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ABSTRACT

Sperm viability, acrosome integrity, motility, and swimming
velocity are determinants of male fertility and exhibit an
extreme degree of variation among closely related species.
Many of these sperm parameters are associated with sperm ATP
content, which has led to predictions of trade-offs between ATP
content and sperm motility and velocity. Selective pressures
imposed by sperm competition have been proposed as evolu-
tionary causes of this pattern of diversity in sperm traits. Here,
we examine variation in sperm viability, acrosome integrity,
motility, swimming velocity, and ATP content over time, among
18 species of closely related muroid rodents, to address the
following questions: (a) Do sperm from closely related species
vary in ATP content after a period of incubation? (b) Are these
differences in ATP levels related to differences in other sperm
traits? (c) Are differences in ATP content and sperm perfor-
mance over time explained by the levels of sperm competition in
these species? Our results revealed a high degree of interspecific
variability in changes in sperm ATP content, acrosome integrity,
sperm motility and swimming velocity over time. Additionally,
species with high sperm competition levels were able to
maintain higher levels of sperm motility and faster sperm
swimming velocity when they were incubated under conditions
that support sperm survival. Furthermore, we show that the
maintenance of such levels of sperm performance is correlated
with the ability of sperm to sustain high concentrations of
intracellular ATP over time. Thus, sperm competition may have
an important role maximizing sperm metabolism and perfor-
mance and, ultimately, the fertilizing capacity of spermatozoa.

ATP, cellular metabolism, gamete biology, rodents (rats, guinea
pigs, mice, sperm competition, sperm motility, voles), sperm
transport

INTRODUCTION

Sperm viability [1], sperm motility [2–6], and sperm
velocity [7, 8] are key determinants of male fertility. During
storage in the epididymis, spermatozoa are immotile or barely
twitching [9]. Upon ejaculation, when sperm cells come in
contact with secretions from male accessory glands and the
female reproductive tract, or when they are suspended in
incubation media, spermatozoa become motile in a process
known as activation. Active motility is important for
spermatozoa when negotiating several barriers in the female
tract. After being deposited in the vagina, cervix, or uterus,
sperm cells will actively swim along the cervix and the
uterotubal junction, or only the latter [10]. Active motility also
is required for sperm association with the oviductal epithelium
in the lower region of the oviductal isthmus, an event that
seems to determine the survival of spermatozoa [11]. Thus, the
proportion of sperm showing forward motility (% motile
sperm) becomes crucial for fertility because a high percentage
of motile sperm would increase the chances of fertilization. The
duration of sperm motility (i.e., longevity) varies between
mammalian species, from a few hours (muroid rodents) to
several days (dog, horse) or even months (in some bats) [12],
and seems to be related to the interval between mating and the
occurrence of ovulation followed by fertilization [13]. In
addition, the velocity at which sperm swim appears also to be
crucial in the final stages leading to fertilization, when
spermatozoa need to reach the vicinity of the ovum [6]. The
fastest sperm may be the first to reach the site of fertilization
and may be more efficient at penetrating the ovum vestments.

The integrity of the acrosome (the large secretory granule
located over the sperm nucleus) is also required at several
stages in the sperm’s life. Only acrosome-intact sperm are
capable of attaching to the oviductal wall and penetrating the
oocyte vestments (cumulus oophorus and zona pellucida) [10],
and only acrosome-reacted spermatozoa can bind to the oolema
[14]. Under physiological conditions, the acrosome reaction is
elicited by biochemical signals from the cumulus-oocyte
complex and is carefully synchronized with the ovum [15,
16]. However, the loss of the acrosome can occur spontane-
ously in the absence of an ovum-derived signal (e.g., by
damage to the plasma membrane and outer acrosomal
membrane), and spermatozoa can remain viable for a short
time after the occurrence of this process [17]. Thus, a
spontaneous, unsynchronized and premature loss of the
acrosome is detrimental for sperm transport and interaction
with the ovum.

Mammalian spermatozoa move forward due to the propul-
sive force generated by the axoneme in the flagellum, whose
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microtubules are associated with dyneins (ATPases). Thus,
sperm motility relies on the continuous supply of ATP [18–20],
which is mainly produced either through oxidative phosphor-
ylation by mitochondria located in the midpiece or by
glycolysis in the principal piece [18–20]. Several studies
support the notion that ATP utilization by dyneins in motility
generation accounts for a high proportion of the total sperm
ATP consumption [21–24]. Numerous intraspecific in vitro
studies showed a close association between sperm internal ATP
levels and sperm motility, flagellum beat frequency, and
swimming velocity in different mammalian species (mouse
[25], rat [26], goat [27]). In muroid rodents, comparative
studies revealed that the interspecific variability in sperm
motility and velocity was strongly associated to differences in
the total content of sperm ATP in freshly collected spermato-
zoa [28–30].

In addition to motility-related functions, ATP availability in
sperm is essential for multiple cellular and biochemical
processes that are required for successful fertilization, such as
active protein phosphorylation, ion transport [31, 32], and
capacitation [33, 34]. Moreover, the maintenance of trans-
membrane ion gradients that ensure the integrity of the plasma
membrane (cell homeostasis), and the stability of the acrosomal
vesicle (which relies on low intracellular Ca2þ levels) are both
dependent on the action of ATP-fueled ion pumps [35–42].

Considering the relations among sperm motility, swimming
velocity, and ATP content, some authors have predicted the
existence of a trade-off between sperm longevity and sperm
velocity [7, 43]. According to these authors, faster swimming
sperm would consume more ATP per time unit than slow
swimming ones, resulting in an earlier depletion of ATP
reserves and decreased longevity. This hypothesis has received
support from studies in externally fertilizing species [5, 44] in
which sperm are able to produce ATP only by catabolizing
endogenous substrates. On the other hand, sperm from
internally fertilizing species (such as mammals) may encounter
an ample variety of metabolic substrates in the milieu of the
female reproductive tract. Moreover, while the relative
contribution of different metabolic pathways to total ATP
content seems to vary among species and remains the topic of
considerable debate [20, 45], it is clear that mammalian sperm
are capable of avoiding ATP depletion by using the substrates
available in fluids of the female tract [19, 46, 47], thus, making
the existence of a trade-off between sperm swimming velocity
and longevity less probable.

A final point of analysis are the evolutionary causes for the
ample diversity found in sperm traits among closely related
species among which postcopulatory sexual selection via
sperm competition has been proposed to be an important
factor. Sperm competition is a phenomenon that arises from
female promiscuity in which sperm from more than one male
would compete to fertilize a set of ova [48]. This evolutionary
scenario may promote various adaptations in sperm traits
leading to an increase in sperm competitiveness and thus the
proportion of paternity acquired by a given male. Muroid
rodents seem to be a good example of such evolutionary
scenario because the observed variability in sperm velocity
[30], sperm motility [29], and sperm ATP content [28] among
species is likely to result from adaptations to postcopulatory
selection. Thus, species with larger testes in relation to body
mass (i.e., relative testes size, a proxy for sperm competition
level) have higher proportions of motile sperm, faster
swimming sperm, and higher sperm ATP content in sperm
ready to be transferred to the female tract (i.e., in sperm
collected from the epididymis) [28].

In the present study, we evaluated the variation in sperm
viability, acrosome integrity, motility, swimming velocity, and
ATP content over time among 18 species of closely related
muroid rodents. We compared values of sperm traits
immediately after sperm collection and after a 3 h period of
in vitro incubation in a noncapacitating medium (i.e., mT-H,
defined below) [49]. These conditions support sperm survival,
with maintenance of motility and good velocity, but without
promoting sperm capacitation. The period of incubation was
chosen based on previous evidence [13] in order to ensure that
a significant percentage of spermatozoa would remain motile
after incubation, even in the species with lower motility so that
a minimum and a maximum could be recorded. Several
questions were addressed: (a) Do sperm from closely related
species vary in ATP content after a period of incubation in
relation to ATP levels at the start of incubation (i.e., equivalent
to ATP levels present upon release from the epididymis/vas
deferens)? (b) If so, is the variation in ATP levels related to
differences in percentage of viable, acrosome-intact, and motile
sperm and to differences in sperm velocity parameters? (c) Are
differences in ATP content and sperm performance over time
explained by the levels of sperm competition in these species?
In other words, would sperm competition promote not only an
increase of sperm ATP content in recently collected sperma-
tozoa, which would reflect provisioning during sperm
formation and epididymal maturation, but also a sustained
ATP synthesis over time such as the one that may take place in
the female tract (as recorded after a period of incubation in
vitro). And, finally, (d) would ATP content relate to sperm
parameters such as acrosome integrity, sperm motility, and
sperm velocity?

MATERIALS AND METHODS

Animals, Sperm Collection, and Incubation

Adult males from 18 species of muroid rodents were studied. Males of
Mastomys natalensis (n¼ 8), Micromys minutus (n¼ 5), Mus caroli (n¼ 7), M.
macedonicus (n¼ 6), M. minutoides (n¼ 10), M. musculus castaneus (n¼ 6),
M. musculus domesticus (n¼ 4), M. musculus musculus (n¼ 18), M. pahari (n
¼ 10), M. spicilegus (n¼ 13), M. spretus (n¼ 18), Phodopus campbelli (n¼ 5),
P. roborovskii (n ¼ 6), and P. sungorus (n ¼ 7) came from wild-derived
colonies that have been kept in captivity for only a few generations in our
animal facilities. Males of Apodemus sylvaticus (n¼ 5), Chionomys nivalis (n¼
5), Myodes glareolus (n¼ 4), and Microtus arvalis (n¼ 6) were trapped in the
field during the breeding season (April–June). Animals were maintained under
standard conditions (14L:10D, 228C–248C) with food and water available ad
libitum. Each male to be used in this study was housed alone (i.e., in individual
cages) for at least 2 wk before sampling. Samples from all males were collected
during spring-summer, which is the reproductive season of these species, to
avoid possible biases due to seasonality. Preliminary analyses revealed that
there were no differences between males from wild-derived colonies and males
of the same species trapped in the field with regards to sperm parameters. The
study was approved by the Ethics Committee of the Spanish National Research
Council (CSIC). All animal handling was done following the Society for the
Study of Reproduction’s specific guidelines and standards for experimental
animals use, and the Spanish Animal Protection Regulation RD53/2013, which
conforms to European Union Regulation 2010/63.

Males were euthanized by cervical dislocation and weighed immediately.
Testes were then removed and weighed. Mature sperm were collected from the
distal portion of the caudae epididymides and adjoining vasa deferentia. The
contents of the vas deferens were pushed toward the epididymal cauda, which
was then excised after removing all blood vessels, fat, and surrounding
connective tissues. The cauda was then placed in a Petri dish containing Hepes-
buffered modified Tyrode medium (mT-H) (pH¼ 7.4, osmolality¼ 295 mOsm
kg�1) [49] prewarmed to 378C. Three to five incisions were performed in the
distal region of the excised cauda, and sperm were allowed to swim out for a
period of 5 min. Care was taken to ensure that sperm collection and time
elapsed until parameters were measured was similar for all species. The culture
medium mT-H mimics the composition of the mouse oviductal fluid [49] and
supports sperm survival, but not capacitation. The volume of medium used was
adjusted to provide a concentration of ;20 3 106 sperm/ml, according to
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previous estimations of total sperm numbers for these species [29]. Each
resulting sperm suspension was transferred to a plastic tube, and sperm
parameters (detailed in the following subsections) were assessed immediately.
This time will be referred to as 0 h. Subsequently, sperm suspensions were
incubated for 3 h at 378C in mT-H under air, after which samples were taken
and sperm parameters were assessed again. The duration of incubation (3 h)
was selected based on preliminary observations of maintenance of sperm
motility in vitro in a subset of the species. This period of incubation resulted in
an effect of time on motility but without reaching complete sperm
immobilization in the species with low sperm survival. Moreover, because
fertilization takes place a few hours after copulation in muroid species for
which data are available [13, 50–54], our selected incubation time is rather
similar to physiological time frames.

Sperm Motility, Viability, Acrosomal Integrity, and Velocity

Species values for each sperm parameter were obtained by averaging the
values of individuals of the same species (Supplemental Table S1; all
supplemental data are available online at www.biolreprod.org). Percentage of
motile sperm (sperm motility) was assessed by examining 10 ll of a previously
diluted sperm suspension (concentration ;2 3 106 sperm ml�1 mT-H) placed
between a prewarmed slide and a coverslip at 1003 magnification under phase-
contrast optics. The percentage of motile sperm was estimated subjectively by
at least two independent, experienced observers; estimations from the different
observers were averaged and rounded to the nearest 5% value. Sperm viability
and acrosome integrity were assessed in sperm smears stained first with eosin-
nigrosin and subsequently with Giemsa [55]. Briefly, 5 ll sperm suspension
and 10 ll eosin-nigrosin solution were mixed on a glass slide placed on a stage
at 378C, and 30 sec later, the mix was smeared and allowed to air-dry. Smears
were stained with Giemsa solution and mounted with DPX, a mixture of
distyrene, a plasticizer, and xylene. Slides were examined at 10003 under
bright field, and 200 spermatozoa per male were examined to evaluate sperm
viability and integrity of the acrosome. Viable spermatozoa were those
excluding eosin (from the eosin-nigrosin stain). Acrosome integrity was
reported as the percentage of sperm with intact acrosomes (observed through
Giemsa staining), excluding the cells that showed damaged or missing
acrosomes.

To assess sperm swimming velocity, a diluted aliquot of sperm suspension
(concentration ;1 3 106 sperm ml�1 mT-H) was placed in a prewarmed
microscopy chamber with a depth of 20 lm (Leja) and filmed using a phase
contrast microscope (43 objective with pseudonegative phase) connected to a
digital video camera. Data of sperm curvilinear velocity (VCL, lm/sec),
average path velocity (VAP, lm/sec) and straight-line velocity (VSL, lm/sec)
were obtained using a computer-aided sperm analyzer (Sperm Class Analyzer;
Microptic SL). The software was set with maximum pixel size 250 lm,
minimum pixel size 3 lm, connectivity 20, contrast 600, and brightness 60. All
the video captures were compared to their overlaying analyzed tracks and
rectified if required. Because velocity measures tend to be highly correlated
[30], we obtained an overall variable to integrate the velocity information by
performing a principal component analysis (PCA) using the species averages of
the three log

10
-transformed velocity parameters. The PCA extracted two

eigenvectors that summarized multivariate velocity variation across all the
species. Loadings and correlation of the three sperm velocity parameters with
principal components are shown in Supplemental Table S2. The first principal
component (PC1) accounted for 79% of the variability of sperm velocity at time
0 h and 90% at time 3 h, whereas the second principal component only
accounted for 21% and 10% at 0 and 3 h, respectively. The species values for
each of the three sperm velocity parameters (VCL, VSL, and VAP) were
significantly correlated with PC1 at time 0 h and 3 h. VCL was the only
parameter significantly correlated with second principal component, and only at
0 h. Thus, we elected PC1 values for each species as our integrated sperm
velocity measure (hereafter referred to as overall sperm velocity, OSV).

Sperm ATP Content and Length-Adjusted ATP
Concentration

Sperm ATP content was measured using a luciferase-based ATP
bioluminescent assay kit (ATP Bioluminescence Assay Kit HS II; Roche). A
100 ll aliquot of diluted sperm suspension was mixed with 100 ll of Cell Lysis
Reagent, vortexed, and incubated at room temperature for 5 min. The resulting
cell lysate was centrifuged at 12 000 3 g for 2 min, and the supernatant was
recovered and frozen in liquid N

2
. Bioluminescence was measured in triplicate

in 96-well plates using a luminometer (Varioskan Flash; Thermo Fisher
Scientific Inc.). In each well, 50 ll of luciferase reagent were added to 50 ll of
sample (via autoinjection), and, following a 1 sec delay, light emission was
measured over a 10 sec integration period. Standard curves were constructed

using solutions containing known concentrations of ATP diluted in mT-H and
Cell Lysis Reagent in proportions equivalent to that of the samples. Sperm
numbers in each sample were estimated by fixing a diluted aliquot of the sperm
suspension (concentration ;4 3 105 sperm ml�1 mT-H) in a 0.1%
formaldehyde solution before lysis and counting the sperm present in a
modified Neubauer chamber. ATP content was expressed as amol sperm�1 (i.e.,
10�18 mol sperm�1) Because larger cells might contain greater quantities of
ATP due to increased internal volume, differences in cell size were taken into
account when assessing possible differences in sperm ATP concentration.
Because the volume is proportional to length for cylindrically shaped objects,
we calculated the length-adjusted ATP concentration (amol lm�1) as a proxy of
ATP concentration. This measure was calculated as the ratio between the
amount of ATP per sperm for each species and its total sperm length, which
was measured as described previously [28]. Total sperm length was quantified
in sperm smears stained with Giemsa, which were examined at 10003 under
bright field. Images of 30 cells per male were captured using a digital camera
(Digital Sight DS-5M; Nikon) and image software for microscopy (NIS-
Elements F v.2.20; Nikon). Sperm length was obtained for each sperm cell
using ImageJ v.1.45s Software (National Institutes of Health).

Data Analysis

All the variables were log
10

-transformed prior to ratio calculations,
proportional differences calculations, and statistical analysis except for
percentages of motility, viability, and acrosomal integrity, which were
arcsine-transformed. Single linear regressions were performed to test the
effects of length-adjusted ATP concentration on sperm acrosome integrity,
motility, and velocity parameters, using length-adjusted ATP concentrations as
predictors and each of the three sperm traits as dependent variables.

To assess associations with sperm competition levels, we used relative
testes size as proxy. Testes size relative to body mass is a reliable indicator of
investment in sperm production and is considered to be a very good measure of
sperm competition levels in many taxa [56–63]. Furthermore, relative testes
size appears to be a particularly reliable indicator of sperm competition risk in
mammals in general [63], and muroid rodents in particular [64–66], because
studies in species of these groups have found strong relationships between
relative testes size and the proportion of multiple paternity. Thus, we selected
this measure to estimate the level of sperm competition of species in our study.

Multiple linear regressions were performed to test the effects of sperm
competition on sperm motility, acrosome integrity, viability, ATP content per
cell, length-adjusted ATP concentration, and sperm velocity, using each sperm
trait as dependent variable and body mass and testes mass as predictors.
Because one major aim of this study was to analyze the influence of sperm
competition on the ability of sperm to preserve acrosome integrity and to
sustain motility and swimming velocity over a period of time (and thus assess
survival), the analyses described above were performed using data from time 0
h and from time 3 h separately. In addition, differences between beginning and
end of incubations were calculated as proportional variation (D)¼ (value at 3 h
� value at 0 h)/(value at 0 h) and analyzed in relation to testes mass relative to
body mass as proxy of sperm competition.

All regressions were performed using phylogenetic generalized least-
squares analyses (PGLS) [67] because species trait values may be similar as a
result of phylogenetic association rather than independent selective evolution
[68, 69]. PGLSs incorporate phylogenetic interdependency among the data
points by including the phylogenetic structure within a standard linear model as
a covariance matrix that assumes a predetermined evolutionary model. PGLS
estimates (via maximum likelihood) a phylogenetic scaling parameter lambda
(k) of the tree’s branch lengths that fits evolution proceeding via Brownian
motion. In our study, the length of all branches was set to 1. If k values are
close to 0, the variables are likely to have evolved independently of phylogeny,
whereas k values close to 1 indicate strong phylogenetic association of the
variables. Additionally, we calculated the effect size r from t-values obtained
from the PGLS model and the noncentral confidence limits (CLs) for the z-
transformed value of r [70]. The CLs value indicates that the effect size is
statistically significant if 0 is not contained within the interval [71].

All statistical analyses were performed using the CAPER v0.5 [72] package
for R (v3.0.1; R Foundation for Statistical Computing 2013). P values were
considered statistically significant at a , 0.05. Residual testes mass was
calculated as the residual of a log-log linear regression of testes mass on body
mass (P¼ 0.0012, R2¼ 0.49) and used exclusively to illustrate the results. The
phylogenetic reconstruction used in the PGLS analyses was inferred from
previous studies [73, 74] and is presented in Supplemental Figure S1.

ATP AND SPERM PERFORMANCE
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RESULTS

Sperm Parameters and Changes During Sperm Incubation

Values for sperm parameters are given in Supplemental
Table S1. The percentage of viable cells at 0 h was relatively
high in all species, ranging between 70% (M. musculus
castaneus) and 99% (P. campbelli and M. minutoides) and did
not show a marked decrease after 3 h of incubation (mean
decrease ¼ 2%, Fig. 1A).

On the other hand, all the remaining sperm traits exhibited a
relatively higher decrease after 3 h of incubation. Acrosome
integrity at 0 h ranged from 62% in M. pahari to 99% in M.
glareolus and exhibited a mean decrease of 24% at 3 h (Fig.
1B) with values ranging from 40% in M. musculus musculus to
83% in M. minutoides. Percentage of motile cells followed a
similar pattern, ranging (at 0 h) from 63% in M. musculus
musculus to 88% in P. roborovskii and decreasing a mean 25%
after 3 h of incubation (range at 3 h: 30% in M. musculus
castaneus to 80% in P. campbelli) (Fig. 1C). VCL (range: 88–
163 lm s�1), VSL (range: 49–110 lm s�1), and VAP (range:
63–126 lm s�1) presented decreases of 11%, 22%, and 20%,
respectively. OSV (Fig. 1D), a variable that summarizes VCL,
VSL, and VAP as a result of a PCA, showed a mean decrease
of 23%. These results validate the choice of a 3 h period of
incubation because it ensures a high percentage of sperm
survival while allowing for a moderate decrease in sperm
motility and velocity. Sperm ATP content (Fig. 1E) showed a
high degree of interspecific variability at 0 h, ranging from 130
amol ATP cell�1 in M. musculus domesticus to 680 amol ATP
cell�1 in A. sylvaticus. These species also represented the
extreme values of length-adjusted ATP concentration (Fig. 1F):
1.05 and 5.39 amol ATP lm�1, respectively. Both variables
showed a decrease of 30% after 3 h of incubation in mT-H.

Overall, the results described above show that sperm traits
(with the exception of viability) tend to decrease after 3 h of
incubation in mT-H (a noncapacitating medium). The values
for sperm traits in freshly extracted sperm were strongly
correlated with their values after 3 h of incubation (Table 1).
That is, species that showed high sperm viability, acrosome
integrity, motility, velocity (Supplemental Fig. S2), and ATP
content at 0 h tended to remain at the high end of the
distribution at 3 h, while species that showed low values on
these traits at 0 h remained at the low end of the distribution at
3 h (Table 1). One species, M. minutoides, exhibited an
exceptionally marked decrease in OSV after the 3 h incubation
period (Fig. 1D and Supplemental Fig. S2). Because the data
point represented by this species had a disproportionate
statistical leverage and was not representative of the general
trend (Supplemental Table S3), we opted not to include this
species in analyses dealing with sperm velocity at 3 h.

The decrease in sperm traits after the period of incubation
did not exhibit the same magnitude in all species. Thus, we
calculated the proportional variation between 0 h and 3 h (D 0 h
� 3 h, see Materials and Methods for details of calculations)
for sperm viability, acrosome integrity and motility, and
analyzed their relationships with its equivalent for OSV to
test for the possible existence of trade-offs between traits over
the time of incubation. In the case a trade-off existed between
high sperm velocity and the proportional variation of each trait
under consideration, a negative relationship would be expected,
that is, a low proportional decrease in sperm velocity would be
associated to high proportional decreases in sperm viability,
acrosome integrity, and motility. We did not find any
significant associations between proportional variation of
sperm velocity and sperm viability (Fig. 1G and Table 1) and
acrosome integrity (Fig. 1H and Table 1). Remarkably, we

found a significant positive association between the propor-
tional variation of sperm velocity and sperm motility (Fig. 1I
and Table 1). This suggests that species that can maintain a
higher proportion of their initial sperm velocity after 3 h of
incubation are also able to maintain a higher proportion of their
initial sperm motility.

Relationship Between ATP Content and Viability, Acrosome
Integrity, Motility, and Velocity

The percentage of viable cells was not significantly
correlated with length-adjusted sperm ATP concentration at
0 h or at 3 h (Fig. 2, A and B, and Table 2), neither its
proportional decrease was related to that of ATP content (Fig.
2C and Table 2). On the other hand, our analysis revealed
significant positive associations between length-adjusted ATP
content and acrosome integrity (Fig. 2, D and E, and Table 2)
both in freshly collected sperm and after 3 h. However, the
relation between the proportional 3 h decrease of these two
parameters was nonsignificant (Fig. 2F and Table 2).

Previous studies have shown that because ATP is required
to propel spermatozoa, higher ATP levels tend to be associated
with a higher proportion of sperm motility and faster
swimming speeds in spermatozoa collected from the epididy-
mis and vas deferens [28]. In agreement with earlier results,
significant increases in percentage of motile sperm (Fig. 2G)
and overall sperm motility (Fig. 2J) were associated with
higher length-adjusted ATP concentrations in the present,
larger dataset (Table 2). The positive relationship between
increasing length-adjusted ATP concentration and percentage
of motile sperm (Fig. 2H) and sperm velocity (Fig. 2K)
remained significant after 3 h of incubation (Table 2). In
addition, the proportional variation on length-adjusted ATP
concentration after incubation (D 0 h � 3 h) predicted the
variation in percentage of motile sperm (Fig. 2I and Table 2)
and OSV (Fig. 2L and Table 2).

Relationships Between Relative Testes Mass and Sperm
Parameters

Data for body mass and testes mass used to test the effect of
relative testes mass on sperm traits are presented in
Supplemental Table S1. The analysis of freshly collected
sperm (0 h) revealed that the percentage of viable cells, which
was very similar among species (Fig. 1A), showed no
association with relative testes mass (Table 3). In contrast,
significant positive relationships between relative testes mass
and the values of all other sperm parameters emerged when
they were assessed immediately upon collection (i.e., at 0 h).
Thus, the percentage of sperm with intact acrosomes (Fig. 3A
and Table 3), percentage of motile sperm (Fig. 3D and Table
3), OSV (Fig. 3G and Table 3), ATP content per sperm (Table
3), and length-adjusted ATP concentration (Fig. 3J and Table
3) showed a significant positive association with relative testis
size. In addition, two of the three sperm velocity measures
(VCL and VAP) that made up our OSV measure increased
significantly with relative testes mass (Supplemental Fig. S3,
A, D, and G, and Supplemental Table S3).

In agreement with results observed at 0 h, the percentage of
viable cells was not significantly related to relative testes mass
after 3 h of incubation in mT-H (Table 3), and the positive
relationships between relative testes mass and sperm parame-
ters observed at 0 h were also detected after a 3 h incubation
period (Table 3). The percentage of sperm with intact acrosome
exhibited a positive trend, with marginal statistical significance
(Fig. 3B and Table 3). The percentage of motile sperm (Fig. 3E
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and Table 3), OSV (Fig. 3H and Table 3), ATP content per
sperm (Table 3), and length-adjusted ATP concentration (Fig.
3K and Table 3) were positively and significantly related to
relative testis size. Additionally, all three velocity parameters
included in the OSV measure were strongly associated with
relative testes mass (Supplemental Fig. S3, B, E, and H, and
Supplemental Table S3).

To test the effect of sperm competition on the changes in
sperm parameters after 3 h of incubation, we analyzed the
possible association between relative testes size and propor-
tional variation (D 0 h� 3 h) for each parameter. The variation
in the percentage of viable sperm was not associated to relative
testes mass (Table 3). Similarly, there was no relation between
relative testes mass and variation in the percentage of sperm

FIG. 1. Variation in sperm parameters of 18 muroid rodent species after 3 h of incubation in mT-H. A–F) Sperm parameters measured immediately after
collection (0 h) and after incubation for 3 h. Percentage of viable sperm (A). Percentage of sperm with intact acrosome (B). Percentage of motile sperm (C).
Overall sperm velocity (OSV): score of the first principal component (PC) of an analysis including curvilinear velocity (VCL), straight-line velocity (VSL),
and average path velocity (VAP) (D). The black dot represents M. minutoides. ATP content per sperm (E). Length-adjusted ATP concentration: ratio
between ATP content per sperm and total sperm length (F). G–I) Relationships between proportional differences over time, that is, D¼ (value at 3 h� value
at 0 h)/(value at 0 h), between freshly collected sperm and sperm incubated for 3 h. D of OSV and D percentage of viable sperm (G). D of OSV and D
percentage of sperm with intact acrosome (H). D of OSV and D percentage of motile sperm (I).
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with intact acrosome (Fig. 3C and Table 3), although there
were relations between relative testes mass and acrosome
integrity at both 0 and 3 h. In contrast, the proportional
variation after incubation in percentage of motile sperm (Fig.
3F and Table 3) and OSV (Fig. 3I and Table 3), and its three
constituent variables (Supplemental Fig. S3, C, F, and I, and
Supplemental Table S3), was positively related to relative
testes mass because declines in these sperm parameters was
almost nonexistent as relative testes mass increased. Finally,
the variation in sperm ATP content (Table 3) and length-
adjusted ATP concentration (Fig. 3L and Table 3) over time
was positively related to relative testes mass. Thus, species
with higher relative testes mass showed a proportionally lower
decrease in several sperm parameters after 3 h of incubation.

DISCUSSION

The results of the present study revealed a high degree of
interspecific variability in the sperm traits measured soon after
sperm collection. We also observed that most sperm parameters
tended to have lower values after a 3 h incubation period. In
addition, our study revealed that species with high sperm
competition levels exhibit higher levels of sperm motility and
faster sperm swimming velocity when sperm cells are
incubated under conditions that support sperm survival.
Furthermore, maintenance of such levels of sperm performance
was due to the ability of sperm to sustain high concentrations
of intracellular ATP over time.

Sperm acrosomal integrity, motility, OSV, and ATP content
showed a mean decrease of between 20% and 30% of their
initial value after spermatozoa were incubated for 3 h in vitro.
An exception to this pattern was sperm viability, which
revealed a much lower average decrease (2%). Importantly, the
magnitude of decrease of each parameter was not the same

among the 18 species included in this study. The values of all
the variables in freshly collected sperm were strongly
correlated with those of sperm incubated for 3 h. This indicated
that spermatozoa of species that had high values for sperm
traits immediately after collection maintained these high values
after the 3 h incubation.

We found that ATP concentrations predicted sperm
acrosome integrity, motility, and swimming velocity, whereas
no relationship was found with sperm viability; these
associations remained significant after 3 h of incubation. In
addition, the proportional decrease in sperm motility and
swimming velocity (but not in acrosome integrity) between 0
and 3 h was positively related to the proportional decrease in
sperm ATP concentration. Thus, the sperm of species that were
able to better maintain their ATP supply over the incubation
period, showed a higher postincubation sperm velocity and
motility. Positive associations between intracellular ATP
content and sperm motility and velocity have been reported
before in intraspecific and interspecific studies in mammals
[25, 26, 28, 45, 75, 76] and fish (reviewed in [44]). However,
the present study is the first to analyze the time-related
variation of these associations in a comparative data frame of
closely related species with ample variation of sperm
performance. The absence of relation between the decreases
in ATP content and acrosomal integrity is somewhat
surprising, taking in account that (a) the two variables were
highly correlated at 0 and 3 h and (b) both the stability,
exocitosis, and internal pH of the acrosomal vesicle are
regulated by ATP-dependent ion (Naþ/K

þ
and Ca2þ) trans-

porters in mammalian sperm [35–42]. However, because sperm
motility accounts for about 70% of total ATP consumption in
these cells [23], it is possible that the traits related to sperm
motility are more sensitive to a decrease in intracellular ATP

TABLE 1. Relations between sperm parameters measured at 0 h and after 3 h of incubation in Hepes-buffered modified Tyrode medium (mT-H) using
phylogenetically controlled multiple regression analyses (PGLS).a

Dependent variable Independent variable Slope R2 t P kb r CL(�) CL(þ)

Viability 3 h Viability 0 h 1.0583 0.96 19.7756 ,0.0001 ,0.001ns,* 0.9802 1.7953 2.8074
Intact acrosome 3 h Intact acrosome 0 h 0.6284 0.56 4.5547 0.0003 0.554ns,ns 0.7514 0.4700 1.4822
Motility 3 h Motility 0 h 1.2751 0.71 6.1856 ,0.0001 0.855ns,ns 0.8397 0.7142 1.7263
ATP content per sperm 3 h ATP content per sperm 0 h 1.1882 0.86 10.0826 ,0.0001 ,0.001ns,* 0.9295 1.1488 2.1609
Length-adjusted [ATP] 3 h Length-adjusted [ATP] 0 h 1.0922 0.87 10.5183 ,0.0001 ,0.001ns,* 0.9347 1.1882 2.2004
Overall sperm velocity 3 h Overall sperm velocity 0 h 0.9002 0.24 2.2222 0.0410 0.127ns,ns 0.4856 0.0243 1.0364
Overall sperm velocity 3 hc Overall sperm velocity 0 hc 0.9680 0.46 3.6058 0.0026 0.128ns,* 0.6814 0.3079 1.3556
D 0 h � 3 h viability D 0 h � 3 h overall sperm

velocity
�0.0323 0.04 �0.7941 0.4395 ,0.001ns,* �0.2009 �0.7275 0.3202

D 0 h � 3 h intact acrosome D 0 h � 3 h overall sperm
velocity

�0.0859 0.05 �0.9031 0.3808 0.415ns,ns �0.2271 �0.7549 0.2927

D 0 h � 3 h motility D 0 h � 3 h overall sperm
velocity

0.2559 0.46 3.5605 0.0028 0.857ns,ns 0.6768 0.2993 1.3470

a Effect size r calculated from the t values and the noncentral 95% confidence limits (CLs) for the z-transformed value of r are presented. Confidence
intervals excluding 0 indicate statistically significant relationships. P-values and CL that indicate statistical significance are shown in bold. Overall sperm
velocity (OSV) represents the first component of a principal components analysis that included curvilinear velocity (VCL, lm/sec), straight-line velocity
(VSL, lm/sec), and average path velocity (VAP, lm/sec).
b Superscripts following the k value indicate significance levels (n.s. P . 0.05; * P , 0.05) in likelihood ratio tests against models with k¼0 (first position)
and k ¼ 1 (second position).
c M. minutoides excluded from the analysis.

3

FIG. 2. Relationships between length-adjusted ATP concentration and sperm parameters in 18 muroid rodent species. Parameters measured in freshly
collected sperm at 0 h (A, D, G, J). Parameters measured after 3 h of incubation in mT-H (B, E, H, K). Proportional differences over time, that is, D¼ (value
at 3 h – value at 0 h)/(value at 0 h) (C, F, I, L). Percentage of viable sperm (A, B, C). Percentage of sperm with intact acrosome (D, E, F). Percentage of motile
sperm (G, H, I). Overall sperm velocity (OSV): score of the first principal component (PC) of an analysis including curvilinear velocity (VCL), straight-line
velocity (VSL), and average path velocity (VAP) (J, K, L).
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TABLE 2. Relations between sperm ATP content, viability, acrosome integrity, and velocity using phylogenetically controlled regression analyses
(PGLS).a

Time Dependent variable Independent variable Slope R2 t P kb r CL(�) CL(þ)

0 h Viability Length-adjusted [ATP] 0.5466 0.18 1.8859 0.0776 0.999*,ns 0.4265 �0.0505 0.9616
Intact acrosome Length-adjusted [ATP] 0.8517 0.42 3.3981 0.0037 ,0.001ns,* 0.6474 0.2648 1.2769
Motility Length-adjusted [ATP] 0.5902 0.58 4.6992 0.0002 ,0.001ns,* 0.7615 0.4937 1.5058
Overall sperm velocity Length-adjusted [ATP] 5.9444 0.43 3.5007 0.0030 ,0.001ns,* 0.6586 0.2842 1.2964

3 h Viability Length-adjusted [ATP] 0.2279 0.03 0.6768 0.5082 0.999*,ns 0.1668 �0.3377 0.6745
Intact acrosome Length-adjusted [ATP] 0.9115 0.69 5.9578 ,0.0001 ,0.001ns,* 0.8302 0.6828 1.6950
Motility Length-adjusted [ATP] 0.6730 0.29 2.5499 0.0214 0.814ns,ns 0.5375 0.0946 1.1068
Overall sperm velocity Length-adjusted [ATP] 6.9501 0.38 3.0310 0.0084 ,0.001ns,* 0.6163 0.1952 1.2429

D 0 h � 3 h Viability Length-adjusted [ATP] �0.1792 0.05 �0.9206 0.3710 ,0.001ns,* �0.2243 �0.7342 0.2779
Intact acrosome Length-adjusted [ATP] �0.3890 0.04 �0.8073 0.4313 0.570ns,ns �0.1978 �0.7065 0.3056
Motility Length-adjusted [ATP] 1.0275 0.26 2.3726 0.0305 0.928*,ns 0.5102 0.0569 1.0690
Overall sperm velocity Length-adjusted [ATP] 2.8960 0.33 2.7251 0.0157 0.548ns,ns 0.5754 0.1318 1.1795

a Effect size r calculated from the t values and the noncentral 95% confidence limits (CLs) for the z-transformed value of r are presented. Confidence
intervals excluding 0 indicate statistically significant relationships. P-values and CL that indicate statistical significance are shown in bold. 0 h: freshly
collected sperm; 3 h: sperm incubated for 3 h in Hepes-buffered modified Tyrode medium (mT-H); D 0 h� 3 h: over time proportional differences between
freshly collected sperm and sperm incubated for 3 h in mT-H. Overall sperm velocity (OSV) represents the first component of a principal components
analysis that included curvilinear velocity (VCL, lm/sec), straight-line velocity (VSL, lm/sec), and average path velocity (VAP, lm/sec).
b Superscripts following the k value indicate significance levels (n.s. P . 0.05; *P , 0.05) in likelihood ratio tests against models with k¼0 (first position)
and k ¼ 1 (second position).

TABLE 3. Relations between relative testes mass and sperm traits using phylogenetically controlled multiple regression analyses (PGLS).a

Time Dependent variable
Independent

variable Slope R2 t P kb r CL(�) CL(þ)

0 h Viability Body mass �0.2937 0.37 �2.9400 0.0101 0.999*,ns �0.6046 �1.2065 �0.1943
Testes mass 0.1451 1.6722 0.1152 0.3964 �0.0867 0.9254

Intact acrosome Body mass �0.4819 0.51 �3.8328 0.0016 0.747ns,ns �0.7034 �1.3801 �0.3679
Testes mass 0.3519 3.3828 0.0041 0.6578 0.2829 1.2951

Motility Body mass �0.3173 0.77 �6.7785 ,0.0001 0.323ns,* �0.8683 �1.8321 �0.8199
Testes mass 0.2277 6.2873 ,0.0001 0.8514 0.7552 1.7674

Overall sperm velocity Body mass �1.4914 0.24 �1.7220 0.1056 0.867ns,ns �0.4063 �0.9372 0.0749
Testes mass 1.5841 2.1668 0.0468 0.4882 0.0277 1.0398

ATP content per sperm Body mass �0.2102 0.31 �1.6345 0.1230 0.999*,ns �0.3888 �0.9165 0.0957
Testes mass 0.2898 2.5946 0.0203 0.5566 0.1218 1.1339

Length-adjusted [ATP] Body mass �0.2934 0.64 �4.9900 0.0002 0.999*,ns �0.7900 �1.5774 �0.5653
Testes mass 0.1206 2.3615 0.0322 0.5206 0.0711 1.0832

3 h Viability Body mass �0.2796 0.25 �2.2281 0.0416 0.999*,ns �0.4987 �1.0536 �0.0415
Testes mass 0.1362 1.2495 0.2306 0.3070 �0.1888 0.8233

Intact acrosome Body mass �0.3623 0.40 �3.1466 0.0067 0.665ns,ns �0.6306 �1.2484 �0.2363
Testes mass 0.1909 2.0281 0.0607 0.4639 �0.0038 1.0083

Motility Body mass �0.4500 0.79 �5.7180 ,0.0001 ,0.001ns,* �0.8280 �1.6877 �0.6755
Testes mass 0.4162 7.6107 ,0.0001 0.8912 0.9218 1.9340

Overall sperm velocity Body mass �1.4914 0.24 �1.7220 0.1056 ,0.001ns,* �0.4181 �0.9692 0.0785
Testes mass 1.5841 2.1668 0.0468 0.5011 0.0270 1.0747

ATP content per sperm Body mass �0.2960 0.43 �1.9414 0.0712 0.999*,ns �0.4481 �0.9884 0.0237
Testes mass 0.4453 3.3624 0.0043 0.6556 0.2789 1.2911

Length-adjusted [ATP] Body mass �0.3206 0.61 �4.8032 0.0002 0.999*,ns �0.7785 �1.5475 �0.5354
Testes mass 0.1954 3.3706 0.0042 0.6565 0.2805 1.2927

D 0 h – 3 h Viability Body mass �0.0214 0.02 �0.5730 0.5751 ,0.001ns,* �0.1464 �0.6535 0.3587
Testes mass 0.0094 0.3624 0.7221 0.0932 �0.4126 0.5995

Intact acrosome Body mass 0.0324 0.12 0.3927 0.7001 0.678ns,ns 0.1009 �0.4048 0.6073
Testes mass �0.0821 �1.2166 0.2426 �0.2997 �0.8152 0.1969

Motility Body mass �0.1791 0.57 �2.7300 0.0155 ,0.001ns,* �0.5761 �1.1627 �0.1506
Testes mass 0.2006 4.4010 0.0005 0.7507 0.4685 1.4806

Overall sperm velocity Body mass �0.1907 0.48 �0.9708 0.3481 ,0.001ns,* �0.2511 �0.7805 0.2672
Testes mass 1.5841 3.0997 0.0078 0.6380 0.2309 1.2785

ATP content per sperm Body mass �0.0436 0.25 �1.1664 0.2617 0.894ns,ns �0.2884 �0.8029 0.2093
Testes mass 0.0685 2.1612 0.0473 0.4873 0.0264 1.0386

Length-adjusted [ATP] Body mass �0.0435 0.25 �1.1648 0.2623 0.894ns,ns �0.2880 �0.8025 0.2097
Testes mass 0.0685 2.1611 0.0473 0.4873 0.0264 1.0385

a Effect size r calculated from the t values and the noncentral 95% confidence limits (CLs) for the z-transformed value of r are presented. Confidence
intervals excluding 0 indicate statistically significant relationships. P-values and CL that indicate statistical significance are shown in bold. 0 h: freshly
collected sperm; 3 h: sperm incubated for 3 h in Hepes-buffered modified Tyrode medium (mT-H); D 0 h� 3 h: over time proportional differences between
freshly collected sperm and sperm incubated for 3 h in mT-H. Overall sperm velocity (OSV) represents the first component of a principal components
analysis that included curvilinear velocity (VCL, lm/sec), straight-line velocity (VSL, lm/sec), and average path velocity (VAP, lm/sec).
b Superscripts following the k value indicate significance levels (n.s. P . 0.05; *P , 0.05) in likelihood ratio tests against models with k¼0 (first position)
and k ¼ 1 (second position).
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content. In that case, sperm acrosomal (and other membranes)
integrity would be affected only under severe ATP depletion.

When we tested the influence of sperm competition on
sperm traits, our results revealed that species with higher sperm
competition levels showed higher sperm motility, a higher
proportion of sperm with intact acrosomes, faster sperm
swimming velocities, and higher sperm ATP concentrations
in sperm freshly collected from epididymis (i.e., without
incubation), which is in agreement with previously published
results [28, 29]. Notably, for sperm traits examined after 3 h of
incubation, the positive associations remained significant.
Moreover, the motility, swimming velocity, and ATP content
of sperm from species with higher sperm competition levels
showed a lower decrease over time in sperm trait values than
those from species with low competition levels.

A notable exception to this pattern is the unusual decline of
sperm velocity in M. minutoides after 3 h of incubation. In this
case, the pronounced decrease in sperm velocity does not seem
to be related to low sperm competition levels because the
relative testes mass of M. minutoides places this species in an
intermediate range of sperm competition level (testes mass
represent ;1.9% of body mass). Moreover, all the remaining
sperm traits for this species (viability, acrosomal integrity,
motility percentage, and length-adjusted ATP content) are
around the intermediate range of the distribution even after
incubation and conform to the trend observed for the rest of the
species (values at 0 h predict values at 3 h). Additionally, the
decline in velocity seems not to be associated with a decrease
in ATP content or proportion of motile cells in M. minutoides.
One peculiarity of this species is that it is the smallest within
the dataset (and one of the smaller extant mammals species),
with a mean adult weight of 4–6 g [77], a feature that could
account for the relatively fast decline of this species’ sperm
velocity. Because the size of the female reproductive tract tends
to be related to body mass in mammals [78], the sperm of M.
minutoides could be adapted to provide a shorter burst of high
speed to cover a relatively shorter distance in comparison to
larger muroid species.

There are fundamental differences among taxa regarding the
sources used by spermatozoa for ATP production. In externally
fertilizing species that spawn in close proximity, fertilization
occurs within a very short period of time (although there may
be some exceptions [79]). In these species, the total duration of
flagellar activity usually ranges from seconds to tens of
minutes, and the energy necessary for flagellar beating may be
only supplied by intracellular ATP stores present at the time of
spawning and via rapid ATP synthesis from endogenous
substrates [44]. In this metabolic scenario, with a very short
and intense burst of energy output, the initial ATP load would
probably be the only energetic variable with a significant
impact on sperm competitiveness.

In contrast, sperm from internally fertilizing species, such as
mammals, may use endogenous substrates as well as a variety
of exogenous substrates present in seminal plasma or in the
female reproductive tract to synthesize ATP [18–20, 45]. In
muroid rodents, fertilization may take place a few hours after
copulation [13, 50–53], a period during which sperm need to
remain viable and capable of sustaining motility in order to
actively negotiate barriers in the female tract (i.e., cervix and
utero-tubal junction), undergo capacitation, acquire hyper-
activation, gain fertilizing ability, and swim along the oviduct
toward the site of fertilization [10, 11]. In the species of this
group in which sperm physiology has been more thoroughly
studied, mature sperm stored in the cauda epididymis prior to
activation have similar ATP levels than freshly activated sperm
[80, 81]. However, when extracted and activated in the absence

of external metabolic substrates, sperm initial ATP reserves are
rapidly consumed [25, 26], and sperm become immotile [25,
26] and unable to remain hyperactivate [25].

A recent study in passerine birds [82] showed that, while
levels of intracellular ATP were related to midpiece length,
higher energy content did not translate into faster-swimming
sperm and was not related to sperm competition level. The
differences in the relationship between sperm competition and
sperm ATP content observed between passerine birds and
muroid rodents may be explained by the differences between
avian and mammalian fertilization mechanisms. In birds, sperm
enter sperm-storage tubules, where they remain motile (often
for many days) in order to avoid displacement by the fluid
current generated by epithelial cells [83]. Rowe et al. [82]
hypothesize that because sperm storage duration prior to
fertilization may vary among species the optimum rate of
available ATP usage would vary too. In this way, initial
swimming velocity would not be determined by the amount of
intracellular ATP available at the moment of ejaculation
because its rate of usage would reflect the duration of species-
specific sperm storage periods [82]. In the absence of
exogenous substrates, an increase in the duration of sperm
motility would increase the competitiveness of an ejaculate.
This hypothesis has been supported by results showing a
negative relationship between sperm swimming speed and
duration of female sperm storage in passerine birds [84].
However, according to previous studies, the epithelial cells of
the storage tubules would secrete oxidizable lipidic compo-
nents and glycolysable sugars into the lumen of the tubules
(reviewed in [85]), suggesting that bird sperm could have an
assortment of metabolic substrates at their disposal along the
storage period.

Altogether, the differences regarding the timing of the
fertilization process along with the results of the present study,
suggest that muroid rodents would face an intermediate
scenario between the frantic, short-timed rush of external
fertilizers and the long-time survival process of passerine birds.
In rodents, the scenario would be more akin to a race divided in
stages where sperm that could sustain a fast swimming speed
for the duration of the active movement phases would have the
advantage. Thus, sperm competition would promote not only
an increase of sperm ATP content at the time of sperm transfer
to the female reproductive tract, but also a sustained ATP
synthesis over time. It should be borne in mind that the
temporal constraints imposed by female reproductive physiol-
ogy have been demonstrated to influence sperm physiology in
mammals. Thus, a positive association between sperm fertile
lifespan and the interval between the onset of oestrus and
ovulation has been found in mammals [78]. Regrettably,
information about the actual interval of time that elapses
between copulation and fertilization in many muroid rodents is
scarce and is only described in a handful of species [13, 50–
54]. Therefore, while a rather clear pattern emerges from our
results, the timing of fertilization under species-specific
physiological conditions is likely to constitute a fundamental
factor regarding the functional implications of sperm metabolic
features.

When fertilization takes place under the conditions that are
common in external fertilizers (limited energetic resources,
short competitive time frame), a trade-off between sperm
velocity and motility duration (i.e., sperm longevity) would
arise. Because sperm would be constrained by their finite
amount of endogenous substrate reserves, highly competitive
scenarios would favor faster swimming sperm, whereas sperm-
limited scenarios would promote longer motility duration [5, 7,
44]. However, among internal fertilizers, the limitation of
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energetic resources depends on the composition of the fluids of
the female reproductive tract [19, 46, 47]. Thus, in conditions
where substrates are abundant and sperm have evolved flexible
and adaptable metabolic processes to face the changing relative
concentrations of exogenous metabolic substrates in the
different regions of the female tract (as in the case of muroid
rodents) [12, 20, 31], the trade-off between sperm velocity and
motility duration might not exist. An intraspecific study in the
house mouse [86] showed a significant positive relationship
between sperm velocity and sperm motility decrease, support-
ing the idea of a trade-off between these two traits. In contrast,
our results indicate that the species that experienced a lower
over-time decrease in sperm velocity also presented a lower
decrease in percentage of motile sperm and that the magnitude
of the reduction in both traits was associated with the variation
in sperm ATP concentration. Moreover, the decrease in the
values of these three sperm parameters (motility, velocity, and
ATP content) was predicted by sperm competition level,
suggesting that species with high levels of sperm competition
are able to sustain a high proportion of fast moving sperm over
time.

It would be intuitive to think that the above-mentioned
metabolic feature could be the result of a higher substrate
oxidation capacity, in which case, the species with higher
sperm respiratory or glycolytic rates would be able to
synthesize ATP at a faster rate to meet the cellular energy
demands and thus allow cells to be propelled at faster velocities
and for longer time. Nonetheless, the high substrate turnover
rates could not be solely responsible of the ATP content
diversity. Numerous studies have identified the presence of a
variety of signaling pathways operated by sperm-specific
kinases that contribute to the control of sperm motility [87–
92]. Moreover, some of these pathways include enzymes that
are sensitive to variations in intracellular ATP concentrations
[93] and have specific functions in the modulation of ATP
production [92, 94, 95]. Thus, it is highly probable that the
species-specific sperm motility phenotype is a result of the
complex interplay between the total energetic input capabilities
of the cell, represented by its substrate turnover rate, and the
regulatory pathways that control this process and its translation
to flagellar motility. In this scenario, the sequence, expression,
and posttransductional regulation of the enzymes belonging to
these regulatory pathways would constitute likely targets of
selection by sperm competition. In conclusion, sperm compe-
tition favors spermatozoa that generate and sustain more
energy (ATP) over time, preventing a high decrease in ATP
concentration, which allows sperm cells to maintain higher
levels of sperm performance.
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Species n BM TM NSPZ TSL Time MOT NAR VIA ATP/SPZ VCL VSL VAP

0h 81.3 98.5 92.5 287.97 113.26 91.53 103.79

3h 68.8 81.5 85.5 288.60 134.64 103.43 120.11

0h 85.0 86.8 95.4 426.76 131.91 110.38 119.77

3h 66.0 71.6 95.2 273.15 133.63 108.67 117.99

0h 79.2 86.3 86.3 416.24 108.05 85.87 94.60

3h 51.0 70.8 78.7 255.05 93.84 63.82 73.69

0h 88.0 87.1 97.8 492.57 149.69 59.24 84.03

3h 76.5 74.1 95.7 423.56 138.58 61.93 83.15

0h 82.9 77.3 98.9 352.41 154.86 68.96 92.50

3h 76.4 59.2 97.9 188.51 146.94 62.76 84.82

0h 86.5 87.7 99.3 372.15 162.79 73.81 100.78

3h 79.5 73.1 98.5 215.39 154.48 50.37 79.36

0h 87.0 84.2 98.2 286.76 135.15 110.68 125.71

3h 70.0 74.8 98.2 204.62 85.01 65.71 74.36

0h 78.6 82.9 78.0 215.83 116.50 70.27 89.17

3h 56.4 62.0 73.0 143.86 106.17 63.91 79.45

0h 84.7 87.2 81.5 209.15 107.74 76.22 88.90

3h 65.9 41.1 73.9 164.56 105.36 48.12 62.00

0h 62.5 65.5 71.0 158.02 87.61 51.46 62.51

3h 40.0 39.2 63.8 92.66 75.51 36.80 48.48

0h 64.2 83.2 69.5 139.27 98.73 64.46 75.11

3h 30.0 55.0 67.2 61.74 78.52 32.03 45.33

0h 73.8 71.0 76.3 129.75 97.54 62.36 77.96

3h 57.5 58.5 74.8 83.73 93.88 50.77 63.99

0h 78.6 84.6 80.8 217.25 111.60 80.51 92.80

3h 68.0 47.1 73.9 147.75 108.35 58.71 72.38

0h 77.5 86.0 70.3 148.63 106.02 50.40 71.39

3h 62.5 59.5 69.3 103.80 98.65 59.10 72.09

0h 66.9 62.0 81.4 233.15 96.35 48.82 62.79

3h 36.0 47.8 76.6 156.36 76.25 28.09 43.03

0h 86.5 90.8 98.5 252.98 109.33 87.92 100.20

3h 56.5 83.1 97.2 157.63 46.36 26.90 32.95

0h 76.3 68.6 91.4 229.23 129.09 109.07 117.05

3h 50.0 57.0 90.5 185.57 108.66 76.96 85.98

0h 87.0 97.4 88.6 679.73 124.40 108.40 115.39

3h 72.0 82.2 85.8 635.83 119.99 97.95 108.64
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Mus macedonicus

Mus spicilegus

0.128 7.7

40.60.1055.54

33.15

18.10 0.428

Phodopus sungorus

Phodopus campbelli

Apodemus sylvaticus

Mastomys natalensis

Mus minutoides

Mus pahari

Micromys minutus

Mus caroli

Mus spretus

Mus musculus musculus

Supplemental Table S1. Body mass, testes mass and sperm parameters of 18 species of muroid rodents. Values for
spem parameters are for 0 and 3h of incubation in mT-H medium. N: number of individuals per species. BM: body

mass (g). TM: testes mass (g). NSPZ: total sperm numbers (x 106) in both cauda epididymis. TSL: total sperm lengthl
(μm). MOT: percentage of motile sperm (%). NAR: percentage of sperm with intact acrosome (%). VIA: percentage of

viable sperm (%). ATP/SPZ: ATP content per sperm (amol sperm-1). VCL: curvilinear velocity (μm s-1). VSL: straight-

line velocity (μm s-1). VAP: average path velocity (μm s-1).
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PC1 PC2 PC1 PC2
Curvilinear velocity 0.5394 0.8124 0.8779 0.4787

Straight-line velocity 0.2809 -0.5495 0.9454 -0.3238
Average path velocity 0.6096 -0.1952 0.9922 -0.1150

Variables
Factor loadings Factor correlation

Supplemental Table S2. Loadings and correlation of sperm traits with
principal components of sperm velocity in muroid rodent species. Values
presented are Pearson’s correlation coefficients. Significant correlation
coefficients (p < 0.05) are shown in bold. PC1: principal component 1.
PC2: principal component 2. Variable values were Log10 transformed prior
to analysis.
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Microtus arvalis
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Micromys minutus

Mus caroli

Mus spretus

Mus musculus musculus

Mus musculus castaneus

Mus musculus domesticus

Mus spicilegus

Mus macedonicus

Mus pahari

Mus minutoides

Mastomys natalensis

Apodemus sylvaticus

Supplemental Figure S1. Phylogenetic tree for the species analyzed in this study. 
Relationships were inferred from Fabre et al., BMC Evolutionary Biology 12: 88 [73] 
and Macholán et al., Evolution of the House Mouse, Cambridge University 
Press, Cambridge [74].
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Supplemental Figure S2. Relationship between overall sperm velocity 
assessed in freshly collected sperm (0 h) and after 3 h of incubation in 
mT-H medium in 18 rodent species. Overall sperm velocity is presented 
as the score of the first principal component (PC) of an analysis including 
curvilinear velocity, straight-line velocity, and average-path velocity. The 
black circle represents Mus minutoides, an outlier in the relationship.
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Supplemental Figure S3. Relationships between relative testes mass and sperm velocity 
parameters after 0 and 3 h of incubation in mT-H medium, and proportional differences over time 
(between 0 and 3 h) in sperm velocity parameters.

BOR Papers in Press. Published as DOI: 10.1095/biolreprod.114.127621. 

Copyright 2015 by The Society for the Study of Reproduction.



Time Dependent variable Independent variable Slope R 2 t P λ r CL(-) CL(+)
0h Curvilinear velocity Body mass -0.0639 0.27 -1.3477 0.1978 0.999*,ns -0.3286 -0.8474 0.1648

Testes mass 0.0960 2.3323 0.0340 0.5159 0.0646 1.0768

Straight-line velocity Body mass -0.1597 0.17 -1.4568 0.1658 0.963*,ns -0.3521 -0.8739 0.1383
Testes mass 0.1598 1.6935 0.1110 0.4006 -0.0817 0.9305

Average path velocity Body mass -0.1533 0.26 -1.9709 0.0675 0.999*,ns -0.4535 -0.9952 0.0169
Testes mass 0.1474 2.1827 0.0454 0.4910 0.0313 1.0434

3h Curvilinear velocity Body mass -0.0950 0.82 -1.5607 0.1409 <0.001ns,* -0.3850 -0.9297 0.1180
Testes mass 0.2464 6.4781 <0.0001 0.8659 0.7928 1.8404

Straight-line velocity Body mass -0.2407 0.32 -1.4140 0.1792 0.766ns,ns -0.3535 -0.8933 0.1544
Testes mass 0.3019 2.5392 0.0236 0.5615 0.1112 1.1589

Average path velocity Body mass -0.1807 0.44 -1.5460 0.1444 0.374ns,ns -0.3819 -0.9261 0.1216
Testes mass 0.2579 3.1947 0.0065 0.6493 0.2503 1.2980

∆ 0h - 3 h Curvilinear velocity Body mass -0.0141 0.45 -0.4042 0.6922 0.999*,ns -0.1074 -0.6317 0.4160
Testes mass 0.0674 2.8673 0.0124 0.6083 0.1823 1.2300

Straight-line velocity Body mass -0.0541 0.32 -0.8242 0.4237 <0.001ns,* -0.2151 -0.7424 0.3053
Testes mass 0.0934 2.2758 0.0391 0.5197 0.0520 1.0997

Average path velocity Body mass -0.0146 0.39 -0.3002 0.7684 <0.001ns,* -0.2767 -0.8079 0.2397
Testes mass 0.0689 2.2737 0.0393 0.6395 0.2335 1.2811

Supplemental Table S3. Relations between relative testes mass and sperm velocity parameters after 0 and 3 hours of
incubation in mT-H medium, and proportional differences over time (between 0 and 3h) in sperm velocity parameters.
Phylogenetically controlled multiple regression analyses (PGLS). Superscripts following the λ value indicate significance
levels (n.s. p>0.05; *p<0.05) in likelihood ratio tests against models with λ = 0 (first position) and λ = 1 (second position).
Effect size r calculated from the t values and the non-central 95% confidence limits (CLs) for the z -transformed value of r
are presented. Confidence intervals excluding 0 indicate statistically significant relationships. P -values and CL that indicate
statistical significance are shown in bold. 0h: freshly collected sperm, 3h: sperm incubated for 3 hours in mt-H medium, ∆ 0h -
3h: over-time proportional differences between freshly collected sperm and sperm incubated for 3h in mT-H medium.
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