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Non-linear analysis methods applied to observational and 
simulated climatic time series

Aim of our work
The results of a simulated CO2 (C) and a global ice volume (V) time series, derived from a simple relaxation model of the glacial-interglacial cycles (García-Olivares and Herrero, 2013) have been analyzed 
using non-linear techniques to quantify the performance of a model at reproducing the dynamics embedded in observational time series.
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Results
The analysis reinforces the hypothesis that some specific mechanisms included in the model are able to closely reproduce the glacial-interglacial oscillations and thus suggests which specific mechanisms 
should be more seriously investigated in the climate system. These techniques may be applied to other climatic time series to quantify the performance of a model simulating the dynamics of the climate sys-
tem.
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Model
The 3τ model predicts the change of three dimensionless variables: global ice volume, V , atmospheric CO2 concentration, C, and the 
extent of Antarctic ice sheet, A.
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1_ Fourier Transform
Useful to asses the principal components of a time series. Frequency 
content is comparable in all cases.
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2_ Wavelet Transform
The complex cross-wavelet transform of two time series can be interpreted as the shared power in a given periodicity band (abso-
lute value) and the local relative phase between the two series in time frequency space
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Wavelet coherence of two series can be interpreted as a localized 
correlation coeficient in time frequency space.This tool is useful to find 
locally phase-locked behavior, that is, moments in which both series 
oscillate with the same frequency and a given phase difference
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        Complex Cross-Wavelet: C vs CO2 (left) V vs Bintanja (right)              Wavelet coherence of C and CO2 (left); V and Bintanja (right)

3_Phase Space Portraits
Useful for quantifying the performance of a simulated time series in matching the dynamical proper-
ties of an observational time series
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       Phase Space of V (left) and Bintanja Sea Level (right)                 CRP of C and smoothed CO2 (left) and V and Bintanja SL (right)

4_ Cross Recurrence Plots
Reveals the times when the phase space trajectory of the first system visits roughly the same area in 
the phase space where the phase space trajectory of the second system is. Confluence of states
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