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A proteomic analysis reveals that Snail regulates the expression of the 

nuclear orphan receptor Nr2f6 and IL-17 to inhibit adipocyte differentiation  

 

 

Alberto Peláez-García
1
, Rodrigo Barderas

2
, Raquel  Batlle

3
, Rosa Viñas-Castells

3
, 

Rubén A Bartolomé
1
, Sofía Torres

1
, Marta Mendes

1
, María Lopez-Lucendo

1
, Rocco 

Mazzolini
3
, Félix Bonilla

4
, Antonio García de Herreros

3
, J. Ignacio Casal

1*
  

 

1
Department of Cellular and Molecular Medicine. Centro de Investigaciones Biológicas 

(CIB-CSIC). Madrid. Spain. 

2
Departamento de Biochemistry and Molecular Biology Department I, Universidad 

Complutense de Madrid. Spain 

3
IMIM-Hospital del Mar. Barcelona. Spain 

4
Hospital Puerta de Hierro. Majadahonda. Madrid. Spain 

 

 

Running title: Snail1 induces IL-17 expression to inhibit adipogenesis 

 

 

 

 

*Corresponding author: 

J. Ignacio Casal 

Department of Cellular and Molecular Medicine 

Centro de Investigaciones Biológicas (CIB-CSIC) 

Ramiro de Maeztu, 9 

28040 Madrid. Spain 

Phone: +34 918373112 

Fax: +34 91 5360432 

e-mail: icasal@cib.csic.es 

  



Snail1 induces IL-17 expression to inhibit adipogenesis 

 

2 

 

Abbreviations 

 

Cbx6, chromobox homolog 6; C/EBP, CCAAT/enhancer-binding protein; DAVID, 

Database for Annotation, Visualization and Integrated Discovery; EMT, epithelial-

mesenchymal transition; IL-17, interleukin 17; mMSCs, murine mesenchymal stem 

cells; Nr2f6, orphan nuclear receptor 2f6; OsmR, oncostatin M receptor; PPAR, 

peroxisome proliferator-activated receptor; Prrx1, paired related homeobox 1 

qPCR, quantitative PCR; RLU, relative luminescence units; SILAC, stable isotopic 

labeling amino acids in culture; TF, transcription factor; Trip4, thyroid hormone 

receptor interactor 4 
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SUMMARY 

Adipogenesis requires a differentiation program driven by multiple transcription factors, 

where PPARγ and C/EBPα play a central role. Recent findings indicate that Snail 

inhibits adipocyte differentiation in 3T3-L1 and murine mesenchymal stem cells 

(mMSC). An in-depth quantitative SILAC analysis of the nuclear fraction of Snail-

induced alterations of 3T3-L1 cells was carried out. In total, 2251 overlapping proteins 

were simultaneously quantified in forward and reverse experiments. We observed 574 

proteins deregulated by Snail1 using a fold-change ≥1.5, with 111 up- and 463 down-

regulated proteins, respectively.  Among other proteins, multiple transcription factors 

such as Trip4, OsmR, Nr2f6, Cbx6 and Prrx1 were down-regulated. Results were 

validated in 3T3-L1 cells and mMSC cells by western blot and quantitative PCR. 

Knock-down experiments in 3T3-L1 cells demonstrated that only Nr2f6 (and Trip4 at 

minor extent) was required for adipocyte differentiation. Ectopic expression of Nr2f6 

reversed the effects of Snail1and promoted adipogenesis. Since Nr2f6 inhibits the 

expression of IL-17, we tested the effect of Snail on IL-17 expression.  IL-17 and TNFα 

were among the most up-regulated pro-inflammatory cytokines in Snail-transfected 

3T3-L1 and mMSC cells.  Furthermore, the blocking of IL-17 activity in Snail-

transfected cells promoted adipocyte differentiation, reverting Snail inhibition.  In 

summary, Snail inhibits adipogenesis through a down-regulation of Nr2f6, which in turn 

facilitates the expression of IL-17, an anti-adipogenic cytokine.  These results would 

support a novel and important role for Snail and Nr2f6 in obesity control. 

 

Keywords: Adipogenesis, obesity, Snail, Nr2f6, IL-17  
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INTRODUCTION 

Adipogenic differentiation is driven by a complex cascade of transcription factors (TFs) 

and cell signaling molecules that lead to the expression of the master regulators 

CCAAT/enhancer-binding protein (C/EBP) (1) and peroxisome proliferator-activated 

receptor (PPAR) (2) family proteins. In a sequential process, C/EBPδ and C/EBPβ are 

initially induced and followed by C/EBPα and PPARγ expression. These two master 

TFs induce the final program of gene expression for adipocyte differentiation.  

 The transcription factor Snail1 is a major inducer of the epithelial-mesenchymal 

transition (EMT) during embryonic development and cancer progression (3, 4). Snail1 

expression is very restricted in adult individuals (5), but reappears to drive the EMT 

process that confers pro-migratory, invasive and stem cell properties to cancer epithelial 

cells (4). During this process, Snail represses the expression of E-cadherin and promotes 

the expression of mesenchymal genes like vimentin. Recent reports indicate that Snail 

ectopic expression in murine mesenchymal stem cells (mMSCs) abrogated their 

differentiation to osteoblasts or adipocytes, whereas Snail depletion accelerated them 

(6).  In addition, Snail1 knock-down caused a large decrease in the number of bone 

marrow mMSCs. This depletion comes accompanied of an acceleration of their 

differentiation to osteoblasts or adipocytes (6).  Moreover, Snail1 regulates osteoblast 

differentiation through the inhibition of different proteins including Runx2 and vitamin 

D receptor (7), which indicates an antagonist role for Snail1 and vitamin D (8, 9).  

The 3T3-L1 is a preadipocyte fibroblast cell line commonly used for the study of 

molecular mechanisms controlling adipogenesis (10, 11).  Alike mMSCs, confluent 

3T3-L1 preadipocytes differentiate to adipocytes upon exposure to a cocktail of 

adipogenic inducers (10). Upon adipogenic differentiation, Snail expression is almost 
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negligible in 3T3-L1 cells (12). Snail1 ectopic expression inhibits the adipocyte 

differentiation program (6, 12). Snail effect on adipogenesis was proposed to be 

mediated, among others, by activation of AKT (6) and was associated to an apparent 

inhibition of PPARγ and C/EBPα expression (12).  Similar results were obtained in 

preventing the differentiation of bone marrow-derived murine mesenchymal stem cells 

(mMSC) to osteoblasts or adipocytes (6). Still, the molecular mechanisms underlying 

the effect of Snail on 3T3-L1/MSCs differentiation and the blocking of adipogenesis 

remain unclear.  

Here, we investigated the transcriptional control by Snail1 blocking 3T3-L1 

differentiation to adipocytes. To this end, we carried out an in-depth quantitative 

proteomic analysis of 3T3-L1 Snail-transfected cells using stable isotopic metabolic 

labeling (SILAC) (13). We focused our proteomic analysis on the nuclear fraction. In 

total, we identified 574 proteins deregulated, with most of them down-regulated by 

Snail1. To prove the general value of these findings, alterations were validated in 

mMSCs. Among others, we observed a direct repression of the orphan nuclear receptor 

Nr2f6, which in turn regulates expression of IL-17. These findings reveal a critical role 

for Nr2f6 and IL-17 to inhibit adipocyte differentiation. These results support an 

important function for Snail in obesity control.   
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EXPERIMENTAL PROCEDURES 

Cell culture and adipocyte differentiation assays - Preadipocytes 3T3-L1 and 

mMSCs were stably transfected with 6 µg of either pcDNA3 Snail1-HA (“snail”) or 

control pcDNA3 (“mock”) using lipofectamine (Invitrogen). Cells were selected with 

G418 (1 mg/ml) for 3-4 weeks as described (6). Then, stably transfected 3T3-L1 and 

mMSC cells were grown in DMEM (Invitrogen) containing 10% FBS (Biological 

Industries), 1 mM L-glutamine, and 100 units/ml penicillin-streptomycin and 

supplemented with 0.5 µg/ml G418 at 37°C in 5% CO2. 

For adipocyte differentiation, 3T3-L1 cells were plated at a concentration of 

1x10
6
 cells per well, in p60 plates, and cultured for 3 days. Differentiation was induced 

by the addition of 0.5 mM isobutyl-methyl-xanthine, 2 mM dexamethasone and 1.7 mM 

insulin. The induction medium was removed after 2 days and cells were supplemented 

with DMEM plus 10% FBS and 1.7 mM insulin and the medium was replenished after 

three days. When needed, cells were treated with anti-IL-17 antibody (500 ng/ml) (R&D 

Systems) every two days. For Oil Red O staining, cells were washed gently with PBS 

twice, fixed with 3.7% formaldehyde in PBS for 1 h at room temperature and stained for 

1 h with filtered Oil Red O solution (1.8 mg/ml in 60% isopropanol).  Solution was 

removed and plates rinsed with water and dried prior to image collection.  

 

SILAC cell culture and nuclear protein extracts preparation - For metabolic 

labeling, 3T3-L1 Snail1 or control cells were grown and maintained in DMEM 

containing either light L-lysine and L-arginine or heavy [
13

C6]-L-lysine and [
13

C6]-L-

arginine (Dundee Cell Products) supplemented with 10% dialyzed FBS, 100 units/mL 

of penicillin/streptomycin and 0.5 µg/ml G418 at 37ºC in 5% CO2. Eight duplications 
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were necessary to achieve >97% incorporation of the heavy amino acids (14) calculated 

for individual proteins as previously described (15).  We carried out forward and reverse 

experiments to get a biological replicate and avoid labeling bias in the study.  

For nuclear protein extraction, cells were washed twice with chilled PBS, 

resuspended with PBS containing 4 mM EDTA, and harvested by centrifugation at 500g 

for 5 min. Then, we used the “Subcellular protein fractionation kit” (Pierce). Protein 

quantification was performed using the tryptophan method (16). Then, 25 μg of protein 

from nuclear cell extracts were mixed at a 1:1 ratio and run at 25 mA per gel in 12.5% 

SDS-PAGE.  Gels were stained with colloidal coomassie blue and lanes were cut into 

18 slices. Excised bands were cut into small pieces and destained with 50 mM 

ammonium bicarbonate/50% acetonitrile (ACN), dehydrated with ACN and dried. Gel 

pieces were rehydrated with 12.5 ng/µL trypsin in 50 mM ammonium bicarbonate and 

incubated overnight at 30ºC. Peptides were extracted at 37ºC using ACN and, then 0.5% 

TFA, dried, cleaned using ZipTip with 0.6 µl C18 resin (Millipore) and reconstituted in 

5 µL 0.1% formic acid/2% ACN, prior to MS analysis, which was performed as 

previously described (17). 

 

Mass spectrometry analysis, protein identification and SILAC quantification - 

Peptides were trapped onto a 2 cm C18-A1 ASY-Column (Thermo Scientific), and then 

eluted onto a Biosphere C18 column (10 cm long, inner diameter 75 μm, 3 μm particle 

size) (NanoSeparations) and separated using a 170 min gradient from 0-35% Buffer B 

(Buffer A: 0.1% formic acid/2% ACN; Buffer B: 0.1% formic acid in ACN) at a flow-

rate of 300 nL/min in a nanoEasy HPLC (Proxeon) coupled to a nano-electrospray ion 

source (Proxeon). Mass spectra were acquired on an LTQ-Orbitrap Velos mass 
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spectrometer (Thermo-Scientific) in the positive ion mode. Full-scan MS spectra (m/z 

400-1200) were acquired in the Orbitrap with a target value of 1,000,000 at a resolution 

of 60,000 at m/z 400 and the 15 most intense ions were selected for collision induced 

dissociation (CID) fragmentation in the linear ion trap with a target value of 10,000 and 

normalized collision energy of 35%. Precursor ion charge state screening and 

monoisotopic precursor selection were enabled. Singly charged ions and unassigned 

charge states were rejected. Dynamic exclusion was enabled, with a repeat count of 1 

and exclusion duration of 30s. Mass spectra (*.raw) files were searched against the 

SwissProt mouse database 57.15 (16230 sequences) using MASCOT search engine v. 

2.3 (Matrix Science) through Proteome Discoverer (version 1.4.1.14) (Thermo). Search 

parameters included a maximum of two missed cleavages allowed, 

carbamidomethylation of cysteines as a fixed modification and oxidation of methionine, 

N-terminal acetylation and 
13

C-Arg, 
13

C-Lys as variable modifications. Precursor and 

fragment mass tolerance were set to 10 ppm and 0.8 Da, respectively. Identified 

peptides were validated using Percolator algorithm with a q-value threshold of 0.01. For 

each SILAC pair, Proteome Discoverer determines the area of the extracted ion 

chromatogram and computes the “heavy/light” ratio. Protein ratios are then calculated 

as the median of all the unique quantified peptides belonging to a certain protein. The 

ratios among proteins in their heavy and light versions were used as fold-change. 

Proteins were quantified with at least one peptide hit in forward and reverse 

experiments. The fold change cutoff for deregulated proteins was calculated using a 

permutation-based test as described (18). Proteins with quantification variability >20% 

were manually inspected by checking the isotopic envelope of both heavy and light 

forms and how many peaks of the envelope were used to determine the area of the 
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envelope of all PSMs corresponding to the peptides used to identify the protein. A 

multipoint normalization strategy was applied to normalize the data sets against the 5% 

trimmed mean values, which is a robust statistical measure of central tendency that 

normalize most of the log2 protein ratios to 0. Briefly, the 5% of the most extreme 

outliers –values- were removed and the mean of the 95% remaining data was 

determined, and used to normalize the ratio values, and thus, minimizing the effect of 

these extreme outliers and centering the log2 ratio distribution to zero. Since metabolic 

conversion arginine/proline can affect quantification accuracy in some cell types, we 

investigated arginine to proline conversion in 3T3-L1 cells. Using heavy proline as a 

variable modification, less than 1% of proline-containing peptides were heavy labeled in 

3T3-L1 cells. The mass spectrometry proteomics data have been deposited to the 

ProteomeXchange Consortium (19) via the PRIDE partner repository with the dataset 

identifier PXD001529. 

 

Western blot analysis - Protein extracts from 3T3-L1 and mMSC cells were prepared 

as described (20). Briefly, 25 µg of each protein extract were run in parallel using 10% 

SDS-PAGE. For immunoblotting, proteins were transferred to nitrocellulose 

membranes (Hybond-C extra) using wet transfer (Bio-Rad). After blocking, membranes 

were incubated at optimized dilutions with primary antibodies followed by incubation 

with either HRP-anti-mouse IgG (Pierce) or HRP-anti-rabbit IgG (Sigma) at 1:5000 

dilution. Specific reactive proteins were visualized with SuperSignal West Pico 

Maximum Sensitivity Substrate (Pierce). Snail antibody was used as described (5). A 

total of 21 different antibodies were used (supplementary Table S1). 
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RNA extraction, semi-quantitative and real-time quantitative PCR - RNA was 

extracted from cell lines with the RNeasy Mini Kit (Qiagen) and quantified with a 

NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies Inc.). cDNA was 

synthesized using the Superscript III First Strand Synthesis kit (Invitrogen). For 

semiquantitative reverse transcriptase-PCR (RT-PCR), reactions were performed using 

specific primers for each gene (supplementary data 1), the PCR products were separated 

on 2% agarose gel and stained with GelRed (Biotium). Quantitative PCR (qPCR) 

analysis was performed using specific primers (supplementary data 1) and SYBR-Green 

Master PCR mix (Bio-Rad) in triplicate. Data collection was performed on an IQ5 

(BioRad). All quantitations were normalized using mouse 18S rRNA as internal control.  

 

Luciferase assay - Different promoter regions were obtained by PCR amplification. 

Primers were designed to generate fragments of approximately 1000 bp (Supplementary 

data 1). In all cases, the reverse primers were at positions: +277/+297. The amplified 

fragments were: pTrip4 -650/+277, pNr2f6 -700/+269, pOsmR -700/+297, pPrrx1 -

680/+287 and pCbx6 -681/+293.  They were digested using MluI and XhoI restriction 

sites, inserted into pGL3-Luc and sequenced. We used a pGL3 vector containing the -

178 / +92 fragment of the E-cadherin (CDH1) promoter as a reference. Luciferase 

protein expression, in terms of relative luminescence units (RLU), was determined 

using a luciferase assay kit (Promega) at 24h post-transfection using a Glomax Reader 

(Promega). Luciferase expression in all transfections was calculated and normalized 

with the protein content and expressed as RLU per µg. The protein content was 

determined using the 2D-Quant kit (GE Healthcare). 
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Chromatin imunoprecipitation assay - ChIP experiments were performed as 

described (21). Briefly, mMSC-Snail cells were cross-linked with 1% formaldehyde for 

10 min at 37ºC. Cross-linking was stopped by adding 0.125 M glycine for 2 min at 

room temperature. Cell monolayers were scraped in cold lysis buffer (50 mM Tris, pH 

8.0, 10 mM EDTA, 0.1% NP-40, and 10% glycerol), and incubated 20 min on ice. 

Nuclei pellets were lysed with 1% SDS, 10 mM EDTA and 50 mM Tris, pH 8.0 and 

extracts were sonicated. Supernatants were diluted 1:10 with dilution buffer, and 

immunoprecipitation was done overnight at 4ºC using an anti-Snail antibody or an 

irrelevant antibody. DNA was purified with GFX kit (GE Healthcare) and eluted in 

MilliQ water. Promoter regions were analysed by quantitative PCR with SybrGreen 

staining (Roche) using the oligonucleotides indicated in supplementary data 1. 

 

siRNA transfections - siRNAs for Snail1, Nr2f6, Prrx1, Trip4, Cbx6 and controls were 

purchased from Sigma. For siRNA transfections, cells were transfected with 27.5 pmol 

siRNA using 1 µl JetPrime Transfection reagent (Polyplus Transfection) in 100 µl of 

JetPrime buffer. Then, cells were grown in p60 culture plates with complete culture 

medium and used as indicated. For adipocyte differentiation assays after siRNA 

transfection, cells were grown 48 h with complete culture medium after transfection 

and, then, adipocyte differentiation was performed as above. 

 

Cloning and transfections of Nr2f6 - Nr2f6 cDNA (clone # MGC:6088 

IMAGE:3582557) was obtained from the IMAGE-MGC collection.  The cDNA was 

amplified by PCR with the Advantage 2 polymerase (Clontech) using the primers: 5’- 

AGGAATTCATGGCCATGGTGACCGGT-3’ and 5’-
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CGCGGTACCCTAGCCCGAGCCATAGGG-3’. The PCR product was digested with 

EcoRI and KpnI and cloned into pcDNA3.1 (Invitrogen). Nr2f6 cloning was confirmed 

by DNA sequencing. Cells were transfected with pcDNA3.1/Nr2f6 or empty vector 

using JetPrime. After 24-48h, transiently transfected cells were lysed and the expression 

of Nr2f6 was analyzed by western blot and qPCR. 

 

Cell proliferation - For cell proliferation assays, experiments were carried out using 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) (Sigma) as 

described (22).  

 

Cytokine array and ELISA - Conditioned medium from 3T3-L1 or mMSC cells, 

mock or Snail1-transfected, was collected after 48 h in serum-free medium and 

incubated with the Mouse Cytokine Antibody Array 3 containing 62 murine cytokine 

specific antibodies. Then, membranes were scanned and analyzed using Redfin, a 2D-

gel image analysis software (Ludesi) as described (23). Relative cytokine intensities 

were normalized in comparison to control spots on the same membrane and represented 

in arbitrary units. Individual quantification of murine IL-17 was carried out with an 

ELISA kit (RayBiotech). 

 

Bioinformatics and statistical analysis - Ingenuity Pathway Analysis (IPA) (Ingenuity 

Systems) was used to predict biological functions and protein interaction analysis. 

DAVID Database was used to evaluate the enrichment of nuclear proteins in our 

proteomic dataset (24). For evaluation of the statistical significance compared between 

groups, all p values were derived from a two-tailed statistical test with 95% confidence 



Snail1 induces IL-17 expression to inhibit adipogenesis 

 

13 

 

interval. p values <0.05 were considered statistically significant. All statistical analyses 

were done with Microsoft Office Excel.  
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RESULTS 

Protein alterations in nuclear extracts of Snail1-transfected 3T3-L1 - 

Overexpression of Snail1 in 3T3-L1 and mMSC cells was confirmed by western blot 

(Fig. 1A). For comparison purposes, we tested Snail1 and the active fibroblasts marker 

S100A4 expression at different confluence levels (50, 80 and 100%). As fibroblast 

activation depends on cell-cell contact, Snail1 expression increased gradually and was 

maintained 48h after confluence, conditions suitable for these cells to be differentiated 

to adipocytes.  These conditions were selected for proteomic analysis (Fig. 1B).  3T3-L1 

cells (Snail-transfected and mock) were metabolically labeled in SILAC medium for at 

least 8 doublings. Then, labeled cells were synchronized to get 100% confluence at the 

same day and 48h later were collected for nuclear subproteome analysis (Fig. 1C).  

Quality of the cell fractionation was confirmed by western blot using antibodies against 

nuclear protein Lamin B and cytoplasmic Rho GDI (Fig. 1D). Two biological replicates 

were carried out. We identified 3920 proteins using forward and reverse SILAC 

experiments, with 2800 overlapping nuclear proteins in 3T3-L1 cells (Fig. 1E). In total, 

3483 proteins were quantified in the forward and reverse experiments, with 2251 

proteins quantified in common (Fig. 1E). Representative mass spectra showed a correct 

incorporation of the heavy labeled amino acids (supplementary Fig. S1). By using a 

permutation-based statistical test, we fixed a fold-change ≥1.5 (mean of two 

experiments) as significant.  For a few proteins fulfilling the fold-change requirement 

but with a variability >20%, MS/MS spectra were manually inspected (supplementary 

Fig. S2).  We found 574 proteins deregulated by Snail1 in the nuclear fraction of 3T3-

L1 cells, with 111 and 463 up- and down-regulated proteins, respectively 
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(supplementary Table S2). Using DAVID, we observed a significant enrichment in 

nuclear proteins, 458 out of 2251 quantified proteins in 3T3-L1 (Fig. 1F).   

 

Network and pathways alterations induced by Snail - Among other functions, Snail-

deregulated proteins were involved in chromatin remodeling such as Hmga2, Top2A 

(up-regulated) or chromobox proteins such as CBX1, 3, 5 (up) 6 and 8 (down-regulated) 

(Fig. 2A) (Table I) (Supplemental Table S2). Most of the quantified proteins were 

down-regulated such as OsmR (oncostatin M receptor) and transcription factors like 

Stat1, Stat3, NFkB, Trip4, Nr2f6, Prrx1 and Sra1 (a component of the ribonucleoprotein 

complex coactivator NCOA1). Src-related proteins, such as c-Src, Fam120A, Sh3bp1, 

Lipb1 and Tln1 were also down-regulated, as well as β-catenin, Gsk3β, Rsk6 and Yap1, 

which have been described to inhibit cell differentiation.  

Ingenuity Pathway Analysis (IPA) database was used to identify the predicted 

pathways and biological functions most significantly altered due to the ectopic 

expression of Snail. The mTOR pathway, EIF2 signaling, RAN signaling, PI3/AKT 

signaling, integrin and cytokine/chemokine signaling were among the top altered 

pathways (Fig. 2B).  Regarding adipogenesis mediators, Snail caused an increase in the 

levels of C/EBPβ in 3T3-L1. In addition, IPA predicted a down-regulation of PPARγ 

and up-regulation of C/EBPβ based on proteomics data of other 47 deregulated proteins 

associated to adipogenesis in 3T3L1 (Fig. 2C).  The increase of C/EBPβ suggests that 

Snail expression did not affect the initial phases of differentiation.  This would agree 

with the increase in the replication capacity of Snail cells and could explain the capacity 

of Snail-expressing fibroblasts for sarcomagenesis (25). 
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Validation and analysis of adipogenesis-related proteins - An initial validation of 

Snail-deregulated proteins was performed by PCR and western blot in 3T3-L1 and 

mMSC cells. First, we tested those genes of the C/EBP and PPAR families involved in 

adipogenesis. By PCR, we confirmed the increase in C/EBPβ and the lack of expression 

of PPARγ and C/EBPα in non-differentiated Snail-transfected cells (Fig. 3A). The 

down-regulation of Cbx6, Nr2f6 and, particularly, Prrx1 was confirmed by qPCR in 

both cell types 3T3-L1 and mMSC cells (Fig. 3B). In contrast, expression of Trip4 and 

OsmR was not decreased by Snail in mMSC cells, which might be associated to the 

stem-like properties of mMSC cells respect to the more differentiated status of the 3T3-

L1 cell line.  

By western blot, we confirmed the down-regulation of phosphoRPS6, phospho 

mTOR and eIF3D for mTOR signaling, Akt, pAkt, Stat3, pStat3, Fam120A, Talin1, 

pSrc and Src for cell signaling alterations and transcription factors Yap1, Sra1, Prrx1, 

Trip4, Nr2f6 and Cbx6 (Fig. 3C). In general, differences were more visible in 3T3-L1 

than in mMSC cells, probably due to the higher expression of Snail1 in 3T3-L1 

transfected cells. We also confirmed the activation of phosphoAkt in Snail-expressing 

cells as previously reported (6). Akt phosphorylation was observed at Ser-473, which is 

regulated by mTORC2 activation (26). This result suggests that the observed mTOR 

inhibition corresponds mainly to mTORC1, involved in RPS6 and not in Ser-473Akt 

phosphorylation.  Moreover, as a consequence of mTORC1 down-regulation, the eIF3 

complex and other downstream regulators of mTORC1-RPS6 pathway such as RPS6 

and Erk1 were also down-regulated in Snail1-transfected cells (27, 28).  
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Snail1 causes a direct regulation of multiple transcription factors - In silico analysis 

with MatInspector revealed putative Snail1 E-box consensus motifs in 28 promoters of 

the quantified proteins (Supplemental Table S3). We focused our study on TFs 

modulated by Snail.  To analyze the effect of Snail on these TFs, we carried out a 

luciferase assay using the repression of the E-cadherin promoter as a control (Fig. 3D). 

Snail inhibited the luciferase promoter activity for Trip4, Nr2f6, OsmR and Prrx1 genes, 

and only slightly that for Cbx6. Compared to E-cadherin, highest repression was 

observed for Prxx1 and Trip4, similar for Nr2f6 and lower for Cbx6 and OsmR.   

The binding of Snail to the promoters of these transcription factors was 

confirmed using a ChIP assay. Chromatin samples were immunoprecipitated with a 

specific antibody against Snail1 in comparison to an irrelevant antibody as control.  We 

used PTEN as positive control of Snail regulation (6, 21). Snail was recruited to all the 

tested promoters containing E-box motifs, showing a greater binding for Trip4, Nr2f6, 

OsmR and Prrx1 than for PTEN and not for Cbx6 (Fig. 3E).  Finally, we tested whether 

Snail silencing in 3T3-L1 and mMSC cells transfected with Snail down-regulated the 

expression of these TFs (Fig. 3F). Although the silencing of Snail was not complete, 

there was a clear increase in Nr2f6 and Trip4, and, particularly, Prrx1 in both cell types.  

Collectively, these results demonstrate a direct regulatory effect of Snail on the 

promoters of Nr2f6, Trip4 and Prrx1.  

 

Down-regulation of Nr2f6 controls adipogenic differentiation - To further evaluate 

the role of these TFs on adipocyte differentiation, we knocked down Prrx1, Nr2f6, 

Trip4 and Cbx6 expression in wild-type 3T3-L1 cells using specific siRNAs. Changes 

in lipid content after culturing cells with differentiation cocktail were detected visually 
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in entire culture plates and microscopically representative fields (Fig. 4A) or 

quantitatively by colorimetry of Oil Red staining (Fig. 4B). There was a strong 

inhibitory effect caused by the loss of Nr2f6 in adipocyte differentiation. Trip4 effects 

were minor, but still significant. Snail1 expression levels remained unaffected after 

Nr2f6 silencing (Fig. 4C). In addition, an increase of Nr2f6, maintaining similar Snail1 

expression levels, was observed during 3T3-L1/Snail differentiation (Fig. 4D). By 

qPCR, the levels of Nr2f6 and the master adipogenic mediators PPARγ and C/EBPα 

were down-regulated by Snail1 expression when compared to 3T3-L1 mock cells, 

except C/EBPβ that was not repressed by Snail (Fig. 4E). Collectively, these results 

suggest an important role for Nr2f6 in adipocyte differentiation. 

 

Overexpression of Nr2f6 promotes adipogenesis - Conversely, to further address the 

positive role of Nr2f6 in adipogenesis, we ectopically expressed Nr2f6 in 3T3-L1/Mock 

and 3T3-L1/Snail cells. We adjusted conditions of transfection (1 µg/ 5x10
6
 cells) to 

avoid an excessive cell death caused by Nr2f6 overexpression. Enhanced expression of 

Nr2f6 did not alter Snail1 levels of expression as detected by Western Blot and qPCR 

(Fig. 5A-B). By qPCR, we observed a large increase of expression of Nr2f6 in 

transfected cells accompanied by an important increase of C/EBPα and C/EBPβ in 3T3-

L1/Mock cells. Snail1 ectopic expression greatly inhibited the up-regulation of C/EBPα. 

Meanwhile, PPARγ remained down-regulated in both types of cells, suggesting that 

additional factors, different from Nr2f6, might be contributing to its regulation (Fig. 

5B). During adipocyte differentiation, overexpression of Nr2f6 in 3T3-L1/Mock cells 

increased the accumulation of lipid droplets and accelerated their differentiation in 

comparison to non-transfected cells (Fig. 5C-D). Visualization of culture plates and 
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quantification of extracted Oil Red O absorbance accumulated in 3T3L1/Mock cells 

confirmed that enhanced expression of Nr2f6 increased significantly adipogenesis (Fig. 

5D). Excessive cell death caused by ectopic expression of Nr2f6 in Snail-transfected 

3T3-L1 cells made impossible to carry out differentiation experiments in these 

conditions.  Finally, overexpression of Nr2f6 caused a lower proliferation rate of 3T3-

L1/Mock cells, in contrast with the highly proliferative rate induced by Snail1 (Fig. 5E). 

This lower proliferation might be associated to the increase in cell death caused by the 

enhanced expression of Nr2f6.   

 

Snail expression induces the synthesis of IL-17 - The nuclear orphan receptor Nr2f6 

is a repressor of IL-17 expression, suppressing Th17 cell functions (29). IL-17 inhibits 

adipogenesis downstream of C/EBPδ and C/EBPβ and upstream of C/EBPα and PPARγ 

(30). To determine if the effect of Nr2f6 on adipogenesis was mediated by IL-17, we 

checked the levels of IL-17 and other cytokines analyzing conditioned medium of Snail-

transfected and mock cells using a cytokine-specific microarray. After densitometry and 

quantification, we observed a significant difference for IL-17 and TNFα between Snail-

expressing and mock cells (Fig. 6A). To confirm these results, we quantified IL-17 by 

ELISA using the same cells and the results were similar to that obtained with the array 

(Fig. 6B).  Moreover, IL-17 expression was increased in Nr2f6-silenced cells and 

decreased in cells ectopically expressing Nr2f6 (Fig. 6C). To study the effect of 

blocking IL-17 activity on adipogenesis, Snail1-expressing 3T3-L1 cells were treated 

with anti-IL17 antibody (500 ng/ml) every two days upon addition of the adipogenic 

cocktail. Despite the relatively low antibody concentration, treated cells showed a 

significant recovery of differentiation capacity, visually and by colorimetry (Fig. 6D).  
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Collectively, these results demonstrated a capacity of mesenchymal cells to secrete IL-

17 and inhibit adipocyte differentiation upon Snail expression and the concomitant loss 

of Nr2f6.     
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DISCUSSION 

By using a sensitive and quantitative proteomic analysis, we identified a number of 

transcription factors, cytokines and growth factors deregulated by Snail. The capacity of 

Snail to bind and regulate the selected transcription factors was confirmed by luciferase 

and ChIP assays. We provide diverse evidences that Snail regulates adipocyte 

differentiation in mesenchymal cells through the inhibition of the nuclear orphan 

receptor Nr2f6, which antagonizes the expression of the pro-inflammatory cytokine IL-

17 (31).  Snail overexpression induced IL-17 as well as TNFα secretion in 3T3-L1 and 

mMSCs. We demonstrated that enhanced expression of Nr2f6 or blocking of IL-17 

activity enabled the recovery of adipocyte differentiation. Collectively, our results 

suggest an early effect of Snail on adipogenesis mediated through Nr2f6 and IL-17 that 

occurs upstream of C/EBPα and PPARγ proteins (Fig. 7).  

Our proteomic data of Snail-transfected cells agree with the up-regulation of 

C/EBPβ induced by IL-17 and associated to early differentiation of adipogenesis (32, 

33).  Exogenous IL-17 inhibited 3T3-L1 adipogenesis (34) through C/EBPα, PPARγ 

and Kruppel-like factors (30). However, no insights about the provenance of this IL-17 

were given or the reasons behind the presence of a Th17 cytokine in the differentiation 

of mesenchymal cells to adipocytes were explained. Another report suggested a direct 

repression of PPARγ by Snail based on a luciferase assay (12). However, to the light of 

our results and the capacity of Snail to bind multiple promoters, it is difficult to know if 

PPARγ inhibition by Snail is functionally relevant in 3T3-L1 cells or is another 

unspecific repressor capacity of Snail. In fact, C/EBPα and PPARγ expression levels 

were very low in both, mock and Snail-transfected cells. Curiously, C/EBPα and 

C/EBPβ expression was increased in Nr2f6 transfected 3T3-L1 cells, whereas the levels 
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of Snail were not affected. This increased expression of C/EBPα and C/EBPβ would 

support an acceleration of the differentiation program.  

 IL-17 is usually classified as a proinflammatory cytokine, which is known to 

control bone mass (7) and to inhibit osteoclast formation (35) and chondrocyte 

differentiation (36). Here, we propose a novel capacity for Snail to induce IL-17 

expression in fibroblasts or mesenchymal cells. In fact, we may speculate that 

previously reported inhibitory effects of Snail on osteoblast differentiation (6) were also 

caused by IL-17. Therefore, the action of fibroblast-derived IL-17 would be more far-

reaching than that restricted to Th17 cells and might contribute to the Snail regulation of 

cancer microenvironment. This capacity of Snail to regulate IL-17 expression suggests a 

role for this molecule in different pathologies as obesity, rheumatoid arthritis or 

osteoporosis. Since Snail and TGFβ form a self-stimulatory loop, either Snail or TGFβ 

could be interesting targets on these diseases. 

Our results for Nr2f6 are relatively similar to those described for Nr2f2 (also 

known as COUP-TFII) in adipogenesis (37) and may suggest a cooperative interaction 

between both nuclear orphan receptors (Fig. 7). However, the role of Nr2f2 in 

adipogenesis is controversial as Xu et al (38) described the opposite effect for Nr2f2. In 

our dataset, Snail showed a very weak repressor effect on Nr2f2 (mean fold-change: 

0.934) (data not shown). According to the Nr2fome database (39), Nr2f6 (also known as 

Ear2) interacts and regulates a number of nuclear receptors, among others Nr2f2, 

Esr1(Estrogen Receptor) or Angptl1. Although Nr2f6 has been much less characterized 

than Nr2f2, it has been described that both are functionally closely related. However, 

whereas Nr2f2 knockout mice are lethal, Nr2f6 are viable but present some neurological 

disorders (40). Nr2f2 is a central node between Nr2f6, Trip4 and other proteins like 
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elongation factors (41, 42) (Fig. 7). In addition, Esr1 interacts with Nr2f6 and C/EBPα, 

C/EBPβ, RARA, STAT3, STAT5, Trip4 and Sra1, among many other TFs (43). Many 

of these nuclear receptors are also involved in IL-17 expression like VDR, RAR, ER 

and LXR (31). 

Another TF regulated by Snail that showed a minor effect on adipogenesis was 

Trip4. Trip4, also called activating signal cointegrator 1 (Asc1), is a transcription 

coactivator of nuclear receptors that plays a pivotal role in the transactivation of NFκB 

and AP1 (44). Trip4 also regulates androgen receptor transactivation and testicular 

function (45, 46). Trip4 has been described to interact also with PPARγ (47). In 

addition, Snail1 expression caused a down-regulation of the homeobox factor Prrx1, an 

inducer of the epithelial-mesenchymal transition (EMT).  Prrx1 causes a reversion of 

the EMT process in cancer epithelial cell lines, apparently without Snail participation 

(48). In contrast, we observed a direct repression of Prrx1 by Snail in preadipocyte 3T3-

L1 and mMSC cells, confirmed by luciferase and ChIP assay, although silencing of 

Prrx1 did not affect adipogenic differentiation. Other down-regulated protein was the 

steroid receptor RNA activator (Sra1), which promotes adipocyte differentiation; up-

regulates the expression of PPARγ, C/EBPα and other adipocyte genes; and increases 

glucose uptake and phosphorylation of Akt and FOXO1 in response to insulin (49). 

Here, we have noticed a clear down-regulation of Sra1 that might contribute also to the 

suppression of PPARγ and adipocyte differentiation. Sra1 is also a component of a large 

complex with Nr2f6 according to the Nr2fome. 

In summary, many of the Snail-regulated TFs (Nr2f6, Trip4 or Sra1) seem to 

interact, directly or indirectly, with PPARγ. However, Nr2f6 repression showed the 

stronger capacity to control adipocyte differentiation via IL-17. At the end, IL-17 seems 
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to be the critical mediator induced by Snail for adipocyte differentiation. These results 

support a link between Snail1 expression, inflammation and adipogenesis. Snail appears 

to be a master regulator that plays a central role at different levels to favor the 

expression and/or repression of a cascade of multiple transcription factors that control 

adipogenic gene expression at different levels. Further work is required to precisely 

define the interaction network between other identified transcription factors. These 

results provide a functional role for Snail in obesity that goes beyond the control of the 

EMT process and epithelial plasticity. 
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Table 1. Function analysis of selected deregulated proteins in Snail-transfected cells 

 

        Foward SILAC  Reverse SILAC 

Function 
Accession 

no. 
Name   

Fold 

Change 

Mascot 

Score 

Coverage 

(%) 
Peptides 

 Fold 

Change 

Mascot 

Score 

Coverage 

(%) 
Peptides 

Chromatin 

remodelling 

Q01320 Top2A   4.79 532.82 13.42 19  3.40 656.35  14.53 20 

P52927 Hmga2   1.73 9712.06 56.48 5  1.35 8936.29 45.37 4 

Nuclear 

Transport 

P62827 Ran   0.78 825.05 19.914 4  0.60 1929.96 30.56 7 

Q9EQK5 Mvp   0.34 134.54 4.07 3  0.07 233.79 11.38 7 

Q6P5F9 Xpo1   0.61 71.53  2.24 2  0.55 704.31 15.5 12 

Q9ERK4 Xpo2   0.20  259.36  3.50 3  0.30 1241.16 18.64 14 

Q924C1 Xpo5   0.33  112.11  3.57 4  0.26 517.33 8.97 8 

Q8BKC5 Ipo5   0.68  109.32  4.10 4  0.32 1525.89 16.13 13 

Focal Adhesion  

Q62523 Zyx   0.54  266.17  12.23 4  0.20 241.55 17.91 6 

P26039 Tln1   0.41  3557.29  16.10 28  0.32 12516.46 29 48 

Q71LX4 Tln2   0.46  801.25  6.40 12  0.72 1605.57 9.35 16 

Transcription 

factors 

Q80VJ2 Sra1   0.46  40.20  4.55 1  0.23 81.37 17.27 3 

P46938 Yap1   0.06  94.09  3.60 1  0.58 239.50 8.26 3 

P63013 Prrx1   0.75  781.09  14.69 3  0.40 746.62 18.37 4 

P43136 Nr2f6   0.63  123.91  10.77 3  0.53 62.52  6.67 2 

Q9QXN3 Trip4   0.78  34.74  2.24 1  0.45 44.68  1.38 1 

Q9DBY5 Cbx6   0.49  294.47  6.76 2  0.24 300.44 6.76 2 

Cell Signaling 

P62754 Rps6   0.65  3143.72  18.07 5  0.42 7588.44 21.29 6 

P42225 Stat1   0.43  85.41  5.07 3  0.72 116.28 3.2 2 

P42227 Stat3   0.68  328.73  10.26 5  0.21 513.22 13.25 6 

Q6A0A9 Fam120A   0.31  548.00  10.34 8  0.37 726.92 10.43 8 

O70458 OsmR   0.69  0.00  0.82 1  0.20 43.67 1.75 1 

Q63844 Erk1   0.41  448.89  17.11 5  0.40 595.95 21.58 6 

Q8BFW7 Lpp   0.28  114.53  15.33 6  0.27 41.48 7.18 3 
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Legends to the figures 

Fig. 1. Study of protein alterations in nuclear extracts of Snail1 transfected 3T3-L1 

cells. A, Verification of Snail1 overexpression in 3T3-L1 and mMSC cells by western 

blot analysis. B, 3T3-L1/Snail1 and 3T3-L1/Mock cells were analyzed at indicated cell 

confluence. The abundance of Snail1 and S100-A4 was quantified by western blot. 

Tubulin was used as loading control. According to the results, cell confluence was set 

up at 100% for 48h for the rest of the experiments. C, Schematic representation of 

proteomics experiments with 3T3-L1 cells. For metabolic labeling, 3T3-L1/Snail1 or 

control cells were grown and maintained in light and heavy-labeled DMEM medium 

supplemented with 10% dialyzed FBS. D, The quality of the subcellular fractionation 

was assessed by western blot before mass spectrometry. Cytoplasm and nuclear 

fractions were assayed using Lamin B and Rho GDI as nuclear and cytoplasmic protein 

controls, respectively. E, Proteins identified and quantified in 3T3-L1 forward and 

reverse SILAC experiments.  In total, we identified 3920 proteins with 2800 

overlapping proteins, whereas we quantified 3483 proteins with 2251 common proteins 

in both experiments. F, The enrichment of nuclear fraction with cellular component 

analyses was evaluated using DAVID Database. In total, 458 out of 2251 quantified 

proteins in 3T3-L1 were previously observed in nucleus.   

 

Fig. 2. Significant altered networks and pathways induced by Snail1. A, Distribution 

of protein ratios versus protein abundance in Snail1 and control cells by SILAC 

analysis. Downregulated and upregulated proteins are indicated in black, red and blue, 

respectively. Unaltered proteins by Snail are represented in green. B, IPA database was 

used to identify the most significant altered pathways and biological functions due to 
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Snail1 overexpression in 3T3-L1 cells. C, IPA database predicted down-regulation of 

PPARγ and up-regulation of C/EBPβ mediators that are critical for the inhibition of 

final differentiation to adipocytes in 3T3-L1 cells.  

 

Fig. 3. Validation of Snail1-deregulated proteins in 3T3-L1 and mMSC cells by 

PCR and western blot. A, cDNA synthesized from total RNA from 3T3-L1/Snail1 and 

control cells was subjected to semi-quantitative RT-PCR. B, Quantitative PCR analysis 

of Trip4, Nr2f6, OsmR, Prrx1, and CBX6 transcription factors in 3T3-L1/Snail1 and 

mMSC/Snail1 cells in comparison to control. Data represent the median and SD of three 

independent experiments. C, Nuclear protein extracts of 3T3-L1/Snail1, mMSC/Snail1 

and control cells were subjected to western blot using specific antibodies against the 

indicated proteins. Lamin B was used as nuclear and loading control. D, 3T3-L1/Snail1 

and control cells were transfected with the amplified promoters cloned in the pGL3 

plasmid. E-cadherin promoter was used as control. Data represents the mean of Firefly 

luciferase ± SEM of three independent experiments performed on triplicate. **: p < 

0.005; ***: p < 0.001 compared with control cells. E, To confirm the regulation of these 

transcription factors by Snail1, we performed ChIP assay using a specific anti-Snail1 

antibody. PTEN was used as positive control of Snail1 regulation. An irrelevant IgG 

was used as negative control. Data represent the median/mean ± SD of the results. F, 

Western blot analysis of the reversion of the expression of the indicated transcription 

factors by knockdown of Snail1. Lamin B was used as loading control. 

 

Fig. 4. Adipocyte differentiation of 3T3-L1 cells is inhibited by silencing of Nr2f6 

transcription factor. A, 3T3-L1 preadipocytes were transfected with Trip4, Nr2f6, 
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Prrx1, CBX6 and control siRNA. On day 10 after treatment with adipogenic cocktail, 

cells were stained with Oil Red O. Photographs of differentiation were acquired with 

Olympus CK40 microscope equipped with an Olympus DP12 camera at x40 

magnification. B, Oil Red O stained cells were dissolved in isopropanol and staining 

was quantified by absorbance at 500 nm. Data represents the mean ± SEM of three 

independent experiments performed on duplicate. *: p < 0.01; **: p < 0.005; ***: p < 

0.001 compared with control cells. C, Western blot analysis of Nr2f6 knockdown. D, 

Western blot analysis of the expression levels of Nr2f6, and Snail1. RhoGDI was used 

as loading control. E, cDNA synthesized from total RNA from 3T3-L1/Snail1 and mock 

cells as control were subjected to qPCR analysis to amplify PPARγ, c/EBPα/β, Nr2f6 

and Snail1. Murine ribosomal RNA 18S was used as control. 

 

Fig. 5. Enhanced expression of Nr2f6 reverts the effects of Snail1 and induced a 

fast adipocyte differentiation of 3T3-L1 cells. A, 3T3-L1/Mock and 3T3-L1/Snail 

cells were transfected with pcDNA3.1/Nr2f6 or empty vector and analyzed by western 

Blot. B, cDNA from transfected cells was subjected to qPCR analysis for PPARγ, 

C/EBPα/β, Nr2f6 and Snail1. Murine ribosomal RNA 18S was used as control. C, 

Representative images of f 3T3-L1 cells transfected with pcDNA3.1/Nr2f6 or empty 

vector were recorded at indicated times with an Olympus CK40 microscope equipped 

with an Olympus DP12 camera at x40 magnification. D, Transfectants cells were 

stained with Oil Red O after 7 days of adypocite differentiation. Oil Red O stained cells 

were dissolved in isopropanol and staining was quantified by absorbance at 500 nm. 

Data represents the mean ± SEM of two independent experiments performed on 

triplicate. *: p < 0.01; **: p < 0.005; ***: p < 0.001 compared with control cells. E, 
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3T3-L1 proliferation was determined by MTT assays after 48 h of culture. Optical 

density was significantly decreased by Nr2f6 overexpression (***: p < 0.001,  

compared with 3T3-L1/Mock cells). 

  

Fig. 6.  Expression of IL-17 in 3T3-L1 and mMSC cells overexpressing Snail1 and 

IL-17 effect on adipogenesis. A, Murine cytokine antibody microarrays were incubated 

with the indicated conditioned medium. In both 3T3-L1 and mMSC cells, Snail1 

promoted the expression of IL-17 and TNFα among other cytokines. Bar graph was 

calculated for each cytokine with the mean and SEM of replicated spots in the array. B, 

IL-17 expression is promoted through the inhibition of Nr2f6 transcription factor by 

Snail1. IL-17 expression was quantified by ELISA in the conditioned medium of 

Snail1stably transfected 3T3-L1, mock and mMSC cell lines. C, We quantified IL-17 

expression in Nr2f6-silenced and ectopically-expressing cells. Nr2f6 expression induces 

variations in IL-17 expression levels. D, Adipocyte differentiation was performed in the 

presence or not of anti- IL17A antibody (500 ng/ml). Cells were stained with Oil Red O. 

Oil Red O stained cells were dissolved in isopropanol and staining was quantified by 

absorbance at 500 nm. Data represents the mean ± SEM of two independent 

experiments performed on triplicate. *: p < 0.01; **: p < 0.005; ***: p < 0.001 

compared with control cells. Anti-IL-17 antibody was able to reverse the effects of 

Snail1 overexpression on adipocyte differentiation. Images were taken as above. 

 

Fig. 7. Snail1 role in adipocyte differentiation. A model of the action of Snail in 

adipocyte differentiation. Snail1 overexpression down-regulates Nr2f6 expression, 

which in turn increases expression of IL-17. IL-17 up-regulates C/EBPβ and down-
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regulates C/EBPα and PPARγ. In addition, Snail1 down-regulates Trip4, another 

candidate mediator, which also interacts with PPARγ. Nr2f2 represents a central node 

between Nr2f6 and Trip4. These interactions will require further investigation. 
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Figure 7 
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