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Abstract The net plankton community metabolism of oceanic surface waters is particularly important as it
more directly affects the partial pressure of CO, in surface waters and thus the air-sea fluxes of CO,. Plankton
communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB,
280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton
mortality rates, and other metabolic and chemical processes. Here we test the sensitivity of net community
production (NCP) to UVB of planktonic communities in surface waters across contrasting regions of the
ocean. We observed here that UVB radiation affects net plankton community production at the ocean
surface, imposing a shift in NCP by, on average, 50% relative to the values measured when excluding partly
UVB. Our results show that under full solar radiation, the metabolic balance shows the prevalence of net
heterotrophic community production. The demonstration of an important effect of UVB radiation on NCP in
surface waters presented here is of particular relevance in relation to the increased UVB radiation derived
from the erosion of the stratospheric ozone layer. Our results encourage design future research to further our
understanding of UVB effects on the metabolic balance of plankton communities.

1. Introduction

Net community production (NCP), the balance between gross primary production (GPP) and community respiration
(CR), of planktonic communities is a key biological component of the carbon budget of the ocean, determining the
role of oceanic plankton as sinks (NCP > 0) or sources (NCP < 0) of CO, in the ocean [del Giorgio and Williams, 2005].
The NCP of plankton communities has been reported to be affected by multiple factors including light
availability affecting photosynthetic rates [Kirk, 1994], nutrient availability, temperature and community biomass
and structure acting on metabolic rates of both autotrophs and heterotrophs, and organic carbon availability
altering respiration rates of heterotrophs [Robinson and Williams, 2005; Regaudie-de-Gioux and Duarte, 2012].

Planktonic communities in surface waters are exposed to high irradiance, including significant ultraviolet blue
(UVB, 280-315 nm) radiation, which has increased since the stratospheric ozone layer was depleted by
chlorofluorocarbons (CFCs), an impact from which it has not yet recovered [Butchart and Scaife, 2001; McKenzie
et al,, 2003; Weatherhead and Andersen, 2006]. Elevated UVB radiation affects marine biota, including planktonic
organisms, greatly [Llabrés et al., 2013]. UVB radiation reduces plankton photosynthetic rates by 15% per unit
biomass [Cullen and Neale, 1994] and reduces the photosynthetic biomass due to increased cell mortality rates
of plankton in the presence of UVB radiation [Llabrés and Agusti, 2006; Agusti and Llabrés, 2007]. UVB radiation
also impacts on microheterotrophs directly [Bertoni and Callieri, 1999; Davidson and van der Heijden, 2000] and
indirectly, through photochemical effects on the availability of dissolved organic matter [Obernosterer et al.,
1999] with consequences on bacterial production and community respiration [Hernd! et al., 1993; Agusti et al.,
2014]. Indeed, UVB may inhibit bacterial production and bacterial release of extracellular enzymes [Hernd| et al.,
1993] or may enhance bacterial production by affecting the availability of dissolved organic matter
[Obernosterer et al., 1999]. In both cases, bacterial responses to ultraviolet radiation (UVR) will affect community
respiration. Hence, UVB radiation may either increase NCP, if CR is suppressed relative to GPP, or decrease NCP if
GPP is suppressed relative to CR. Furthermore, Agusti et al. [2014] showed that NCP is directly affected by the
bacterial response to UVR. Indeed, bacterial activity is inhibited in the presence of UVB, but may recover and
even be enhanced in the dark following exposure to UVB, conducive to increased community respiration and
reduced NCP when integrated over 24 h [Agusti et al., 2014].
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Figure 1. Areas where the experiments were conducted.

Despite the evidence that UVB radiation affects many relevant processes involved in determining NCP, the
sensitivity of NCP to UVB exposure is poorly reported. There are still few studies on the impact of the UVB
radiation on planktonic metabolism. Godoy et al. [2012] reported a tendency for NCP to decline in the
presence of UVB, and Agusti et al. [2014] reported a series of experiments to explain how suppression of
bacterial activity under UVR and subsequent recovery in the dark contributes to explain the effects of UVR on
NCP. However, the number of experiments reported by these studies is limited [Godoy et al., 2012; Agusti et al.,
2014] and whether their results apply to planktonic communities elsewhere in the ocean is unresolved.
Indeed, all other estimates of NCP at specific depths in the ocean available to date were derived using
borosilicate Winkler bottles, which partly remove UVR, to incubate the communities in the light.

Here we test the response of NCP to the partial removal of ambient UVB in planktonic communities across
surface waters in contrasting regions of the ocean (NW Mediterranean Sea, Antarctic Peninsula, eastern
Pacific Ocean, and NE subtropical Atlantic).

2. Methods

We evaluated NCP incubated under full solar radiation exposure and when UV radiation was partly removed
in planktonic communities in four different regions (Antarctic Peninsula, NW Mediterranean, NE subtropical
Atlantic, and eastern Pacific; Figure 1) using two different materials for incubation: borosilicate (that partly
remove UVB) and quartz (largely transparent to UV) bottles (Figure 2). A total of 59 experiments were conducted
along these locations assessing the effect of different UVB exposure on the NCP of planktonic communities
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- (Table 1). The experiments in the
northeastern subtropical Atlantic were
conducted between the Canary Islands and
the Cape Verde Islands during the RODA II
cruise (3 February 2007 to 26 February 2007).
The experiments in the Antarctic Peninsula
were conducted during the Antarctic
tourism opportunity spectrum (ATOS)-
Antarctic cruise (26 January 2009 to 28
February 2009). The study conducted in the
& Quartz bottle southeastern Pacific off Chile was along the
. : Humboldt Current in the Patagonia channels
300 350 400 450 during the Humboldt 2009 cruise (05 March

Wavelength (nm) 2009 to 15 March 2009). All three cruises
were conducted aboard the Spanish
Oceanography Research vessel Hesperidés.
The experiments in the northwestern
Mediterranean Sea were conducted at the
Cap Salines lighthouse in Mallorca Island (39°16'N-3°32E, from July 2008 to April 2010) and at Cabrera Island
(39°19'N-21°56'E, September and October 2005).
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Figure 2. The spectral percentage of light transmitted in the UV radia-
tion and PAR bands of the quartz and borosilicate Winkler bottles
used during our studies.

The experiments involved incubating communities from surface (5 m depth samples for the NE subtropical
Atlantic and eastern Pacific and 1 m depth samples for the Antarctic and NW Mediterranean). Water
samples were collected using 12L Niskin bottles attached to a Rosette sampler system or 30L Niskin
bottles for 1 m sampling used in the Antarctic cruise. Water samples were carefully siphoned into
narrow-mouth borosilicate and quartz Winkler bottles. The water samples were taken during the early
morning and were protected by a dark screen to avoid exposure to solar irradiance before the onset of
the incubation. Replicated (n=7) samples were immediately fixed to determine the initial oxygen
concentration. Other set of seven replicated transparent borosilicate Winkler bottles and a set of five
replicated transparent quartz Winkler bottles were suspended in seawater and incubated on deck for
24 h in a large 2000 L tank with continuous circulation of surface seawater to maintain the temperature
of the surface waters and natural solar radiation.

Net community production (NCP) was estimated from changes in oxygen concentration along the incubation
[Carpenter, 1965; Carrit and Carpenter, 1966]. Oxygen concentrations were analyzed by Winkler titration
using a potentiometric electrode and automated endpoint detection allowing 0.1% precision in oxygen
determination (Mettler Toledo, DL28 titrator) [Oudot et al., 1988].

The depth-integrated NCP rates were calculated using a conventional trapezoid method, where rates were
available for at least three depths within the euphotic layer. Considering that the NCP rates under full solar
radiation (NCPgsg) were estimated only for the surface layer, the depth-integrated NCPgsR rates were
calculated using the NCPsp rates for the surface layer and the NCP rates when UV was partly removed
(NCP_yy) for the deeper depths when available.

Table 1. Mean (+SE) and Range of Water Temperature, Chlorophyll a Concentration, Maximum Daily Incident Ultraviolet Radiation (UV Index), and Daily Doses of
Solar Radiation for the Experiments Conducted in the Different Regions a Godoy et al. [2012]

Temperature Chlorophyll a Maximum Daily Solar Radiation
Oceans N Date (°Q) (mg m73) UV Index (kJ m 2 d71)
Antarctic 13 28 January 2009-24 February 2009 1.0+£04 44+24 24+05 8,716.39+ 1,834.68
(—0.8-2.9) (0.3-31.7) (0.6-5.2) (3,044-22,446)
Atlantic 20 21 August 2006-3 September 2009; 209+0.3 04x0.1 6.7+0.2 15,371.10 £ 944.46
05 February 2007-25 February 2007 (19.2-22.6) (0.1-0.9) (4.8-8.5) (7,977-19,922)
Mediterranean Sea 21 30 September 2005-1 October 2005; 202+14 ND (not determined) 6+0.9 ND
22 July 2008-16 April 2010 (12.0-28.0) ND (1-9.9) ND
Pacifica 5 10 March 2009-14 March 2009 166 £0.6 1.3+0.5 72+£1.0 13,580.01 £2,760.20
(14.9-18.4) (0.5-3.3) (3.8-9) (4,528-21,102)
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Table 2. Number of Experiments Conducted in Each Region®

NCPesgr NCP_yy NCPgsg — NCP_pyy Wilcoxon Sign

Ocean N mmol O, m >d”" mmol O, m 3d~" mmol O, m ™ d-! Paired Test NCP Response
2.87+0.86 6.21+0.32 —3.34+£0.94 increase=10 (77%)b
0.19 2.26 —2.55 0=1 (8%)C
Antarctic 13 (—5.14-24.29) (—0.43-38.68) (—14.39-1.49) P <0.001 decrease=2 (1 5%)d
—3.52+0.80 —2.65+1.48 —0.87+£1.20 increase=11 (52%)
—26 —1.65 —0.69 0=5 (24%)C
Mediterranean 21 (—20.31-1.05) (—14.75-1.80) (—5.57-3.32) P=0.0091 decrease=5 (24%)d
1.32+0.04 1.26 £0.04 0.07£0.28 increase=4 (80%)b
0.35 1.24 —0.45 0=0 (0%)C
Pacific 5 (—1.68-6.76) (—1.22-3.48) (—1.59-3.27) P=0.031 decrease=1 (20%)d
0.86+0.31 1.06+£0.31 —0.20+£0.81 increase=7 (35%)b
0.93 1.41 —0.11 0=5 (25%)C
Subtropical Atlantic 20 (—3.13-6.07) (—2.93-4.27) (—4.26-1.81) P=042 decrease=8 (40%)d
—0.22+0.68 0.89+£0.98 —1.11+0.35 increase =32 (54%)b
—0.47 0.61 —0.61 0=11(1 9%)C
Overall 59 (—20.31-24.29) (—14.75-38.68) (—14.39-3.31) P < 0.001 decrease=16 (27%)‘]I

@Mean (+SE), median, and range of net community production measured under the full solar irradiance (NCPgsg) and when UVR was partly removed (NCP_y).
The mean (£SE), median, and range of the difference between these two and the probability of pairwise differences between both measurements of NCP
(Wilcoxon Ranked Sign Test).

he number and proportion of experiments yielding a significant (t test, P < 0.05) increase in NCP when UVR was partly removed (NCPgsg — NCP_yy < O, increase).
“Those showing no statistically significant difference (NCPrsg NCPyy =0, = 0).
Those yielding a significant decline in NCP when UVR was partly removed (NCPrsg NCPyy > 0, decrease).

Solar and UV radiation in the air were measured by a WeatherLink Vantage Pro. Davis Co. meteorological station
located on board R/V Hespérides for each cruise except for the experiments conducted in the NW Mediterranean
Sea. Photosynthetically active radiation (PAR) was measured using a solar radiation 6450 Davis sensor (from 400
to 1100 nm) every 1 or 10 min. In addition, Davis 6490 UV radiation sensor was used to detect UV radiation
(290-390 nm) every 1 or 10 min. Its spectral response closely matches the Erythema action spectrum [McKinlay
and Diffey, 1987]. Data of UV were provided by the meteorological station as UV index, an irradiance scale
adopted by the World Health Organization, where UV intensity is described in terms of ranges running from low
values (0-2) to medium (3-5), high (6-7), very high (8-10), and extreme (11+). UVB radiation for the
experiments conducted in Mallorca (NW Mediterranean, Spain) was reported from the monitoring station at the
Palma airport operated by AEMET (Spanish State Meteorological Agency), measuring erythemal irradiance as
Jm™2 each 30 min of a day (16.5 h of light in total per day). The maximum UV index was estimated using the
maximum for any 30 min period of the day based on the measured J m~2 divided by the number of seconds in
30min (1Jm™2s~": 40 UV index). The solar and UV radiations presented here represent the radiation incident at
the surface, which is higher than that received at depths from which plankton communities were sampled.

Temperature at 1 m depth was determined using a Sea-Bird conductivity-temperature-depth (CTD) 19
deployed from a Zodiac, and those at 5 m depths were determined from the Sea-Bird Electronics 25 CTD
attached to the Rosette sampling system of the research vessel. Samples of 250 mL for chlorophyll a
determinations were filtered through Millipore glass fiber filters (pressure < 0.3 kg cm~2), frozen and
extracted for 24 h with 90% acetone. Chlorophyll a concentration was derived from the fluorescence of the
extracts measured using a Shimadzu RF-5301 fluorometer [Yentsch and Menzel, 1963].

Literature data on net community metabolism under full solar radiation and UVR (eastern Pacific Ocean)
[Godoy et al., 2012] were included in the analysis.

3. Results

The oceanic regions studied here ranged broadly in chlorophyll a concentration and temperature (Table 1).
Among the regions investigated, the maximum daily UV index during the sampling studies was not significantly
different between the NW Mediterranean Sea (6 + 0.9), the NE subtropical Atlantic (6.7 +0.2), and the eastern
Pacific (7.2 + 1.0) (Tukey Kramer honestly significant difference test, P> 0.05) (Table 1). The communities
investigated span broad ranges of NCP (—20.3 to 24.3 mmolO,m 3d ™" and —14.8 to 38.7 mmol O,m>d ™"
for NCPgsg and NCP_yy, respectively), from highly heterotrophic to highly autotrophic communities (Table 2).
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Figure 3. The relationship between the mean (+SE) net commu-
nity production under full solar radiation exposure (NCPgsg) and
that when UVR was partly removed (NCP_yy) for the individual
experiments conducted in different oceans. The solid line indi-
cates the orthogonal regression equation: NCP_y, = 1.17(+0.06)
NCPgsg + 1.15(20.34), RZ =0.84, P < 0.05. The dotted line shows
the 1:1 line.

A total of 26 experiments were conducted with
heterotrophic communities (NCP < 0, t test,

P < 0.05; supporting information), 20 with
autotrophic ones (NCP > 0, t test, P < 0.05;
supporting information) and 13 with communities
in approximate metabolic balance (NCP =0, t test,
P> 0.05; supporting information).

Out of the 59 experiments conducted, 11 (19%)
did not show significant differences (t test,

P> 0.05) between the NCP measured under the
full spectrum of solar radiation (NCPgsg) and when
UVR was partly removed (NCP_y; Table 2). A total
of 48 experiments (81%) yielded significant
differences (t test, P < 0.05) between the NCPgsg
and NCP_yy (Table 2), with a prevalence of
experiments where NCP was significantly
enhanced when UV was partly removed

(32 experiments, 54% of the total experiments;
Table 2) compared to experiments showing a
significant suppression of NCP when UVR was
partially removed (16 experiments, 27% of the
total experiments; Table 2). No significant
relationship was observed between the difference
between NCP_yy, and NCPgsg and the incident
UVR for each experiment (data not shown here).

The relationship between NCPgsg and NCP_yy
(Figure 3) revealed a significant tendency for
NCP_yy to be higher than NCPgsp as reflected in
an intercept significantly greater than 0 (F test,
P=0.0015), whereas the slope did not differ
significantly from 1 (F test, P=0.2649).

Furthermore, for the different sampling regions, NCP_y rates were significantly higher than NCPgsg
rates for planktonic communities sampled at the Antarctic Ocean and the Mediterranean Sea (Wilcoxon
ranked sign test, P < 0.05). For planktonic communities sampled at the subtropical Atlantic and at the
Pacific, no overall significant difference was observed between NCPgsg and NCP_yy, rates (Wilcoxon

5 1

ranked sign test, P> 0.05), although
experiments with individual communities
often revealed significant

responses (Table 2).

Full solar radiation exposure may also
change the metabolic status of planktonic
communities. Indeed, the communities in
seven of the experiments reverted from
heterotrophic to net autotrophic, and the
communities of only one experiment
reverted from autotrophic to
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Figure 4. Box plot representing the distribution of the mean difference

(NCPgsgr — NCP_yy) (mmol O, m—>d™") for each cruise.

heterotrophic when UV was partially
removed. As 54% of the experiments here
showed NCP_yy to be higher than its
corresponding NCPgsg (Table 2), full solar
radiation exposure appears to be
conducive to more heterotrophic
planktonic metabolism.
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The magnitude of change in NCP when UV was partly removed ranged —1.11+0.35 mmolO, m~3d ™"
(Table 2), significantly lower than O (t test, P < 0.05). The magnitude of the response of NCP to partial UV
removal was strongly dependent on latitude, with the magnitude of the response increasing from subtropical
to Antarctic communities (Figure 4).

4, Discussion

The results presented, based on a large number of experiments conducted across broadly different regions of
the ocean, conclusively show that UV radiation affects net plankton community production in ocean surface
waters, imposing a shift in NCP by, on average, 50% relative to the values measured when UV was partly
removed. This difference increased, on average, fourfold from subtropical communities, where the impact
was quantified at about 1 mmol O, m—>d ™", to Antarctic latitudes, where plankton communities showed the
greatest response to partial UV removal, quantified at about 4 mmol O, m—>d™".

Our results show that the prevalent response to partial removal of UV radiation is a decline in NCP. These
results confirm the findings of Godoy et al. [2012], who reported, on the basis of a limited data set, a tendency
toward an increase in NCP when UV radiation was partly removed for plankton communities in the Pacific
along the Chilean Coast. Furthermore, Agusti et al. [2014] showed experimentally how responses of NCP to
UVB radiation are complex and can lead to either reduced or increased NCP. In particular, Agusti et al. [2014]
showed that heterotrophic activity is suppressed in the presence of ambient levels of UVB radiation, but that
heterotrophic activity can increase in the night, following exposure to UVB radiation, to overcompensate the
decline in the light, thereby leading to a decline in NCP when the light and dark periods are integrated.
Indeed, most (54%; Table 2) of the experiments conducted here resulted in a significant increase in NCP when
UVB radiation was excluded.

UVB effects on gross primary production are expected to be negative, as exposure to UVB causes
phytoplankton cell death [Llabrés and Agusti, 2006; Agusti and Llabrés, 2007] and reduces specific
photosynthetic rates through pigment destruction and photoinhibitory processes [Cullen and Neale, 1994]. In
contrast, respiration rates may be either suppressed or enhanced by UVB radiation. Heterotrophic
microorganisms have been reported to exhibit mortality when exposed to UVB [Llabrés et al., 2013], which
would tend to reduce community respiration rates. On the other hand, UVB can also enhance respiratory
mechanisms through a number of processes including the improvement of energetic demands to repair
cellular and molecular damage [Vincent and Neale, 2000], increasing the flow of dissolved organic carbon
from damaged phytoplankton cells [Llabrés et al., 2013] and increasing the lability of dissolved organic matter
(DOM) through photochemical reactions [Zepp et al., 1995; Zepp, 2003]. Under UV exposure, heterotrophic
and bacterial production may be suppressed by damaging deoxyribonucleic acid, proteins, and cell
membranes [Hernd| et al., 1993; Arrieta et al., 2000] or enhanced by the photochemical processes making
available DOM for bacterial consumption [Kaiser and Herndl, 1997; Arrieta et al., 2000; Agusti et al., 2014]. The
complexity of the responses of NCP to UVR, which integrated responses at multiple levels by autotrophs and
microheterotrophs, explains that there is no simple relationship between the NCPgsg — NCP_, and UVR in
our experiments. The effects of full solar radiation exposure on net community production shown here
reflects the balance between these processes, which may yield enhanced NCP, when respiration rates are
more suppressed by UV than gross primary production, or reduced NCP, when the opposite holds.

The demonstration of the effect of UV radiation on net plankton community production in surface waters
presented here is of particular relevance in relation to the increased in UVB radiation derived from the erosion
of the stratospheric ozone layer. Those effects could not be revealed by measurements of net community
production in the ocean conducted to date, as most of these measurements have always been conducted
using material partly removing UVB radiation. The erosion of the stratospheric ozone layer led to a global
increase in UVB, with the increased rates declining toward the equator and higher, for any given latitude, in
the Southern compared to the Northern Hemisphere [Armstrong, 1994]. Despite the success of the Montreal
Protocol, banning the use and emissions of CFCs in 1987, there is as yet no clear evidence of the recovery
of the stratospheric ozone layer, and UVB radiation remains elevated and will likely continue to do so over the
coming decades [Pyle, 2000; Bernath, 2005; Weatherhead and Andersen, 2006]. Our experiments suggest
that net community production in the ocean surface waters may have changed, with a tendency for plankton
communities in surface waters to become more heterotrophic, in response to elevated UVB radiation. This
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effect is likely to be highest in the southern Ocean, where UVB has increased most [Armstrong, 1994]. Indeed,
the experimental assessment of impacts of UV removal on net plankton community production showed the
magnitude of these effects to increase with latitude, being highest for the experiments conducted in the
Antarctic Peninsula (Figure 4 and Table 2). Furthermore, the metabolic balance integrated into the mixed
layer column may have been biased and overestimated or underestimated. Indeed, the impacts of UV
radiation on NCP are significant at the ecosystem level, as where integrated rates could have been calculated,
the estimated calculated NCP rates increased by 46% and 89% when UV was partly removed in the Antarctic
(NCP_yy=634mmol 0, m™2d™" and NCPgsg =43.3 mmol O, m~2d ™", t test, P=0.02) and the Pacific
(NCP_yy=187mmol 0o m~2d ™" and NCPrsg=9.9mmol O, m2d ™", t test, P=0.23; supporting
information). These values provide a crude approximation, as the integrated rates were based on three levels
only and include therefore considerable uncertainty.

The results focus on impacts of removing UVB radiation on NCP in surface waters. The NCP in surface waters is
of particular importance as it plays a determinant role of controlling the partial pressure of metabolic gases,
such as CO, and O,, and therefore the corresponding air-sea fluxes [Calleja et al., 2005]. Moreover, UVB radiation
penetrates down to considerable depths, with 10% of subsurface UVB radiation penetrating down to 40 m in
the South Pacific [Tedetti et al., 2007] and lethal doses sufficient to remove 50% of the dominant Prochoroccocus
population per day penetrating down to 60 m in the subtropical Atlantic [Llabrés and Agusti, 2006]. Hence, UVB
radiation is a component of the light field experienced in situ by planktonic communities. However,
experiments to resolve metabolic rates, whether using oxygen or carbon evolution of tracer ("*c, "80) additions
typically, use borosilicate glass or polycarbonate bottles to incubate the community [Steeman Nielsen, 1952;
Grande et al., 1982; Bender et al., 1987]. Although borosilicate and polycarbonate have different optical
properties, both remove much of UV radiation. The impacts of UVB on NCP in the upper layers of the photic
layer may affect the integrated NCP rates. In particular, NCP in the oligotrophic ocean has been reported to be
positive, on average, only in surface waters [Duarte et al., 2013]. However, consideration of bias in NCP derived
from exclusion of UVB radiation suggests that NCP may have been overestimated in the past in the
oligotrophic ocean.

We believe that the estimates presented here on the magnitude of NCP measurements associated with the
exposure to full solar radiation are conservative ones. The cruise conducted here in the Antarctic Peninsula
waters was characterized by low UV radiation associated with overcast and foggy conditions, so that effects
would have been possibly much larger under clear-sky conditions. Moreover, the cruises were conducted in
the late summer (southern Ocean), while UV radiation is highest in spring [Madronich et al., 1998].

The persistence of elevated UVB levels in the biosphere due to the poor resilience of the ozone layer

[Pyle, 2000; Bernath, 2005; Weatherhead and Andersen, 2006] implies that the role of UVB in modulating
biogeochemical processes in the ocean has been enhanced, with UVB radiation affecting phytoplankton cell
mortality [Llabrés and Agusti, 2006; Agusti and Llabrés, 2007] and net community production, as shown here,
among other processes. The response of NCP to UV exposure is complex considering that it depends on
the response of CR and so of bacteria activity to UVR. Whereas UVR may enhance CR as bacterial production
may be enhanced [Agusti et al., 2014] by UVB, it could be as well suppressed by UVB [Hernd| et al., 1993].
Because UVB radiation may continue to change in the future, as the recent ozone depletion over the
Arctic suggests [Manney et al., 2011], efforts to further our understanding on UVB effects on plankton
metabolism must be sustained.
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