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Abstract 

 

Synthetic seismograms enable to model the theoretical seismic response of the 

Earth interior due to different structural features and changes in the physical 

properties of crust and mantle. This approximation provides a best understanding 

of the real seismic data recorded in field experiments. In this paper, we are 

showing the development and application of a new scheme based on a multi-order 

explicit finite-difference algorithm for acoustic waves in a 2D heterogeneous 

media. The results of the modeling are compared with the seismic data acquired 

within the SIMA project providing new insight about the internal structure of the 

subsurface allowing improving the velocity model obtained in previous works. 
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1. Introduction 
 

The approximation of wave propagation has been introduced and widely used in 

forward and inverse problems of acoustic and elastic waves e.g., [1], [2], [3], [4], 

[5], [6]. Seismic forward modeling has been an asset to aid the interpretation of 

controlled source seismic data. Refraction and wide-angle seismic reflection data 

still makes broad use of ray tracing schemes that allow the estimation of relatively 

simple velocity models, usually flat layer cake models. This type of interpretation 

does not take into account the fine details of the full wave field which 

undoubtedly provides new aspects which need to be understood to fully appreciate 

the complexities of the subsurface. In conventional reflection interpretation 

scattering energy, or even S-wave arrivals are not commonly used.  

The synthetics simulation of the full wave-field is therefore very useful once the 

fine details of the recorded data can be introduced in the interpretation. Ray 

tracing is a solution of the wave equation which when used in seismic refraction 

seismic data interpretation only uses the first arrival of the more energetic P-wave 

phases. The full solution of the wave equation can be achieved by several 

approaches being one of the most used, the finite differences. There are different 

developments which can reproduce, simulate and solve the wave equation using 

finite differences with different degrees of exactness (see [7] for more details).  

There are second, fourth order developments [8], staggered and/or coincident grid 

approaches, as well as mixed spectral and finite difference solutions [9].  Early 

developments [10] of the finite difference solution to the wave equation are mostly 
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oriented to seismic exploration where the data is characterized by limited offsets 

and the models are relatively small when compared with academic studies that 

address the structure of the lithosphere and/or the characteristic structures of the 

deep crust. The increase in the size of the model increases the difficulties in the 

computation of the wave-field and the requirements on the software and on the 

hardware. Current technical developments make it feasible to run relatively large 

models (crustal or even lithospheric scale) in low cost computer systems and 

relatively simple codes are available.   

In the current case the simplification is achieved by using second order finite 

difference solution of the wave equation. However the complexity is defined by 

the scale of the model which we aim to simulate. This is the case of the relatively 

recently acquired controlled source wide-angle seismic reflection data [11] 

acquired across the ATLAS orogen in Morocco. The wide-angle seismic transect 

covers a distance of over 700 km. Therefore, the crustal model consists of 700 km 

long by an 80 km thick.  

 

 

2. Mathematical formulations 
 

The 2D acoustic equation 

 

The second-order partial differential equation describing acoustic-wave 

propagation in a two dimensional heterogeneous medium in the rectangular 

coordinates x and z [12]; [13] can be written as 

 

𝜌
𝜕2𝑢

𝜕𝑡2
=

𝜕

𝜕𝑥
[𝜇

𝜕𝑢

𝜕𝑥
] +

𝜕

𝜕𝑧
[𝜇

𝜕𝑢

𝜕𝑧
] + 𝐹(𝑥, 𝑧, 𝑡),                         (1) 

 

where u is the wave displacement, 𝜌(𝑥, 𝑧) is the density, t the time, 𝜇(𝑥, 𝑧) is the 

elasticity parameter, 𝐹 is the local source.  

The term 𝐹 corresponds to displacement due directly to the source of energy 

(explosion) from the total displacement in a rectangular region surrounding the 

source point. 

The equation in (1) will be approximated using the finite-difference method. The 

centered differences can be used to represent the time differentials of the first 

terms, in the case of the second term, we will need a more elaborated calculations.  

We consider the term 

 
𝜕

𝜕𝑥
[𝑐2(𝑥, 𝑧)

𝜕𝑢

𝜕𝑥
]                                                                (2) 

 

 

as a generalization of the terms of the second-hand side of equation (1) having 

partial derivatives with respect to one spatial coordinate only. Where ρ and  were  
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replaced by the expression 𝑐(𝑥, 𝑧), with 𝑐(𝑥, 𝑧) is the speed of sound in the 

medium, and = √
𝜇

𝜌
 . 

In the following, we replace 𝑐2(𝑥, 𝑧) by its discrete value 𝑐2(𝑖, 𝑗) at the grid 

point(𝑖, 𝑗). We define 𝑐2(𝑖, 𝑗) to be the average value of 𝑐2(𝑥, 𝑧) over a rectangle, 

of sides ∆𝑥 and ∆𝑧, centered at the grid point (𝑖∆𝑥, 𝑗∆𝑧). i, j and k are defined to 

be integer. 

By assuming that the media are locally homogeneous in the immediate vicinity of 

each grid point, we get: 

 

 

The approximation to (2)   

 

 

𝑐2 (𝑖 +
1
2 , 𝑗) [𝑢(𝑖 + 1, 𝑗, 𝑘) − 𝑢(𝑖, 𝑗, 𝑘)] − 𝑐2 (𝑖 −

1
2 , 𝑗) [𝑢(𝑖, 𝑗, 𝑘) − 𝑢(𝑖 − 1, 𝑗, 𝑘)]

(∆𝑥)2
        (3) 

 

 

where the averages  𝑐2 (𝑖 +
1

2
, 𝑗) and 𝑐2 (𝑖 −

1

2
, 𝑗) are defined as 

  

𝑐2 (𝑖 ±
1

2
, 𝑗) =

𝑐2(𝑖 ± 1, 𝑗) + 𝑐2(𝑖, 𝑗)

2
                                       (4) 

 

The same approximation is used for the other term. 

The final equation from (1) and the previous approximations is 

 

 
𝑢(𝑖,𝑗,𝑘+1)−2𝑢(𝑖,𝑗,𝑘)+𝑢(𝑖,𝑗,𝑘−1)

(∆𝑡)2
=

1

∆𝑥
{[

𝑐2(𝑖+1,𝑗)+𝑐2(𝑖,𝑗)

2
] [

𝑢(𝑖+1,𝑗,𝑘)−𝑢(𝑖,𝑗,𝑘)

∆𝑥
] −

[
𝑐2(𝑖,𝑗)+𝑐2(𝑖−1,𝑗)

2
] [

𝑢(𝑖,𝑗,𝑘)−𝑢(𝑖−1,𝑗,𝑘)

∆𝑥
]} +

1

∆𝑧
{[

𝑐2(𝑖,𝑗+1)+𝑐2(𝑖,𝑗)

2
] [

𝑢(𝑖,𝑗+1,𝑘)−𝑢(𝑖,𝑗,𝑘)

∆𝑧
] −

[
𝑐2(𝑖,𝑗)+𝑐2(𝑖,𝑗−1)

2
] [

𝑢(𝑖,𝑗,𝑘)−𝑢(𝑖,𝑗−1,𝑘)

∆𝑧
]} + 𝐹(𝑖, 𝑗, 𝑘)                                    (5) 

 

Ideally, the wanted source is an impulse of zero width, but practically, the best we 

can attain is a narrow wavelet with minimum sidelobes. As example of practical 

wavelets (Fig. 1), for different seismic sources: 

 

 Ricker zero-phase wavelet, which approximates dynamite source. 

 Klauder zero-phase wavelet, which approximates Vibroseis source. 
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Figure 1 : zero-phase wavelets 

 

The source in the example presented in this paper is a dynamite explosion, so in 

the simulation, it corresponds to a vertical body force, whose time history is the 

first derivative of the zero-phase Ricker wavelet: 

 

𝑓(𝑡) = − exp(𝑏) 𝑓𝑚𝑎𝑥[𝑓𝑚𝑎𝑥 cos(𝑐) (𝑡 − 𝑡0) + 𝜋 sin(𝑐)], 

𝑏 = −
1

2
𝑓𝑚𝑎𝑥

2 (𝑡 − 𝑡0)2, 

𝑐 = 𝜋𝑓𝑚𝑎𝑥(𝑡 − 𝑡0), 
 

The finite-difference algorithm needs to be stable to get a physically meaningful 

numerical calculation, i.e., the difference between the exact and the numerical 

solutions of a finite-difference equation must remain bounded as the time index k 

increases, ∆t remaining fixed for all i and j. The stability is maintained in this case 

if the von Neumann stability criterion (𝑐𝑚𝑎𝑥
∆𝑡

∆𝑥
≤ √

1

2
; for ∆𝑥 = ∆𝑧, see [14]), 

where c is the largest sound speed of the model, is maintained. 

The error in the finite-difference solution is due to the conditions’ approximation 

at the free surface boundary and the interfaces. In the free surface, the stress needs 

to be eliminated, and in the interfaces between two different acoustic materials, 

boundary conditions require both the stress and the displacement to be continuous 

[12]. 

 

 

 

3. Results 
 

The finite difference algorithm has been tested using the velocity model obtained 

for the SIMA (Seismic Imaging of the Moroccan Atlas) velocity model [11]. The 

model consists on a layered 2D velocity scheme, 460 km long and 50 km depth. 

The wavefields are recorded by 890 receivers spaced by ~800m following the 

geometry of the field acquisition. The source is located at the depth of z=50m and  
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500m from the limit of the model, that corresponds approximately to the sixth 

shot near to Merzouga (Sahara domain). 

 

 

The code enabled us to simulate the wave propagation through the model; in Fig. 

2 we can visualize the wave propagation and reflections on the models’ layers, 

respectively at 4.5s, 7.5s, 9s and 10s after the shooting time. The synthetic seismic 

record obtained shows the seismograms for every receiver deployed along the 

profile, being the horizontal axis distance to the source and the vertical time and 

the amplitude variations in function of time correspond to the arrival of a seismic 

wave. 

 

 

The comparison with the real seismic record Fig. 3 presents similarities, 

especially in term of first arrivals (first energy arriving at every receiver) and the 

reflected energy. Because of this modeling is acoustic, no refractions are observed 

in the synthetic model; another relevant difference is the presence of clear arrivals 

in the synthetic seismogram in far offset from the shot point, which is not the case 

in the real shot gather, this is the result of the decay of the seismic amplitude as a 

function of time due to the spherical spreading and elastic attenuation that takes 

place in the earth interior. 

t=4.5s t=7.5s 

t=10s t=9s 

Figure 2 : Snapshots of the wave propagation simulation in time 
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The major difficulties in the solution of differential equations by Finite difference 

schemes and in particular the wave equation include: 1) the numerical dispersion, 

2) numerical artifacts due to sharp contrasts in physical properties and, 3) the 

absorbing boundary conditions.  

 

 

Numerical dispersion is caused when the grid (model grid) sampling interval is 

not small enough [15] when compared with the dominant frequency of the signal 

perturbation. In order to overcome this difficulty the grid interval has to be less 

than ¼ of the wavelength of the source signal. Nevertheless, even in this case the 

high frequency tails of the source signal generates high frequency very low 

amplitude noise which is recorded in the seismogram.   

 

 

Sharp contrasts of physical properties especially when a very small number of 

grids are involved (very small size localized heterogeneities) generate numerical 

singularities during the simulation.  

 

 

This is solved again by decreasing the grid size so that the velocity anomalies are 

mapped by a large number of grids and also by smoothing the contrasts in 

physical properties at the boundaries of the structures (for example, boundaries 

are thicker than a single grid point). Other approaches include integration schemes 

around the grid points [16]. The latter is used in the current scheme. 

 

 

Finally to avoid reflections from the sides (limits) of the model a relatively thick 

band of the models around the sides needs to behave like a sponge so that the 

sides will not generate a reflection. There are several ways to account for this one 

is the well known absorbing boundary conditions [17], [18] a second way is based 

on the recent advances on perfect matching boundaries [19].  

 

 

In this paper, we are only presenting the acoustic approximation for this velocity 

model and only one shot gather is modeled. The objective is to apply both 

approximations, acoustic and elastic, using moreover S-wave arrivals, and do the 

modeling of all the existing shot gathers, to obtain information about the velocity 

model that can provide a more detailed knowledge of the Atlas Mountains. 
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4. Conclusion 

 

In this paper, we consider a finite-difference wave equation solver to create 

synthetic seismograms that simulate the earth response to an excitation by 

dynamite explosion, we also used as input to the code a realistic velocity model 

from the SIMA project and we noticed that the fitting between real and calculated 

time-distance graphs is not perfect, to minimize those differences, modifying the 

velocity model and using also the elastic approximation to include refraction and 

head waves, which lead us to obtain a more accurate velocity model. 
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Figure 3 : Sixth Shot gather from SIMA experiment and the corresponding synthetic seismogram 



 

Finite-difference approximation of wave equation                                            8687 

  

 
 

References 

 
 

[1] J. F. Claerbout, Coarse grid calculations of waves in inhomogeneous media 

with application to delineation of complicated seismic structure (Pamphlet) 

Pamphlet – January 1, 1970. 

 

[2] J. F. Claerbout, Fundamentals of Geophysical Data Processing, McGraw-Hill, 

New York; 1976. 

 

[3] T. Landers and J. F. Claerbout, Numerical calculations of elastic waves in 

laterally inhomogeneous media; Journal of Geophysical Research, Volume 77, 

Issue 8, Pages 1476-1482, March 1972.  

http://dx.doi.org/10.1029/jb077i008p01476  

 

[4] S. M. Flatté and F. D. Tappert; Calculation of the Effect of Internal Waves on 

Oceanic Sound Transmission, J. Acoust. Soc. Am. 58, 1151-1159; 1975. 

http://dx.doi.org/10.1121/1.380798  

 

[5]  Ru-Shan Wu, Synthetic Seismograms in Heterogeneous Media by One-return 

Approximation, PAGEOPH, Vol. 148, 1996. 

http://dx.doi.org/10.1007/bf00882059 

 

[6] R. Carbonell, J. Gallart and A. Pérez-Estaùn; Modelling and imaging the 

Moho transition: the case of southern Urals, Geophys. J. Int. Vol. 149, pages 134-

148; 2002. http://dx.doi.org/10.1046/j.1365-246x.2002.01623.x 

 

[7] K.R. Kelly and K. J. Marfurt; Numerical modeling of seismic  wave 

propagation; Geophysical Reprint Series, SEG, No. 13, 520 pp; 1990. 

 

[8] A. R. Levander; Fourth-order finite-difference P-SV seismograms, 

Geophysics, Vol 53, pages 1425-1436; 1988. http://dx.doi.org/10.1190/1.1442422 

 

[9] B. Fornberg, The pseudospectral method: Comparisons with finite differences 

for the elastic wave equation; Geophysics, Vol. 52; 1987. 

http://dx.doi.org/10.1190/1.1442319 

 

[10] K.R. Kelly, R.W. Ward, S. Treitel, and R. M. Alford, Synthetic seismograms: 

A finite-difference approach; Geophysics, Vol 41; 1976. 

http://dx.doi.org/10.1190/1.1440605 

 

 

 

 

http://dx.doi.org/10.1029/jb077i008p01476
http://dx.doi.org/10.1121/1.380798
http://dx.doi.org/10.1121/1.380798
http://dx.doi.org/10.1121/1.380798


 

8688                                                                                         Fadila Ouraini et al. 

 

 

[11] P. Ayarza, R. Carbonell, A. Teixell, I. Palomeras, D. Marti, A. Kchikach, M. 

Harnafi, A. Levander, J. Gallart, M.L. Arboleya, J. Alcalde, M. Charroud, and M. 

Amrhar, Crustal thickness and velocity structure across the Moroccan Atlas from 

long offset wide-angle reflection seismic data: The SIMA experiment, 

Geochemistry, Geophysics, Geosystems, 2014. 

http://dx.doi.org/10.1002/2013gc005164 

 

[12] H. Kolsky, Stress waves in solids:  New York, Dover Publishing  Co, 1963.   

 

[13] F. C. Karal and J. B. Keller, Elastic wave propagation in homogeneous and 

inhomogeneous media; J. Acoust.  Soc.  Am., v. 31. p , 694-705, 1959. 

http://dx.doi.org/10.1121/1.1907775 

 

[14] Z. S. Alterman and D. Loewenthal, Seismic waves in a quarter and three-

quarter plane; Geophys. J. Roy.  Astr.  Soc.  v. 20.  p. 101-126, 1970. 

 

[15]  R. M. Alford, K. R. Kelly, and D. M. Boore; Accuracy of Finite-difference 

modeling of the acoustic wave equation; Geophysics, Vol. 39, No. 6, p. 834-842; 

1974. http://dx.doi.org/10.1190/1.1440470 

 

[16] J. Zahradnik, P. O’Leary, and J. Sochacki; Finite-difference schemes for 

elastic waves based on the integration approach; Geophysics, Vol. 59, No. 6; p. 

928-937; 1994. http://dx.doi.org/10.1190/1.1443652   

 

[17] J. Sochacki, R. Kubichek, J George, W. R. Fletcher, and Scott Smithson; 

Absorbing boundary conditions and surface waves; Geophysics, Vol. 52, No. 1, p. 

60-71; 1987. http://dx.doi.org/10.1190/1.1442241 

 

[18] R. W. Clayton and B. Engquist; Absorbing boundary conditions for wave-

equation migration; Geophysics, Vol. 45, No. 5, p. 895-904; 1980. 

http://dx.doi.org/10.1190/1.1441094 

 

[19] J. S. Sochacki, J. H. George, R. E. Ewing, and S. B. Smithson; Interface 

conditions for acoustic and elastic wave propagation; Geophysics, Vol. 56, No. 2, 

p. 168-181; 1991. http://dx.doi.org/10.1190/1.1443029   

 

 

Received:  September 15, 2014; Published: December 5, 2014 

 


