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Abstract	

Ecological	transformations	derived	from	habitat	fragmentation	have	led	to	

increased	 threats	 to	 above‐ground	 biodiversity.	 However,	 the	 impacts	 of	

forest	fragmentation	on	soils	and	their	microbial	communities	are	not	well	

understood.	We	examined	the	effects	of	contrasting	fragment	sizes	on	the	

structure	 and	 functioning	 of	 soil	 microbial	 communities	 from	 holm	 oak	

forest	patches	in	two	bio‐climatically	different	regions	of	Spain.	We	used	a	

microcosm	 approach	 to	 simulate	 the	 annual	 summer	 drought	 cycle	 and	

first	 autumn	 rainfall	 (rewetting),	 evaluating	 the	 functional	 response	 of	 a	

plant‐soil‐microbial	system.	Forest	fragment	size	had	a	significant	effect	on	

physicochemical	characteristics	and	microbial	functioning	of	soils,	although	

the	 diversity	 and	 structure	 of	 microbial	 communities	 were	 not	 affected.	

The	response	of	our	plant‐soil‐microbial	systems	to	drought	was	strongly	

modulated	by	the	bioclimatic	conditions	and	the	fragment	size	from	where	

the	soils	were	obtained.	Decreasing	fragment	size	modulated	the	effects	of	

drought	 by	 improving	 local	 environmental	 conditions	 with	 higher	 water	

and	nutrient	availability.	However	this	modulation	was	stronger	for	plant‐

soil‐microbial	systems	built	with	soils	from	the	northern	region	(colder	and	

wetter)	 than	 for	 those	built	with	 soils	 from	 the	 southern	 region	 (warmer	

and	 drier)	 suggesting	 that	 the	 responsiveness	 of	 the	 soil‐plant‐microbial	

system	 to	 habitat	 fragmentation	 was	 strongly	 dependent	 on	 both	 the	

physicochemical	characteristics	of	soils	and	the	historical	adaptation	of	soil	

microbial	 communities	 to	 specific	 bioclimatic	 conditions.	 This	 interaction	

challenges	 our	 understanding	 of	 future	 global	 change	 scenarios	 in	

Mediterranean	 ecosystems	 involving	 drier	 conditions	 and	 increased	

frequency	of	forest	fragmentation.	
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Introduction	

The	 impacts	 of	 global	 change	 disturbances	 are	 directly	 responsible	 for	

increased	 rates	 of	 biodiversity	 loss,	which	 are	 altering	 the	 functioning	 of	

ecosystems	and	affecting	important	ecosystem	services	(IPCC,	2007).	In	the	

Mediterranean	basin,	 forest	 fragmentation,	 resource	overexploitation	 and	

poor	 management	 are	 the	 main	 drivers	 of	 forest	 degradation,	 and	 their	

impacts	are	expected	to	be	aggravated	by	climate	change	(Valladares	et	al.,	

2014).	 Habitat	 fragmentation	 negatively	 affects	 population	 size	 and/or	

diversity	of	organisms	 in	 large	habitats	 (reviewed	by	Didham	et	al.	1996,	

Fischer	 and	 Lindenmayer	 2007),	 although	 it	 is	 still	 not	 clear	 if	 it	 has	 a	

consistent	 effect	 on	 biodiversity	 loss	 (Fahrig,	 2003),	 since	 neutral	 (e.g.	

microorganisms;	Rantalainen	et	al.	2008)	or	even	positive	effects	 (Dooley	

and	 Bowers,	 1998;	 Díaz	 et	 al.,	 1999)	 have	 also	 been	 reported.	 It	 is	 well	

known	that	consequences	of	habitat	fragmentation	are	strongly	dependent	

upon	the	size	of	the	remaining	area	(Fernández	et	al.,	2002;	Lindenmayer	

and	 Fischer,	 2006),	 because	 of	 the	 complex	 processes	 related	 to	 edge	

effects	 (Fernández	 et	 al.,	 2002),	 and	 resource	 constraints	 in	 smaller	

fragments	 (Zanette	 et	 al.,	 2000).	 Most	 Mediterranean	 ecosystems	 have	

historically	 suffered	 major	 transitions	 involving	 fragmentation	 due	 to	

agricultural	 practices	 that	 transform	 the	 landscape	 dominated	 by	 forest	

and	shrublands	into	isolated	patches	(Valladares	et	al.,	2004),	in	a	process	

that	 is	 expected	 to	 become	 more	 frequent	 over	 the	 next	 century	

(Millennium‐Ecosystem‐Assessment,	 2005).	 Evidence	 of	 fragmentation	

effects	 in	 Mediterranean	 ecosystems	 has	 been	 reported	 for	 a	 range	 of	

different	organisms	such	as	birds,	butterflies,	plants	and	microorganisms,	

and	includes	the	disruption	of	biotic	interactions	such	as	pollination,	seed	

dispersal	and	herbivory	(Santos	and	Tellería,	1998;	Díaz	et	al.,	1999;	Díaz	

and	Alonso,	2003;	Lázaro‐Nogal	et	al.,	2012;	Valladares	et	al.,	2014).	

The	 global	 climate	 is	 expected	 to	 change	 rapidly	 and	 deeply	 over	

the	next	century	(IPCC,	2007).	Particularly	 in	the	Mediterranean	basin,	an	

increase	in	temperature	of	1.8	°C	is	predicted	for	the	next	40	years,	coupled	
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with	a	reduction	in	rainfall	frequency	of	5‐10%	with	more	intense	droughts	

(IPCC,	 2007).	 The	 functioning	 of	 Mediterranean	 ecosystems	 is	 largely	

governed	by	the	soil	water	regime	(Rambal	et	al.,	2003;	Barba	et	al.,	2013)	

and	 reductions	 in	 soil	 water	 are	 very	 likely	 to	 cause	 a	 concomitant	

reduction	in	carbon	and	water	fluxes	(Orchard	and	Cook,	1983;	Reichstein	

et	 al.,	 2002;	 Barba	 et	 al.,	 2013).	 The	 increased	 intensity	 of	 droughts	 in	

recent	 decades	 has	 led	 to	 the	 reduction	 of	 tree	 productivity	 in	 the	

Mediterranean	Basin	(Ogaya	and	Peñuelas,	2004;	Barba	et	al.,	2013),	and	to	

forest	 decline	 in	 some	 areas	 (Hereş	 et	 al.,	 2012).	 These	 global	 changes	

directly	affect	plant	communities,	but	also	simultaneously	and	interactively	

affect	 the	 associated	 belowground	 microorganisms	 (Castro	 et	 al.,	 2010).	

The	 changes	 in	 precipitation	 patterns	 can	 also	 affect	 soil	 nutrients	 and	

carbon	 cycling	 by	 impacting	 upon	 the	 activity	 of	 microbial	 communities	

(Barnard	 et	 al.,	 2013),	 although	 a	 considerable	 debate	 about	 how	 water	

stress	 affects	 soil	 microbial	 communities	 and	 their	 overall	 activity	 still	

exists	(Williams,	2007;	Castro	et	al.,	2010;	Treseder	et	al.,	2012).	Relative	

shifts	 in	 soil	 microbial	 communities	 depends	 on	 their	 different	 inherent	

resistances	to	drought	(Schimel	et	al.,	2007),	with	soil	bacterial	community	

generally	 considered	 more	 sensitive	 than	 the	 fungal	 community	

(Drenovsky	et	al.,	2004;	Williams,	2007;	Castro	et	al.,	2010;	Curiel	Yuste	et	

al.,	2011;	Barnard	et	al.,	2013).		

Soils	 and	 their	microorganisms	 are	 essential	 for	 the	 performance	

and	 regulation	 of	 global	 biogeochemical	 cycles	 (Wardle	 et	 al.,	 2004;	 de	

Vries	 et	 al.,	 2012;	 Bahn	 et	 al.,	 2013);	 their	 activity	 is	 controlled	 by	 both	

biotic	 and	 abiotic	 factors	 such	 as	 quantity	 and	 quality	 of	 litter	 inputs,	

temperature,	 and	 moisture	 (Drenovsky	 et	 al.,	 2004;	 Castro	 et	 al.,	 2010;	

Curiel	 Yuste	 et	 al.,	 2011;	 Evans	 et	 al.,	 2013;	 Göransson	 et	 al.,	 2013;	

Fuchslueger	et	al.,	2014).	Changes	in	soil	communities	and	the	loss	of	soil	

biodiversity	 threaten	 the	 multifunctionality	 and	 sustainability	 of	

ecosystems,	 with	 negative	 impact	 on	 plant	 diversity	 and	 nutrient	 cycling	

and	 retention	 (Wagg	 et	 al.,	 2014),	 whereas	 a	 more	 diverse	 microbial	
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community	 could	 be	 associated	 with	 higher	 resistance	 to	 disturbance	

(Allison	 and	 Martiny,	 2008).	 In	 parallel,	 microbial	 processes	 have	 been	

related	 to	 variations	 in	 ecosystem	 properties,	 such	 as	 tree	 productivity	

(Wardle	et	al.,	2004;	Allison	and	Martiny,	2008;	Grigulis	et	al.,	2013).		

Most	 studies	 of	 habitat	 fragmentation	 have	 focused	 on	 above‐

ground	 organisms,	 while	 only	 a	 few	 have	 addressed	 effects	 of	

fragmentation	on	soil	physicochemical	characteristics,	functioning	(Lázaro‐

Nogal	 et	 al.,	 2012),	 or	 microbial	 structure	 (Rantalainen	 et	 al.,	 2008).	 In	

Mediterranean	 gypsic	 soils,	 Lázaro‐Nogal	 et	 al.	 (2012)	 found	 that	 the	

synergistic	 interaction	between	habitat	 fragmentation	and	habitat	 quality	

was	 negatively	 correlated	 with	 soil	 nutrients	 and	 enzymatic	 activity.	

Results	 of	 simulated	 fragmentation	 from	 Rantalainen	 et	 al.	 (2008)	

suggested	 that	 habitat	 fragmentation	 did	 not	 have	 a	 direct	 effect	 on	 soil	

microorganisms.	 However,	 the	 effects	 of	 habitat	 fragmentation	 on	 the	

plant‐soil‐microorganism	 system	 remain	 largely	 unknown	 and	 especially	

their	interaction	with	drought.		

Our	 general	 objective	 was	 to	 study	 the	 impact	 of	 drought	 and	

rewetting	 on	 the	 structure	 and	 functioning	 of	 microbial	 communities	 in	

soils	 from	 two	climatically	different	 regions	and	 from	 forest	 fragments	of	

contrasting	 sizes	 in	 a	 microcosm	 experiment.	 To	 assess	 potential	

interactions	 between	 fragmentation	 and	 climate,	 we	 explored	 the	

physiological	 responses	 to	 drought	 of	 oak	 seedlings	 grown	 in	 soils	 from	

contrasting	 fragment	 sizes.	 First,	 we	 hypothesized	 that	 physicochemical	

characteristics	 of	 soils	 and	 their	microbial	 biomass	would	differ	 in	 forest	

fragments	of	contrasting	sizes.	Second,	we	hypothesized	that	the	functional	

response	 of	 the	 plant‐soil‐microbial	 system	 to	 climatic	 simulations	

(drought	 and	 rewetting)	 would	 be	 determined	 by	 the	 particular	 initial	

microbial	communities	and	biogeochemical	properties	associated	with	the	

size	of	the	fragment.		
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Material	and	methods	

Soil	provenance	

We	 selected	 three	 large	 (>	 10	 ha)	 and	 three	 small	 (<	 0.5	 ha)	 holm‐oak	

(Quercus	 ilex	 L.	 ssp.	 ballota	 (Desf.)	 Samp;	 Fagaceae)	 forest	 fragments,	

resulting	 from	the	conversion	to	an	agricultural	 landscape,	 located	 in	 two	

climatically	different	regions	of	central	Spain	(12	forest	fragments	in	total).	

In	the	northern	region	(Lerma;	41°58’‐42°02’N,	03°45’‐03°52’W;	930m	asl)	

the	 studied	 fragments	 were	 in	 an	 area	 of	 1500	 ha,	 they	 showed	 similar	

characteristics	 in	spatial	structure	and	vegetation,	and	were	separated	by	

at	least	50	m	to	a	maximum	of	11	km	(Fig.	1.5a	in	Chapter	1).	This	region	is	

characterized	 by	 554	 mm	 mean	 annual	 precipitation	 and	 11	 °C	 mean	

annual	 temperature	(Ninyerola	et	al.,	2005).	The	dominant	 tree	species	 is	

also	 holm	 oak,	with	 isolated	 Lusitanian	 oak	Quercus	 faginea	 and	 Spanish	

juniper	 Juniperus	thurifera	L.	and	understory	shrubs	typical	of	wetter	and	

cooler	 supramediterranean	 localities	 (e.g.	 Cistus	 laurifolius	 L.,	 Genista	

scorpius	 (L.)	DC,	Thymus	 zygis	Loefl.	 ex	 L.;	 see	 Santos	 and	Tellería,	 1998;	

Díaz	et	al.,	1999,	for	further	details).	In	the	southern	region	(Quintanar	de	

la	 Orden;	 39°30’‐39°35’N,	 02°47’‐02°59’W;	 870	 m	 asl),	 the	 studied	

fragments	were	in	an	area	of	1000	ha,	they	showed	similar	characteristics	

in	spatial	structure	and	vegetation,	and	were	separated	by	at	least	50	m	to	

a	maximum	of	8	km	(Fig.	1.5b	in	Chapter	1).	This	region	is	characterized	by	

434	mm	mean	 annual	 precipitation	 and	 14	 °C	mean	 annual	 temperature	

(Ninyerola	et	al.,	2005).	The	dominant	tree	is	the	holm	oak	Q.	ilex	with	the	

understory	 composed	 of	 shrubby	 kermes	 oak	 Quercus	 coccifera	 L.	 and	

shrub	species	typical	of	xeric	mesomediterranean	localities	(e.g.	Asparagus	

acutifolius	 L.,	 Cistus	 ladanifer	 L.,	Rhamnus	 alaternus	 L.,	Rhamnus	 lycioides	

Brot.;	 see	 Santos	 and	 Tellería,	 1998;	 Díaz	 and	 Alonso,	 2003	 	 for	 further	

details).	 Both	 sites	 are	 characterized	 by	 a	 pronounced	 summer	 drought	

period,	usually	 lasting	 from	July	to	September	(Fig.	1.7	 in	Chapter	1).	The	
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climatic	characteristics	of	 the	 two	study	regions	are	representative	of	 the	

mesomediterranean	 and	 supramediterranean	 bioclimatic	 zones	 of	 the	

Iberian	Peninsula,	respectively	(Rivas‐Martínez,	1981).	The	dominant	soils	

are	classified	as	Cambisols	(calcics)	(WRB,	2007),	sandy	loam	texture,	with	

17%	sand,	39%	silt	and	44%	clay	for	the	southern	region	and,	11%	sand,	

42%	silt	and	47%	clay	for	the	northern	region.	In	both	regions,	the	original	

forest	 is	 now	 highly	 fragmented	 due	 to	 land	 conversion	 for	 intensive	

cultivation	of	cereal	crops,	legumes,	and	some	grapes	(Santos	and	Tellería,	

1998;	Díaz	and	Alonso,	2003).	Remnants	of	forests	were	left	between	crops	

and	now	are	 imbibed	 in	 the	agricultural	matrix,	yet	clearly	differentiated.	

Trees	 within	 large	 fragments	 were	 homogeneously	 distributed	 with	 low	

tree	 density,	 while	 the	 small	 fragments	 consist	 of	 at	 least	 four	 trees	 and	

with	a	high	tree	density	(authors’	personal	observations).	

Soil	sampling	

We	 selected	 four	 trees	 with	 basal	 area	 of	 ~500‐600	 cm2	 within	 each	

fragment	and	region	with	six	fragments	in	each	region,	making	48	trees	in	

total.	Four	soil	samples	were	taken	in	four	orientations	under	the	canopy	of	

each	tree	to	a	depth	of	0‐15	cm,	and	combined	to	a	single	sample	per	tree.	

Soils	were	 collected	 at	 the	 end	of	 the	dry	 season.	Once	 in	 the	 laboratory,	

soils	were	sieved	(<	2	mm),	and	air‐dried	for	two	weeks.	Acorns	of	Q.	 ilex	

were	collected	from	the	southern	region.		

Soil	 physicochemical	 characteristics	 and	 microbial	 biomass	 were	

measured	 in	all	 replicates	of	each	 fragment	size.	 Since	 the	 level	of	 spatial	

heterogeneity	 of	 soils	 at	 very	 small	 spatial	 scales	 would	 have	 blurred	

functional	 differences	 among	 fragments	 of	 contrasting	 size,	 and	 due	 to	

practical	 limitations	 of	 the	 experiment,	 conditions	 were	 standardised	 by	

combining	soils	into	composite	samples	of	small	and	large	fragment	types	

from	 each	 bioclimatic	 region;	 thus	 we	 finally	 obtained	 a	 total	 of	 four	
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treatments:	 two	 factors	 (region	 and	 fragment	 size)	 with	 two	 levels	 each	

(region:	northern	and	southern;	fragment	size:	large	and	small).	

Soil	abiotic	characteristics	and	microbial	biomass	

Physicochemical	 soil	 characteristics	 and	 microbial	 biomass	 were	

determined	 on	 air‐dried	 soils,	 for	 all	 48	 soil	 samples.	 Water	 holding	

capacity	of	 soils	was	determined	by	soaking	 the	 samples	 in	water	 for	2	h	

and	then	draining	for	24	h	in	a	humid	environment.	Soil	aggregate	stability	

was	determined	on	2	mm	aggregates	by	a	water‐drop	test	(Imeson	and	Vis,	

1984)	using	at	least	20	aggregates	per	replicate.	Soil	pH	was	determined	in	

a	water	slurry	(1:5	w/v	in	H2O);	soil	organic	matter	(SOM)	was	assessed	by	

loss	 on	 ignition	 at	 400	 °C	 for	 4	 hours.	 Organic	N	was	 determined	 by	 the	

Kjeldahl	method	 (Bremner,	 1960).	Available	phosphorus	was	determined	

by	the	Burriel‐Hernando	extraction	method	(Burriel	and	Hernando,	1950),	

and	K+,	Ca2+,	Na+	and	Mg2+	were	extracted	with	ammonium	acetate	(1M,	pH	

7)	 and	 subsequently	 determined	 by	 inductively	 coupled	 plasma	

spectrometry	 (Optima	 4300DV,	 Perkin‐Elmer,	 Waltham,	 USA).	 Microbial	

biomass	 carbon	was	determined	by	 the	 chloroform	 fumigation‐extraction	

method	modified	by	Gregorich	et	al.(1990).		

Experimental	design	

Two‐litre	pots	were	filled	with	a	mixture	of	5:1	soil:perlite	(v:v).	Randomly	

selected	holm	oak	acorns	 from	the	southern	region	were	soaked	 in	water	

for	24	h	before	planting.	Pots	were	randomly	arranged	in	 the	greenhouse	

(25	 °C	 and	 40	 %	 air	 humidity),	 and	 regularly	 watered	 to	 field	 capacity	

based	on	weight	loss	(between	35‐45%	soil	water	content).	Other	seedlings	

that	 eventually	 germinated	 were	 carefully	 removed	 from	 the	 pots.	 We	

established	 three	 experimental	 periods	 during	 the	 dry‐rewetting	

simulation:	1)	pre‐drought	with	seedlings	growing	in	well‐watered	pots	for	

80	 days;	 2)	 drought	 for	 55	 days	with	 no	water	 supply	 (the	 drought	was	
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terminated	when	seedlings	started	to	die);	and	3)	two	days	after	rewetting,	

aboveground	 biomass	 was	 harvested	 and	 pots	 were	 watered	 to	 field	

capacity.	We	then	measured	the	water	potential	of	the	harvested	seedlings.	

Intermediate	non‐intrusive	measures	were	carried	out	as	indicated	below.		

Seedling	growth	and	physiological	variables	

Seedling	 height	 and	 diameter	 were	 recorded	 every	 fifteen	 days	 (seven	

seedlings	 for	 southern	 large	 and	 northern	 small	 fragments,	 and	 eight	

seedlings	 for	 southern	 small	 and	 northern	 large	 fragments;	 30	 in	 total).	

Physiological	variables	were	recorded	at	 the	same	time	 interval:	 stomatal	

conductance	 (gs)	 was	 measured	 with	 a	 leaf	 porometer	 SC‐I	 (Decagon,	

Pullman,	USA),	during	the	period	of	maximal	conductance	(10:00‐12:00	h).	

Predawn	and	midday	maximum	photochemical	efficiency	of	photosystem	II	

(Fv/Fm)	were	measured	with	a	portable	pulse‐modulated	fluorometer	FMS2	

(Hansatech,	Norfolk,	UK),	for	which	the	leaves	were	previously	held	in	the	

leaf	clip	holder	for	30	min.	Final	Specific	Leaf	Area	(SLA)	was	determined	

as	leaf	area	(determined	with	an	optical	scanner)	per	gram	dry	mass.	Final	

predawn	stem	water	potentials	(ΨPD)	were	determined	with	a	Scholander	

pressure	chamber	(Scholander	et	al.,	1965).	

Soil	microbial	community	activity	and	fingerprinting	profiles	

Three	 pots	 per	 treatment	 were	 selected	 for	 collection	 of	 soil	 samples	 at	

pre‐drought,	 drought	 and	 after	 rewetting	 (12	 soil	 samples	 per	 condition;	

36	in	total),	which	were	stored	at	4	°C	for	a	maximum	of	two	weeks	or	‐20	

°C	for	subsequent	enzymatic	and	molecular	analyses,	respectively.	The	acid	

phosphatase	activity	(phosphoric	monoester	hydrolases,	EC	3.1.3.2)	assay	

was	based	on	the	detection	of	p‐nitrophenol	(PNP)	released	after	0.5	g	of	

soil	was	incubated	in	0.1	M	maleate	buffer	at	pH	6.5	(37	°C,	90	min)	with	p‐

nitrophenyl	 phosphate	 disodium	 as	 substrate	 (Tabatabai,	 1994).	 The	

urease	 activity	 (amidohydrolase,	 EC	 3.5.1.5)	 assay	 was	 based	 on	 the	
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detection	of	NH4+	released	after	0.5	g	of	soil	was	incubated	in	1M	phosphate	

buffer	at	pH	7	(30	°C,	90	min)	with	1M	urea	as	a	substrate	(Nannipieri	et	al.,	

1980).	

Community	structure	of	soil	 fungal	and	bacterial	communities	was	

assessed	 by	 the	 DNA	 community	 fingerprinting	 technique	 of	 denaturing	

gradient	 gel	 electrophoresis	 (DGGE).	 Soil	 DNA	 was	 extracted	 with	 the	

MoBio	 Powersoil	 DNA	 isolation	 kit	 (Solana	 Beach,	 USA),	 and	 yields	

assessed	by	electrophoresis	at	80	V	on	a	1.2	%	agarose	gel.	For	 fungi,	 the	

internal	 transcribed	 spacer	 nrDNA	 region	 ITS‐1	was	 PCR‐amplified	 using	

the	 primer	 pair	 ITS1‐F/ITS2	 (Gardes	 and	 Bruns,	 1993).	 The	 universal	

primers	338F/518R	were	used	for	amplification	of	the	bacterial	16S	rRNA	

gene	(Muyzer	et	al.,	1993).	A	GC	clamp	was	added	to	the	5’	end	of	forward	

fungal	 (ITS1‐F)	 and	 bacterial	 (338F)	 primers	 to	 stabilize	 the	 melting	

behaviour	of	 the	DNA	fragments	(Muyzer	et	al.,	1993).	PCRs	were	carried	

out	 on	 a	 PTC‐200	Thermocycler	 (MJ	Research,	Massachusetts,	USA),	with	

50	μl	of	reaction	mixture	containing	10x	NH4	reaction	buffer,	2	and	1.5	mM	

MgCl2	(for	fungi	and	bacteria,	respectively),	0.2	mM	total	dNTPs,	2.5	U	Taq	

(Bioline,	 London,	 UK),	 1	 μM	 of	 each	 primer,	 0.5	 μl	 of	 10	 mg	ml‐1	 bovine	

serum	 albumin	 (BSA)	 and	 50	 ng	 of	 template	 DNA,	 determined	 using	 a	

Nanodrop	2000c	(Thermo	Fisher	Scientific,	Wilmington,	USA).	PCR	cycling	

parameters	were:	94	°C	for	5	min,	followed	by	35	cycles	of	94	°C	for	30	s,	

55	°C	for	30	or	45	s,	and	72	°C	for	30	or	45	s,	with	a	final	extension	at	72	°C	

for	 5	 or	 10	 min	 (for	 fungi	 and	 bacteria,	 respectively).	 Negative	 controls	

(with	 ultrapure	water	 instead	 of	DNA)	were	 included	 in	 each	PCR.	DGGE	

was	carried	out	on	a	DCode	universal	mutation	detection	system	(Bio‐Rad,	

Hemel	Hempstead,	UK);	 using	10	%	polyacrilamide	 gels,	with	denaturant	

urea‐formamide	gradients	of	10‐50	%	for	fungi	(Anderson	et	al.,	2003)	and	

40‐55	%	for	bacteria	(Grossman	et	al.,	2010),	with	the	concentrations	of	7	

M	 urea	 and	 40	 %	 formamide	 (v/v)	 for	 the	 100	 %	 denaturant.	
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Electrophoreses	were	 run	 at	 60	 °C	 75	V	 for	16	h	 and	14	h,	 for	 fungi	 and	

bacteria	 respectively,	 loading	 equal	 volumes	 of	 amplified	DNA.	Gels	were	

stained	with	SYBR	Gold	nucleic	 acid	 stain	 (Molecular	Probes,	 Leiden,	The	

Netherlands)	 and	 digitized	 using	 an	 InGenius3	 Imaging	 System	 and	

Genesnap	6.08	 (Syngene,	Cambridge,	UK).	DGGE	 fingerprint	profiles	were	

analyzed	with	 a	KODAK	1D	 Image	Analysis	 software	 (Eastman	Kodak	Co.	

2000;	 Rochester,	 NY,	 USA).	 Bands	 were	 adjusted	 with	 a	 Gaussian	model	

with	 a	 profile	 width	 of	 80%.	 Noise	 was	 eliminated	 by	 removing	 bands	

below	 a	 10%	 band	 peak	 intensity	 threshold.	 Species	 delimitation	 can	 be	

contended,	 especially	 taking	 into	 account	 the	 inherent	 limitations	 of	 the	

different	analytical	methods,	 such	as	 in	 the	case	of	DGGE	where	a	unique	

band	does	not	necessarily	represent	a	unique	species	and	one	species	can	

be	 represented	 by	 multiple	 bands	 on	 the	 gel	 (Cleary	 et	 al.,	 2012;	 Vaz‐

Moreira	 et	 al.,	 2013).	 Consequently,	 each	 band	 of	 the	 DGGE	 profile	 is	

hereafter	referred	to	as	an	operational	taxonomic	unit	(OTU)	rather	than	a	

species.	Although	this	is	a	simplification	of	the	real	taxonomic	diversity	of	

soil	 microbes,	 it	 allowed	 us	 to	 comparatively	 investigate	 differences	 and	

changes	in	the	microbial	community	structure	with	respect	to	the	studied	

factors.	Gel	bands	were	analyzed	by	using	internal	reference	bands	(bands	

present	in	all	lanes),	and	known	reference	markers	loaded	in	lanes	at	either	

side	 of	 the	 gel.	 The	 number	 and	 pixel	 intensity	 of	 bands	 in	 a	 particular	

sample	were	considered	comparative	proxies	of	richness	and	proportional	

abundance	 of	 fungal	 or	 bacterial	 OTUs,	 respectively	 (Cleary	 et	 al.,	 2012).	

Similar	 analysis	 of	 DGGE	 banding	 patterns	 have	 been	 previously	 used	 in	

other	 studies	 (Anderson	et	 al.,	 2003;	Farnleitner	 et	 al.,	 2004;	Gafan	et	 al.,	

2005;	Cleary	et	al.,	2012;	Suzuki	et	al.,	2012;	Vaz‐Moreira	et	al.,	2013).	

Plant‐soil	system	CO2	exchange	

Net	ecosystem	exchange	(NEE),	defined	as	the	net	balance	between	Gross	

Primary	 Productivity	 (GPP)	 and	 Ecosystem	 Respiration	 (Reco),	 was	
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measured	 for	 each	 individual	 plant‐soil	 microcosm	 using	 a	 non‐steady‐

state	dynamic	(closed	dynamic)	approach.	For	that	purpose,	a	rectangular	

plexiglas	chamber	with	a	base	of	0.01	m2	and	a	volume	of	0.0024	m3	with	a	

small	fan	to	mix	the	air	internally	was	built	to	fit	over	the	microcosms	(Fig.	

S4.1).	The	change	in	CO2	concentrations	was	measured	with	a	CO2	infrared	

gas	 analyzer	 (EGM‐4,	 PP‐systems,	 MA,	 USA).	 The	 chamber	 was	 covered	

with	 aluminium	 foil	 to	 determine	 ecosystem	 respiration	 (Reco)	 including	

both	 autotrophic	 (plants)	 and	 heterotrophic	 (microorganisms)	

components.	Respiration	rates	were	measured	in	both	the	transparent	and	

the	 aluminium	 chamber	 for	 52	 s	 before	 the	 simulated	 drought	 and	 then	

every	 15	 days.	 During	 the	 drought	 simulation,	 diurnal	 CO2	 exchange	

measurements	were	taken	in	all	microcosms	four	times	per	day	(7:00‐9:00	

h,	 11:00‐13:00	 h;	 14:00‐16:00	 h;	 18:00‐20:00	 h).	 Soil	 respiration	 was	

determined	 3,	 24	 and	 48	 h	 after	 rewetting,	 only	 at	 14:00‐16:00	 h,	which	

was	the	period	where	the	maximum	activity	was	previously	observed.	

NEE	 (transparent	 chamber)	 and	 Reco	 (opaque	 chamber)	 were	

determined	by	calculating	the	CO2	increase	in	the	closed	loop	(see	Fig.	S4.1)	

in	 the	 respective	 measurements	 according	 to	 the	 formula	 (Street	 et	 al.,	

௖ܫ	:(2007 ൌ
ρ∗௏∗ቀ

೏಴
೏೟
ቁ

஺
	,	where	Ic	is	the	net	CO2	increase	(μmol	m‐2	s−1),		is	air	

density	(mol	m‐3),	V	the	chamber	volume	(m3),	dC/dt	represents	the	slope	

of	CO2	 concentration	 increase	 in	 the	 chamber	over	 time	 (μmol	mol−1	 s−1),	

and	A	 is	the	chamber	surface	area	(m2).	Gross	primary	productivity	(GPP)	

was	 calculated	 by	 subtracting	 Reco	 from	 NEE.	 The	 maximum	 difference	

between	 atmospheric	 (Ca)	 and	 internal	 CO2	 (Ci)	 was	 used	 to	 correct	 for	

chamber	leaks	using	a	linear	equation	(Pérez‐Priego	et	al.,	2010).		

Data	analysis	

The	 effects	 of	 fragment	 size	 (large	or	 small),	 region	 (north	or	 south)	 and	

condition	(pre‐drought,	drought	or	rewetting)	and	their	interactions	were	
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analyzed	by	three‐way	Analysis	of	Variance	(ANOVA),	with	pot	as	a	random	

effect.	The	effect	of	fragment	size	and	region	on	soil	abiotic	characteristics,	

microbial	 biomass	 and	 final	 seedling	 measurements	 (height,	 diameter,	

biomass,	root/shoot	ratio,	SLA,	water	potential)	were	analyzed	by	two‐way	

ANOVAs.	 Repeated‐measures	 ANOVAs	were	 used	 to	 test	 the	 effect	 of	 the	

same	factors	during	the	drought	in	continuously	measured	variables	(plant	

physiology	 and	 soil	 moisture).	 The	 analysis	 of	 survival	 percentages	 was	

carried	out	with	a	Peto	and	Peto	test	using	X2	(Pyke	and	Thompson,	1986).	

The	 diversity	 of	 both	 bacterial	 and	 fungal	 communities	 was	

estimated	 from	 the	 number	 and	 intensity	 of	 bands	 (OTUs).	 Richness	 (S),	

Shannon	 (H’)	 and	 evenness	 (EH)	 diversity	 indexes	 were	 calculated	 as	

follows:	Shannon	ሺܪ′ሻ ൌ 	െ	∑ ൫݊௜ ܰൗ ൯ ∙ ݈݊ ∙ ൫݊௜ ܰൗ ൯ௌ
௜ୀଵ ;	Evenness	ሺܧுሻ ൌ 	

ு′

௟௡ ௌ
	

where	ni	is	the	band	intensity,	N	is	the	sum	of	all	intensities	of	a	sample	and	

S	 is	 the	 number	 of	 bands	 of	 a	 sample	 (richness).	 Principal	 component	

analysis	 (PCA)	 was	 conducted	 to	 reduce	 the	 n‐dimensional	 DGGE	 data	

obtained	for	each	sample	into	linear	axes	explaining	the	maximum	amount	

of	 variance,	 using	 the	 relative	 intensity	 of	 the	 bands	 obtained	 from	 the	

DGGE.	We	used	the	first	two	principal	components	of	the	PCA	to	define	the	

structure	 of	 bacterial	 and	 fungal	 communities	 (Suzuki	 et	 al.,	 2012).	With	

the	scores	of	the	principal	components	of	the	PCA	we	explored	the	effect	of	

soil	moisture	over	the	structure	of	soil	microbial	communities	using	three‐

way	 ANOVAs	 with	 the	 same	 factors	 as	 above,	 except	 the	 condition	 (soil	

moisture)	which	was	tested	by	pairs	(pre‐drought	vs	drought	and	drought	

vs	rewetting).	In	all	cases,	pot	was	used	as	a	random	effect	and	Tukey’s	test	

was	 used	 for	 post‐hoc	 multiple	 comparisons	 to	 determine	 significant	

differences.	

We	performed	 two	 correlation	 analyses:	 1)	Pearson’s	 correlations	

(calculated	to	 investigate	the	univariate	relations	between	variables);	and	

2)	 stepwise	multiple	 regressions	 to	 study	which	measured	variables	 best	
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explained	 the	microbial	 diversity	 and	 variations	 in	 community	 structure.	

To	perform	stepwise	multiple	regressions	first	we	reduced	the	number	of	

explanatory	variables	to	four,	eliminating	redundant	variables	(correlation	

among	 explanatory	 variables;	 see	 Table	 S4.1),	 and	 by	 choosing	 those	

variables	 that	 generated	 the	 highest	 Pearson’s	 coefficients.	 A	 sequential	

Bonferroni	correction	was	used	 to	account	 for	multiple	comparisons	(Hill	

and	Lewicki,	2005).	Simple	linear	regressions	were	run	to	analyze	moisture	

sensitivity	of	carbon	fluxes.	All	variables	were	tested	for	normality,	and	log	

transformations	were	applied	when	required	(GPP,	Reco	and	soil	moisture),	

prior	to	analyses.	STATISTICA	8.0	(StatSoft,	Inc.	2007;	Tulsa	OK,	USA)	was	

used	for	performing	all	analyses.	
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Results	

Soil	characteristics	

In	general,	the	physicochemical	characteristics	of	soils	were	highly	

affected	 by	 fragment	 size	 and	 less	 by	 bioclimatic	 region	 (i.e.	 northern	 or	

southern).	Soils	from	smaller	fragments	showed	higher	water	holding	and	

cation	 exchange	 capacities,	 as	 well	 as	 higher	 Mg2+,	 Ca2+	 and	 Na+	

concentrations	 compared	 with	 soils	 from	 larger	 fragments	 (Table	 4.1).	

Concentration	of	SOM,	nitrogen	and	phosphorus	were	higher	in	soils	from	

small	 than	 from	 large	 fragments,	 and	 also	 higher	 in	 the	 northern	 region	

compared	to	the	southern	one;	whereas	K+	was	higher	in	small	 fragments	

and	 in	 the	 southern	 region	 (Table	 4.1).	 Soils	 from	 the	 northern	 region	

presented	 a	 significantly	 less	 alkaline	 pH	 and	 more	 stable	 aggregates	 in	

comparison	with	those	from	the	southern	region.	A	significant	 interaction	

between	 fragment	 size	 and	 region	 on	 soil	 microbial	 biomass	 was	 also	

detected	 (Table	 4.1),	 showing	 that	microbial	 biomass	was	 highest	 in	 soil	

from	 large	 fragments	 from	 the	 northern	 region.	 SOM	 was	 strongly	

correlated	with	cation	exchange	capacity,	organic	nitrogen	and	Ca2+	(Table	

S4.1),	as	well	as	with	water	holding	capacity	(R2=0.89	p<0.001).		

During	 the	drought	simulation,	 soils	 from	small	 fragments	of	both	

regions	 showed	higher	 soil	moisture	 (F10,	 260=	 3.7;	p<0.001),	 compared	 to	

soils	 from	 large	 fragments,	 particularly	 those	 from	 the	 northern	 region	

(Fig.	S4.2	and	Table	S4.2).	

Soil	microbial	diversity		

Significant	 interactions	 among	 condition,	 region	 and	 fragment	 size	 was	

observed	in	both	fungal	richness	and	diversity	(Table	S4.3),	mainly	driven	

by	 large	 fragments	 from	 the	 southern	 region	 with	 the	 highest	 values	 of	

both	variables	at	pre‐drought	and	after	rewetting	(Fig.	4.1a	and	b).	

	



CAPÍTULO	4	

139	

Table	4.1.	Physicochemical	characteristics	of	soils	from	two	climatically	different	
regions	 and	 two	 fragment	 sizes	 of	 holm	 oak	 forest	 in	 Spain.	 Data	 =	 mean	 (SE)	
(n=12).	 The	 effect	 of	 factors	 is	 summarized	 on	 the	 left	 of	 the	 table.	 SOM	 =	 soil	
organic	 matter;	 CEC=cation	 exchange	 capacity.	 Significant	 differences	 (P<0.05)	
between	main	effects	are	indicated	with	capital	 letters	(among	region)	and	lower	
case	letters	(among	fragment	size).		

	

Similarly,	significant	 interactions	between	condition,	 region	and	 fragment	

size	 were	 observed	 for	 bacterial	 richness	 and	 between	 condition	 and	

region	 for	bacterial	diversity	 (Table	 S4.3).	Both	 interactions	 showed	very	

similar	patterns:	 a	 significant	decrease	of	bacterial	 richness	and	diversity	

during	 drought,	 and	 a	 partial	 recovery	 after	 rewetting	 (Fig.	 4.1d	 and	 e),	

been	more	evident	in	soils	from	the	northern	region.	

  Northern region Southern region 

 
 

Large 

fragment 

Small 

fragment 

Large 

fragment 

Small 

fragment 

 

 

 

 

 

 

 

Fragment  

effect 

 

 

 

 

Water holding capacity (%) 40.1A,b 

(2.4) 

49.8A,a 

(2.2) 

 38.9A,b 

(0.9) 

45.2A,a 

(1.6) 

CEC (cmolcKg-1) 26.5A,b 

(4.3) 

39.5A,a 

(3.2) 

 27.6A,b 

(1.5) 

35.7A,a 

(2.3) 

Mg2+ (cmolcKg-1) 1.4A,b 

(0.1) 

2.5A,a 

(0.2) 

 1.6A,b 

(0.1) 

3.1A,a 

(0.5) 

Ca2+ (cmolcKg-1) 24.2A,b 

(4.1) 

35.6A,a 

(2.9) 

 24.5A,b 

(1.4) 

30.5A,a 

(1.8) 

Na+ (cmolcKg-1) 0.04A,b 

(0.004) 

0.07A,a 

(0.01) 

 0.05A,b 

(0.003) 

0.07A,a 

(0.01) 

SOM (%) 12.1A,b 

(1.9) 

19.8A,a 

(2.4) 

 10.3B,b 

(0.7) 

14.1B,a 

(1.8) 

N organic (%) 0.4A,b 

(0.1) 

0.8A,a 

(0.1) 

 0.3B,b 

(0.02) 

0.5B,a 

(0.1) 

 

 

 

Region  

effect 

P2O5 (mg Kg-1) 13.8A,b 

(1.0) 

34.4A,a 

(4.2) 

 2.5B,b 

(0.4) 

16.5B,a 

(1.7) 

K+ (cmolcKg-1) 0.9B,b 

(0.14) 

1.7B,a 

(0.1) 

 1.5A,b 

(0.1) 

2.0A,a 

(0.1) 

pH 7.1B,a 

(0.3) 

7.3B,a 

(0.1) 

 7.9A,a 

(0.04) 

7.9A,a 

(0.03) 

Aggregate stability (%) 56.9A,a 

(3.1) 

57.1A,a 

(4.0) 

 47.8B,a 

(3.7) 

49.1B,a 

(2.9) 

 Microbial biomass 

(mg C kg -1) 

1013.4a 

(6 6.9) 

625.1b 

(96.7) 

 621.6b 

(29.6) 

725.4ab 

(41.3) 



HABITAT FRAGMENTATION CAN MODULATE DROUGHT EFFECTS 

140 

Fungal	 evenness	 increased	 significantly	 with	 drought	 (Fig.	 4.1c),	 while	

bacterial	evenness	during	drought	showed	an	increase	only	in	the	northern	

region	(Fig.	4.1f).		

Figure	4.1	Response	of	richness,	Shannon	diversity	and	evenness	of	fungal	(a,	b,	c)	
and	bacterial	(d,	e,	 f)	communities	of	soils	 from	two	climatically	different	regions	
and	two	fragment	sizes	of	Holm	oak	forests	in	Spain,	to	experimental	simulation	of	
drought	 and	 rewetting.	 Grey/white	 bars	 represent	 large/small	 fragments,	
respectively.	 Open/filled	 bars	 represent	 the	 northern	 or	 the	 southern	 region	
respectively.	Data	=	mean	±	SE.	Significant	differences	given	by	post‐hoc	multiple	
comparisons	by	Tukey’s	test	(P<0.05)	of	the	three‐way	ANOVA	are	indicated:	main	
effects	 by	 capital	 letters	 (among	 condition)	 and	 significant	 interaction	 between	
factors	by	lower	case	letters	(triple	in	the	case	of	a,	b	and	d;	condition	x	region	in	
the	case	of	e	and	f;	see	Table	S4.3).	
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The	first	two	PCA	components	explained	20.5	%	of	the	total	variance	in	the	

fungal	 community	 composition	 (Fig.	 4.2a).	 The	 pre‐drought	 fungal	

community	 was	 strongly	 influenced	 by	 region,	 but	 not	 by	 fragment	 size	

(Table	4.2).	A	high	variability	was	observed	in	the	fungal	community	from	

the	 northern	 region	 (Fig.	 4.2a).	 Under	 drought,	 an	 interaction	 between	

drought	 and	 region	 was	 observed	 (Table	 4.2,	 Fig.	 4.2a).	 Once	 soils	 were	

rewetted,	 the	 fungal	 community	 structure	 was	 significantly	 affected	 by	

region	 and	 fragment	 size	 (Table	 4.2,	 Fig.	 4.2a).	 In	 the	 case	 of	 bacterial	

community	composition,	the	first	two	PCA	components	explained	33.2	%	of	

the	total	variance	(Fig.	4.2b).	Neither	region	nor	fragment	size	affected	the	

structure	 of	 the	 pre‐drought	 bacterial	 community	 (Table	 4.2,	 Fig.	 4.2b).	

Both	drought	and	rewetting	led	to	a	significant	separation	of	the	structure	

of	bacterial	communities	from	different	regions,	according	to	the	principal	

component	 1	 of	 the	 PCA	 (Table	 4.2,	 Fig.	 4.2b).	 Fragment	 size	 and	 its	

interaction	with	 drought	 and	 rewetting	 had	no	 significant	 effect	 over	 the	

structure	of	microbial	communities.		

Enzymatic	activity	

Significant	 interaction	 between	 all	 factors	 (condition	 x	 region	 x	 fragment	

size)	 was	 observed	 for	 urease	 activity,	 with	 higher	 activity	 in	 soils	 from	

small	 fragments	 of	 the	 southern	 region	 at	 pre‐drought	 (Fig.	 4.3a),	 but	

higher	activity	 in	soil	 from	small	 fragments	of	 the	northern	region	during	

simulated	drought	 and	 rewetting.	 For	phosphatase	activity,	 fragment	 size	

showed	a	significant	main	effect	(F1,	1=	9.53;	p=0.005)	with	higher	activity	

in	 soils	 from	 small	 fragments	 (Table	 S4.3).	 Additionally,	 a	 significant	

interaction	between	condition	and	region	was	observed,	where	activity	 in	

soils	 from	 the	 northern	 region	 decreased	 significantly	with	 drought	 (Fig.	

4.3b);	 whereas	 activity	 in	 soils	 from	 the	 southern	 region	 remained	 very	

similar	during	the	experiment.	
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Figure	4.2	Principal	component	analyses	(PCA)	for	soil	fungal	(a)	and	bacterial	(b)	
communities	 of	 soils	 from	 two	 climatically	 different	 regions	 and	 two	 fragment	
sizes	 of	 holm	 oak	 forests	 in	 Spain,	 and	 exposed	 to	 experimental	 drought	 and	
rewetting	 simulations.	 Soil	 treatments	 are	 represented	 by	 different	 symbols:	
circles	 =	 large	 fragments	 from	 the	 northern	 region;	 inverted	 triangles	 =	 small	
fragments	from	the	northern	region;	squares	=	large	fragments	from	the	southern	
region;	 diamonds	 =	 small	 fragments	 from	 the	 southern	 region.	 Simulated	
experimental	conditions	are	represented	by	different	colours:	white	=	pre‐drought	
(Pre‐Dro);	grey	=	drought	(Dro);	black	=	rewetting	(Rew).	Error	bars	=	SE.		
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Figure	4.3	Enzymatic	activities:	urease	(a)	and	phosphatase	(b)	of	soils	from	two	
climatically	different	regions	and	two	fragment	sizes	of	holm	oak	forests	in	Spain,	
and	exposed	to	experimental	drought	and	rewetting	simulations.	Grey/white	bars	
represent	 large/small	 fragments	 respectively.	 Open/filled	 bars	 represent	 the	
northern	 or	 the	 southern	 region,	 respectively.	 Data	 =	 means	 ±	 SE.	 Significant	
differences	given	by	post‐hoc	multiple	comparisons	by	Tukey’s	test	(P<0.05)	of	the	
three‐way	 ANOVA	 are	 indicated:	 main	 effect	 of	 fragment	 size	 in	 phosphatase	
activity	 (not	 represented),	 and	 significant	 interaction	 between	 factors	 by	 lower	
case	 letters	 (triple	 in	 the	 case	 of	 urease;	 condition	 x	 region	 in	 the	 case	 of	
phosphatase;	see	Table	S4.3).	

Net	ecosystem	exchange	in	plant‐soil‐microbial	system	

In	 the	 plant‐soil‐microbial	 system,	 the	main	 component	 of	 net	 ecosystem	

exchange	(NEE)	was	ecosystem	respiration	(Reco),	with	a	lower	contribution	

of	 gross	 primary	 productivity	 (GPP;	 Fig.	 4.4).	 Drought	 caused	 an	 overall	

significant	 decrease	 in	 both	 Reco	 and	 GPP	 (Fig.	 4.4a	 and	 b,	 respectively;	

Table	 S4.4).	 A	 consistent	 significant	 interaction	 between	 region	 and	

fragment	size	was	detected,	showing	that	the	soils	from	small	fragments	of	

the	 northern	 region	 had	 higher	 Reco,	 during	 the	 drought	 simulation	 (Fig.	

4.4a;	 Table	 S4.4).	 A	 significant	 interaction	 between	 time,	 region	 and	

fragment	size	was	observed	in	the	pulse	of	CO2	after	rewetting	(Table	S4.5),	

showing	higher	Reco	in	soils	from	the	northern	region	especially	at	3	and	48	

hrs	(Fig.	4.4c).		
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Figure	 4.4	 CO2	 fluxes	 of	 the	 plant‐soil‐microbial	 system	 of	 soils	 from	 two	
climatically	different	regions	and	two	fragment	sizes	of	Holm	oak	forests	in	Spain.	
Ecosystem	 respiration	 (a)	 and	 Gross	 primary	 productivity	 (b)	 both	 in	 drought	
simulation,	and	ecosystem	respiration	in	rewetting	simulation	(c),	where	0	means	
immediately	 before	 rewetting.	 Grey/white	 bars	 represent	 large/small	 fragments	
respectively.	 Open/filled	 bars	 represent	 the	 northern	 or	 the	 southern	 region,	
respectively.	Data	=	means	±	SE.	Significant	differences	given	by	post‐hoc	multiple	
comparisons	by	Tukey’s	test	(P<0.05)	of	the	three‐way	ANOVA	are	indicated:	main	
effects	 by	 capital	 letters	 (among	 condition)	 and	 significant	 triple	 interaction	
between	factors	by	lower	case	letters	(condition	x	region	x	fragment	size,	see	Table	
S4.4	and	S4.5).	
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Plant	growth	and	physiology	

Growth	and	physiological	activity	of	seedlings	were	not	affected	by	region	

or	fragment	size	(Table	4.3,	Table	S4.2),	despite	the	differences	in	moisture	

and	 nutrient	 status	 observed	 between	 soils	 (Table	 4.1).	 However,	 the	

physiological	 activity	 of	 seedlings	 was	 significantly	 affected	 by	 drought	

(Table	S4.2).	Seedlings	grown	in	soils	from	the	southern	region	showed	the	

lowest	 SLA	 (Table	 4.3).	 Seedling	 survival	 varied	 significantly	 depending	

upon	 treatments,	 from	 no	mortality	 in	 soils	 of	 small	 fragments	 from	 the	

northern	 region,	 to	 almost	 50%	 seedling	 mortality	 in	 soils	 of	 large	

fragments	 from	 the	 southern	 region	 (Table	 4.3).	 We	 did	 not	 find	 any	

consistent	 relationships	 between	 seedling	 growth	 (height,	 diameter,	

biomass,	 SLA),	 physiology	 (GPP,	 photochemical	 efficiency,	 stomatal	

conductance,	 water	 potential),	 and	 soil	 microbial	 communities	 (bacterial	

and	 fungal	 diversity	 and	 structure),	 soil	 biogeochemical	 properties	

(nutrients,	soil	moisture,	stability),	or	soil	 functioning	(enzymatic	activity,	

Reco;	Table	S4.6).	

Influence	of	soil	moisture	on	the	plant‐soil‐microbial	system	

Linear	 regression	 analyses	 showed	 that	 Reco	 was	 highly	 sensitive	 to	 soil	

moisture	(R2=0.499,	p<0.001)	(Fig.	4.5a),	whereas	GPP	was	not	(Fig.	4.5b).	

As	expected,	correlations	showed	that	soil	functioning	(Reco	and	enzymatic	

activities)	 were	 strongly	 related	 to	 soil	 moisture	 (Table	 4.4).	 Fungal	

community	 structure	 (i.e.	 PC1	 of	 fungal	 PCA;	 Fig.	 4.2a)	 was	 negatively	

correlated	with	Reco	and	phosphatase	activity	(Table	4.4).	Fungal	diversity	

was	negatively	correlated	with	Reco	and	both	enzyme	activities	(Table	4.4).	

Bacterial	 community	 structure	 (i.e.	 PC1	 of	 bacterial	 PCA;	 Fig.	 4.2b)	 was	

positively	 correlated	 with	 Reco	 and	 urease	 activity	 (Table	 4.4).	 Bacterial	

richness	 and	 diversity	 were	 also	 correlated	 with	 Reco	 and	 phosphatase	

activity	(Table	4.4).		
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Table	4.3.	Seedling	growth	and	physiology	during	drought	simulation	in	soils	from	
two	 climatically	 different	 regions	 and	 two	 fragment	 sizes	 of	 holm	 oak	 forest	 in	
Spain.	Data	=	mean	 (SE)	 (n=	7	 for	 southern	 large	 and	northern	 small	 fragments,	
and	n=	8	for	southern	small	and	northern	large	fragments).	Significant	differences	
(P<0.05)	are	indicated	with	capital	letters	(among	region	for	a	given	fragment	size)	
and	lower	case	letters	(among	fragment	size	for	a	given	region).		

	

Results	of	the	stepwise	multiple	regressions	showed	a	strong	relationship	

between	 soil	 moisture	 and	 the	 diversity	 and	 structure	 of	 microbial	

communities	 (Table	 4.5).	 However,	 an	 opposite	 relationship	 with	 soil	

moisture	 was	 detected	 for	 the	 two	 microbial	 communities,	 with	 soil	

moisture	 negatively	 correlated	 with	 fungal	 structure	 and	 diversity	 and	

positively	 correlated	 with	 bacteria	 structure	 (Table	 4.5).	 Furthermore,	

fungal	 community	 evenness	 was	 significantly	 affected	 by	 pH,	 aggregate	

stability	 and	 SOM,	 whereas	 fungal	 diversity	 was	 also	 affected	 by	 SOM	

(Table	4.5).	

	

 Northern region Southern region 

 Large fragment Small fragment Large fragment Small fragment 

Germination (days) 64.1 (8.2)A,a 45.0 (3.8)A,a 60.6 (6.4)A,a 53.6 (5.9)A,a 

Height (cm) 6.64 (0.9)A,a 8.6 (1.2)A,a  8.6 (1.9)A,a 6.1 (0.9)A,a 

Diameter (mm) 2.12 (0.2)A,a 2.44 (0.3)A,a  2.3 (0.3)A,a 2.3 (0.4)A,a 

Biomass (g) 1.3 (0.3)A,a 1.7 (0.3)A,a  1.4 (0.3)A,a 1.2 (0.4)A,a 

Root/shoot ratio 1.2 (0.1)A,a 0.9 (0.1)A,a  1.0 (0.2)A,a 1.0 (0.1)A,a 

SLA (cm2 g-1) 81.2 (3.4) B,a 71.7 (2.3)B,a  84.7 (3.8)A,a 86.2 (3.5)A,a 

Fv/Fm predawn 0.66 (0.09)A,a 0.59 (0.10)A,a  0.63 (0.16)A,a 0.78 (0.04)A,a 

Fv/Fm midday 0.60 (0.05)A,a 0.51 (0.07)A,a  0.61 (0.03)A,a 0.67 (0.03)A,a 

Stomatal conductance 

(mmol s-1 m-2) 
68.3 (15.2)A,a 74.7 (17.8)A,a 

 
52 (11.2)A,a 59.8 (13.7)A,a 

Water potential (MPa) -1.5 (0.4)A,a -1.7 (0.2)A,a  -1.3 (0.4)A,a -2.2 (1.7)A,a 

Survival (%)  87.5 ab 100.0a  57.1b 87.5ab 
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Figure	 4.5	 Relationships	 between	 Ecosystem	 Respiration	 (a),	 Gross	 Primary	
Productivity	(b)	and	soil	moisture	from	two	climatically	different	regions	and	two	
fragment	sizes	of	holm	oak	forests	in	Spain	exposed	to	experimental	drought	and	
rewetting	simulations.	Soil	treatments	are	represented	by	different	symbols:	grey	
circles	 =	 large	 fragments	 from	 the	 northern	 region;	 white	 inverted	 triangles	 =	
small	fragments	from	the	northern	region;	grey	squares	=	large	fragments	from	the	
southern	region;	white	diamonds	=	small	 fragments	from	the	southern	region.	R2	
and	P	values	of	simple	linear	regressions	are	presented.	
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Table	 4.4.	 Correlations	 between	 soil	 functioning	 and	 soil	 moisture,	 fungal	 and	
bacterial	 diversity	 in	 soils	 from	 two	 climatically	 different	 regions	 and	 two	
fragment	 sizes	 of	 holm	 oak	 forest	 in	 Spain.	 Data	 were	 analysed	 by	 Pearson’s	
correlation	 (n=36)	 and	 significant	 effects	 are	 noted	 in	 bold	 (*<0.05;	 **<	 0.01;	
***<0.001).	Reco=	 ecosystem	 respiration;	 PC1=	 first	 component	 and	 PC2=	 second	
component	of	Principal	Component	Analysis	(PCA).	For	 the	 full	correlation	Table	
see	Table	S4.7.	

	

Table	4.5.	 Relationships	 between	 fungal	 and	 bacterial	 community	 structure	 and	
explanatory	physicochemical	soil	variables	in	soils	from	two	climatically	different	
regions	and	two	fragment	sizes	of	holm	oak	forest	in	Spain.	Data	were	analysed	by	
stepwise	multiple	regression	(t‐test)	and	significant	effects	using	corrected	P‐value	
(sequential	Bonferroni	method)	are	noted	 in	bold	(n=36);	n.s.	not	significant.	β	=	
standardized	coefficient.	SOM	=	soil	organic	matter.		

	

 
Reco Phosphatase Urease 

Soil moisture 0.68*** 0.45** 0.58*** 

Fungal richness -0.38* -0.33 -0.34 

Fungal Shannon index -0.37* -0.38* -0.43* 

PC1 Fungal -0.58*** -0.49** -0.30 

Bacterial richness 0.41* 0.42* 0.29 

Bacterial Shannon index 0.41* 0.40* 0.25 

PC1 Bacterial  0.45** 0.34 0.51** 

PC2 Bacterial 0.38* -0.10 0.06 

 Fungi Bacteria

 
PC1 

(R2= 0.55) 

Richness

(R2= 0.23) 

Shannon 

(R2= 0.41) 

Evenness 

(R2= 0.39) 

PC1 

(R2= 0.84) 

Richness 

(R2= 0.37) 

Shannon 

(R2= 0.34) 

Evenness 

(R2= 0.30) 

Soil moisture         

β -0.79 -0.35 -0.52 -0.51 0.98 0.33 0.23 -0.52 

Pearson correlation -0.74 -0.35 -0.53 -0.52 0.91 0.36 0.25 -0.50 

P  * n.s. * * * n.s. n.s. * 

pH         

β 4.78 -8.62 -13.36 -15.05 -1.95 9.30 9.82 -5.62 

Pearson correlation 0.17 -0.22 -0.38 -0.41 -0.11 0.26 0.27 -0.15 

P  n.s. n.s. n.s. * n.s. n.s. n.s. n.s. 

Aggregates (%)         

β 5.35 -9.88 -15.21 -16.95 -2.26 11.11 11.68 -6.37 

Pearson correlation 0.16 -0.23 -0.38 -0.41 -0.11 0.28 0.28 -0.15 

P  n.s. n.s. n.s. * n.s. n.s. n.s. n.s. 

SOM (%)         

β -1.14 2.40 3.80 4.39 0.15 -2.89 -2.93 2.04 

Pearson correlation -0.14 0.21 0.37 0.41 0.03 -0.28 -0.28 0.19 

P  n.s. n.s. * * n.s. n.s. n.s. n.s. 
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Discusion	

Effects	 of	 the	 fragment	 size	 and	 the	 bioclimatic	 region	 over	 the	 plant‐soil‐

microbial	system	

In	 our	 study	 the	 physicochemical	 characteristics	 of	 soils	 were	

highly	 affected	 by	 fragment	 size	 and	 less	 by	 the	 bioclimatic	 region	 (i.e.	

northern	vs.	 southern	region).	Soils	 from	small	 fragments	of	both	regions	

showed	 higher	 concentrations	 of	 essential	 ions,	 partially	 confirming	 our	

initial	hypothesis	that	physicochemical	characteristics	of	soils	would	differ	

in	 forest	 fragments	 of	 contrasting	 sizes.	 In	 a	 fragmented	 forest,	 the	

influence	 of	 the	 agricultural	 matrix	 tends	 to	 increase	 as	 the	 fragments	

become	 smaller	 due	 to	 an	 amplified	 relative	 importance	 of	 edge	 effects	

(Fernández	 et	 al.,	 2002).	 This	 influence	 over	 the	 physicochemical	

characteristic	of	small	fragments	and	of	the	edge	of	large	fragments	tend	to	

be	higher	when	the	matrix	is	agricultural	(Boutin	and	Jobin,	1998).	Among	

other	 factors	 (lower	 tree	 competition	 and	 higher	 light	 availability),	 this	

increased	fertility	mediated	by	the	matrix	could	also	explain	the	presence	

of	 larger	 and	more	 productive	 trees	 growing	 in	 the	 smaller	 fragments	 at	

both	 sites	 (authors	 personal	 observations),	 which	 result	 in	 higher	 soil	

organic	matter	(SOM)	content.	Soil	water	holding	capacity	was	also	higher	

in	 soils	 from	 small	 fragments,	 probably	 due	 to	 their	 higher	 SOM	 content,	

which	typically	increases	the	capacity	of	a	soil	to	retain	water	(Boix‐Fayos	

et	al.,	2001;	Franzluebbers,	2002).	This	 increase	 in	resources	under	small	

fragments	was	also	reflected	in	an	increase	in	the	functionality	of	the	plant‐

soil‐microbial	system;	both	Reco	and	phosphatase	activities	were	higher	 in	

soils	from	small	fragments	sizes	in	both	regions.		

Unlike	functional	indicators,	our	results	indicate	that	the	microbial	

communities	were	more	 sensitive	 to	 the	particular	bioclimatic	 conditions	

of	 the	 two	 regions	 studied	 than	 to	 the	 size	 of	 the	 fragment.	 Under	 a	 low	

influence	of	the	matrix	(large	fragments),	soils	from	the	colder	and	wetter	
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region	(northern)	had	higher	microbial	biomass	and	a	more	bacterial‐rich	

community,	while	soils	from	the	warmer	and	drier	southern	region	had	the	

lowest	 values	 of	 microbial	 biomass	 but	 the	 most	 diverse	 fungal	

communities.	 However,	 fragment	 size	 did	 not	 significantly	 affect	 the	

diversity	and	structure	of	 the	microbial	 communities,	 suggesting	a	 strong	

resistance	 (Allison	 and	 Martiny,	 2008)	 of	 these	 communities	 to	 the	

potential	 changes	 in	 soil	 physicochemical	 properties	 associated	 with	

fragment	size.		

Effects	of	climatic	simulations	over	the	functioning	of	the	plant‐soil‐microbial	

system	and	its	interactions	with	fragment	size	and	bioclimatic	origin		

Drought	negatively	affected	 the	plant‐soil‐microbial	system	due	 to	

the	strong	effect	of	soil	moisture	over	different	functional	indicators	of	the	

plant‐soil‐microbial	 system,	 such	 as	 autotrophic	 and	 heterotrophic	

respiration	 as	 well	 as	 plant	 productivity	 (Orchard	 and	 Cook,	 1983;	

Reichstein	et	al.,	2002;	Barba	et	al.,	2013).	Decreases	in	metabolic	activity	

related	to	drought	have	been	found	in	other	studies	for	both	soil	(Rey	and	

Jarvis,	 2006;	 Curiel	 Yuste	 et	 al.,	 2007),	 and	 enzymatic	 activities	 (Sardans	

and	Peñuelas,	2005;	Zornoza	et	al.,	2006;	Hueso	et	al.,	2011).	A	synchrony	

in	 the	 reduction	 of	 Reco	 and	 enzymatic	 activity	 was	 expected	 when	 the	

microcosms	 were	 water‐limited	 since	 both	 processes	 involve	 microbial	

aerobic	activity,	 largely	depend	upon	adequate	water	conditions	(Orchard	

and	Cook,	1983;	Reichstein	et	 al.,	 2002;	Rambal	 et	 al.,	 2003;	 Sardans	and	

Peñuelas,	2005;	Zornoza	et	al.,	2006;	Curiel	Yuste	et	al.,	2007;	Schimel	et	al.,	

2010;	Hueso	et	al.,	2011;	Barba	et	al.,	2013).	On	the	contrary,	the	observed	

lower	 effect	 of	 drought	 over	 GPP	 (only	 significant	 by	 the	 end	 of	 the	

drought)	evidenced	a	higher	resistance	to	drought	of	these	seedlings	with	

respect	 to	microbes.	 This	 higher	 resistance	 to	 drought	 could	 be	 due	 to	 a	

higher	 capacity	 of	 plants	 to	 explore	 the	 water	 resources	 of	 soil	 than	

microorganisms,	 which	 are	 more	 static	 and	 dependant	 on	 water	 micro‐
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conditions	 (Rambal	 et	 al.,	 2003;	 Ogaya	 and	 Peñuelas,	 2004;	 Castro	 et	 al.,	

2010;	Curiel	Yuste	et	al.,	2011;	de	Vries	et	al.,	2012).		

Regarding	microbial	 communities,	 the	 forced	 climatic	 simulations	

(drought	 and	 rewetting)	 were	 associated	 with	 strong	 and	 opposed	

fluctuations	 in	 the	 diversity	 of	 both	 bacteria	 and	 fungi.	 The	 observed	

increase	 in	 fungal	 richness	 and	 diversity	 together	 with	 the	 decrease	 in	

bacterial	 diversity	 during	 the	 drought	 reinforces	 the	 idea	 that	 fungi	

overcome	water	 limitations	 better	 than	 bacteria	 (Drenovsky	 et	 al.,	 2004;	

Schimel	 et	 al.,	 2007;	 Curiel	 Yuste	 et	 al.,	 2011;	 Barnard	 et	 al.,	 2013;	

Göransson	et	al.,	2013;	Grigulis	et	al.,	2013).	This	can	be	explained	because	

bacteria	 are	 organisms	 evolved	 in	 aqueous	 environment,	 and	 are	 more	

diverse	 under	 optimal	 water	 conditions,	 whereas	 fungi	 are	 organisms	

evolved	 in	 terrestrial	 environments,	 tending	 to	 be	 more	 diverse	 under	

water	limitations	(Curiel	Yuste	et	al.,	2011;	Göransson	et	al.,	2013;	Grigulis	

et	 al.,	 2013).	 This	 was	 in	 agreement	 with	 the	 fact	 that	 soil	 rewetting	

produced	an	opposite	effect	with	respect	 to	 that	observed	 for	drought	on	

the	 microbial	 communities,	 decreasing	 fungal	 diversity	 and	 increasing	

bacterial	diversity,	respectively.		

Collectively,	 our	 results	 suggest	 that	 the	 bioclimatic	 origin	 of	 the	

soil	 microbial	 communities	 strongly	 determined	 both	 the	 modulation	 by	

fragmentation	 of	 the	 effect	 of	 drought	 and	 the	 capacity	 of	 the	 microbial	

community	 to	 respond	 to	 the	 simulated	 climatic	 fluctuations.	 Our	 results	

only	 partially	 support	 our	 second	 hypothesis	 i.e.	 that	 the	 functional	

response	 of	 the	 plant‐soil‐microbial	 system	 to	 climatic	 simulations	

(drought	 and	 rewetting)	 would	 be	 determined	 by	 the	 particular	 initial	

microbial	communities	and	biogeochemical	soil	properties	associated	with	

fragment	 size.	 Only	 in	 the	 small	 fragments	 of	 the	 northern	 and	 wetter	

region	 did	 the	 initial	 biological	 and	 physicochemical	 soil	 properties	 (e.g.	

higher	 bacterial	 richness	 and	 SOM	 content)	 appear	 to	 have	 a	 strong	
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positive	 effect	 over	 the	 functioning	 of	 the	 plant‐soil‐microbial	 system	

during	drought	(increasing	Reco,	GPP,	urease	activity	under	dry	condition	in	

small	with	respect	 to	 large	 fragments),	whereas	 fragment	size	had	 less	of	

an	 effect	 (significant	 only	 for	 GPP)	 in	 the	 southern	 and	 drier	 region.	 The	

sensitivity	 of	 the	 microbial	 communities	 (diversity	 and	 evenness)	 to	 the	

climatic	simulations	was	also	strongly	dependent	on	the	initial	bioclimatic	

origin	of	the	soils.	Indeed,	the	stronger	sensitivity	of	bacterial	diversity	and	

evenness	 from	 the	 northern	 (colder	 and	 wetter)	 with	 respect	 to	 the	

southern	 (warmer	 and	 drier)	 region	 indicates	 a	 different	 degree	 of	

historical	 adaptation	 to	 dry	 conditions	 from	 these	 two	 communities.	 It	 is	

therefore	 likely	 that	 the	 harsher	 historical	 climatic	 conditions	 in	 the	

southern	 region	 may	 have	 acted	 as	 a	 strong	 habitat	 filter	 by	 selecting	

drought	 tolerant	 microbial	 species,	 more	 resistant	 to	 the	 simulated	 dry	

conditions	 of	 the	 experiment	 (Curiel	 Yuste	 et	 al.,	 2014;	 Evans	 and	

Wallenstein,	 2014).	 In	 turn,	 the	 fast	 and	 significant	 increase	 in	 bacterial	

richness	and	diversity	together	with	the	strong	pulse	in	CO2	after	rewetting	

again	 suggest	 that	 soil	 microbial	 communities	 grown	 in	 soils	 from	 the	

northern	region,	richer	in	organic	matter,	were	more	resilient	to	changes	in	

water	 availability.	 Therefore,	 whereas	 reducing	 the	 size	 of	 the	 fragment	

increases	 the	 fertility	and	water	availability	 for	both	microbes	and	plants	

(hence	ameliorating	the	effect	of	drought	over	the	functioning	of	the	plant‐

soil‐microbial	system),	 the	 lack	of	sensitivity	 to	 this	 increase	 in	resources	

of	 the	 plant‐soil‐microbial	 systems	 with	 soils	 from	 the	 southern	 region	

could	 only	 indicate	 a	 lack	 of	 responsiveness	 of	 the	 soil	 microbial	

communities	 from	 this	 drier	 site,	 which	 were	 unable	 to	 recover	 the	

function.	
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Conclusions	

A	 schematic	 overview	 of	 the	 main	 findings	 from	 this	 study	 is	 shown	 in	

Figure	4.6,	ilustrating	a	continuum	of	drier	to	wetter	conditions	of	soil	and	

the	 interplay	 between	 the	 two	 climatically	 different	 regions	 and	 the	

fragment	sizes.	We	observed	here	that,	under	optimal	conditions	(no	water	

limitations)	and	in	soils	from	the	wetter	region,	the	highest	metabolic	rates	

(Reco	 and	 enzyme	 activities)	 were	 generally	 associated	 with	 microbial	

communities	 dominated	 by	 rich	 bacterial	 communities,	 whereas	 under	

drought	 and	 in	 the	 southern	 and	 drier	 region,	 the	 relatively	 lower	

metabolic	rates	were	associated	with	microbial	communities	dominated	by	

rich	 fungal	 communities.	 Under	 drought	 stress,	 fragmentation	modulates	

the	 functional	 response	 of	 both	 plants	 and	 microbes,	 especially	 in	 the	

relatively	richer	soils	from	the	northern	region,	whereas	fragment	size	did	

not	substantially	modulate	the	functional	response	of	the	microcosms	with	

soils	from	the	southern	and	drier	region.		

	

	
Figure	4.6	Schematic	overview	of	simultaneous	variations	in	fungal	and	bacterial	
richness,	 soil	 moisture,	 ecosystem	 functioning	 and	 their	 modulation	 though	
fragment	size,	as	suggested	by	the	results	of	the	present	study.	
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Our	 results,	 therefore,	 suggest	 that	 the	 drier	 conditions	 expected	 in	 the	

future	 for	 the	 already	 water	 limited	 Mediterranean	 basin	 will	 favour	

fungal‐dominated	soil	microbial	communities,	 leading	to	a	deceleration	of	

processes	 associated	 with	 the	 plant‐soil‐microbial	 system.	 Moreover,	 the	

interaction	 found	 here	 between	 drought	 and	 fragment	 size	 suggests	 that	

depending	 on	 the	 local	 bioclimatic	 conditions	 and	 soil	 physicochemical	

characteristics,	habitat	fragmentation	could	ameliorate	to	some	extent	the	

negative	effect	of	increasing	droughts	by	increasing	the	fertility	and	water	

holding	capacity	of	soils.		

	

	

	



HABITAT FRAGMENTATION CAN MODULATE DROUGHT EFFECTS 

156 

References	

Allison,	 S.	 D.	 and	 J.	 B.	Martiny	 (2008).	 Resistance,	 resilience,	 and	 redundancy	 in	
microbial	 communities.	 Proceedings	 of	 the	 National	 Academy	 of	 Sciences,	
USA,	105(Supplement	1):	11512‐11519.	

Anderson,	I.	C.,	C.	D.	Campbell	and	J.	I.	Prosser	(2003).	Diversity	of	fungi	in	organic	
soils	 under	 a	 moorland	 –	 Scots	 pine	 (Pinus	 sylvestris	 L.)	 gradient.	
Environmental	Microbiology,	5(11):	1121‐1132.	

Bahn,	 M.,	 F.	 A.	 Lattanzi,	 R.	 Hasibeder,	 B.	 Wild,	 M.	 Koranda,	 V.	 Danese,	 N.	
Brüggemann,	M.	 Schmitt,	 R.	 Siegwolf	 and	 A.	 Richter	 (2013).	 Responses	 of	
belowground	carbon	allocation	dynamics	to	extended	shading	in	mountain	
grassland.	New	Phytologist,	198(1):	116‐126.	

Barba,	 J.,	 J.	Curiel	Yuste,	 J.	Martínez‐Vilalta	and	F.	Lloret	(2013).	Drought‐induced	
tree	 species	 replacement	 is	 reflected	 in	 the	 spatial	 variability	 of	 soil	
respiration	 in	 a	 mixed	 Mediterranean	 forest.	 Forest	 Ecology	 and	
Management,	306(0):	79‐87.	

Barnard,	R.	L.,	C.	A.	Osborne	and	M.	K.	Firestone	(2013).	Responses	of	soil	bacterial	
and	 fungal	 communities	 to	 extreme	 desiccation	 and	 rewetting.	 The	 ISME	
Journal:	Multidisciplinary	Journal	of	Microbial	Ecology,	7(11):	2229‐2241.	

Boix‐Fayos,	 C.,	 A.	 Calvo‐Cases,	 A.	 C.	 Imeson	 and	 M.	 D.	 Soriano‐Soto	 (2001).	
Influence	of	soil	properties	on	the	aggregation	of	some	Mediterranean	soils	
and	 the	 use	 of	 aggregate	 size	 and	 stability	 as	 land	degradation	 indicators.	
CATENA,	44(1):	47‐67.	

Boutin,	C.	and	B.	 t.	 Jobin	(1998).	 Intensity	of	agricultural	practices	and	effects	on	
adjacent	habitats.	Ecological	Applications,	8(2):	544‐557.	

Bremner,	 J.	M.	 (1960).	Determination	of	nitrogen	 in	 soil	 by	 the	Kjeldahl	method.	
Journal	of	Agricultural	Science,	55(01):	11‐33.	

Burriel,	 F.	 and	 V.	 Hernando	 (1950).	 Extraction	 of	 the	 total	 phosphorus	 from	
Spanish	soils.	Transactions	4th	Int.	Cong.	Soil	Sci.	2:	133‐134.	

Castro,	H.	F.,	A.	T.	 Classen,	E.	 E.	Austin,	R.	 J.	Norby	and	C.	W.	 Schadt	 (2010).	 Soil	
microbial	 community	 responses	 to	 multiple	 experimental	 climate	 change	
drivers.	Applied	and	Environmental	Microbiology,	76(4):	999‐1007.	

Cleary,	 D.	 F.	 R.,	 K.	 Smalla,	 L.	 C.	 S.	 Mendonça‐Hagler	 and	 N.	 C.	 M.	 Gomes	 (2012).	
Assessment	of	variation	in	bacterial	composition	among	microhabitats	 in	a	
mangrove	 environment	 using	 DGGE	 fingerprints	 and	 barcoded	
pyrosequencing.	PLoS	ONE,	7(1):	e29380.	

Curiel	Yuste,	J.,	D.	D.	Baldocchi,	A.	Gershenson,	A.	Goldstein,	L.	Misson	and	S.	Wong	
(2007).	Microbial	soil	respiration	and	its	dependency	on	carbon	inputs,	soil	
temperature	and	moisture.	Global	Change	Biology,	13(9):	2018‐2035.	

Curiel	 Yuste,	 J.,	 A.	 J.	 Fernandez‐Gonzalez,	 M.	 Fernandez‐Lopez,	 R.	 Ogaya,	 J.	
Penuelas,	 J.	Sardans	and	F.	Lloret	(2014).	Strong	functional	stability	of	soil	
microbial	 communities	 under	 semiarid	 Mediterranean	 conditions	 and	
subjected	 to	 long‐term	 shifts	 in	 baseline	 precipitation.	 Soil	 Biology	 and	
Biochemistry,	69(0):	223‐233.	

Curiel	Yuste,	J.,	J.	Peñuelas,	M.	Estiarte,	J.	Garcia‐Mas,	S.	Mattana,	R.	Ogaya,	M.	Pujol	
and	 J.	 Sardans	 (2011).	 Drought‐resistant	 fungi	 control	 soil	 organic	matter	
decomposition	 and	 its	 response	 to	 temperature.	 Global	 Change	 Biology,	
17(3):	1475‐1486.	



CAPÍTULO	4	

157	

de	Vries,	F.	T.,	M.	E.	Liiri,	L.	Bjornlund,	M.	A.	Bowker,	S.	Christensen,	H.	Setala	and	R.	
D.	Bardgett	(2012).	Land	use	alters	the	resistance	and	resilience	of	soil	food	
webs	to	drought.	Nature	Climate	Change,	2(4):	276‐280.	

Díaz,	M.	 and	 C.	 L.	 Alonso	 (2003).	Wood	mouse	Apodemus	 sylvaticus	 winter	 food	
supply:	 density,	 condition,	breeding,	 and	parasites.	 Ecology,	 84(10):	 2680‐
2691.	

Díaz,	M.,	T.	Santos	and	J.	L.	Tellería	(1999).	Effects	of	 forest	fragmentation	on	the	
winter	body	condition	and	population	parameters	of	an	habitat	generalist,	
the	wood	mouse	Apodemus	sylvaticus:	a	test	of	hypotheses.	Acta	Oecologica,	
20(1):	39‐49.	

Didham,	R.	K.,	 J.	Ghazoul,	N.	E.	Stork	and	A.	J.	Davis	(1996).	Insects	in	fragmented	
forests:	 a	 functional	 approach.	Trends	 in	Ecology	&	Evolution,	 11(6):	 255‐
260.	

Dooley,	 J.	 L.	 and	 M.	 A.	 Bowers	 (1998).	 Demographic	 responses	 to	 habitat	
fragmentation:	experimental	tests	at	the	landscape	and	patch	scale.	Ecology,	
79(3):	969‐980.	

Drenovsky,	R.	E.,	D.	Vo,	K.	J.	Graham	and	K.	M.	Scow	(2004).	Soil	water	content	and	
organic	 carbon	 availability	 are	 major	 determinants	 of	 soil	 microbial	
community	composition.	Microbial	Ecology,	48(3):	424‐430.	

Evans,	 S.	 E.	 and	 M.	 D.	 Wallenstein	 (2014).	 Climate	 change	 alters	 ecological	
strategies	of	soil	bacteria.	Ecology	Letters,	17(2):	155‐164.	

Evans,	S.	E.,	M.	D.	Wallenstein	and	I.	C.	Burke	(2013).	Is	bacterial	moisture	niche	a	
good	 predictor	 of	 shifts	 in	 community	 composition	 under	 long‐term	
drought?	Ecology,	95(1):	110‐122.	

Fahrig,	L.	(2003).	Effects	of	habitat	fragmentation	on	biodiversity.	Annual	Review	
of	Ecology,	Evolution	and	Systematics,	34(1):	487‐515.	

Farnleitner,	A.	H.,	F.	Zibuschka,	M.	M.	Burtscher,	G.	Lindner,	G.	Reischer	and	R.	L.	
Mach	 (2004).	 Eubacterial	 16S‐rDNA	 amplicon	 profiling:	 a	 rapid	 technique	
for	 comparison	 and	 differentiation	 of	 heterotrophic	 plate	 count	
communities	 from	 drinking	 water.	 International	 Journal	 of	 Food	
Microbiology,	92(3):	333‐345.	

Fernández,	 C.,	 F.	 J.	 Acosta,	G.	Abellá,	 F.	 López	 and	M.	Díaz	 (2002).	 Complex	 edge	
effect	 fields	 as	 additive	 processes	 in	 patches	 of	 ecological	 systems.	
Ecological	Modelling,	149(3):	273‐283.	

Fischer,	 J.	 and	 D.	 B.	 Lindenmayer	 (2007).	 Landscape	 modification	 and	 habitat	
fragmentation:	 a	 synthesis.	 Global	 Ecology	 and	 Biogeography,	 16(3):	 265‐
280.	

Franzluebbers,	A.	J.	(2002).	Water	infiltration	and	soil	structure	related	to	organic	
matter	 and	 its	 stratification	 with	 depth.	 Soil	 and	 Tillage	 Research,	 66(2):	
197‐205.	

Fuchslueger,	L.,	M.	Bahn,	K.	Fritz,	R.	Hasibeder	and	A.	Richter	(2014).	Experimental	
drought	reduces	the	transfer	of	recently	fixed	plant	carbon	to	soil	microbes	
and	 alters	 the	 bacterial	 community	 composition	 in	 a	 mountain	 meadow.	
New	Phytologist,	201(3):	916‐927.	

Gafan,	G.	P.,	V.	S.	Lucas,	G.	J.	Roberts,	A.	Petrie,	M.	Wilson	and	D.	A.	Spratt	(2005).	
Statistical	 analyses	 of	 complex	 denaturing	 gradient	 gel	 electrophoresis	
profiles.	Journal	of	Clinical	Microbiology,	43(8):	3971‐3978.	



HABITAT FRAGMENTATION CAN MODULATE DROUGHT EFFECTS 

158 

Gardes,	 M.	 and	 T.	 D.	 Bruns	 (1993).	 ITS	 primers	 with	 enhanced	 specificity	 for	
basidiomycetes	‐	application	to	the	identification	of	mycorrhizae	and	rusts.	
Molecular	Ecology,	2(2):	113‐118.	

Göransson,	H.,	D.	L.	Godbold,	D.	L.	Jones	and	J.	Rousk	(2013).	Bacterial	growth	and	
respiration	 responses	 upon	 rewetting	 dry	 forest	 soils:	 impact	 of	 drought‐
legacy.	Soil	Biology	and	Biochemistry,	57(0):	477‐486.	

Gregorich,	E.	G.,	G.	Wen,	R.	P.	Voroney	and	R.	G.	Kachanoski	(1990).	Calibration	of	a	
rapid	 direct	 chloroform	 extraction	 method	 for	 measuring	 soil	 microbial	
biomass	C.	Soil	Biology	and	Biochemistry,	22(7):	1009‐1011.	

Grigulis,	K.,	 S.	 Lavorel,	U.	Krainer,	N.	Legay,	C.	Baxendale,	M.	Dumont,	E.	Kastl,	C.	
Arnoldi,	 R.	 D.	 Bardgett,	 F.	 Poly,	 T.	 Pommier,	M.	 Schloter,	 U.	 Tappeiner,	M.	
Bahn	and	J.‐C.	Clément	(2013).	Relative	contributions	of	plant	traits	and	soil	
microbial	 properties	 to	mountain	 grassland	 ecosystem	 services.	 Journal	 of	
Ecology,	101(1):	47‐57.	

Grossman,	J.,	B.	O’Neill,	S.	Tsai,	B.	Liang,	E.	Neves,	J.	Lehmann	and	J.	Thies	(2010).	
Amazonian	 anthrosols	 support	 similar	 microbial	 communities	 that	 differ	
distinctly	 from	 those	 extant	 in	 adjacent,	 unmodified	 soils	 of	 the	 same	
mineralogy.	Microbial	Ecology,	60(1):	192‐205.	

Hereş,	A.‐M.,	J.	Martínez‐Vilalta	and	B.	Claramunt	López	(2012).	Growth	patterns	in	
relation	to	drought‐induced	mortality	at	two	Scots	pine	(Pinus	sylvestris	L.)	
sites	in	NE	Iberian	Peninsula.	Trees‐Structure	and	Function,	26(2):	621‐630.	

Hill,	T.	and	P.	Lewicki	(2005).	Statistics:	Methods	and	Applications	StatSoft,	Inc.	
Hueso,	S.,	T.	Hernández	and	C.	García	(2011).	Resistance	and	resilience	of	the	soil	

microbial	 biomass	 to	 severe	 drought	 in	 semiarid	 soils:	 the	 importance	 of	
organic	amendments.	Applied	Soil	Ecology,	50(0):	27‐36.	

Imeson,	A.	C.	 and	M.	Vis	 (1984).	Assessing	 soil	 aggregate	 stability	by	water‐drop	
impact	and	ultrasonic	dispersion.	Geoderma,	34(3–4):	185‐200.	

IPCC	 (2007).	 Climate	 Change	 2007	 ‐	 Syntesis	 report,	 IPCC,	 Intergovernmental	
Panel	on	Climate	Change	c/o	World	Meteorological	Organization	(WMO).	

Lázaro‐Nogal,	 A.,	 S.	 Matesanz,	 T.	 Gimeno,	 A.	 Escudero	 and	 F.	 Valladares	 (2012).	
Fragmentation	 modulates	 the	 strong	 impact	 of	 habitat	 quality	 and	 plant	
cover	on	fertility	and	microbial	activity	of	semiarid	gypsum	soils.	Plant	and	
Soil,	358(1‐2):	213‐223.	

Lindenmayer,	 D.	 B.	 and	 J.	 Fischer	 (2006).	 Habitat	 fragmentation	 and	 landscape	
change:	 an	ecological	 and	conservation	 synthesis.	Washington,	USA,	 Island	
Press.	

Millennium‐Ecosystem‐Assessment	 (2005).	 Ecosystems	 and	 Human	 Well‐being:	
Synthesis.	Washington,	DC,	Island	Press.	

Muyzer,	 G.,	 E.	 C.	 de	 Waal	 and	 A.	 G.	 Uitterlinden	 (1993).	 Profiling	 of	 complex	
microbial	populations	by	denaturing	gradient	gel	electrophoresis	analysis	of	
polymerase	 chain	 reaction‐amplified	 genes	 coding	 for	 16S	 rRNA.	 Applied	
and	Environmental	Microbiology,	59(3):	695‐700.	

Nannipieri,	 P.,	 B.	 Ceccanti,	 S.	 Cervelli	 and	 E.	 Matarese	 (1980).	 Extraction	 of	
phosphatase,	urease,	proteases,	organic	carbon,	and	nitrogen	from	soil.	Soil	
Science	Society	of	America	Journal,	44(5):	1011‐1016.	

Ninyerola,	 M.,	 X.	 Pons	 and	 J.	 M.	 Roure.	 (2005).	 Atlas	 climático	 digital	 de	 la	
Península	 Ibérica.	 Metodología	 y	 aplicaciones	 en	 bioclimatología	 y	
geobotánica.	From	http://www.opengis.uab.es/wms/iberia/index.htm.	



CAPÍTULO	4	

159	

Ogaya,	 R.	 and	 J.	 Peñuelas	 (2004).	 Phenological	 patterns	 of	Quercus	 ilex,	Phillyrea	
latifolia,	 and	 Arbutus	 unedo	 growing	 under	 field	 experimental	 drought.	
Ecoscience	11:	263‐270.	

Orchard,	V.	A.	and	F.	J.	Cook	(1983).	Relationship	between	soil	respiration	and	soil	
moisture.	Soil	Biology	and	Biochemistry,	15(4):	447‐453.	

Pérez‐Priego,	O.,	L.	Testi,	F.	Orgaz	and	F.	J.	Villalobos	(2010).	A	large	closed	canopy	
chamber	 for	 measuring	 CO2	 and	 water	 vapour	 exchange	 of	 whole	 trees.	
Environmental	and	Experimental	Botany,	68(2):	131‐138.	

Pyke,	D.	A.	and	J.	N.	Thompson	(1986).	Statistical	analysis	of	survival	and	removal	
rate	experiments.	Ecology,	67(1):	240‐245.	

Rambal,	S.,	 J.‐M.	Ourcival,	R.	 Joffre,	F.	Mouillot,	Y.	Nouvellon,	M.	Reichstein	and	A.	
Rocheteau	(2003).	Drought	controls	over	conductance	and	assimilation	of	a	
Mediterranean	 evergreen	 ecosystem:	 scaling	 from	 leaf	 to	 canopy.	 Global	
Change	Biology,	9(12):	1813‐1824.	

Rantalainen,	 M.‐L.,	 J.	 Haimi,	 H.	 Fritze,	 T.	 Pennanen	 and	 H.	 Setälä	 (2008).	 Soil	
decomposer	community	as	a	model	system	in	studying	the	effects	of	habitat	
fragmentation	and	habitat	 corridors.	Soil	Biology	and	Biochemistry,	40(4):	
853‐863.	

Reichstein,	M.,	J.	D.	Tenhunen,	O.	Roupsard,	J.‐m.	Ourcival,	S.	Rambal,	F.	Miglietta,	A.	
Peressotti,	M.	Pecchiari,	G.	Tirone	and	R.	Valentini	 (2002).	 Severe	drought	
effects	on	ecosystem	CO2	and	H2O	fluxes	at	three	Mediterranean	evergreen	
sites:	 revision	 of	 current	 hypotheses?	 Global	 Change	 Biology,	 8(10):	 999‐
1017.	

Rey,	 A.	 and	 P.	 Jarvis	 (2006).	 Modelling	 the	 effect	 of	 temperature	 on	 carbon	
mineralization	rates	across	a	network	of	European	forest	sites	(FORCAST).	
Global	Change	Biology,	12(10):	1894‐1908.	

Rivas‐Martínez,	 S.	 (1981).	 Les	 étages	 bioclimatiques	 de	 la	 végétation	 de	 la	
Péninsule	Ibérique.	Anales	del	Jardín	Botánico	de	Madrid,	37(2):	251‐268.	

Santos,	 T.	 and	 J.	 L.	 Tellería	 (1998).	 Efectos	 de	 la	 fragmentación	 de	 los	 bosques	
sobre	 los	 vertebrados	 de	 las	 mesetas	 ibéricas.	 Madrid,	 Spain,	 Organismo	
Autónomo	"Parques	Nacionales".	

Sardans,	 J.	 and	 J.	 Peñuelas	 (2005).	 Drought	 decreases	 soil	 enzyme	 activity	 in	 a	
Mediterranean	Quercus	 ilex	L.	 forest.	 Soil	Biology	and	Biochemistry,	37(3):	
455‐461.	

Schimel,	J.	P.,	T.	C.	Balser	and	M.	D.	Wallenstein	(2007).	Microbial	stress‐response	
physiology	 and	 its	 implications	 for	 ecosystem	 function.	 Ecology,	 88(6):	
1386‐1394.	

Schimel,	 J.	 P.,	 C.	Boot,	P.	Holden,	D.	Roux‐Michollet,	 S.	Parker,	 S.	 Schaeffer	 and	K.	
Treseder	(2010).	Enzyme	activity	and	adaptation	in	dry	soil.	Proceedings	of	
the	World	Congress	of	Soil	Science,	19:	17‐20.	

Scholander,	P.	F.,	E.	D.	Bradstreet,	E.	A.	Hemmingsen	and	H.	T.	Hammel	(1965).	Sap	
pressure	in	vascular	plants:	negative	hydrostatic	pressure	can	be	measured	
in	plants.	Science,	148(3668):	339‐346.	

Street,	 L.	 E.,	G.	R.	 Shaver,	M.	A.	Williams	and	M.	T.	Van	Wijk	 (2007).	What	 is	 the	
relationship	 between	 changes	 in	 canopy	 leaf	 area	 and	 changes	 in	
photosynthetic	CO2	flux	in	arctic	ecosystems?	Journal	of	Ecology,	95(1):	139‐
150.	



HABITAT FRAGMENTATION CAN MODULATE DROUGHT EFFECTS 

160 

Suzuki,	 C.,	 M.	 Takenaka,	 N.	 Oka,	 K.	 Nagaoka	 and	 T.	 Karasawa	 (2012).	 A	 DGGE	
analysis	shows	that	crop	rotation	systems	influence	the	bacterial	and	fungal	
communities	in	soils.	Soil	Science	and	Plant	Nutrition,	58(3):	288‐296.	

Tabatabai,	 M.	 A.	 (1994).	 Soil	 Enzymes.	 Methods	 of	 Soil	 Analysis:	 Part	 2—
Microbiological	and	Biochemical	Properties.	R.	W.	Weaver,	J.	S.	Angle	and	P.	
S.	Bottomley.	Madison,	USA,	Soil	Science	Society	of	America.	sssabookseries:	
775‐833.	

Treseder,	K.,	T.	Balser,	M.	Bradford,	E.	Brodie,	E.	Dubinsky,	V.	Eviner,	K.	Hofmockel,	
J.	Lennon,	U.	Levine,	B.	MacGregor,	 J.	Pett‐Ridge	and	M.	P.	Waldrop	(2012).	
Integrating	 microbial	 ecology	 into	 ecosystem	 models:	 challenges	 and	
priorities.	Biogeochemistry,	109(1‐3):	7‐18.	

Valladares,	F.,	R.	Benavides,	S.	G.	Rabasa,	J.	G.	Pausas,	S.	Paula,	W.	D.	Simonson	and	
M.	 Díaz	 (2014).	 Global	 Change	 and	Mediterranean	 forest:	 current	 impacts	
and	potential	responses.	Forests	and	Global	Change.	D.	A.	Coomes,	D.	F.	R.	P.	
Burslem	and	W.	D.	Simonson.	Cambridge,	UK,	Cambridge	University	Press:	
47‐76.	

Valladares,	 F.,	 J.	 J.	 Camarero,	 F.	 Pulido	 and	 E.	 Gil‐Pelegrín	 (2004).	 El	 bosque	
mediterráneo,	 un	 sistema	 humanizado	 y	 dinámico.	 Ecologia	 del	 Bosque	
Mediterráneo	 en	 un	 mundo	 cambiante.	 F.	 Valladares.	 Madrid,	 Spain,	
Ministerio	del	Medio	Ambiente:	13‐25.	

Vaz‐Moreira,	 I.,	 C.	 Egas,	O.	 C.	Nunes	 and	C.	M.	Manaia	 (2013).	 Bacterial	 diversity	
from	the	source	 to	 the	 tap:	a	comparative	study	based	on	16S	rRNA	gene‐
DGGE	and	culture‐dependent	methods.	FEMS	Microbiology	Ecology,	83(2):	
361‐374.	

Wagg,	 C.,	 S.	 F.	 Bender,	 F.	 Widmer	 and	 M.	 G.	 A.	 van	 der	 Heijden	 (2014).	 Soil	
biodiversity	 and	 soil	 community	 composition	 determine	 ecosystem	
multifunctionality.	Proceedings	of	the	National	Academy	of	Sciences,	USA:	1‐
5.	

Wardle,	D.	A.,	R.	D.	Bardgett,	J.	N.	Klironomos,	H.	Setälä,	W.	H.	van	der	Putten	and	D.	
H.	Wall	(2004).	Ecological	linkages	between	aboveground	and	belowground	
biota.	Science,	304(5677):	1629‐1633.	

Williams,	 M.	 A.	 (2007).	 Response	 of	 microbial	 communities	 to	 water	 stress	 in	
irrigated	 and	 drought‐prone	 tallgrass	 prairie	 soils.	 Soil	 Biology	 and	
Biochemistry,	39(11):	2750‐2757.	

WRB,	I.	W.	G.	(2007).	World	Reference	Base	for	Soil	Resources	2006,	 first	update	
2007.	FAO.	W.	S.	R.	Reports.	Rome,	Italy.	103:	116.	

Zanette,	L.,	P.	Doyle	and	S.	M.	Tremont	(2000).	Food	shortage	in	small	fragments:	
evidence	from	an	area‐sensitive	passerine.	Ecology,	81(6):	1654‐1666.	

Zornoza,	 R.,	 C.	 Guerrero,	 J.	 Mataix‐Solera,	 V.	 Arcenegui,	 F.	 García‐Orenes	 and	 J.	
Mataix‐Beneyto	 (2006).	 Assessing	 air‐drying	 and	 rewetting	 pre‐treatment	
effect	on	some	soil	enzyme	activities	under	Mediterranean	conditions.	Soil	
Biology	and	Biochemistry,	38(8):	2125‐2134.	

	



CAPÍTULO	4	

161	

Supplementary	material	

	
	

 

Figure	S4.1	Schema	of	 the	 chamber	used	 for	measuring	CO2	 fluxes	of	 the	plant‐
soil‐system	in	Mediterranean	holm	oak	forests	fragments,	showing	the	connections	
with	the	EGM‐4	of	PP‐systems®.	The	frame	of	the	bottom	and	top	of	the	chamber	
were	made	 of	 acrylic,	 and	 connected	with	 aluminium	 rods.	Walls	 were	made	 of	
“NRS90	 clear”	 polyester	 film	 of	 75	 μm	 thickness	 (Llumar®,	 Martinsville,	 USA).	
Arrows	indicate	the	airflow	inside	the	chamber.	
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Figure	 S4.2	 Water	 content	 in	 the	 plant‐soil‐system	 during	 the	 experimental	
drought	from	two	climatically	different	regions	and	two	fragment	sizes	of	holm	oak	
forest	in	Spain.	Different	symbols	represent	distinct	soil	treatment:	circles	=	large	
fragments	 from	 northern	 region;	 inverted	 triangle	 =	 small	 fragments	 from	
northern	 region;	 squares	 =	 large	 fragments	 from	 southern	 region;	 diamonds	 =	
small	fragments	from	southern	region.	Error	bars	=	SE	(n=	7	for	southern	large	and	
northern	small	fragments,	and	8	for	southern	small	and	northern	large	fragments).	

	



CAPÍTULO	4	

163	

	
	

	
	

T
ab
le
	S
4
.1
	C
or
re
la
ti
on
	b
et
w
ee
n	
ph
ys
ic
oc
he
m
ic
al
	c
ha
ra
ct
er
is
ti
cs
	o
f	s
oi
ls
	(
to
ta
l	v
al
ue
s)
	(
n=
48
)	
fr
om

	tw
o	
cl
im
at
ic
al
ly
	d
iff
er
en
t	

re
gi
on
s	
an
d	
tw
o	
fr
ag
m
en
t	
si
ze
s	
of
	h
ol
m
	o
ak
	fo
re
st
	in
	S
pa
in
.	S
ig
ni
fic
an
t	
co
rr
el
at
io
n	
ar
e	
in
	b
ol
d	
(*
<0
.0
5;
	*
*<
	0
.0
1;
	*
**
<0
.0
01
).
	

CE
C=
ca
ti
on
	e
xc
ha
ng
e	
ca
pa
ci
ty
;	
SO
M
=S
oi
l	
or
ga
ni
c	
m
at
te
r.
	†
	V
ar
ia
bl
es
	l
at
te
r	
in
cl
ud
ed
	i
n	
st
ep
w
is
e	
m
ul
ti
pl
e	
re
gr
es
si
on
s	
(s
ee
	

T
ab
le
	5
).	   

CE
C 

M
g2+

 
Ca

2+
 

Na
+  

SO
M

 
N 

or
ga

nic
 

P 2
O 5

 
K+  

pH
 

Ag
gr

eg
at

e 
sta

bil
ity

 
M

icr
ob

ial
 b

iom
as

s 
(m

g 
C 

kg
-1

) 

W
at

er
 h

old
ing

 ca
pa

cit
y (

%
) 

0.
91

***
 

0.
65

***
 

0.
90

***
 

0.
66

***
 

0.
89

***
 

0.
85

***
 

0.
67

***
 

0.
42

**  
0.

21
 

0.
20

 
-0

.2
3 

CE
C 

(c
m

ol c
Kg

-1
) 

0.
69

***
 

0.
99

***
 

0.
66

***
 

0.
90

***
 

0.
83

***
 

0.
54

***
 

0.
51

***
 

0.
42

**  
0.

11
 

-0
.2

3 

M
g2+

 (c
m

ol c
Kg

-1
) 

 
 

0.
61

***
 

0.
48

***
 

0.
64

***
 

0.
63

***
 

0.
49

***
 

0.
65

***
 

0.
17

 
-0

.1
5 

-0
.2

6 

Ca
2+

 (c
m

ol c
Kg

-1
) 

 
 

 
0.

64
***

 
0.

90
***

 
0.

83
***

 
0.

53
***

 
0.

43
**  

0.
41

**  
0.

14
 

-0
.2

1 

Na
+  (c

m
ol c

Kg
-1

) 
 

 
 

 
0.

64
***

 
0.

51
***

 
0.

59
***

 
0.

42
**  

0.
13

 
0.

17
 

-0
.4

0*  

SO
M

 (%
) †

 
0.

94
***

 
0.

69
***

 
0.

29
*  

0.
06

 
0.

08
 

-0
.1

4 

N 
or

ga
nic

 (%
) 

0.
74

***
 

0.
20

 
-0

.0
5 

0.
00

1 
-0

.0
5 

P 2
O 5

 (m
g 

Kg
-1

) 
0.

13
 

-0
.3

3*  
0.

08
 

-0
.1

9 

K+  (c
m

ol c
Kg

-1
) 

 
 

 
 

 
 

 
 

0.
53

***
 

-0
.1

0 
-0

.3
5*  

pH
 †

 
0.

12
 

-0
.2

8 

Ag
gr

eg
at

e 
sta

bil
ity

 (%
) †

 
0.

13
 

 



HABITAT FRAGMENTATION CAN MODULATE DROUGHT EFFECTS 

164 

	

	

	

	

Table	S4.2	Soil	moisture	and	seedling	response	during	drought	simulation	to	the	
factors	region	and	fragment	size	in	soils	from	two	climatically	different	regions	and	
two	 fragment	 sizes	of	 holm	oak	 forest	 in	 Spain.	Data	were	 analysed	by	 repeated	
measures	 analysis	 of	 variance	 (n=	 7	 for	 southern	 large	 and	 northern	 small	
fragments,	 and	 n=	 8	 for	 southern	 small	 and	 northern	 large	 fragments)	 and	
significant	effects	are	noted	in	bold	(*<0.05;	**<	0.01;	***<0.001).	

	
	
	
	

 

Region(R) Fragment 

size (F) 

R x S Drought (D) D x R D x F DxRxF 

Soil moisture F 24.21 45.71 3.7 291.95 8.11 3.73 0.94 

 P <0.001*** <0.001*** 0.065 <0.001*** <0.001*** <0.001*** 0.49 

Fv/Fm predawn 
F 0.553 0.556 1.586 12.880 0.394 0.581 1.663 

P 0.464 0.463 0.219 <0.001*** 0.758 0.629 0.182 

Fv/Fm midday 
F 0.794 0.366 1.737 23.342 0.386 1.825 1.877 

P 0.381 0.550 0.199 <0.001*** 0.763 0.149 0.140 

Stomatal 

conductance  

(mmol s-1 m-2) 

F 2.36 0.909 1.362 22.356 0.607 1.384 0.125 

P 0.128 0.349 0.254 <0.001*** 0.613 0.254 0.945 
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  Reco 
rewetting 

Time (T) 
P <0.001***

F 200.55 

Region 
(R) 

P <0.001***

F 104.82 

Fragment 
size (F) 

P <0.001*** 
F 25.43 

T x R
 

P <0.001*** 
F 8.45 

T x F
 

P 0.258
F 1.37 

R x F
 

P 0.821 
F 0.05

T x R x F
 

P 0.038* 
F 2.39 

  Reco GPP

Drought time (Dt) 
P <0.001*** <0.001***

F 48.86 14.19 

Region (R) 
P <0.001*** 0.76 
F 62.12 0.09 

Fragment size (F) 
P <0.001*** 0.739 
F 71.88 0.11 

Dt x R
 

P 0.505 0.172
F 0.79 1.69 

Dt x F
 

P 0.537 0.319 
F 0.73 1.18 

R x F
 

P <0.001*** 0.287 
F 25.43 1.15 

Dt x R x F
 

P 0.609 0.399 
F 0.611 0.99 

Table	 S4.4	 Ecosystem	 respiration	 and	 Gross	 Primary	 productivity	 responses	 to	
condition	(C=drought	 simulation	and	rewetting),	 region	 (northern	and	southern)	
and	fragment	size	(large	and	small),	in	soils	from	two	climatically	different	regions	
and	two	fragment	sizes	of	holm	oak	forest	in	Spain.	Significant	effects	of	the	three‐
way	 ANOVA	 (n=120)	 are	 noted	 in	 bold	 (*<0.05;	 **<	 0.01;	 ***<0.001).	 Reco=	
ecosystem	respiration;	GPP=	Gross	Primary	Productivity.	

Table	 S4.5	 Ecosystem	 respiration	 responses	 to	 time	 (T=3,	 24	 and	 48	 hrs	 after	
rewetting),	region	(northern	and	southern)	and	fragment	size	(large	and	small),	in	
soils	 from	 two	 climatically	different	 regions	and	 two	 fragment	 sizes	of	 holm	oak	
forest	in	Spain.	Significant	effects	of	the	three‐way	ANOVA	(n=90)	are	noted	in	bold	
(*<0.05;	**<	0.01;	***<0.001).	Reco	=	ecosystem	respiration.	
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