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In various theories of quantum gravity, one observes a change in the spectral dimension from the
topological spatial dimension d at large length scales to some smaller value at small, Planckian scales.
While the origin of such a flow is well understood in continuum approaches, in theories built on discrete
structures a firm control of the underlying mechanism is still missing. We shed some light on the issue by
presenting a particular class of quantum geometries with a flow in the spectral dimension, given by
superpositions of states defined on regular complexes. For particular superposition coefficients para-
metrized by a real number 0 < α < d, we find that the spatial spectral dimension reduces to dS ≃ α at small
scales. The spatial Hausdorff dimension of such class of states varies between 1 and d, while the walk
dimension takes the usual value dW ¼ 2. Therefore, these quantum geometries may be considered as fractal
only when α ¼ 1, where the “magic number”DS ≃ 2 for the spectral dimension of spacetime, appearing so
often in quantum gravity, is reproduced as well. These results apply, in particular, to special superpositions
of spin-network states in loop quantum gravity, and they provide more solid indications of dimensional
flow in this approach.
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I. INTRODUCTION

The identification of good geometric observables is a
thorny issue in (quantum) gravitational physics, and it is
of particular importance in nonperturbative, background-
independent approaches to quantum gravity, especially
where the fundamental degrees of freedom characterizing
quantum states and histories of the system are nongeo-
metric in the standard sense and characterized by intrinsic
discreteness. Examples are loop quantum gravity (LQG)
[1–3], spin-foammodels [4,5] and group field theory (GFT)
[6,7], strictly related to LQG [8,9]. Here, the major
challenge is to find a relation to the continuum spacetime
geometries of classical general relativity, i.e., to show that
the latter emerge from the fundamental discrete quantum
structures of the theory in some approximation. This
emergence has to be expressed in terms of suitable
geometry observables, both classical and quantum, that
should indicate that the desired features of smooth space-
times are recovered. This is, in fact, a precondition for
extracting physics from such quantum-gravity formalisms.
Effective-dimension observables provide important

information about the geometric properties of quantum
states of space and spacetime histories in quantum gravity.
In particular, the spectral dimension dS, which depends on
the spectral properties of a geometry through its definition
as the scaling of the heat-kernel trace, has attracted special

attention due to the observation of a dimensional flow
(i.e., the change of spacetime dimensionality across a
range of scales [10–12]) in various approaches, such as
causal dynamical triangulations (CDT) [13], the functional
renormalization-group approach of asymptotic safety
[14,15] and Hořava-Lifshitz gravity [16] among others.
In all these approaches, the spectral dimension of

spacetime exhibits a scale dependence itself, flowing from
the topological dimension D in the infrared (IR) to DS ≃ 2
in the ultraviolet (UV) [16–21] (although new CDT
calculations [22] rather hint at DS ≃ 3=2). While modified
dispersion relations provide an obvious reason for this
behavior in smooth geometries [16,17,23–26], dimensional
flow remains to be better understood in the case of discrete
calculations as in the CDT approach [19–22]. Causal
dynamical triangulations, in fact, aim at a definition of
the continuum path integral for quantum gravity via a
regularization of the same in terms of a superposition of
simplicial complexes (thus a form of discrete geometries)
weighted by the Regge action. While it is more difficult to
identify the underlying reason for the dimensional flow in
this context, the same is obtained in a very direct manner
from the evaluation of the heat trace as a quantum
geometric observable inside the CDT partition function.
Here we take a very similar direct approach, but in a

context that is closer to the formalism of loop quantum
gravity. In LQG, quantum states are defined as super-
positions of spin networks, which are graphs labeled by
algebraic data from the representation theory of SUð2Þ.
There is thus an interplay between two types of data
and their corresponding discreteness: a combinatorial
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discreteness due to the graph substratum for the quantum
states, and an algebraic discreteness due to the fact that the
labels are half-integers corresponding to SUð2Þ irreducible
representations. Quantum effects in the evaluation of
observables are thus to be expected, in general, from both
these sources and it is an important limitation to focus only
on one of them, as in preliminary studies of dimensional
flow in LQG [26].
In a previous work [27], we have already tackled the

issue of computing the spectral dimension on LQG states
based on a given graph, dealing both with coherent states
and with their superpositions. There, we showed that the
underlying discrete structure plays a dominant role. Here,
we intend to explore the role of combinatorial discreteness
and of superpositions of combinatorial structures in greater
detail.
In this paper, we present a special class of superpositions

of discrete quantum states characterized by a real-valued
parameter α. This parameter will control the scale-
dependent values taken by the spectral dimension, and
therefore the dimensional flow. These superpositions are
over states based on regular complexes corresponding to
hypercubic lattices to which a single quantum label is
assigned, uniformly to all cells of a certain dimension. Such
states occur indeed in the kinematical Hilbert space of the
quantum gravity formalisms we just mentioned: LQG,
spin-foam models and GFT. Because of the uniform
labeling, these superpositions are also similar to the discrete
geometries in CDT, although we understand the former not
as regularization tools for physically smooth geometries but
as fundamentally discrete structures with their own physi-
cal interpretation. Contrary to the CDT setting, we interpret
the combinatorial structures we superpose as defining
quantum gravity states, not histories, and the coefficients
in the superpositions to have no immediate dynamical
content. However, we point out that this interpretation
enters only minimally in the actual calculations and it could
be generalized.
Perhaps surprisingly, superpositions of quantum states

supported on different complexes have not been considered
much in the LQG literature so far. Instead, most analyses
have involved only states based on one and the same
complex. A first simple example of states based on
superpositions of combinatorial structures are the conden-
sate states with a homogeneous cosmology interpretation
introduced recently in the GFT context [28–32].
Using a known analytic expression for the spectral

dimension of single members in the superposition [27],
we compute numerically superpositions over up to 106

discrete geometries. On these grounds, we find strong
evidence for a dimensional flow, characterized by the
parameter α.
Similarly, we find analytic solutions for the walk dimen-

sion and Hausdorff dimension of lattice geometries and
perform again numerical calculations of superpositions. For

these observables, however, while we recover the topological
dimension at large scales, we do not find any special
properties for superpositions as compared to states defined
on fixed complexes.

II. A GENERAL CLASS OF
SUPERPOSITION STATES

Let us now explain in detail the construction of super-
position states of interest, and the calculation of their
spectral, walk and Hausdorff dimension.
Most generally speaking, a discrete quantum state of

geometry jfjcg; Ci is given by an assignment of quantum
numbers jc to a certain subset of cells c ∈ C of a
(combinatorial) complex C, diagonalizing volume operators
of these cells

d
VðpÞ
c0 jfjcg; Ci ∝ lpðjc0 Þjfjcg; Ci; ð1Þ

where we have adopted natural units. An example of
such states is spin-network states in LQG, based on the
1-skeleton of the dual complex C⋆, with the j’s identifying
irreducible representations of SUð2Þ. In three spacetime
dimensions, the spatial (d ¼ 2) states in the spin network
basis diagonalize the length operators L̂e associated with all
edges e ∈ C. Thus, they are labeled by spins je on the
corresponding dual edges e⋆ ∈ C⋆. The form of the L̂e

spectra is lðjeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jeðje þ 1Þ þ C

p
, with a free parameter

C ∈ R due to a quantization ambiguity for the Euclidean
theory (as well as for timelike edges in the Lorentzian
theory, a continuous positive variable being instead
assigned to spacelike edges) [33,34].
In four spacetime dimensions (d ¼ 3), spin-network

states have the same spectrum for area operators Âf on
faces f ∈ C such that [35,36]

lðjfÞ ¼ ½jfðjf þ 1Þ þ C�1=4: ð2Þ

Generic quantum-geometry states are superpositions of
the discrete quantum geometries jfjcg; Ci, which indeed
form a complete spin-network basis of states of the Hilbert
space in LQG. In particular, this Hilbert space can be cast in
the form of a direct sum of Hilbert spaces H ¼ ⊕CHC.
In the following, we will restrict to superpositions with

nonzero coefficients only for states jj; Ci labeled by a single
quantum number jc ¼ j for all cells. Thus, one can
consider the individual states jj; Ci as corresponding to
equilateral lattices. Given this class of quantum states, we
then consider generic superpositions of the form

jψi ¼
X
j;C

aj;Cjj; Ci: ð3Þ

We also impose a constraint on the overall volume V0

computed from such superposition states:
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jψ ; V0i ¼
X
j;C

aj;Cδðhj; CjV̂jj; Ci; V0Þjj; Ci; ð4Þ

where the delta is a Kronecker delta. We will further restrict
the sum to certain regular complexes, i.e., hypercubic

lattices CN based on the canonical vertex set C½0�N ≔
ðZNÞd of d-tuples of integers modulo N. In this case,
the fixed volume condition is explicitly

V0 ¼ hj; CN jV̂jj; CNi ∝ NdldðjÞ; ð5Þ
which fixes the lattice size N ¼ NðjÞ for a given j (at least
approximately).1 In general, there are three scales involved
in the superposition states

jV0; jmin; jmaxi ≔
Xjmax

j¼jmin

ajjj; CNðjÞi; ð6Þ

when summing over a finite range from jmin to jmax: a
minimal length scale lðjminÞ, an intermediate scale lðjmaxÞ
and the overall volume size V1=d

0 ∝ NðjminÞlðjminÞ ¼
NðjmaxÞlðjmaxÞ. Note that a finite volume V0 bounds also
possible cutoffs jmax (since N is a positive integer).
One can also consider the limit of noncompact geom-

etries NðjminÞ → ∞, where all complexes in the super-
position of fixed-volume states (6) converge to the infinite
lattice C∞. Thus, they are technically the same as super-
positions on the fixed complex C∞, although the physical
interpretation is different. Due to the combinatorial sim-
plicity, results of infinite-size calculations can be directly
applied to the finite-volume case.
Having defined our superposition states, we can move on

to the evaluation of the geometric observables of interest,
i.e., dimension estimators.

III. EVALUATION OF DIMENSION
OBSERVABLES OF SUPERPOSITION

STATES

A. Spectral dimension

Let the heat kernel Kðx; x0; τÞ be the solution of the
diffusion equation ð∂τ − ΔxÞK ¼ 0 on a space X, with
initial condition Kðx; x0; 0Þ ¼ δðx − x0Þ, where Δ is the
Laplace operator on X. It is a function of the geometry of X
via its assigned metric. In the resolution interpretation of
[37,38], the parameter

ffiffiffi
τ

p
and its inverse represent,

respectively, the length scale and the resolution at which

a geometry is inspected by a pointwise probe deployed at a
spatial point x0. The trace of the heat kernel over all points
is denoted as PðτÞ ¼ TrXKðx; x0; τÞ and called “return
probability” from the traditional but somewhat problematic
interpretation in terms of a diffusing process (see [18,38]
for a discussion and resolutions of such problems).
While ordinary diffusion takes place on continuous

manifolds, the whole setup, and in particular the definition
of the Laplace operator, can be generalized to discrete
spaces, like (combinatorial) complexes. This was indeed
the subject of [39,40]. The Laplacian on C, as a differential
operator acting on a field ϕa on the d-cells ca ∈ C
(equivalently, on dual vertices), is then [39]

−ðΔCϕÞa ¼
X
b∼a

ðΔCÞabðϕa − ϕbÞ

¼ 1

VðdÞ
a

X
b∼a

Vðd−1Þ
ab

l⋆ab
ðϕa − ϕbÞ; ð7Þ

where the sum runs over d-cells cb adjacent to ca, V
ðdÞ
a is

the volume of the cell ca, V
ðd−1Þ
ab is the volume of the

common bounding ðd − 1Þ-cell and l⋆ab is the length of its
dual edge. Accordingly, the heat trace on C is given by a
trace TrC over maps of that field space.
Both the return probability PðτÞ and the Laplacian Δ can

be turned into operators dPðτÞ and Δ̂ acting on quantum
states of geometry. Quantizing the metric-dependent coef-
ficients ðΔCÞab which enter in the definition of the discrete
Laplacian (7) results in an operator Δ̂C acting on the Hilbert
space HC of states on a given complex C which returns
states together with discrete Laplacians.2 This can be done
in different ways, depending on the geometric variables that
are most convenient in the specific quantum geometric
context that is chosen. It has been discussed in detail in
[39]. In general, the resulting expression will be a com-
plicated function of the quantum labels assigned to the

1Ratios lðj1Þ=lðj2Þ for pairs of quantum numbers j1, j2 can be
nonrational, so that one should take the integer value (floor
function) of NðjÞ. Physically, it is certainly enough to apply
Eq. (4) in such an approximative way. Note also that our results
are independent of the spacing of quantum numbers in the
superposition. Thus, one could as well define the states as sums
over only those j’s for which NðjÞ ∈ N strictly.

2Note that only the coefficients of Δ̂C are quantum operators in
the usual sense, i.e., maps from the Hilbert space HC to itself. Δ̂C
itself is an operator properly defined only on the coupled Hilbert
space of geometry and test fields, which we do not introduce. We
do not consider quantum states of test fields, since the relevant
object dPðτÞ to define the spectral dimension is a functional of
pure geometry and, as such, it can eventually be defined as a
quantum operator in the strict sense. Let us expand this technical
point for the interested reader. As a vector space over complex
numbers, any state in a Hilbert space can be expanded in the
elements of a complete basis with complex numerical coeffi-
cients. Elements in the image of the quantum Laplacian Δ̂C are
sums over such a basis, but with coefficients that are discrete
Laplacians instead of complex numbers, that is, maps from a
functional space on a complex to itself. These elements are
obviously not states in H. Still, we can use Δ̂C to define dPðτÞ
which is the quantum operator acting on pure-geometry states
that we are interested in here.
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complex, which is however both well-defined and explic-
itly computable [27].

The operators dPðτÞ and Δ̂ on the full Hilbert space
H ¼ ⊕CHC are then defined in terms of the family of
orthogonal projections πC∶H → HC. In this way, the
Laplacian acting on generic quantum states of geometry
is the formal sum

Δ̂ ≔
X
C

πCΔ̂CπC: ð8Þ

With the appropriate notion of a trace Tr ≔
P

CTrCπC,
based on the trace TrC over discrete field space on C
introduced above, the heat trace is then defined as

dPðτÞ ≔ TreτΔ̂: ð9Þ

dPðτÞ is a map fromH on itself, and thus a quantum operator
in the strict sense. Then, the spectral dimension dψS ðτÞ of a
quantum state of geometry jψi ∈ H is the scaling of the

expectation value of dPðτÞ [27]:
dψS ðτÞ ≔ −2

∂
∂ ln τ lnh

dPðτÞiψ : ð10Þ

Note that it depends only on pure geometry, since the
relevant operators are acting on pure-geometry states.
For the discrete quantum geometries jfjcg; Ci it is

reasonable to assume that they are eigenvectors of Δ̂C,
based on the definition of these labels (1) and on our
previous work [27]. On the states (3) that we are interested
in here, the heat-trace expectation value is thus

hdPðτÞiψ ¼
X
C

�X
j

a�j;Chj; Cj
��X

j0
aj0;CTrCeτΔ̂C jj0; Ci

�

¼
X
j;C

jaj;Cj2TrCeτhj;CjΔ̂C jj;Ci: ð11Þ

Some simplifying assumptions are however needed in
order to proceed with systematic computations on extended
complexes. In the following, we assume that the expect-
ation value of the Laplacian Δ̂C scales as

hj; CjΔ̂Cjj; Ciab ∝ l−2ðjÞðΔCÞab; ð12Þ

whereΔC is the combinatorial Laplacian (7) on the complex
C. This assumption is sensible if the Laplacian can be
expressed as a function of the volumes (1). A similar ansatz
is, in fact, made in [26], although in that work this is not
justified on the basis of a detailed analysis of the underlying
graph and on the complete expression for the Laplacian,
such as the one presented in [39].
We now evaluate the spectral dimension on our super-

position states. Under the assumption (12), the expression

for the expectation value of the return probability further
simplifies to

hdPðτÞiψ ∝
X
j;C

jaj;Cj2TrCeτl−2ðjÞΔC : ð13Þ

The above expression can be computed most efficiently
considering the limit of infinite lattices, for which an
analytic expression for the heat trace is available. In
[27], we showed that the heat trace on C∞ ¼ Zd is

PC∞ðτÞ ¼ ½eτI0ðτÞ�d; ð14Þ

where I0 is the modified Bessel function of the first kind.
In the same limit, one can give precise formulas for
the contribution to the spectral dimension coming from
individual lattices, so that we are in the ideal position to
investigate the effect of superpositions of the same. The
spectral dimension dj;C∞S on a single state jj; C∞i equals d
for τ ≫ l2ðjÞ and vanishes for τ ≪ l2ðjÞ:

dj;C∞S ≃
�
d; τ ≫ l2ðjÞ
0; τ ≪ l2ðjÞ : ð15Þ

Around the scale τ ≈ l2ðjÞ, there is a peak of approximate
height 1.22d [27]. We consider these features as discreti-
zation artifacts, and we conclude that no real dimensional
flow is seen for individual states in the superposition [27].
Therefore, we are prompted to extend the search for

quantum geometry states that would show true signs of
dimensional flow to superposition states, to which we now
move. Using the above solution, the spectral dimension of
jV0; jmin; jmaxi, Eq. (6) in the limit NðjminÞ → ∞, is given
by the scaling of

hdPðτÞiV0;jmin;jmax
∝

Xjmax

j¼jmin

jajj2fel−2ðjÞτI0½l−2ðjÞτ�gd: ð16Þ

For asymptotic power-law spectra

lðjÞ≃ jβ; ð17Þ

where β > 0 as usual in LQG [see Eq. (2)], we have done
numerical calculations for various classes of coefficient
functions aj and various values of spatial dimension d and
cutoffs jmax. In all the examples presented here, we use
jmin ¼ 1; calculations with lower cutoffs of the same order
(e.g., jmin ¼ 1=2) give similar results. Notice also that the
same finite minimal value for the geometric spectra could
be obtained in correspondence with a quantum label j ¼ 0,
for choices of quantization map that give a nonzero value
for C in Eq. (2).
The first general class of coefficients to be considered is

of power-law functions,
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aj ∝ jγ: ð18Þ

Defining the parameter

α ≔ −
2γ þ 1

β
; ð19Þ

the spectral dimension of the state under consideration has
the following behavior depending on the range of values
of α.
(1) For 0 < α < d:

(a) In the IR, i.e., for large length scales
τ ≫ l2ðjmaxÞ, dSðτÞ ¼ d (Fig. 1). This is of
course a consistency check for the validity of
the formalism, since at large scales we recover
the topological dimension of the space the
quantum states are supposed to represent.
It is however already a nontrivial test, as
identifying quantum states with the right semi-
classical continuum properties at large scales is
no small task in background-independent quan-
tum gravity.

(b) Below the smallest lattice scale, i.e., for
τ ≪ l2ðjminÞ, dSðτÞ ¼ 0. This is the usual dis-
creteness effect which we find also for individual
lattice-based states (15), which remains at the
Planck scale for discrete spectra induced by holo-
nomies valued in compact groups [33,35,36]. For
noncompact groups, spectra are typically con-
tinuous and no volume discreteness effect at
Planck scale occurs, as jmin → 0 [34].

(c) Between these scales, there is a plateau with
value dSðτÞ ¼ α (Fig. 2). This plateau indicates a
regime in which the effective dimension is
physically smaller than the topological one,
and thus a proper dimensional flow. In the light
of our previous results [27], which, as discussed,
were performed on the same type of quantum
states and in the same formalism, but without
considering large superpositions of lattice struc-
tures, we regard this as a truly quantum effect
stemming from the superposition of states jj; Ci
with geometric spectra on different scales and
based on complexes of different size. It is
interesting that, at such intermediate scales,
the effective dimension is independent of the
topological one (again, provided d > α) and
depends instead only on the specific choice of
quantum states.

(d) In particular, for infinite superpositions
(jmax → ∞) this plateau takes the value α and
extends indefinitely (Fig. 3). Formally, one can
express this behavior by

ΔτjdS¼α ⟶
jmax→∞

∞: ð20Þ

Notice that this only means that the topological
dimension d is obtained further away at large τ.
Physically, one never takes the infinite limit in
practice: for large spin labels, the plateau is long
but has finite extension Δτ.

0.01 10 104 107 1010
0

1

2

3

4

5

dS

FIG. 1 (color online). Spectral dimension of a superposition
with α ¼ 2 in d ¼ 1; 2; 3; 4 (dotted, dashed, dot-dashed, solid
curve) with cutoff jmax ¼ 104d.
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FIG. 2 (color online). Spectral dimension of superposition
states with α ¼ 1=2; 1; 3=2; 2 (dotted, dashed, dot-dashed, solid
curve) in d ¼ 3 with cutoff jmax ¼ 105.
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FIG. 3 (color online). Spectral dimension of superpositions
with α ¼ 2 in d ¼ 3 for cutoffs jmax ¼ 1; 10; 103; 105 (dotted,
dashed, dot-dashed, solid curve).
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(e) Moreover, these results are independent of the
spacing of the quantum labels j. Summing over
j ∈ 1

qN for some q ∈ Q slightly changes the
results only at the scale lðjminÞ (Fig. 4). There-
fore, neither the IR nor the UV regime depends
on the spacing of the state label j. The numerical
calculations show, in particular, that this should
also be true in the limit q → ∞, i.e., for positive
real j.

(2) For α < 0, no superposition effect occurs and the
profile of the spectral dimension equals approxi-
mately the one of the single state jjmax; C∞i,
Eq. (15):

dV0;jmin;jmax
S ðτÞ ≈ djmax;C∞

S ðτÞ: ð21Þ
This is a numerical result, for which we lack, at
present, a complete analytical or physical under-
standing. Nevertheless, we can offer an intuitive
explanation. We saw that, in the range 0 < α < d, α
is the spectral dimension of the state at sufficiently
small scales. On a continuous medium, the case
α < 0 would correspond to an unphysical one with
negative dimension. This situation is meaningless
both in the conventional diffusion interpretation of
the spectral dimension (where the probe would do
“less than not propagating”) and in the resolution
interpretation of [37,38]. In the latter, the return
probability PðτÞ ∼ ð ffiffiffi

τ
p Þ−dS ∼ l−dS ∼ ðresÞdS is the

probability to find the probe anywhere when the
geometry is probed at scales l, i.e., with resolution
1=l. For positive dS, this probability decreases with
the resolution: if 1=l is too small, there is a chance
that we do not see the probe at all. On the other hand,
a negative dS implies that the coarser the probe, the
greater the chance to find it somewhere. In our case,
this pathological behavior is screened by discrete-
ness effects and dS is saturated by the lattice with

labels jmax. The resolution interpretation coupled
with the LQG interpretation of the spin labels helps
in explaining Eq. (15): coarser resolutions can
effectively probe only large volumes and the largest
volume available for the states (16) is at the upper
cutoff jmax. Under such conditions, it is natural to
expect that the lattice structure completely domi-
nates the profile of the spectral dimension.

(3) For α > d, no superposition effect occurs and the
profile of the spectral dimension equals approxi-
mately the one of the single state jjmin; C∞i,

dV0;jmin;jmax
S ðτÞ ≈ djmin;C∞

S ðτÞ: ð22Þ

In the continuum limit, α > dwould imply a spectral
dimension larger than the ambient space. Similarly
to the previous case, one has both the diffusion and
the resolution interpretation at hand. In the conven-
tional diffusion interpretation of the spectral dimen-
sion, the case dS > d may be regarded as physical:
the probe effectively sees more than d dimensions
and tends to superdiffuse. In the resolution inter-
pretation, the probability of finding the probe some-
where grows more steeply than for the normal case
(Brownian motion) and probes with large resolution
(small scales l) become even more effective. How-
ever, in the present quantum framework there is a
limit to which one can probe the microscopic
structure of geometry: volume spectra are discrete
with minimum eigenvalue determined by jmin.
Again, the variation of the spectral dimension is
dominated by lattice effects, this time governed by
the lower cutoff in the spin labels.

A partial understanding of the results with 0 < α < d,
in particular concerning the dependence of the UV value of
dS on the powers β and γ in (19), is provided by the
following rewriting of the heat trace (16). A redefinition of
variables kðjÞ ≔ l−αðjÞ demands a change of summation-
integration measure by

dk
dj

¼ d
dj

l−αðjÞ ¼ −α
d ln lðjÞ

dj
l−α−1ðjÞ: ð23Þ

In particular, for the power-law spectra (17) and the
definition of α (19)

dk
dj

¼ −αβj−αβ−1 ¼ð19Þ ð2γ þ 1Þj2γ ð24Þ

which is proportional to jajj2 for the power-law coefficients
(18). Thus, the heat trace on these superpositions is a
uniformly weighted sum in the k-variable [over the range
corresponding to (16)]:

0.01 1 100 104 106 108 1010
0.0

0.5

1.0

1.5

2.0

2.5
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3.5

dS

FIG. 4 (color online). Spectral dimension of a superposition
with α ¼ 2 in d ¼ 3 summing over positive j ∈ 1

qN up to jmax ¼
104 for q ¼ 1=2; 1; 2; 10 (dotted, dashed, dot-dashed, solid
curve).
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hP̂ðτÞiV0;jmin;jmax
∝
X
k

½e−k2=ατI0ðk2=ατÞ�d: ð25Þ

Therefore, genuine dimensional flow comes from a subtle
balancing of d and α in this expression, while a negative α
yields just a dominant kmax ¼ kðjmaxÞ contribution in the
sum. Indeed, we have also calculated the spectral dimen-
sion directly from (25) for various values of d, α and
summing ranges of integer k’s, obtaining qualitatively
similar results as discussed above for (16). As a conse-
quence, dimensional flow has some dependence on the
form of the spectrum (17) but only in combination with
appropriate superposition coefficients.
Still maintaining the power-law spectrum (17) (which is

the most reasonable assumption, consistent with known
results in LQG and related approaches), we have calculated
the spectral dimension for various other classes of coef-
ficient functions. In most cases, there are no surprising
results.
(a) For example, exponential coefficients aj ∝ eaj let

either the maximal state jmax dominate when a > 0, or the
minimal one jmin when a < 0. (b) Gaussian coefficients, on
the other hand, result in a dominance of the j0 at which they
are peaked. (c) Trigonometric functions add some oscil-
lations to djmax;C∞

S in the intermediate regime, depending on
the relation of the periods to the spacing of j in the sum. In
all these cases, therefore, the overall behavior of the
spectral dimension is the same as that found for coefficients
given by simple powers.
More interesting is the case of coefficients which are

linear combinations of power functions in j. Then one
finds, for their asymptotic behavior aj ∼ jγ, the same effect
as for power-law coefficients. In particular, if there are
several regimes with different approximate scaling
γ1; γ2;…, one obtains plateaux in the spectral dimension
plot of different values α1; α2;… accordingly. An example
is shown in Fig. 5. This effect coincides, both in its
qualitative shape and origin, to the one obtained in the
multiscale generalization of the diffusion equation with
different powers of the Laplacian [41]. In general, all
coefficient functions with an approximate power-law
behavior in some regime give rise to dimensional flow
at those scales. Details such as the value of jmin and the
spacing in j are not relevant for the value of the spectral
dimension in these intermediate regimes, in agreement with
the discussion in [41] on the role of regularization param-
eters in the profile of dS. The details of regularization
schemes are nonphysical and affect only transient regimes
in dSðτÞ, not the value of the plateaux.

B. Walk dimension of superpositions

The spectral dimension is only one of the possible
dimensional observables. Our strategy is well suited to
analyze other observables as well, and it is interesting to do

so because there exist several relations among them, in
classical and continuum spaces. Only a detailed analysis
of their combined behavior can give solid indications on
the nature of the quantum geometries corresponding to
quantum gravity states.
A closely related observable is the walk dimension dW. It

is defined via the scaling of the mean square displacement

hX2iyðτÞ ¼
Z

dxjx − yj2Kðx; y; τÞ ∝ τ2=dW ; ð26Þ

that is

dWðτÞ ≔ 2

�∂ lnhX2iy
∂ ln τ

�−1
: ð27Þ

In the case of the d-dimensional hypercubic lattice C∞,
we can choose the origin y ¼ 0, so that

hX2iC∞0 ðτÞ ¼
X
~n∈Zd

j~n2jKð~n; 0; τÞ ð28Þ

¼
X
~n∈Zd

�Xd
j¼1

n2j

�
e−τ

Yd
k¼1

InkðτÞ: ð29Þ

This can be evaluated using standard relations of the Bessel
functions In,

hX2iC∞0 ðτÞ ∝ e−dτ
Xd
j¼1

X
~n∈Zd

n2j
Yd
k¼1

InkðτÞ ð30Þ

10 4 0.1 100 105 108 1011 1014
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

dS

FIG. 5 (color online). Spectral dimension of superpositions
with coefficients jcjj2 ¼ j−4 þ 200j−7 summing from jmin ¼ 1=2
to jmax ¼ 200 for d ¼ 3 and β ¼ 3 (to be able to numerically
cover enough scales with a feasible number of states in the sum).
According to (19), two different UV regimes with dimension
dS ≈ 2 and then dS ≈ 1 can be observed.
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¼ e−dτ
Xd
j¼1

�X
nj∈Zd

n2j InjðτÞ
�

×
Yd
k≠j

�X
nk∈Z

InkðτÞ
�

¼ e−dτd

�
τ

2

X
n∈Z

In−1ðτÞ þ Inþ1ðτÞ
�
ðeτÞd−1

¼ dτ: ð31Þ

Thus, the walk dimension on the lattice is

dC∞W ðτÞ ¼ 2; ð32Þ

as in the continuum.
Quantum superpositions jV0; jmin; jmaxi are character-

ized by the Laplacian (12), so that along the same lines
as (16) one has

hhX2i0ðτÞiV0;jmin;jmax
¼

Xjmax

j¼jmin

jajj2hX2iC∞0 ½l−2ðjÞτ�

¼ d
Xjmax

j¼jmin

jajj2l−2ðjÞτ ð33Þ

∝ τ: ð34Þ

Therefore, also for quantum superpositions the scaling of
the mean square displacement yields the standard result

dV0;jmin;jmax
W ¼ 2; ð35Þ

independent of the form of the coefficients aj. Notice that
the dependence on the topological dimension in Eq. (33) is
only through a proportionality coefficient. Therefore,
Eq. (35) is valid both for space and spacetime.

C. Hausdorff dimension of superpositions

The Hausdorff dimension of a quantum state is defined
in terms of the scaling of the expectation value of the
volume VðRÞ of a ball with radius R:

dψHðRÞ ≔
∂ lnhVðRÞiψ

∂ lnR ; ð36Þ

which can be further expanded like the spectral dimension
(11). Using the graph distance and measuring R in units of
the lattice spacing, the volume on the lattice C∞ is

VC∞ðRÞ ¼ 2d
�
Rþ d − 1

d

�
¼ 2d

d!

Yd−1
n¼0

ðRþ nÞ; ð37Þ

yielding the Hausdorff dimension

dC∞H ðRÞ ¼ R
Xd−1
n¼0

1

Rþ n
¼ R½ψðRþ dÞ − ψðRÞ�; ð38Þ

where ψ is the digamma function. At large scales, dH
approaches the topological dimension d, while at small
scales it tends to 1:

dC∞H ≃
�
d; R ≫ 1

1; R ≪ 1
: ð39Þ

On discrete quantum geometries jfjcg; Ci, we define the
quantum analogue of VðRÞ as follows. Let v0 ∈ C be a
given vertex in the complex and consider the subcomplex
Cv0 ⊂ C of all vertices v which have an expectation value of
their distance to v0 no larger than the radius,

hfjcg; CjL̂vv0 jfjcg; Ci ≤ R; ð40Þ

where the expectation value of L̂vv0 is the minimum of
lengths derived from the sum of edge lengths of possible
(combinatorial) paths between v and v0.
The expectation value of the volume of this subcomplex

jfjcg; Ci is
P

v∈Cv0
hVvifjcg;C. To obtain the desired observ-

able, one must average over all possible centers v0:

hfjcg; CjVðRÞjfjcg; Ci ¼
X
v0∈C

X
v∈Cv0

hfjcg; CjVvjfjcg; Ci:

ð41Þ

On the uniform hypercubic lattice states jj; Ci, however, the
sum over center vertices v0 is not necessary due to
translation invariance and because of the local volumes
being all equal, hj; CjVvjj; Ci ∝ ldðjÞ for all v ∈ C∞.
Similarly, on jj; Ci the condition (40) simplifies to

hj; CjL̂vv0 jj; Ci ∝ lðjÞNvv0 ð42Þ

where now Nvv0 is the minimal number of edges in a path
from v to v0.
Therefore, the evaluation of VðRÞ on jj; Ci can be

expressed in terms of VC∞ðRÞ as

hj; CjVðRÞjj; Ci ∝ ldðjÞVC∞ ½R=lðjÞ�

∝ ldðjÞ
Yd−1
n¼0

½R=lðjÞ þ n�: ð43Þ

As for the spectral dimension (16), this gives a nontrivial
expectation value for generic superposition states:

hVðRÞiV0;jmin;jmax
∝

Xjmax

j¼jmin

jajj2ldðjÞ
Yd−1
n¼0

½R=lðjÞ þ n�: ð44Þ
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Nevertheless, numerical calculations on the same classes of
states as investigated above for the spectral dimension show
qualitatively similar results to the Hausdorff dimension
dj;C∞H on single states jj; Ci (Fig. 6). That is, in all instances
there are plateaux as in the pure lattice case (37). Only the
scale and steepness of the flow between these plateaux is
modified. For example, for power-law coefficients (18) the
falloff is much steeper and occurs, as α increases, closer to
the scale as in the case of the single state jjmin; C∞i.

IV. DISCUSSION

Our calculations have shown that a flow in the spectral
dimension occurs in quantum gravity, at least for a specific
class of superpositions of regular (both from the combi-
natorial perspective and for what concerns the assignment
of additional quantum labels) quantum states of geometry.
These quantum states, although restricted by the regularity
assumption, are exactly of the type appearing in the related
quantum-gravity formalisms of loop quantum gravity, spin-
foam models and group field theory, but can also simply be
seen as quantum states of lattice quantum gravity, in the
spirit of quantum Regge calculus.
On the other hand, we see no dimensional flow due to

quantum effects in the Hausdorff and walk dimension. This
conclusion is based on the interpretation, which we main-
tained throughout the paper, that the flow of a geometric
indicator is an artifact of discretization effects whenever it
approximately coincides with the flow for lattices. We will
come back to this point.
Let us comment a bit further about our results from the

point of view of loop quantum gravity.
Under the assumptions made for the action of the

quantum Laplacian on the states (a very simple scaling
behavior), an important example of states of the type we
have studied are kinematical states in LQG where length
(dþ 1 ¼ 3) or area and volume operators (dþ 1 ¼ 4) are
diagonalized by spin-network states. In this sense, we have

identified a class of LQG states with a dimensional flow.
More precisely, for any 0 < α < d there is a class of states
in the kinematical Hilbert space with a dimensional flow
from the spatial topological dimension d in the IR to a
smaller value α in the UV. The UV value depends on the
exact superposition considered but not on the topological
dimension.
This result is in contrast with earlier arguments in LQG

[26]. There, the author argues for evidence of dimensional
flow for individual spin-network states (thus, for a given
graph or complex), and the same result is claimed in [42,43]
for simple spin-network states with additional weights
given by a 1-vertex spin foam (thus, not yet in a truly
dynamical context). The starting point in [26] is an
assumption about the scaling of the expectation value of
the Laplacian, very similar to (12). The essential part of the
argument is then the further assumption that the momenta p
of the scalar field defining the spectral dimension are
directly related to a length scale set by the quantum
numbers as p ∝ 1=

ffiffi
j

p
. The scaling of the Laplacian in j

is then translated into a modified dispersion relation in p
and the result depends on the precise form of the spectrum
(2) with C ¼ 0.
In our case, no further assumption beyond (12) is made.

Calculations are based on the momenta of the scalar field
on the lattice-based geometry, that is, the spectrum of the
Laplacian, but the spectral dimension is computed directly
as a quantum geometric observable evaluated on quantum
states. As recalled already above, in a previous work using
this more direct approach [27] we have found no effects on
the spectral dimension for individual quantum-geometry
states of LQG based on given graphs or complexes. On the
other hand, the genuine dimensional flow that we have
encountered here for the states jV0; jmin; jmaxi is crucially
related to the superposition of spin-network states also with
respect to the underlying combinatorial structures, and it is
not solely the result of the discreteness of geometric
spectra. In this deeper sense, dimensional flow can indeed
be seen as an effect of quantum discreteness of geometry.
We are also in a position to characterize the change of

dimensionality more precisely than a generic “flow” of
geometry. Quite often in the literature of quantum gravity,
dimensional flow has been advertised as spacetime being
“fractal.” However, strictly speaking not all sets with
varying dimensionality are fractals. Although no unique
operational and rigorous definition of fractal exists, one
property all fractals generally possess is a special relation
among the spectral dimension dS, the Hausdorff dimension
dH and the walk dimension dW:

dH ¼ dW
2

dS: ð45Þ

On the hypercubic lattice superpositions that we have
considered, dW ¼ 2 and the above relation simplifies to

0.01 1 100 104 106
0.0

0.5

1.0

1.5

2.0

2.5

3.0

R

dH

FIG. 6 (color online). Hausdorff dimension dH of a super-
position with α ¼ 1; 2 (solid and dash-dotted curve) in d ¼ 3

summing up to jmax ¼ 105, compared to dH on single states
j1; C∞i (dashed curve) and jjmax; C∞i (dotted curve).
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dH ¼ dS. This is trivially obtained in the IR regime, where
both dimensions take the value of the topological dimen-
sion. In the UV regime above the lattice scale (recall that
below such scale any scaling effect is arguably unphysical),
the Hausdorff dimension takes the classical value dC∞H ≃ 1.
Thus, (45) is only obeyed in the case of a scaling α ¼ 1
such that also the spectral dimension takes this value. Only
then can one call the quantum superposition jV0; jmin; jmaxi
an effective one-dimensional fractal. This is indeed a
perfectly allowed choice of quantum states and we can
conclude that we have identified a particular class of
quantum geometries that corresponds, by all appearances,
to a fractal quantum space.
However, we should mention a caveat here. For these

geometries to be safely regarded as fractals, the origin of
the dimensional flow should be the same in the left- and
right-hand side of Eq. (45), which may not be the case for
us: the left-hand side flows due to discreteness effects,
while the right-hand side flows due to physical quantum
effects. This situation might suggest either that we should
not place particular significance in the fulfillment of
Eq. (45) or that our discrimination between discreteness
artifacts and physical effects is somewhat too strong and
should be revised. We do not attempt to solve this mild
conceptual issue here, which is harmless for our main
results. Still, it will deserve further attention.
Interestingly, the geometry with α ¼ 1 is also the only

one where the spectral dimension of spacetime reaches the
value DS ¼ dS þ 1≃ 2 so often commented upon in the
literature of quantum gravity. Its appearance across inde-
pendent approaches such as causal dynamical triangula-
tions, asymptotic safety, Hořava-Lifshitz gravity and others
[10–12] triggered the suspicion that this “magic number”
was a universal characteristic of frameworks with good
ultraviolet properties or, in other words, that a two-
dimensional limit of the spectral dimension was tightly
related to the renormalizability or finiteness of quantum
gravity. By now, it has become clear that this is not the case
in general, as there exist counterexamples of nonlocal field

theories with good renormalization properties [44] with
DS ≠ 2 in the UV [45], as well as of local theories whose
renormalization properties are not at all improved by
dimensional flow [46]. Here we provide another instance
pointing towards the same conclusion: the value of dS is
governed by a choice of states which, by itself, is not
(sufficiently) connected with the dynamical UV properties
of the underlying full theory.

V. CONCLUSIONS

We have investigated the effective structure of quantum
superpositions of regular (hypercubic and homogeneous in
label assignment) states of quantum geometry.
It is possible to identify states with a flow of the spectral

dimension to a dimension α in the UV, provided the
superposition includes fine enough combinatorial struc-
tures and a large enough number of (kinematical) degrees
of freedom of quantum geometry, and a particular set of
expansion coefficients (18) related to α (19).
For the Hausdorff and walk dimension, no physical

quantum effects are observed, although discreteness effects
do alter the value of the Hausdorff dimension across scales.
A fractal structure in the strict sense, i.e., where (45)
relating the three dimensions is fulfilled also in the UV, is
realized in the case α ¼ 1.
In particular, these results provide evidence for a dimen-

sional flow in a certain class of kinematical LQG states,
also available in the spin-foam and group field theory
context.
The results at hand can be further generalized in various

directions as well as refined within individual theories of
quantum gravity. In parallel, it becomes feasible to explore
the phenomenological consequences of the discovered
dimensional flow and (when applicable) fractal nature of
quantum space as a direct effect of the full theory. This
possibility is especially interesting in a quantum cosmo-
logical context, where a change of dimensionality can bear
its imprint in the early stage of cosmic evolution [47–49].
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