x 106 c 3.68 x 106 b 

   2 0 0.33 x 106 a 0.62 x 106 b 5.52 x 106 e 13.6 x 106 f 

    2 1 0.47 x 106 b 1.10 x 106 c 5.48 x 106 d 3.85 x 106 c 

Jor Pa-1 1.45 x 10-4 0 0 0.97 x 10-4 a 0.97 x 10-4 d 0.97 x 10-4 e 0.97 x 10-4 e 

   0 1 1.30 x 10-4 b 1.30 x 10-4 e 1.30 x 10-4 f 1.30 x 10-4 f 

   1 0 2.96 x 10-4 c 1.74 x 10-4 f 0.67 x 10-4 c 0.49 x 10-4 b 

   1 1 3.50 x 10-4 d 0.67 x 10-4 a 0.75 x 10-4 d 0.69 x 10-4 d 

   2 0 5.39 x 10-4 f 0.84 x 10-4 c 0.37 x 10-4 a 0.20 x 10-4 a 

    2 1 3.94 x 10-4 e 0.74 x 10-4 b 0.41 x 10-4 b 0.52 x 10-4 c 

J1r Pa-1 1.16 x 10-4 0 0 1.02 x 10-4 b 1.02 x 10-4 d 1.02 x 10-4 d 1.02 x 10-4 e 

   0 1 0.78 x 10-4 a 0.78 x 10-4 b 0.78 x 10-4 c 0.78 x 10-4 d 

   1 0 1.83 x 10-4 c 2.66 x 10-4 f 0.41 x 10-4 b 0.31 x 10-4 b 

   1 1 2.68 x 10-4 d 0.66 x 10-4 a 0.43 x 10-4 b 0.39 x 10-4 c 

   2 0 3.51 x 10-4 f 1.37 x 10-4 d  0.28 x 10-4 a 0.13 x 10-4 a 

    2 1 2.83 x 10-4 e 0.92 x 10-4 c 0.25 x 10-4 a 0.37 x 10-4 c 

1r s 77 0 0       153 f      153 f      153 f       153 e 

   0 1      888 e        88 d       88 e        88 c 

   1 0       50 a        69 b      66 c        63 a 

   1 1       80 d       124 e     53 a        67 b 

   2 0      52 b        62 a     83 d      100 d 

    2 1      75 c        75 c     60 b       67 b 



Table 3. (Continuation)         

Parameter  Unit 
Overall 

Mean 

Level 

protein 

Level 

acid 

Albumin 

 x acid 

Caseinate 

 x acid  

Pea protein  

x acid 

Soya protein 

x acid 

Viscometric profile         

PV mPa.s 2340 0 0 3091 e 3091 f 3091 d           ns 

   0 1 2628 c 2629 e 2629 c  

   1 0 2384 b 1990 c 2239 b  

   1 1 2852 d 2454 d 2612 c  

   2 0 2086 a 1536 a 1869 a  

      2 1 2770 cd 1794 b 2200 b  

TV mPa.s 1804 0 0 2771 d 2771 e 2771 f 2771 d 

   0 1 2087 b 2087 d 2087 e 2087 c 

   1 0 2158 bc 1615 c 1455 c 2008 bc 

   1 1 2291 c 2028 d 1903 d 1902 b 

   2 0 1876 a 1275 a 1151 a 1581 a 

      2 1 2095 b 1479 b 1281 b 1509 a 

FV mPa.s 2682 0 0 3783 d 3783 e 3783 e 3783 d 

   0 1 2672 a 2672 d 2672 d 2672 b 

   1 0 3401 c 2558 c 2521 c 2986 c 

   1 1 3128 b 2752 d 2593 cd 2658 b 

   2 0 3077 b 2068 a 2227 b 2518 b 

      2 1 2955 b 2259 b 1952 a 2181 a 

PT ºC 81.54 0 0 80.23 b 80.23 b 80.23 c 80.23 ab 

   0 1 78.38 a 78.38 a 78.38 b 78.38 a 

   1 0 81.05 b 86.03 d 81.30 c 83.52 c 

   1 1 78.10 a 81.85 c 74.27 a 80.53 b 

   2 0 83.57 c 88.10 e 79.00 b 83.05 c 

      2 1 77.63 a 86.50 d 80.27 c 84.33 c 

pH of the medium 

pH  5.20 0 0 5.21 d 5.21 d 5.21 c 5.21 d 

   0 1 3.88 a 3.88 a 3.88 a 3.88 a 

   1 0 5.56 e 5.71 e 5.73 d 5.68 e 

   1 1 4.46 b 4.73 b 4.72 b 4.64 b 

   2 0 5.73 f 5.84 ef 5.85 de 5.82 ef 

   2 1 4.80 c 5.10 cd 5.20 c 5.03 c 

Levels: 0, absence; 1, 5% protein addition (starch + protein basis) or acetic/lactic acid addition (0.1/0.4, w/w, starch + protein 

basis); 2, 10% protein addition (starch + protein basis). ns: non significant effects p>0.05. Within each parameter, different 

letters in the corresponding column mean statistically differences between means at p<0.05.  

Abbreviations used for the measured parameters are presented in the materials and methods section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4: Correlations between dough functional properties 
 

 a G’’1 b tan  c max J0c J1c o PV TV BD FV SB TP 

G’1 - 0.81*** - - - 0.75*** -0.70** -0.66** 0.80*** - -0.56* 0.52* -0.55* - - 

a  - - 0.98*** -0,84*** - - - - - - - - - - 

G’’1   - - - 0.90*** -0.73*** -0.55* - -0.65** -0.71*** - -0.71*** - 0.59* 

b    - 0,68** - 0.66** 0.66** - - - - - 0.65** - 

tan      -0,81*** - - - - - - - - - - 

c     
 

- - - - - - - - 0.47
* 

- 

max     
 

 -0.67** -0.51* - -0.67** -0.74*** - -0.68** - 0.57* 

J0c     
 

  0.95*** -0.56* - - - 0.54* - - 

J1c     
 

   -0.66** - - -0.52* - - - 

o     
 

    - - 0.56* - - - 

PV     
 

     0.85*** - 0.73*** - -0.66** 

TV     
 

      - 0.92*** - - 

BD     
 

       - - -0.46* 

FV     
 

        0.50* - 

SB     
 

         - 

Protein: is referred to the dose of protein (0. 5. 10 %) independently of the type of protein; Acid: varied between 0 

(without acid addition) and 1 (with addition);  *p<0.05; ** p<0.01; *** p<0.001; ns: not significant 

Abbreviations used for the correlated parameters are presented in the materials and methods section. 

 



 

FIGURE CAPTIONS 

 

 

Figure 1: (a) Stress sweeps of doughs with 10 g/100 g albumin (triangle) and pea 

protein (circle), (b) Frequency sweeps of doughs with 5 g/100 g casein without acid 

(triangle) and with acid (circle). Elastic modulus, G’, is represented by solid points and 

the viscous modulus, G’’, by void points. The loss tangent is represented by 

discontinuous lines in the secondary (right) scale.  

(c) Creep-recovery tests of control doughs (circle) and doughs with 10 g/100 g casein 

(triangle), both with (solid points) or without (void points) acid. 
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