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Effects of deformation on the β-decay patterns of light even-even and odd-mass Hg and Pt isotopes
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Bulk and decay properties, including deformation energy curves, charge mean square radii, Gamow–Teller
(GT) strength distributions and β-decay half-lives are studied in neutron-deficient even-even and odd-A Hg and
Pt isotopes. The nuclear structure is described microscopically from deformed quasiparticle random-phase
approximation calculations with residual interactions in both particle-hole and particle-particle channels,
performed on top of a self-consistent deformed quasiparticle Skyrme Hartree–Fock basis. The observed sensitivity
of the not-yet-measured GT strength distributions to deformation is proposed as an additional complementary
signature of the nuclear shape. The β-decay half-lives resulting from these distributions are compared to
experiment to demonstrate the ability of the method.
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I. INTRODUCTION

Neutron-deficient isotopes in the lead region are nowadays
well established examples of the shape coexistence phe-
nomenon in nuclei [1,2]. They have been the subject of much
experimental and theoretical interest in the last few years. The
first direct evidence of the shape coexistence in the region
Z ≈ 82 was obtained in neutron-deficient Hg isotopes from
isotope-shift measurements [3]. Those measurements showed
a sharp transition in the nuclear size between the ground states
of 187Hg and 185Hg that was interpreted [4] as a change from a
weak oblate shape in the heavier isotopes to a more deformed
prolate shape in the lighter ones from calculations based on
Strutinsky’s shell-correction method. Later, new isotope-shift
measurements [5] revealed a weakly oblate deformed character
of the ground states of the even-mass Hg isotopes down to
A = 182, with an odd-even staggering persisting down to
181Hg. The radius of the oblate isomeric state in 185Hg follows
the trend of the even-even ground-state radii.

Shape evolution and shape coexistence in the region of
β-unstable nuclei with Z ≈ 82 were subsequently studied
experimentally by γ -ray spectroscopy in the α decay of
the products created in fusion-evaporation reactions (see
Ref. [2] and references therein). Maybe the most singular
case corresponds to 186Pb, where two excited 0+ states below
700 keV [6] have been found. Furthermore, low-lying excited
0+ states have been experimentally observed at excitation
energies below 1 MeV [2,6] in all even Pb isotopes between
A = 184 and A = 194. Similarly, 0+

2 excited states below
1 MeV have been found in neutron-deficient Hg isotopes from
A = 180 up to A = 190 [2].

The spectroscopy of the Hg isotopes [2,7,8] shows a nearly
constant behavior of the energy of the yrast states in the
range A = 190 to 198, which are interpreted as members of
a rotational band on top of a weakly deformed oblate ground
state. For lighter isotopes, 0+

2 excited states appear at low
energies, decreasing in excitation energy up to A = 182. They
are interpreted as the band-heads of prolate configurations.
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Their excited states become yrast above 4+ for A < 186,
whereas the 2+ levels become close enough in energy to the
weakly deformed states, opening the possibility of mixing
strongly with them. Nevertheless, to determine the magnitude
and type of deformation of the bands and their mixing,
spectroscopy studies are not enough and the electromagnetic
properties (E2 transition strengths) of the low-lying states have
to be determined. Lifetime measurements in neutron-deficient
Hg isotopes have been performed in the last few years [9–11].
More recently [12], Coulomb-excitation experiments have
been performed to study the electromagnetic properties of light
Hg isotopes 182−188Hg. In these experiments, the deformation
of the ground state and low-lying excited states were deduced,
confirming the presence of two different coexisting structures
in the light even-even Hg isotopes that are pure at higher spin
values and mix at low excitation energy. The ground states of
Hg isotopes in the mass range A = 182 to 188 are found to be
weakly deformed and of predominantly oblate nature, while
the excited 0+

2 states in 182,184Hg exhibit a larger deformation.
Similarly, low-lying states in light Pt isotopes have been stud-
ied experimentally with γ -ray spectroscopy [13–15], showing
that shape coexistence of states with different deformation
is still present in neutron-deficient Pt isotopes with Z = 78.
Moderate odd-even staggering was also found in very light Pt
isotopes from laser spectroscopy [16].

From the theoretical point of view different types of models
have been used to explain the coexistence of several 0+ states
at low energies [1]. In a shell-model picture, the excited
0+ states are interpreted as multi-particle-hole excitations.
Protons and neutrons outside the inert core interact through
pairing and quadrupole interactions to generate deformed
structures. Within a mean-field description of the nuclear
structure, the presence of several minima at low energies in
the energy surface, corresponding to different 0+ states, is
understood as due to the coexistence of various collective
nuclear shapes. In the mean-field approach, the energy of
the different shape configurations can be evaluated with
constrained calculations, minimizing the Hartree–Fock energy
under the constraint of keeping fixed the nuclear deformation.
The resulting total energy plots versus deformation are called
in what follows “deformation-energy curves” (DECs). These
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calculations have become more and more refined with time,
resulting in accurate descriptions of the nuclear shapes and the
configurations involved. Calculations based on phenomeno-
logical mean fields and Strutinsky method [17], are already
able to predict the existence of several competing minima in
the deformation-energy surface of neutron-deficient Pt, Hg,
and Pb isotopes. Self-consistent mean-field calculations with
nonrelativistic Skyrme [18,19] and Gogny [20–23], as well as
relativistic [24] energy density functionals have been carried
out. Inclusion of correlations beyond mean field [18–23] are
needed to obtain a detailed description of the spectroscopy.
They involve symmetry restoration by means of angular
momentum and particle number projection and configuration
mixing within a generator coordinate method. It is shown
that the underlying mean-field picture of coexisting shapes
is in general supported, except in those cases where the
deformed mean-field structures appear at close energies. In
this case mixing can be important, affecting B(E2) strengths
and their corresponding β deformation parameters. The basic
picture is also confirmed from recent calculations within the
interacting boson model with configuration mixing carried out
for Hg [25,26] and Pt [27–30] isotopes.

Triaxiality in this mass region has also been explored
systematically [19,23,25,30,31], showing that although the
axial deformations seem to be the basic ingredients, triaxiality
may play a role in some cases. A systematic survey of energy
surfaces in the (β,γ ) plane with the Gogny D1S interaction
can be found in the Bruyères-le-Châtel database [32].

On the other hand, it has been shown [33–35] that the decay
properties of β-unstable nuclei may depend on the nuclear
shape of the decaying nucleus. In particular, the Gamow–Teller
(GT) strength distributions corresponding to β+/electron
capture (EC) decay of proton-rich nuclei in the mass region
A ≈ 70 have been studied systematically [36–39] as a func-
tion of the deformation by using a deformed quasiparticle
random-phase approximation (QRPA) approach built on a
self-consistent Hartree–Fock (HF) mean field with Skyrme
forces and pairing correlations. The study has also been
extended to stable pf -shell nuclei [40,41] and to neutron-rich
nuclei in the mass region A ≈ 100 [42]. This sensitivity of the
GT strength distributions to deformation has been exploited
to determine the nuclear shape in neutron-deficient Kr and Sr
isotopes by comparing theoretical results with β-decay mea-
surements using the total absorption spectroscopy technique
(TAS) [43].

Similar studies for the decay properties of even-even
neutron-deficient Pb, Po, and Hg isotopes were initiated in
Refs. [44,45] to predict the extent to which GT strength
distributions may be used as fingerprints of the nuclear shapes
in this mass region. In those works, it was shown that the
existence of shape isomers, as well as the location of their
equilibrium deformations, are rather stable and independent
of the Skyrme and pairing forces. It was also found that the
GT strength distributions calculated at the various equilibrium
deformations exhibit specific features that can be used as
signatures of the shape isomers and, what is important, these
features remain basically unaltered against changes in the
Skyrme and pairing forces.

In this paper we extend those calculations by studying
the DECs and the GT strength distributions of neutron-
deficient 174−204Hg and 170−192Pt isotopes, focusing on their
dependence on deformation. In addition, we also include as
a novelty the decay properties of the odd-A isotopes and
discuss the sensitivity of the decay patterns to the spin-parity
of the decaying nucleus. The aim here is to identify possible
signatures of the shape of the nucleus in the decay patterns.
This study is timely because the possibility to carry out these
measurements in odd-A nuclei is being considered at present
at the On-Line Isotope Mass Separator at CERN (ISOLDE
CERN) [46]. A program aiming to measure the Gamow–Teller
strength distributions in neutron-deficient isotopes in the lead
region with TAS techniques started with 188,190,192Pb isotopes.
These data have been already analyzed and submitted for
publication [47,48]. Similar measurements have been carried
out in 182,183,184,186Hg and are being presently analyzed [46].

This paper is organized as follows: In Sec. II we present
briefly the main features of our theoretical framework. Sec-
tion III contains our results for the energy deformation curves
and GT strength distributions in the neutron-deficient Hg and
Pt isotopes relevant for β+/EC decay. We also compare the
experimental half-lives with our results and discuss the GT
strength distributions and their sums in various ranges of
excitation energies. Section IV contains the main conclusions.

II. THEORETICAL FORMALISM

In this section we present a summary of the theoretical
formalism used in this paper to describe the β-decay properties
in Hg and Pt neutron-deficient isotopes. More details of the
microscopic calculations can be found in Refs. [34–37]. The
method starts with a self-consistent calculation based on a
deformed Hartree–Fock mean field obtained with effective
two-body density-dependent Skyrme interactions including
pairing correlations in the BCS approximation. From these
calculations we obtain energies, occupation probabilities,
and wave functions of the single-particle states. Most of
the calculations in this work have been performed with the
interaction SLy4 [49], being among the most successful and
extensively studied Skyrme force in the last years [50–52].
Furthermore, comparison with other widely used Skyrme
forces like the simpler Sk3 [53] and SGII [54] that has been
shown to provide good spin-isospin properties, will be shown
in some instances.

The solution of the HF equation is found by using the for-
malism developed in Ref. [55], assuming time-reversal and ax-
ial symmetry. The single-particle wave functions are expanded
in terms of the eigenstates of an axially symmetric harmonic
oscillator in cylindrical coordinates, using twelve major shells.
The method also includes pairing between like nucleons in
the BCS approximation with fixed gap parameters for protons
and neutrons, which are determined phenomenologically from
the odd-even mass differences through a symmetric five-term
formula involving the experimental binding energies [56]. In
those cases where experimental information for masses is still
not available, the same pairing gaps as for the closer isotope
measured are used.
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The DECs are analyzed as a function of the quadrupole
deformation parameter β from constrained HF calculations.
Calculations for GT strengths are performed subsequently at
the equilibrium shapes of each nucleus; that is, for the solutions
(in general deformed) for which minima are obtained in the
energy curves.

It is worth mentioning some existing works in this mass
region based on mean-field approaches other than the present
Skyrme HF + BCS calculations. In particular, mean-field
studies of structural changes with the Gogny interaction can
be found in Ref. [25] for Hg isotopes and in Refs. [23,30,31]
for Pt isotopes. The clear advantage of the finite-range Gogny
force over the contact Skyrme force is that pairing correlations
can be treated self-consistently by using the same interaction
through a Hartree–Fock-Bogoliubov (HFB) calculation. Tri-
axial landscapes were studied in those references, showing
that the (axial) prolate and oblate minima, which are well
separated by high-energy barriers in the β degree of freedom,
are in many cases softly linked along the γ direction. Indeed,
some axial minima become saddle points when the γ degree
of freedom is included in the analysis. The differences found
with the present HF + BCS approach for the axial equilibrium
values are not significant, but the topology of the surfaces are
somewhat different. Similarities and differences of the various
topologies are discussed in the next section.

In the case of odd-A nuclei, the ground state is expressed
as a one-quasiparticle (1qp) state, which is determined by
finding the blocked state that minimizes the total energy.
In the present study we use the equal filling approximation
(EFA), a prescription widely used in mean-field calculations
to treat the dynamics of odd nuclei preserving time-reversal
invariance [57]. In this approximation the unpaired nucleon
is treated on an equal footing with its time-reversed state by
sitting half a nucleon in a given orbital and the other half
in the time-reversed partner. This approximation has been
found to be equivalent to the exact blocking when the time-odd
fields of the energy density functional are neglected, and then
it is sufficiently precise for most practical applications [58].
The effects of time-odd terms in HFB calculations have also
been studied in Ref. [59]. An extension of beyond-mean-field
calculations, where the generator coordinate method is built
from self-consistently blocked 1qp HFB states for odd-mass
nuclei has recently been presented in Ref. [60].

The deformation in the decaying nuclei in both even-even
and odd-A cases, is self-consistently determined. In the odd-A
case, the core polarization induced by the odd particle is then
taken into account. The effect found is, however, very small
and we get very similar axial deformations in the even-even and
neighbor odd-A nuclei. The small effect can be also observed
in the Gogny database [32], comparing the DECs of the even-
even and nearest odd-A isotopes.

Since the GT operator of the allowed transitions is a
pure spin-isospin operator without any radial dependence, one
expects the spatial functions of the parent and daughter wave
functions to be as close as possible in order to overlap maxi-
mally. Then, transitions connecting different radial structures
in the parent and daughter nuclei will be suppressed. Thus, we
assume similar shapes for the decaying parent nucleus and for
all populated states in the daughter nucleus, neglecting core

polarization effects in the daughter nuclei. This is a common
assumption to deformed QRPA calculations [61]. That core
polarization effects are small in both the odd-odd case in
relation to the even-even parent and the odd-even (even-odd)
case in relation to the even-odd (odd-even) parent can be seen
in the Gogny database [32], where potential-energy surfaces
obtained from Gogny HFB calculations are shown all along the
nuclear chart. By comparing the surfaces of parent (Hg, Pt) and
daughter (Au, Ir) isotopes considered in this work, one realizes
that the profiles are very similar with practically no effect from
core polarization due to the odd particles.

The reduction in the transitions connecting different shapes
have been quantified in the case of double β decay [62]. It
has been shown that the overlaps between the wave functions
in the intermediate nucleus reached from different shapes
of the parent and daughter nuclei are dramatically reduced
when the deformations differ from each other. Only with
similar deformations is the overlap significant. Consequently,
given the small polarization effects and the suppression of the
overlaps with different deformations, we consider in this work
only GT transitions between parent and daughter partners with
like deformations.

To describe GT transitions, a spin-isospin residual interac-
tion is added to the mean field and treated in a deformed proton-
neutron QRPA [33,37,61,63–68]. This interaction contains
two parts: particle-hole (ph) and particle-particle (pp). The
interaction in the ph channel is responsible for the position
and structure of the GT resonance [37,64] and it can be
derived consistently from the same Skyrme interaction used
to generate the mean field, through the second derivatives of
the energy density functional with respect to the one-body
densities. The ph residual interaction is finally expressed in
a separable form by averaging the Landau–Migdal resulting
force over the nuclear volume, as explained in Ref. [34]. The
pp component is a neutron-proton pairing force in the Jπ = 1+

coupling channel, which is also introduced as a separable
force [37,67,68]. Its strength is usually fit to reproduce globally
the experimental half-lives. Various attempts have been made
in the past to fix this strength [64], arriving at expressions
that depend on the model used to describe the mean field
(the Nilsson model in the above reference). In previous works
we studied the sensitivity of the GT strength distributions to
the various ingredients contributing to the deformed QRPA
calculations; namely, to the nucleon-nucleon effective interac-
tion, to pairing correlations, and to residual interactions. We
found different sensitivities to them. In this work, all of these
ingredients have been fixed to the most reasonable choices
found previously [44,45]. In particular we use the coupling
strengths χ

ph
GT = 0.08 MeV and κ

pp
GT = 0.02 MeV for the ph

and pp channels, respectively. The technical details to solve
the QRPA equations have been described in Refs. [34,67,68].
Here we only mention that, because of the use of separable
residual forces, the solutions of the QRPA equations are found
by solving first a dispersion relation, which is an algebraic
equation of fourth order in the excitation energy ω. Then,
for each value of the energy, the GT transition amplitudes
in the intrinsic frame connecting the ground state |0+〉 of
an even-even nucleus to one-phonon states in the daughter
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nucleus |ωK〉 (K = 0,1) are found to be

〈ωK |σKt±|0〉 = ∓M
ωK± , (1)

where t+|π〉 = |ν〉, t−|ν〉 = |π〉, and

M
ωK− =

∑
πν

(
qπνX

ωK
πν + q̃πνY

ωK
πν

)
, (2)

M
ωK+ =

∑
πν

(
q̃πνX

ωK
πν + qπνY

ωK
πν

)
, (3)

with

q̃πν = uνvπ�νπ
K , qπν = vνuπ�νπ

K , (4)

in terms of the occupation amplitudes for neutrons and protons
vν,π (u2

ν,π = 1 − v2
ν,π ) and the matrix elements of the spin

operator, �νπ
K = 〈ν|σK |π〉, connecting proton and neutron

single-particle states, as they come out from the HF + BCS
calculation. XωK

πν and YωK
πν are the forward and backward

amplitudes of the QRPA phonon operator, respectively.
Once the intrinsic amplitudes in Eq. (1) are calculated, the

GT strength Bω(GT ±) in the laboratory system for a transition
IiKi(0+0) → If Kf (1+K) can be obtained as

Bω(GT ±) =
∑
ωK

[〈ωK=0|σ0t
±|0〉2δ(ωK=0 − ω)

+ 2〈ωK=1|σ1t
±|0〉2δ(ωK=1 − ω)], (5)

in [g2
A/4π ] units. To obtain this expression, the initial and

final states in the laboratory frame have been expressed
in terms of the intrinsic states using the Bohr–Mottelson
factorization [69].

When the parent nucleus has an odd nucleon, the ground
state can be expressed as a one-quasiparticle (1qp) state in
which the odd nucleon occupies the single-particle orbit of
lowest energy. Then two types of transitions are possible.
One type is due to phonon excitations in which the odd
nucleon acts only as a spectator. These are three-quasiparticle
(3qp) states and the GT transition amplitudes in the intrinsic
frame are basically the same as in the even-even case in
Eq. (1), but with the blocked spectator excluded from the
calculation. The other type of transitions are those involving
the odd-nucleon state (1qp), which are treated by taking into
account phonon correlations in the quasiparticle transitions
in first-order perturbation. The transition amplitudes for the
correlated states can be found in Refs. [36,68].

In this work we refer the GT strength distributions to the
excitation energy in the daughter nucleus. In the case of even-
even decaying nuclei, the excitation energy of the 2qp states
in the odd-odd daughter nuclei is simply given by

Eex[(Z,N)→(Z−1,N+1)] = ω − Eπ0 − Eν0 , (6)

where Eπ0 and Eν0 are the lowest quasiparticle energies for
protons and neutrons, respectively. In the case of an odd-A
nucleus we have to deal with 1qp and 3qp transitions. For
Hg and Pt isotopes we have odd-neutron parents decaying
into odd-proton daughters. The excitation energies for 1qp

transitions are

Eex,1qp[(Z,N−1)→(Z−1,N)] = Eπ − Eπ0 . (7)

The excitation energy with respect to the ground state of the
daughter nucleus for 3qp transitions is

Eex,3qp[(Z,N−1)→(Z−1,N)] = ω + Eν,spect − Eπ0 . (8)

Therefore, the lowest excitation energy of 3qp type is of the
order of twice the neutron pairing gap, and then the strength
contained below typically 2–3 MeV in the odd-A nuclei
corresponds to 1qp transitions.

The β-decay half-life is obtained by summing all the
allowed transition strengths to states in the daughter nu-
cleus with excitation energies lying below the corresponding
QEC energy, i.e., QEC = Qβ+ + 2me = M(A,Z) − M(A,Z +
1) + 2me, written in terms of the nuclear masses M(A,Z) and
the electron mass (me), and weighted with the phase-space
factors f (Z,QEC − Eex),

T −1
1/2 = (gA/gV )2

eff

D

∑
0<Eex<QEC

f (Z,QEC − Eex)B(GT,Eex),

(9)

with D = 6200 s and (gA/gV )eff = 0.77(gA/gV )free, where
0.77 is a standard quenching factor. In this work we use exper-
imental QEC values [56]. In β+/EC decay, f (Z,QEC − Eex)
contains two parts: positron emission and electron capture.
The former, f β±

, is computed numerically for each value of the
energy including screening and finite-size effects, as explained
in Ref. [70],

f β±
(Z,W0) =

∫ W0

1
pW (W0 − W )2 λ± (Z,W ) dW, (10)

with

λ±(Z,W ) = 2(1 + γ )(2pR)−2(1−γ )e∓πy |�(γ + iy)|2
[�(2γ + 1)]2

,

(11)

where γ = [1 − (αZ)2]1/2; y = αZW/p; α is the fine struc-
ture constant and R is the nuclear radius. W is the total energy
of the β particle, W0 is the total energy available in mec

2 units,
and p = (W 2 − 1)1/2 is the momentum in mec units.

The electron capture phase factors, f EC, have also been
included following Ref. [70]:

f EC = π

2

∑
x

q2
xg

2
xBx, (12)

where x denotes the atomic subshell from which the electron
is captured, q is the neutrino energy, g is the radial component
of the bound-state electron wave function at the nucleus, and
B stands for other exchange and overlap corrections [70].

III. RESULTS AND DISCUSSION

In this section we first discuss the energy curves and shape
coexistence expected, discussing the shape evolution in Hg and
Pt isotopic chains. Then we present the results obtained for the
Gamow–Teller strength distributions in the neutron-deficient
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FIG. 1. (Color online) Deformation energy curves for even-even
174−196Hg isotopes obtained from constrained HF + BCS calculations
with the Skyrme forces Sk3, SGII, and SLy4.

176−192Hg and 172−186Pt isotopes with special attention to their
dependence on the nuclear shape and discuss their relevance
as signatures of deformation to be explored experimentally.
Finally, we discuss the half-lives and compare them with the
experimental values.

A. Equilibrium deformations

We show in Figs. 1 and 2 the DECs calculated with three
Skyrme forces: Sk3, SGII, and SLy4, for Hg and Pt isotopes,
respectively. The energies are shown as a function of the
quadrupole deformation parameter calculated microscopically
as β = √

π/5 Qp/(Z〈r2
c 〉), defined in terms of the proton

quadrupole moment Qp and the charge mean-square (m.s.)
radius 〈r2

c 〉. We get qualitative results similar to those of the
three Skyrme forces considered. More specifically, we obtain
the same patterns of shape coexistence with minima located
at practically the same deformations although the relative
energies may change from one force to another. Thus, we
focus the discussion on the SLy4 interaction.

In the case of Hg isotopes (Fig. 1) we get prolate and oblate
minima in all the isotopes from A = 174 up to A = 196. We
can see that the ground state is predicted to be prolate for
174–182Hg and oblate for 184–196Hg isotopes. The transition
occurs smoothly around 184Hg for SLy4, where we obtain
two coexisting shapes at the same energy and it takes place
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FIG. 2. (Color online) Same as in Fig. 1, but for 170–192Pt isotopes.

around 186Hg (188Hg) with SGII (Sk3). Similarly, in the case
of Pt isotopes (Fig. 2) we get prolate and oblate minima
in all the isotopes from A = 170 up to A = 192, but in
this case the ground state is always prolate except in the
heavier isotopes, 190,192Pt, where the oblate shape becomes
the ground state with the three forces. The transition is very
smooth and the two shapes are practically degenerate between
184Pt and 190Pt for SLy4. Except for the very light isotopes,
we observe in both isotopic chains the existence of rather
sharp oblate and prolate energy minima, close in energy
and separated by very-high-energy barriers, giving raise to
shape coexistence. These findings are in qualitative agreement
with recent calculations [19,23,25,26,30,31]. Looking in more
detail the results from different calculations, one observes
differences and similarities within the various approaches.
There are robust features common to all calculations, such
as the existence of oblate and prolate minima located at
similar deformations and separated by spherical barriers, or the
isotopic evolution from oblate shapes in the heavier isotopes to
prolate shapes in the lighter ones. But there are also particular
features that change according to the different calculations,
such as the height of the barriers or the relative energies
between the minima that finally determines the exact isotope
where the shape transition takes place. Obviously, the exact
location of the shape transition is very sensitive to small details
of the calculation because the shape transition occurs precisely
around the region where the energies of the competing shapes
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are practically degenerate. Thus, it is not surprising that the
shape transition in Pt isotopes predicted in Ref. [19] within a
beyond-mean-field approach with the Skyrme SLy6 occurs at
A = 186 to 188 instead of A = 182 to 184 in our calculation.
In the same line triaxial D1M-Gogny calculations predict a
smooth shape transition at A = 184 to 186 [25].

Similarly, the shape transition in Pt isotopes in our cal-
culations takes place at A = 188 to 190. This agrees with
triaxial calculations with the Gogny force that exhibit a
smooth transition at A = 186 to 190, passing through a soft
triaxial solution [23,30,31], as well as with the calculations
in Refs. [75,76]. In particular, the DECs in Pt isotopes
were studied in Ref. [75], comparing the effects of different
interactions (SLy4, SLy6, Gogny) and pairing treatments
(constant strength, constant pairing gaps, density-dependent
zero-range forces). Little changes in the energy profiles were
found within those treatments, but still enough to change
the absolute minimum from one deformation to another in
the transitional region around 188Pt, where the energies are
practically degenerate. Nevertheless, for the purpose of this
work, the exact location at which the shape transitions occur
is not of relevance. The important aspect in this work is
that a shape competition has taken place and whether the
sensitivity of the B(GT) profiles to deformation can be used
as a fingerprint of the nuclear shape. Then, we choose in this
work a reasonable mean field based on the Skyrme SLy4 with
constant pairing gaps to be used as a starting point for a QRPA
calculation of the decay properties.

To illustrate better the role of deformation in the isotopic
evolution, we show in Fig. 3 the quadrupole deformation
parameter β of the various energy minima as a function of the
mass number A, for Hg [Fig. 3(a)] and Pt [Fig. 3(b)] isotopic
chains. The dashed lines join the deformations corresponding
to the lowest HF + BCS minimum in the DECs obtained with
SLy4. Starting from the heaviest isotopes in Fig. 3, we get
spherical shapes, as they correspond to the N = 126 neutron
shell closure. Moving into the neutron-deficient region, we
observe the appearance of both oblate and prolate shapes with
increasing quadrupole moments. The shape of the minimum
energy changes from oblate in the heavier isotopes to prolate in
the lighter ones at 182–184Hg and 188–190Pt for SLy4. The shapes
reach maximum quadrupole deformations of about β = 0.3 in
the prolate sector and about β = −0.2 in the oblate one.

Charge radii and their differences have been shown [57,77]
to be suitable quantities to study the evolution of the nuclear-
shape changes because they can be measured with remarkable
precision by using laser spectroscopic techniques [78]. They
are calculated by folding the proton distribution of the nucleus
with the finite size of the protons and the neutrons. The m.s.
radius of the charge distribution in a nucleus can be expressed
as [79]

〈
r2
c

〉 = 〈
r2
p

〉
Z

+ 〈
r2
c

〉
p

+ (N/Z)
〈
r2
c

〉
n
+ r2

c.m., (13)

where 〈r2
p〉Z is the m.s. radius of the point proton distribution

in the nucleus,

〈
r2
p

〉
Z

=
∫

r2ρp (�r ) d�r∫
ρp (�r ) d�r , (14)
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FIG. 3. (Color online) Isotopic evolution of the quadrupole de-
formation parameter β of the various energy minima for (a) Hg and
(b) Pt isotopes. The dashed lines join the deformations corresponding
to the lowest HF + BCS minimum in the DECs obtained with SLy4.

〈r2
c 〉p = 0.80 fm2 [80], and 〈r2

c 〉n = −0.12 fm2 [81] are the
m.s. radii of the charge distributions in a proton and a
neutron, respectively. r2

c.m. is a small correction due to the
center-of-mass (c.m.) motion. It is worth noticing that the most
important correction to the point proton m.s. nuclear radius,
coming from the proton charge distribution 〈r2

c 〉p, vanishes
when isotopic differences are considered, since it does not
involve any dependence on N .

The variations of the charge radii trends in isotopic chains
are related to deformation effects and can be used as signatures
of shape transitions. For an axially symmetric static quadrupole
deformation β the increase of the charge radius with respect
to the spherical value is given to first order by

〈r2〉 = 〈r2〉sph

(
1 + 5

4π
β2

)
, (15)

where usually 〈r2〉sph is taken from the droplet model. In this
work we analyze the effect of the quadrupole deformation on
the charge radii from a microscopic self-consistent approach.

One should notice that our calculations at the mean-field
level correspond to the oblate and prolate mean-field solutions
and, consequently, they do not correspond to the actual ground
state to which the experimental radii are referred.

In Figs. 4 and 5 we show the differences δ〈r2
c 〉A,ref =

〈r2
c 〉A − 〈r2

c 〉ref , where the reference isotope is A = 198
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FIG. 4. (Color online) Calculated δ〈r2
c 〉 in Hg isotopes with

various deformations compared with experimental data from
Refs. [3,5,71,72].

(A = 194) for the Hg (Pt) isotopic chain. Our calculations
are compared with experimental data measured by laser spec-
troscopy and compiled in Ref. [71]. For Hg isotopes, the ex-
periment [3,5,72] shows an even-odd staggering in the lighter
isotopes (A = 181 to 186), with larger radii in the odd-A
isotopes. When we compare the data for light Hg isotopes with
our calculations we see that the even-even isotopes are well
described with an oblate shape, whereas the odd-A isotopes
are rather associated with a prolate shape. We also observe in
our calculations a bump in the oblate radii around A = 190 and
a more pronounced one in the prolate radii around A = 188
that are related to the shape variation of the energy minima. In
the case of Pt isotopes, the experimental radii [16,73,74] in the
interval A = 178 to 188 are in between the oblate and prolate
radii of reference, pointing out that strong mixing between
these two structures is necessary to describe the 0+ ground
state. The agreement with experiment is reasonable in the
heavier Hg and Pt isotopes for both oblate and prolate radii,
indicating that these nuclei are approaching a spherical shape.
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FIG. 5. (Color online) Same as in Fig. 4, but for Pt isotopes.
Experimental data are from Refs. [16,71,73,74].
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FIG. 6. (Color online) Folded GT strength distributions in
182,184,186Hg as a function of the excitation energy in the daughter
nucleus for oblate and prolate shapes obtained with the Skyrme forces
SGII and SLy4.

B. Gamow–Teller strength distributions

In this section we study the energy distribution of the
Gamow–Teller strengths calculated at the equilibrium shapes
that minimize the energy of the nucleus. But before show-
ing the results of our calculations it is worth discussing briefly
the expected sensitivity of these calculations to the choice
of the nucleon-nucleon effective Skyrme interaction, as well
as to the coupling strengths of the residual forces.

Figure 6 illustrates the sensitivity of the GT strength
distributions to the Skyrme interaction. We show in this
figure continuous distributions obtained by folding the strength
at each excitation energy with 1-MeV-width Breit–Wigner
functions. The results correspond to the Skyrme interactions
SLy4 and SGII, and for three Hg isotopes, 182,184,186Hg. For
a given type of deformation (oblate or prolate), we observe
very similar decay patterns for both interactions, with slightly
lower strength in the case of SGII. On the other hand, for
a given Skyrme force the dependence on the deformation
is manifest. This example demonstrates that the profiles of
the GT strength distributions are characteristic of the nuclear
shape and depend little on the details of the two-body force.
This marked sensitivity to deformation can then be used to get
information about the nuclear shape of the decaying nucleus,
something that has been exploited in the past in other mass
regions [43].

In the next two figures we discuss the effect of the residual
force on the GT strength distributions, using 184Hg as an
example. In this case, for a better comparison, we plot the
summed strengths that give us the total strength contained
below a given energy. In Fig. 7 we can see the effect of the ph
residual force. For that purpose we show the results obtained
with a fixed value of the pp interaction (κpp

GT = 0.02 MeV)
for χ

ph
GT = 0.08 MeV [Fig. 7(a)], χph

GT = 0.15 MeV [Fig. 7(b)],
and χ

ph
GT = 0.20 MeV (c). As χ

ph
GT increases, the strength is

reduced, especially in the low-energy region, but the profiles
of both prolate and oblate shapes remain basically the same.
This reduction has immediate consequences on the half-lives
that increase with increasing values of χ

ph
GT. Similarly, we show
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FIG. 7. (Color online) Accumulated GT strengths in 184Hg cal-
culated with the Skyrme interaction SLy4 for various values of the
coupling strength of the ph residual interaction for a fixed value of
the pp residual interaction.

in Fig. 8 the effect of the pp residual force by taking fixed
the ph residual interaction (χph

GT = 0.08 MeV) and varying
the value of the pp interaction from κ

pp
GT = 0 [Fig. 8(a)] to

κ
pp
GT = 0.02 MeV [Fig. 8(b)], and finally to κ

pp
GT = 0.04 MeV

[Fig. 8(c)]. As κ
pp
GT increases the strength is reduced and slightly

shifted to lower energies, but again the prolate and oblate
profiles persist.

In the next figures, Figs. 9–12, we show the GT strength
distributions for oblate and prolate shapes as a function of the
excitation energy in the daughter nucleus obtained with SLy4
and with the residual forces written in Sec. II. Although a
figure similar to Fig. 10 was already presented in Ref. [45], for
the sake of completeness and to facilitate the comparison, we
also show here those results for the Pt isotopes. In the first two
figures we show the results for the even Hg and Pt isotopes,

0 1 2 3 4
E

ex
  (MeV)

0

0.4

0.8

1.2

1.6

2

Σ 
B

(G
T

+
)

0 1 2 3 4
E

ex
  (MeV)

0 1 2 3 4 5
E

ex
  (MeV)

oblate
prolate

κpp
 = 0 MeV κpp

 = 0 .02 MeV κpp
 = 0.04 MeV

184
Hg  SLy4 (χph

 = 0.08 MeV)

(a) (b) (c)

FIG. 8. (Color online) Accumulated GT strengths in 184Hg cal-
culated with the Skyrme interaction SLy4 for various values of the
coupling strength of the pp residual interaction for a fixed value of
the ph residual interaction.
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FIG. 9. (Color online) (Left) Folded GT strength distributions in
even Hg isotopes for prolate and oblate shapes using SLy4. (Right)
Accumulated GT strength for the various shapes in the energy range
below 7 MeV. The vertical lines correspond to the QEC energies. No
quenching factors are included.

whereas in the last two figures we present the results for the
odd-A isotopes. In the left panels we can see continuous GT
strength distributions resulting from a folding procedure using
1 MeV width Breit–Wigner functions on the discrete spectrum.
On the other hand, in the right panels we plot the accumulated
GT strength up to a reduced energy range that covers the QEC

energies represented by the vertical arrows. Thus, we can see
in more detail both the strength distribution and the total GT
strength contained in the energy window relevant to the β
decay and to the half-lives. In particular, the crossing of the
curves with the QEC vertical arrows shows us the total GT
strength available by β decay and eventually measurable. It
should be noted that no quenching factor is included in these
distributions and therefore one should consider a reduction of
this strength prior to comparison with future experiments.

The left panels in Figs. 9 and 10 show the GT strength distri-
butions for the even-even Hg and Pt isotopes, respectively. The
strength increases as we move away from the valley of stability
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FIG. 10. (Color online) Same as in Fig. 9, but for even Pt isotopes.

to more and more neutron-deficient (lighter) isotopes (note the
different scales). On a global scale the strength distribution
from different shapes differ mainly in the low-energy region.
With minor exemptions, oblate shapes produce more strength
at low energies and therefore smaller half-lives. In all cases
we observe a strong peak (or double peak) at low excitation
energy (below 5 MeV) and little strength above this energy,
except in the heavier isotopes where a bump at high energy is
developed. The differences between oblate and prolate shapes
can be better appreciated in the accumulated plots displayed
in the right-hand sides. In general we observe that the results
from oblate shapes are more fragmented and the strength in
the accumulated plots increases steadily. Conversely, prolate
shapes produce in most cases a strong peak at low excitation
energy and very little strength above. The location of the QEC

energies determines the GT strength distribution available in
the decay and thus, contributing to the half-lives. Clearly, QEC

energies increase when moving away from stability.
The next two figures, Figs. 11 and 12, contain the GT

strength distributions for the odd-even Hg and Pt isotopes,
respectively. In the case of odd nuclei the spin and parity of
the nucleus are determined by those of the odd nucleon. In
principle one would sit the odd nucleon in the single-particle
orbit that minimizes the energy. However, it turns out that for
deformed nuclei in this mass region several states with different
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FIG. 11. (Color online) Same as in Fig. 9, but for odd-A Hg
isotopes.

spin projections and parities are very close to the Fermi surface
at practically the same energy, and tiny details in the interaction
can change the ground state from one to another. Given that the
spin (J ) and parity (π ) of these Hg and Pt isotopes are known
experimentally, we have chosen these assignments for our odd
nucleons that correspond in all cases to states close to the Fermi
energy. Namely, the experimental Jπ assignments of the odd-A
Hg isotopes are given by Jπ = 7/2− for 177,179Hg, Jπ = 1/2−
for 181,183,185Hg, and Jπ = 3/2− for 187,189,191Hg. Similarly,
for odd-A Pt isotopes they are given by Jπ = 5/2− for 173Pt,
Jπ = 7/2− for 175Pt, Jπ = 5/2− for 177Pt, Jπ = 1/2− for
179,181,183Pt, Jπ = 9/2+ for 185Pt, and Jπ = 3/2− for 187Pt.
Besides these values, for each nucleus, we also consider in our
calculations the spin and parity corresponding to the energy
minimum of the other nuclear shape. All of these values appear
as labels in each isotope, where solid (dashed) lines stand for
prolate (oblate) shapes.

In the odd-A isotopes we observe a displacement of the GT
strength to higher excitation energies with respect to the even
neighbor isotopes. This is due to the character of the excitation
mentioned in the previous section, where we discussed that 3qp
transitions, similar to those of the even isotopes but with the
odd orbital blocked, appear only at energies above twice the
pairing gap, typically 2–3 MeV. Similarly, the QEC values are
displaced in an equivalent amount since the mass differences
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FIG. 12. (Color online) Same as in Fig. 10, but for odd-A Pt
isotopes.

involved in the QEC definitions are sensitive to the pairing
energy in a similar way.

To show further the sensitivity of GT strength distributions
to the spin and parity of the odd-A parent nucleus, we show in
Figs. 13 and 14 the results for several more choices of spins and
parities in 181,183,185,187Hg and 175,177,179,181Pt, respectively.
These are nuclei that are currently being considered as
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FIG. 13. (Color online) GT strength distribution in the odd iso-
tope 181,183,185,187Hg for various Kπ values and deformations (see
text).
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candidates to measure their GT strength distributions at
ISOLDE/CERN, using the TAS technique [46], and will
complement the measurements already taken in Pb and Hg
isotopes [46–48]. Obviously, the decay patterns should be
affected by the spin and parity of the odd nucleon because they
determine to a large extent the allowed spin and parities that
can be reached in the daughter nucleus. This is especially true
in the case of 1qp transitions where the odd nucleon involved
determines the low-lying spectrum. Thus, one expects the low-
lying GT strength to be especially sensitive to the spin-parity of
the odd nucleon. This sensitivity translates immediately to the
half-lives that depend on the strength contained below QEC.
In the case of 181Hg it is found experimentally that the ground
state corresponds to Jπ = 1/2− with band heads at Jπ = 7/2−
and Jπ = 13/2+. The ground state in 183Hg is Jπ = 1/2− with
another Jπ = 7/2− band head and a Jπ = 13/2+ isomer at
266 keV. 185Hg has again a Jπ = 1/2− ground state with a
Jπ = 7/2− band head at 34 keV, a Jπ = 9/2+ at 213 keV,
and a Jπ = 13/2+ state at 99 keV. 187Hg is a Jπ = 3/2−
nucleus with a Jπ = 13/2+ band head and a Jπ = 9/2+
state at 162 keV. In our calculations, the experimental ground
states Jπ = 1/2− correspond to prolate states with asymptotic
quantum Nilsson numbers [Nnz�]K given by [521]1/2. We
also consider prolate 7/2− ([514]7/2) states, very close in
energy an observed experimentally, as well as prolate 9/2+
([624]9/2) states. Finally, we show the results for oblate
shapes corresponding to 13/2+ ([606]13/2) states that are
also seen experimentally. In 187Hg the experimental ground
state Jπ = 3/2− corresponds to the oblate state [521]3/2.
Besides the prolate 7/2− ([514]7/2) with origin in the f7/2

spherical orbital, we also consider a second prolate 7/2−
([503]7/2) state in 183,185,187Hg with origin in the h9/2 spherical
orbital and labeled with an asterisk in Figs. 13 and14.
These two states lead to quite different profiles of the GT
strength distributions. Similarly, the ground state of 175Pt is
experimentally found to be Jπ = 7/2− with a band head
Jπ = 13/2+ at an undetermined energy. The ground state of
177Pt is Jπ = 5/2− with a Jπ = 7/2+ at 95 keV. 179Pt (181Pt)
has a Jπ = 1/2− ground state with a Jπ = 9/2+ excited
state at 299 keV (276 keV) and a Jπ = 7/2− excited state
at 145 keV (117 keV). In addition to the states considered
for Hg isotopes, calculations for Pt isotopes are also shown
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for prolate 5/2− ([512]5/2) states and oblate 7/2+ ([604]7/2)
and 9/2+ ([604]9/2) states.

As we can see in the figures, the sensitivity of the
distributions to the spin parity is large because of the selection
rules of allowed transitions. In these examples it is comparable
to the effect from deformation and therefore, one can conclude
that odd-A isotopes may not be the best candidates to
look for deformation signatures on the β-decay patterns.
On the other hand, this sensitivity could be helpful to get
information on the nuclear shape based on the spin and parity
of the decaying nucleus, which are characteristic and very
different for oblate or prolate shapes. As a matter of fact,
the possibility of measuring the GT strength distributions in
odd-A nuclei corresponding to the ground and isomeric states
separately [46], would represent a breakthrough in the sense
that the decay patterns of prolate and oblate configurations
could be disentangled by selecting properly the spin-parity of
the decaying isotope. This information could be used thereafter
to infer information on the shape of the ground state of the
even-even isotopes.

C. Half-lives

As we have seen above, the sensitivity of the GT strength
distributions to the nuclear deformation could be used to get
information about the nuclear shape in the neutron-deficient
Hg and Pt isotopes. Unfortunately, these measurements are not
yet available. However, we have experimental information on
the β+/EC-decay half-lives that summarize in a single quantity
the detailed structure of the GT strength distribution profiles.
As we can see from Eq. (9), half-lives are no more that integral
quantities obtained as sums of the GT strengths weighted with
the energy-dependent phase-space factors given by Eq. (10).
Therefore, it is natural to contrast our calculations with this
information.

The experimental half-lives of the neutron-deficient Hg and
Pt isotopes can be seen in Figs. 15 and 16, respectively. The
total half-lives taken from [56] contain also contributions from
the competing α decay. Using the experimental percentage
of the β+/EC involved in the total decay, we have extracted
the β+/EC half-lives, which are displayed in the figures.
These half-lives are compared to our calculations using the
two shapes (oblate and prolate) that minimize the energy
in each isotope. We have joined with dashed lines the
results corresponding to the absolute energy minimum in our
calculations. The spins and parities of the odd-A isotopes are
those considered in Figs. 11 and 12. In both cases, Hg and
Pt isotopes, we obtain fair agreement with the trend observed
experimentally.

In the heavier Hg isotopes oblate shapes reproduce better
the experimental trend, whereas in the lighter Hg isotopes the
results are more spread around the data and there is no clear
advantage of one shape over the other. No firm conclusions
can be extracted on preferences about the shape, except for the
higher masses above A = 186. In the case of Pt isotopes, the
prolate shape looks more consistent with the data for 172 <
A < 180. The spread of results is somehow expected taking
into account the uncertainties in the calculations coming from
Skyrme forces, pairing gap parameters, residual interactions,
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FIG. 15. (Color online) Experimental β+/EC decay half-lives in
Hg isotopes compared with the results of QRPA calculations with
SLy4. The results obtained with the ground state shapes are connected
with a dashed line.

QEC values, and quenching factors included in the calculations.
They were discussed in Refs. [44,45]. In the case of the
heavier isotopes the agreement with experiment is somewhat
worse, but one has to take into account that in these cases
we are dealing with very large half-lives that are the natural
consequence of very small QEC energies as we approach the
stable isotopes. Therefore, the half-lives are only sensitive to
the very low-energy tail of the GT strength distribution and
little changes in this tail can change the half-lives dramatically.
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FIG. 16. (Color online) Same as in Fig. 15, but for Pt isotopes.
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TABLE I. Half-lives in odd-A Hg isotopes. The table contains

experimental J π , QEC [MeV], and T
β+/EC

1/2 [s]. Then, we find
theoretical QRPA(SLy4) results obtained for various states and
deformations.

Isotope Expt. QRPA(SLy4)

J π QEC T
β+/EC

1/2 [Nnz�]Kπ T
β+/EC

1/2

181Hg 1/2− 7.210 4.9 [521]1/2− pro 7.53
[514]7/2− pro 3.39
[606]13/2+ obl 8.13

183Hg 1/2− 6.385 10.7 [521]1/2− pro 21.55
[514]7/2− pro 5.71
[503]7/2− pro 45.21
[624]9/2+ pro 86.73
[606]13/2+ obl 36.18

185Hg 1/2− 5.690 52.2 [521]1/2− pro 62.54
[514]7/2− pro 9.95
[503]7/2− pro 75.38
[624]9/2+ pro 71.74
[606]13/2+ obl 84.30

187Hg 3/2− 4.910 114 [521]3/2− obl 83.19
[514]7/2− pro 19.44
[503]7/2− pro 194.4
[624]9/2+ pro 379.8
[606]13/2+ obl 464.4

In any case, the half-lives of almost stable nuclei can only
constrain a tiny portion of the whole GT strength distribution
and therefore their significance is minor.

Table I (II) shows the half-lives in the odd-A Hg (Pt)
isotopes considered in Fig. 13 (14). We show the experimental

TABLE II. Same as in Table I, but for odd-A Pt isotopes.

Isotope Expt. QRPA(SLy4)

J π QEC T
β+/EC

1/2 [Nnz�]Kπ T
β+/EC

1/2

175Pt 7/2− 7.694 7.20 [514]7/2− pro 2.33
[503]7/2− pro 6.96
[512]5/2− pro 10.06
[606]13/2+ obl 3.63

177Pt 5/2− 6.677 11.24 [521]1/2− pro 15.98
[514]7/2− pro 5.53
[503]7/2− pro 23.61
[512]5/2− pro 19.14
[604]7/2+ obl 30.91

179Pt 1/2− 5.811 21.25 [521]1/2− pro 45.02
[514]7/2− pro 10.38
[503]7/2− pro 86.30
[512]5/2− pro 53.49
[604]9/2+ obl 63.11

181Pt 1/2− 5.097 52.0 [521]1/2− pro 64.23
[514]7/2− pro 17.66
[503]7/2− pro 143.6
[512]5/2− pro 39.77
[604]9/2+ obl 51.73

Jπ , QEC, and T
β+/EC

1/2 values [56] together with the calculated
QRPA(SLy4) results obtained for various states and deforma-
tions. The dispersion of the results due to the spin and parity
of the odd nucleus is apparent.

IV. CONCLUSIONS

In this work we have studied bulk and decay properties
of even and odd neutron-deficient Hg and Pt isotopes using
a deformed pnQRPA formalism with spin-isospin ph and pp
separable residual interactions. The quasiparticle mean field
is generated from a deformed HF approach with two-body
Skyrme effective interactions, taking SLy4 as a reference and
comparing with results from Sk3 and SGII. The formalism
includes pairing correlations in the BCS approximation, using
fixed gap parameters extracted from the experimental masses.
The equilibrium deformations in each isotope are derived
self-consistently within the HF procedure obtaining oblate
and prolate coexisting shapes in most isotopes. These results
are very robust and different schemes including nonrelativis-
tic self-consistent treatments with either Skyrme or Gogny
interactions, as well as relativistic mean-field approaches
produce similar results. The isotopic evolution in Hg and Pt
chains show a shape transition in agreement with experimental
findings. In addition, we have calculated mean square charge
radii differences and have compared them to data from laser
spectroscopy with reasonable agreement.

Then, we focused on the main objective in this work,
studying the decay properties of these isotopes. We paid
special attention to the deformation dependence of these
properties in a search for additional fingerprints of nuclear
shapes that would complement the information extracted by
other means, such as rotational bands built on low-lying states
and quadrupole transition rates among them. We evaluated
the energy distributions of the GT strength for the possible
equilibrium shapes and have shown their energy profiles that
will be compared with experiments already carried out on
Hg isotopes that are being currently analyzed [46]. It is also
highly encouraged to investigate experimentally the decay of
odd-A isotopes from both ground and shape-isomeric states.
Measuring separately the decay patterns of states characterized
by rather different spins and parities corresponding to different
nuclear shapes would be a significant piece of information
regarding deformation effects that can be later exploited to
learn about the deformation in even systems.

The β+/EC half-lives have been calculated and compared
to the available experimental information. The reasonable
agreement achieved validates the quality of our results.
These calculations contribute to extend our knowledge of this
interesting mass region characterized by shape coexistence by
describing their decay properties in terms of the deformation.

ACKNOWLEDGMENTS

We are grateful to E. Moya de Guerra, A. Algora, E.
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