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Helium clusters doped with electronically excited atomic and molecular helium anions He∗− and He∗−2
at T = 0.4 K are studied by means of path integral Monte Carlo calculations. Geometry and energetics
of the systems with up to 32 solvating He atoms are characterised. The interactions between the
anions and the neutral He atoms have been described by fitting previously reported ab initio points to
analytical expressions. The HeN–He∗− clusters with N > 6 display a structure defined by a bipyramid
which completely solvates the atomic anion, whereas the rest of surrounding He atoms form a dimple
around that initial cage. On the contrary, the structures observed for the HeN–He∗−2 clusters clearly
show the dopant located outside the helium droplet, thereby confirming the heliophobic character of
He∗−2 . C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913958]

I. INTRODUCTION

Among the most commonly investigated species embed-
ded in helium droplets at low temperatures, charged atomic
and molecular systems have received attention over the past
years. In particular, besides the attachment of free electrons
into large clusters, atomic and molecular He anions have been
found to play a relevant role as charge carriers within this
superfluid-like medium. Indications regarding the formation of
negative He ions were inferred from the resonance-like profiles
of the signal registered in crossed beam scattering experiments
with supercritical liquid free jet expansions.1 The excitation to
metastable electronic states of the helium clusters was taken
as the main mechanism producing He anions instead of direct
interaction of electrons with the neutral He droplet.1–3 In fact it
is now well accepted that the process which leads to the forma-
tion of atomic helium anions is the result of a two-step reaction.
First, the electron penetrating inside the helium droplet excites
a He atom from the ground electronic state He(1s2 1S) to
its first excited state He(1s2s 3P), namely, He∗. The initial
kinetic energy of the electron, ∼22 eV, accounts both for the
required penetration energy (1.2 eV)4 and the excitation energy
to obtain He∗ (19.8 eV). Both the resulting zero kinetic energy
electron and the excited He∗ lie in separate bubbles within
the helium environment2,5–7 and finally combine to form He
(1s2s2p 4P) He∗−, a fast ion which was initially observed in
bulk helium as reported in Ref. 8.

The precise pathway which leads to the formation of the
molecular anion He2(1σ2

g1σu2σg
1π4

4Πg), hereafter He∗−2 , is
however still subject of discussion. The process is not result of
the dimerization of a He ground state atom and He∗ or He∗− due
to the presence of barriers which cannot be overcome at the low
temperature of the helium droplets. The only two excited states
of He capable to conduct a barrier-free dimerization with a

a)Electronic mail: t.gonzalez.lezana@csic.es

ground state He are He(1s2p 3P) and He(1s3p 3P).2 The above
mentioned electron energy required to penetrate the helium
droplet summed to the corresponding excitation energies lead
to estimates for the formation energy of He∗−2 of 22.1 eV and
24.2 eV, respectively.2,3

Both species He∗− and He∗−2 show different behaviour once
they become embedded in the droplet. On one hand, the atomic
anion is highly mobile through the surrounding helium envi-
ronment and has been suggested as the effective charge carrier
in the formation of anions inside helium droplets instead of the
previously assumed possibility of an electron bubble migrating
to the dopant.9,10 He∗− is also heliophilic since the process
of surrounding the atomic anion with ground state He atoms
is almost 3 times more favourable than the formation of a
repulsive void around it.2 The trend is completely the opposite
for He∗−2 which is supposed to migrate to the surface of the
helium droplet.

In addition to previous theoretical studies on the meta-
stable states of both atomic and diatomic helium,11 the inter-
action of He∗− and He∗−2 with He atoms has been recently
investigated by means of quantum mechanical (QM) calcu-
lations of the coupled cluster with single, double and (per-
turbative) triple excitations CCSD(T) type.5 Ab initio ener-
gies for the He(1S)–He∗−(4P) and He(1S)–He∗−2 (4Σg) interac-
tions were calculated for different interparticle distances and
angular orientations. The effect of the two anionic species on
the helium environment and on immersed species was anal-
ysed by means of different structural and energetic quantities.
The authors of Ref. 5 confirmed the main role played by
He∗−, which remains inside the droplet, in the ionization of
impurities embedded in the helium cluster and the difficulties
for He∗−2 to interact with the dopant.

In this paper, we address the study of helium droplets HeN
doped with the above mentioned anionic helium species with
N ranging between 1 and 32 at T = 0.4 K by means of path
integral Monte Carlo (PIMC) calculations. The differences in

0021-9606/2015/142(10)/104303/9/$30.00 142, 104303-1 © 2015 AIP Publishing LLC
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the interaction between the He atoms and the He∗− and He∗−2
impurities, described via the analytical fitting of the ab initio
points of Ref. 5, is expected to play a role in the structure
and energetics of the doped helium aggregates. In a similar
manner as in previous investigations on HeN–Ca,12 HeN–Cs2

13

or HeN–Rb2,14,15 the study of small and intermediate clusters
provides useful insights regarding the intrinsic features of the
interaction between dopant and solvent in larger droplets or
bulk helium. The geometry and energetics of the clusters have
been analyzed in terms of the number of the He atoms by
means of the PIMC approach. This paper is structured as
follows: In Sec. II, we present the theory of the method and
describe the potential energy surface (PES) employed in the
calculation; in Sec. III, results are shown and discussed in
Sec. IV. Finally, conclusions are presented in Sec. V.

II. THEORY

A. Path integral Monte Carlo method

A full description about the PIMC method can be found
in previous works,14,16–18 so here we will only refer to the
most relevant details. According to this approach, the thermal
average of a quantum observable Â is obtained as

Â = Z−1


dRdR ′ρ(R,R ′; β) ⟨R | Â|R ′⟩, (1)

where the density matrix at a temperature T , defined as ρ(R,
R ′; β) = ⟨R ′|e−βĤ |R⟩, can be replaced by the product of M
density matrices at a higher-temperature T ′ = T × M as fol-
lows:

ρ(R0,RM; β) =


dR1 . . . dRM−1

M−1
k=0

ρ(Rk,Rk+1; τ). (2)

In Eq. (1), Z is the partition function and β = 1/kBT . We have
defined the discrete-time path as τ = β/M , the time step of
the path integral. Rk corresponds to the position vectors of the
N particles of the system: Rk ≡

�
rk1 , . . . ,r

k
N
	
. In the case of

HeN–He∗−,N includes the N He atoms plus the atomic anion
impurity, but for the diatomic anion, the impurity has been
considered as fixed at the origin.

In order to take into account the bosonic character of the
4He atom, the density matrix is symmetrized by summing over
all permutations P of the particle labels17

ρB(R,R ′; β) = 1
N!


P

ρ(R,PR ′; β). (3)

The sampling procedure for the multislice many-particle
movements is the multilevel Metropolis method,16,19,20 with 8
beads involved in each Monte Carlo (MC) step. Analogously,
up to 4 He atoms are allowed to take part in the exchange
permutation sampling, a value tested for both pure and doped
helium clusters.16,21

The total Hamiltonian Ĥ is written as follows:

Ĥ = T̂X −
~2

2mHe

N
i=1

∇2
i +

N
i=1

VHe−X(ri)

+

N
i< j

VHe−He(ri j), (4)

where T̂X is the kinetic operator for the impurity X (taken as
zero for the case of the non-moving He∗−2 case); mHe is the
helium atom mass; ri is the position vector of the ith He atom
with respect to the dopant, or in case of a molecular species,
with respect to its center of mass (CM), and ri j =| ri − r j | are
helium-helium distances.

For the PIMC calculation, we have chosen the so-called
thermodynamic estimator developed by Baker,22 expressed as

ET =
3(N − 1)

2τ
−
M−1
k=0

N
i=1

(rki − rk+1
i )2

4Mλτ2 − 1
M

M−1
k=0

V (Rk)

,

(5)

where ⟨⟩ means averaging over the MC steps, and for the
definition of λ = ~2/2mHe, we have considered that the mass is
the same for both dopant and solvent, since this term vanishes
for the case of the diatomic anion. The first term refers to
the classical kinetic energy multiplied by the number of beads
M and vanishes in the case of the molecular impurity. The
second term accounts for the QM energy due to the spring-like
interaction assumed between consecutive beads in the same
ring describing a specific particle. This contribution becomes
zero for the dopant assumed as fixed to the origin. The last sum
contains the potential energy as specified in the last two terms
of Eq. (4).

The low temperature considered in the calculations, T
= 0.4 K, should not induce too much thermal excitation to the
movement of the atoms constituting the cluster. Therefore, no
confinement has been imposed to prevent any possible evap-
oration from the droplet. The number of beads M considered
in the PIMC calculation varies between 50 and 500. In some
cases, we will consider a classical version of this approach for
M = 1, hereafter referred as classical MC (CMC). The average
energy for each HeNX system considered here is finally ob-
tained by extrapolating τ to 0 (that is, M to ∞) following a
parabolic law.13,23,24 The initial configurations of the PIMC
simulations are taken from the geometries obtained by means
of the CMC calculation. These, in turn, are the result of opti-
mizations from the structures obtained from the exploration of
the PES in search for the absolute minima performed with an
evolutive algorithm (EA).25 The calculations involve between
106 and 108 MC steps depending on the size of the cluster under
study.

As in previous works on doped helium clusters,13 informa-
tion regarding the structure and geometry of the corresponding
clusters can also be obtained by means of the radial probability
density function for the He–He distance

DN(rHe−He) = 2
N(N − 1)M

M−1
k=0

N
i< j

δ(rHe−He − rki j)


(6)
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FIG. 1. Potential energy for He–He∗− obtained with the numerical fit of
Eq. (10) for the ab initio points of Ref. 5. The inset amplifies the region of
the secondary well. See text for details. Units for the energy are cm−1 and
distances are measured in Å.

and for the distance between the He and the dopant impurity
as follows:

DN(rHe−imp) = 1
N M

M−1
k=0

N
i=1

δ(rHe−imp− | rki |)

. (7)

Analogously, the angular distribution for cos γ, with γ the
angle formed between two He position vectors rki and rkj , is
calculated as

DN(cos γ) = 2
N(N − 1)M

M−1
k=0

N
i< j

δ(cos γ− | rki · r
k
j |)

,

(8)

and, in the case of a diatomic impurity, such as He∗−2 , the
distribution corresponding to cos θ, with θ describing the angle
formed between the position vector of one He atom, rki , and the
diatom axis, can be written as

DN(cos θ) = 1
N M

M−1
k=0

N
i=1

δ(cos θ − cos θi)

. (9)

B. Interaction potentials

As expressed in Eq. (4), the total potential is written as
the sum of the corresponding pairwise He–He and He–anion
interactions. The VHe−He(ri j) interaction was described using

the potential by Aziz and Slaman26 with a well depth of
∼7.59 cm−1 and a equilibrium distance of ∼2.97 Å. For the
potential between the helium atoms and the corresponding
impurity, either the atomic anion, He∗−, or the diatomic anion,
He∗−2 , numerical fits to the values reported in the QM CCSD(T)
study of Ref. 5 were employed.

In particular, for the VHe−He∗− case, the ab initio points
reported by Huber and Mauracher5 described four different
regions. As shown in Fig. 1, there is a deep potential well of
about ∼17 000 cm−1 at r = 1.06 Å (region I), followed by a
barrier with a maximum value located around ∼2.2 Å (region
II) which leads to a extremely shallow well (about ∼3.8 cm−1)
at r ∼ 7 Å (region III). Finally, region IV corresponds to the
asymptotic behaviour which may be simulated by means of the
corresponding ion-induced dipole interaction. The analytical
expression for the complete fit of the ab initio points was thus
the following:

VHe–He∗−(r) = (1 − g4(r))FIII(r) + c4g4(r)
r4 , (10)

where c4 = −13 683.2521 Å−4 cm−1 and

FIII(r) = FII(r) (1 − g3(r)) + g3(r) f3(r), (11)

where

FII(r) = (1 − g2(r))FI(r) − g2(r) f2(r), (12)

with

FI(r) = (1 − g1(r)) f1(r) + g1(r)g0(r). (13)

In the above equations (10)–(13), we have defined

f j(r) = D je−α̃ j(r−r̄ j)
(
e−α j(r−r̄ j) − 2

)
, (14)

gj(r) = a j

2
�
1 + tanh

�
β j(r − x̄ j)�� − bj, (15)

with values for the corresponding parameters given in Table I.
The root-mean-square (rms) for the fit of the ab initio

points to the analytical expression (10) is 10 cm−1. Most of
this deviation comes from the region I of the potential at both
the repulsive component at very short He–impurity distances
(where the ab initio points can range between 30 000 and
80 000 cm−1) and the minimum of the deep potential well
(≈−17 000 cm−1), with specific values for the rms of up to
41 cm−1. At the other regions, the situation becomes much less
dramatic with a noticeable reduction of the deviation between
the fit and the actual calculated points of less than 1.1 cm−1.

TABLE I. Parameters for the interaction potential VHe–He∗−(r ) between the He atoms and the atomic anion, He∗−,
defined in Eqs. (10)–(15).

j = 0 j = 1 j = 2 j = 3 j = 4

D j (cm−1) 17 109.4319 668.0 3.82
α j (Å−1) 2.2202 2.1612 0.6330
α̃ j (Å−1) 2.2202 1.4313 0.6330
r̄ j (Å) 1.06 2.40 6.97

a j (cm−1) 22 367.3596 1 1 1 1
b j (cm−1) 20 533.7740 0 0 0 0
β j (Å−1) 2.1751 11.1642 9.6603 1.7588 2.0478
x̄ j (Å) 1.4816 1.1312 1.8168 4.1645 8.2767
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TABLE II. Values of the aℓn coefficients for the expansion in Eq. (17) for the VHe–He∗−2
(r, cosθ) potential

describing the interaction between the diatomic anion impurity He∗−2 and the He atoms. See text for details.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

an5 (107 Å−5 cm−1) 0.2055 0.1190 −1.2209 3.0799 −3.8827 1.7342
an6 (109 Å−6 cm−1) −0.0904 −0.0417 0.4457 −1.0453 1.2853 −0.5639
an7 (1010 Å−7 cm−1) 0.1181 0.0494 −0.5404 1.2033 −1.4418 0.6200
an8 (1010 Å−8 cm−1) −0.4109 −0.1964 2.1065 −4.6991 5.4955 −2.3137

The interaction potential between the He atoms and the
diatomic anion He∗−2 depends in turn both on the distance
rHe−Imp and on the angle θ formed between the position vector
of the He atom and the bond direction within the He∗−2 impurity

VHe–He∗−2
(r,cos θ) =




8

n=4
Cn(cos θ)/rn r > r08

n=4
Cn(cos θ)/rn0 r ≤ r0

(16)

with a cutoff value of r0 = 6 Å and where

Cn(cos θ) =



−C4 n = 45

ℓ=0
aℓncosℓθ n > 4

, (17)

where C4 = 11 363.2878 Å−4 cm−1. Table II shows the values
of the corresponding parameters in the expansion of Eq. (17).
The interparticle distance within the He∗−2 unit is taken as
the corresponding to the minimum of the He–He∗ potential,
∼1.2 Å (see Fig. 1).

Fig. 2 shows the ab initio points of Ref. 5 for three values
of the θ angle, 0◦, 45◦, and 90◦, in comparison with the analyt-
ical fit as expressed in Eq. (16).

III. RESULTS

The PIMC calculations performed at T = 0.4 K for the
HeN–He∗− and HeN–He∗−2 clusters are presented separately in
Secs. III A and III B, respectively.

FIG. 2. Potential energy for the He–He∗−2 interaction for different values of
the θ angle between each He atom and the CM of the He∗−2 impurity. Points
are ab initio results from Ref. 5 and lines correspond to the fit by means of
Eq. (16). Units of energy are cm−1 and distances are measured in Å.

A. HeN–He∗−

The geometries obtained with the EA for the HeN–He∗−

clusters, with N = 2–8 are shown in Fig. 3. The He atoms
place themselves surrounding the impurity, which ends up
completely solvated in the center of a bipyramid when N = 6.
The successively added He atoms remain outside this struc-
ture at larger distances from the impurity. An example of
this configuration once the bipyramid is formed is seen in
Fig. 3 for N = 8, for which the two last He atoms sit inde-
pendently of the central structure of six atoms around the
He∗− impurity.

Values of the energies for these HeN–He∗− clusters, with
N ranging from 1 to 32, are presented in Table III. The effect
of this preference to form the above mentioned bipyramid
as stable configuration is observed in the trend of the cor-
responding energies as the He atoms are added. Thus, the
variation of the EEA energies with each atom is certainly well
marked when there are still not enough He atoms to form the
bipyramid, with differences between consecutive HeN–He∗−

and HeN+1–He∗− clusters that range between∼17 000 cm−1 for
N = 1 and ∼6300 cm−1 for N = 5. However, once the helium
solvating cage is formed, the increase of the total energy with
the inclusion of new He atoms reduces significantly: The ener-
gies of He6–He∗− and He7–He∗− differ only ∼4 cm−1.

The EA explores the absolute minima of the PES and, in
fact, the value of the energies for the smallest clusters is rough-
ly equivalent to N times the He–He∗− potential minimum:

FIG. 3. Configurations obtained by means of the EA of Sec. II for HeN–He∗−

clusters with N = 2–8.
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TABLE III. Energies in cm−1 for the HeN–He∗− systems obtained by means
of the PIMC approach (second column), its classical variant with M = 1,
CMC (third column), and the corresponding EA values (fourth column)
corresponding to the initial configurations of the MC simulation. Errors for
the PIMC energies are in parentheses. See text for details.

N PIMC CMC EA

1 −17 013.8 (28.0) −17 169.0 −17 169.1
2 −33 707.0 (46.5) −34 133.7 −34 134.6
3 −48 588.0 (126.1) −49 207.8 −49 208.6
4 −61 342.0 (98.5) −61 925.8 −61 927.1
5 −66 412.4 (268.3) −67 685.0 −67 686.7
6 −72 378.7 (262.2) −74 001.6 −74 003.8
7 −72 392.4 (267.6) −74 005.9 −74 008.1
8 −72 385.5 (186.7) −74 017.8 −74 012.0

16 −72 613.6 (206.0) −74 246.7 −74 252.3
32 −72 988.5 (224.6) −74 660.8 −74 601.3

E(N )
EA ∼ N × V min

He−Imp. Although this trend is quickly abandoned
(as shown in Table III for N = 3 the deviation is ∼2000 cm−1),
the formation of the bipyramid is directly related to this
deep potential minimum in the helium-impurity interaction,
a feature which the PIMC calculations confirm as we discuss
below. For the largest clusters, once the vacancies sur-
rounding the He∗− dopant according to the V min

He−Imp value are
occupied, the accessible minima are only those correspond-
ing to the He–He interaction and the more swallow mini-
mum of the He–impurity potential around rHe−Imp ∼ 7 Å (see
Fig. 1).

The values of the energies obtained by means of the PIMC
at T = 0.4 K and the CMC version (M = 1) are also shown in
Table III. The ECMC energies are consistent with the previously
analyzed EEA, displaying the same trend as the He atoms
are added to the cluster and remaining slightly above the EA
results as a consequence of the existing dependence on T in
the Metropolis procedure to search for the potential energy
minimum within the CMC method. The only discrepancies
with the expected comparison between the ECMC and EEA
values are found for N = 16 and N = 32, two cases in which
the predictions obtained by means of the EA are possibly
subject to more marked uncertainties due to the difficulties to
explore a reliable absolute minimum for large clusters once the
solvating bipyramid has already been formed.

The values between parentheses for the EPIMC in Table III
correspond to the errors in the fitting procedure to a parabolic
law to the M → ∞ case. The comparison with the results from
the other two classical approaches reveals the contribution
to the total energy of the zero energy effect. Energies for
He6–He∗−, He7–He∗−, and He8–He∗− are quite similar, thus
suggesting some sort of saturation when N & 6. Present re-
sults also indicate the preference of the He atoms to occupy
interparticle distances which are driven by the minimum of
the He–He potential outside the bipyramid structure. In fact,
although the associated errors are clearly larger than the actual
differences among these three EPIMC values, one might explain
for instance the difference between the EPIMC for He6–He∗− and
He8–He∗−, ∼8 cm−1, in terms of the VHe−He(rmin), considering
the cluster with N = 8 as a bipyramid caging the impurity bond
to an external He2 unit such as He6He∗−–He2.

FIG. 4. Bipyramid structure for He6–He∗− and radial probability distributions
obtained with the PIMC calculation.

A detailed analysis of the geometry of the clusters has
been performed by means of the corresponding density proba-
bility functions defined in Eqs. (6)–(8). In particular, in Fig. 4
we show the radial distributions corresponding to the He–He
and He–impurity distances for the He6–He∗− cluster obtained
with the PIMC method at T = 0.4 K. As already found with
the previous calculations of EA, the He atoms are located
at the vertexes of a squared-basis bipyramid as shown in
the snapshot of the MC simulation in Fig. 4. The maximum
observed for the DN(rHe−He) distribution (see Eq. (6)) at
rHe−He ∼ 1.7 Å describes, on one hand, the He–He distances
between atoms within the basis of this rigid structure and, on
the other hand, the separation between any of those atoms
and the upper/bottom vertices of the bipyramid. The other
maximum, centered around rHe−He ∼ 2.4 Å, corresponds in
turn to the average distance between the He atoms located
at the upper and bottom vertex and to the diagonal of the
squared basis. Half a diagonal,∼1.2 Å, is precisely the distance
between the He atoms at the vertices of the square and the
dopant He∗− at the center of the bipyramid and also the distance
rHe−imp between the impurity and the upper and bottom He in
the bipyramid. The maximum of the DN(rHe−imp) probability
density distribution (see Eq. (7)) is located at such a value
of rHe−imp, which on the other hand is not far from ∼1.07 Å,
the distance for the minimum in the He–impurity potential as
shown in Fig. 1.

Further support for the existence of this rigid central
geometry found for the six first He atoms surrounding the
dopant He∗− is given by the angular DN(cos γ) distribution
(see Eq. (8)) for the He6–He∗− system shown in Fig. 5. Clear
peaks at cos γ ∼ −1 and 0 testify to the occurrence of 180◦

and 90◦, the only two possible values for the angle formed
by the position vectors of each pair of He atoms in the struc-
ture shown in Fig. 4. Signatures of such maxima are also
clearly manifested in the corresponding angular distributions
for larger HeN–He∗− systems. Fig. 5, for example, shows
D32(cos γ), the probability density for N = 32 in comparison
with the distribution for N = 6. The presence of these two
peaks in combination with a broad background population
can be explained in terms of the existence of the bipyramid
besides the surrounding He atoms. The almost negligible
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FIG. 5. Probability density distribution for cosγ defined in Eq. (8) for the
He6–He∗− and He32–He∗− clusters at T = 0.4 K. Results for N = 6 are divided
by 15.

population at −1 . cos γ . −0.1, apart from the features due
to the bipyramid, suggests that the dopant is not completely
solvated but placed inside a broad dimple.

Snapshots taken from the MC simulation confirm this
hypothesis. In Fig. 6, the structure for the He32–He∗− cluster
in a PIMC calculation at T = 0.4 K with M = 100 shows the
He∗− impurity inside a six-He-atom cage and the surround-
ing helium environment formed by the remaining twenty-six
solvating atoms. As suggested above from the EA results (see
Fig. 1) for N = 8, the He atoms added to the system once the
sites at the bipyramid are occupied, become located at one side
of this central structure without covering it completely.

The mobility of the He atoms has to be necessarily differ-
ent in the first shell formed by the closest bipyramid compared
with those belonging to the more external helium cloud. The
six He atoms in the vicinity of the He∗− dopant occupy almost
fixed positions in the vertices of the central more rigid solvat-
ing structure with no capability to move. The corresponding
M beads associated to these central He atoms hardly change
and in fact look like a unique bead during the entire simulation.
The polymers of beads in the PIMC describing the remaining

FIG. 6. Snapshot from the PIMC simulation for the He32–He∗− cluster at
T = 0.4 K. Lines connecting the He atoms of the bipyramid are plotted to
remark the existence of such structure surrounding the impurity.

FIG. 7. Snapshot from the PIMC simulation for He16–He∗− cluster at T
= 0.4 K with cycles formed with the path chains of He atoms taking part
in exchange permutation of two (green), three (red), or five (blue) He atoms.

atoms extend on the contrary over a much broader region. We
have found that these external He atoms may participate in
exchange movements according with the permutation Bose
symmetry taken into account in the PIMC calculation for
identical particles (see Eq. (3)). As shown in Fig. 7 for the
case of the He16–He∗− cluster, the remaining eight He atoms
outside the bipyramid describe permutation cycles of different
length. In particular, for the snapshot considered in this case,
the closed polymers involve two (green), three (red), or five
(blue) He atoms. Similar permutation movements have been
seen for He8–He∗−, but the occurrence of these exchanges
is noticeably lower. The analysis in larger systems such as
He32–He∗− reveals that as expected the existence of long cycles
becomes more probable when the size of the doped clusters
increases.

B. HeN–He∗−2
As for the case of the atomic anion, PIMC simulations for

the He clusters doped with the diatomic impurity He∗−2 also
start from optimized configurations obtained after a combined
application of the EA and CMC approaches outlined before.
The energies of the HeN–He∗−2 clusters with N = 6, 8, and
10 calculated with this approach are compared with the CMC
and PIMC results in Table IV. The values predicted by the
EA indicate that the total minimum of the PES is affected
by the difference between the well depths of the He–He and
He–He∗−2 potentials:∼7.9 cm−1 and∼2 cm−1, respectively. The
location of the He atoms within the pure helium droplet seems
to respond primarily to the equilibrium distance of the VHe–He

potential. Thus, the E(N )
EA values can be roughly explained with

binding energies of He–He pairs inside the cluster (see Ta-
ble IV): For N = 6, the corresponding energy, −98.765 cm−1,
is approximately the result of about twelve pairs of He atoms
separated about ∼3 Å; E(8)

EA is almost nineteen He–He pairs
at their equilibrium distance and E(10)

EA can be approximated
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TABLE IV. Energies in cm−1 for the HeN–He∗−2 clusters obtained by means of the PIMC approach at T = 0.4 K
(second column), the CMC (third column), and the EA (fourth column) corresponding to the initial configurations
of the MC simulation. Values from VMC and DMC calculations of Ref. 27 for pure helium HeN clusters are
included for comparison (fifth and sixth columns). Errors for the PIMC energies are given in parentheses.

N PIMC CMC EA HeN (VMC)27 HeN (DMC)27

6 −3.350 (0.365) −96.429 −98.765 −1.533 −1.647
8 −4.092 (0.324) −153.430 −156.248 −3.262 −3.568

10 −6.775 (0.229) −217.905 −220.485 −5.502 −6.015

as ∼26 × VHe−He(rmin). In all cases, the remaining He atoms
maintain interparticle distances of∼4.8 Å, which, for example,
for the He6–He∗−2 cluster, is nearly describing a quadrangular
bipyramid.

As observed for the He∗−-doped clusters, the predictions
obtained with the CMC are consistent with the EA results, with
differences of about 5–8 cm−1. The PIMC for the T = 0.4 K,
on the contrary, yields to significantly weaker bound states for
the three N = 6, 8, and 10 cases. The values in parentheses
in the second column of Table IV correspond to the errors in
the fitting of the PIMC energies to a quadratic law in terms of
1/M to extrapolate the value for M → ∞. The resulting EPIMC
obtained for the HeN–He∗−2 clusters can be compared with
the corresponding energies for the pure HeN droplets. Also
included in Table IV, values for He6, He8, and He10, from the
variational MC (VMC) and diffusion MC (DMC) calculations
performed by Ref. 27 can give an idea of the stability of the
doped clusters. It is worth noticing that the comparison with
results reported by Lewerenz may also be affected by the T = 0
character of the VMC and DMC approaches and the different
version of the He–He potential employed in their work. Quali-
tatively speaking, Table IV suggest that, despite differences not
being large, the He droplets manage to bind the He∗−2 impurity
in a stable configuration. The weak He–impurity interaction
seems to be capable to guarantee binding energies between
0.5-0.7 cm−1 (for the case of He8–He∗−2 and He10–He∗−2 ) and
∼2 cm−1 for the smallest droplet with N = 6 He atoms.

The apparently small binding energies of the doped clus-
ters are accompanied by the location of the He∗−2 dopant rela-
tively far from the core formed by the He atoms. As shown in
the snapshot of the PIMC simulation for He8–He∗−2 at T = 0.4

FIG. 8. Snapshot from the PIMC simulation for He8–He∗−2 cluster at T
= 0.4 K.

K of Fig. 8, the He droplets are found to be placed indepen-
dently along the axis direction of the impurity. A stronger
confirmation of this structure is obtained from the angular
distributions for cos γ and cos θ (see Eqs. (8) and (9), respec-
tively) where the information refers to the average behaviour,
not to a specific instant of the MC simulation. Fig. 9 shows
how both D8(cos γ) and D8(cos θ) for the doped cluster of
N = 8 He atoms, peak close to 1. In the case of γ, values close
to ≈0◦ are indications of proximity between the He atoms, a
consistent feature with the more external He droplets shown
in Fig. 8. In turn, θ ∼ 0 corresponds to the alignment of this
helium cloud along the He∗−2 diatom axis, as expected from the
minimum of the He–impurity interaction potential (see Fig. 2).
This preference of the He atoms with respect to the dopant
extends to the completely symmetric situation θ ∼ 180◦.

Additional insight regarding the structure of the cluster is
obtained via the radial probability density functions defined
in Eqs. (6) and (7). In Fig. 10, we show the corresponding
D8(rHe−He) and D8(rHe−Imp) distributions together with the
probability density for the distance between each He atom
and the CM of the He droplet calculated in a similar way,
for He8–He∗−2 at T = 0.4 K. According to the figure, the He
atoms locate uniformly around the CM of the HeN struc-
ture with a maximum peak which in fact is not far from the
equilibrium distance of the VHeHe potential. This seems not
to be the average distance found between He atoms as the
maximum ofD8(rHe−He) is located beyond ∼2.9 Å extending
up to noticeably larger values (∼12 Å). The distribution for
rHe−Imp shows the preference of the impurity to be placed far
from the He droplet. Interestingly, theD8(rHe−Imp) function ex-
hibits a maximum at slightly larger distances than the average

FIG. 9. Angular distributions DN (cosθ) (dashed line) and DN (cosγ) (solid
line) for He8–He∗−2 cluster at T = 0.4 K.
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FIG. 10. Radial density distributions for He8–He∗−2 cluster. Solid line is for
the distance between the He atoms and the CM of the separate HeN droplet;
dashed line for the He–He distance and dashed-dotted line is for the density
for the distance between the He∗−2 impurity and the He atoms.

separation (between 9.5 and 12.5 Å) found by the EA in its
search for the minimum energy configuration, thus suggesting
that the PIMC calculation does not indicate any preference for
the He–impurity distance to match the minimum according to
the corresponding potential.

IV. DISCUSSION

As stated in Ref. 5, the He∗−–He system at the potential
minimum (see Fig. 1) displays the structure of a He+2 core and
a diffuse electronic shell due to the two electrons occupying σ
and π orbitals. The bonds between the impurity and the atoms
participating in the bipyramid structure seem to be the result
of the polarization suffered by the tightly bound electrons of
the He atoms due to the presence of the He∗−2 system. This
inner solvating cage would be then formed by an ensemble
of He+ cations sharing an electronic cloud. This “chemically
bound molecular” configuration existing at the shorter dis-
tances shifts, however, to a “polarisation-bound complex” at
larger distances beyond the potential barrier exhibited by the
He∗−–He potential around ∼2.5 Å. Additional He atoms feel
a much weaker potential due to the screening induced by
the presence of the inner core of six atoms surrounding the
impurity and move further out sampling the shallower local
potential minimum located at ∼7–8 Å.

The formation of a stable and rigid helium cage around
the atomic anion is consistent with the previously suggested
heliophilic character for He∗−.2 One would have perhaps ex-
pected for it however a much clearer tendency to be completely
solvated by the helium droplet in accord with the large mobility
inside the cluster reported in previous studies. Present results
indicate on the contrary that the dopant, once surrounded by
the six-He-atom structure of a bipyramid, remains in a dimple
formed in the outside of the largest calculated helium droplet.
The explanation for this apparent separation between this rigid
structure and the remaining He atoms can be found in the
nature of the He–He∗− interaction. The solvating He atoms
tend in general to establish a more stable interaction with

the He fixed in the vertices of this bipyramid at ∼2.8 Å, the
He–He equilibrium distance according to the VHe−He potential.
However, that would mean to be located at ∼4.5 Å from the
He∗− dopant in the center of the first-solvation-shell cage, a
position which is prevented by the presence of the pronounced
barrier at ∼5 Å (see Fig. 1). Despite this safety distance
which blocks the approach of He atoms more closely to the
dopant, it is possible to also surmise that a larger number
of He atoms could lead to the formation of a bubble-like
structure around the He6–He∗− inner core. In this sense, it is
worth recalling situations where an almost complete solvation
around the dopant has been observed with a similar number
of He atoms. Thus, for example, the SF6 molecule was found
to be surrounded in all directions by only 23 He atoms28

and, for HeN–Ca clusters,12 N = 40 He atoms suffice to sur-
round almost completely the Ca atom once a strong enough
He–impurity interaction potential was employed. For the pres-
ent case, the VHe−Imp potential, much more stronger than those
considered by Rodríguez-Cantano et al. in Ref. 12, is respon-
sible for the tight central geometry of a core formed by six
He atoms which in fact screen the interaction with the rest of
surrounding atoms thus preventing a complete solvation.

Previous studies on doped He clusters treated the anal-
ysis of the PIMC permutation cycles generated when the
Bose symmetry of identical particles is properly taken into
account to identify possible superfluid features of the system.
In particular, the participation in exchange rings of certain
length involving several He atoms has been employed to
determine qualitatively the extent of the superfluid character.29

Comparative investigations at T = 1.25 K and T = 0.625 K
of the He29–SF6 cluster revealed that exchange effects were
relevant at the lower temperature, whereas at T = 1.25 K
long paths involving several permuting He atoms were not
observed.17 Analogously, the length of the exchange permuta-
tion paths was found to increase with the number of He atoms
surrounding the SF6 impurity. Thus, in their investigation on
HeNSF6 molecules at T = 0.625 K, Kwon et al.28 obtained
lengths for the permutation paths of up to seven exchanged He
atoms for N = 23, a maximum number which increased up to
59 in the case of N = 128. In this sense, the case of HeN–He∗−

here investigated presents some similarities regarding the
existence of relatively long permutation PIMC paths both at
low temperatures and when the number of solvating He atoms
is increased.

The potential depth of the He–He∗−2 interaction is slightly
smaller than those existing in other doped He clusters such as
HeN–Rb2

30,31 and HeN–Cs2.13,32 However, the main difference
with these other two cases lies in the location of the minimum
of the potential: whereas for the interaction with both Rb2 and
Cs2, the He atoms find the most stable configuration at the
T–shaped direction, θ ∼ 90◦, for the molecular anion He∗−2 , the
potential minimum of the He–impurity interaction is along the
diatom axis, θ ∼ 0◦. For clusters formed with stronger inter-
actions, such as HeBr2,33 it is possible to find the contribution
from both the T-shaped and linear He–impurity configurations.
In addition, this preference for the linear direction observed
in the He–He∗−2 potential is accompanied by the absence of
any appreciable well at any other angular configuration (see
Fig. 2). The PES for the He–Rb2 and He–Cs2 interaction, on the
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contrary, displays relative minima over the entire angular range
down to the linear geometry, thus offering stable alternative
structures for the He atoms added to the impurity. The distance
between the neutral He atom and the ionic dopant accord-
ing to this minimum potential energy configuration is also
larger, ∼8.5 Å, than the values observed for the corresponding
He–Rb2 and He–Cs2 separations of∼6.5–7 Å.30,32 The dopants
place themselves in all these cases outside the He droplet,
thus indicating their heliophobic character, as opposed to some
other clusters, such as HeN–I2,34 mediated by a much stronger
He–impurity interaction in which the dopant is solvated within
the He droplet.

Besides the results shown in Sec. III B, the PIMC calcula-
tions can yield configurations for the HeN–He∗−2 clusters with
the helium droplet at a slightly deviated direction of the He∗−2
diatom axis. This observed departure from the alignment with
respect to the diatomic impurity would have an explanation if it
could be linked to some sort of anisotropy induced by the PES,
but this is not the situation found in the He–He∗−2 interaction.
The origin of this apparently anomalous behaviour is possibly
related to deficiencies either on the ab initio points or the fitting
procedure since the deviation is observed in the preliminary
calculations performed with the EA in order to obtain initial
configurations for the PIMC. The use of cutoff distances pre-
venting the He atoms to locate too close to the impurity and
limitations to the maximum value of the VHe−imp in an attempt
to control the location of the surrounding atoms did not avoid
this apparently spurious result. Another possible explanation
regards the above mentioned lack of secondary minima in the
He–He∗−2 interaction. The PIMC algorithm might find diffi-
culties in such essentially flat potential landscapes whenever
the EA employed to search for the minimum in the selection
process of initial configurations for the MC simulation ends up
sampling regions with the He atoms separated from the strict
θ ∼ 0◦ configuration.

V. CONCLUSIONS

The energetics and geometries of helium clusters HeN
doped with He∗− and He∗−2 at T = 0.4 K have been inves-
tigated by means of a PIMC method. The interactions be-
tween the dopant and the helium atoms are described with an
analytical fitting of previously reported ab initio points. The
atomic anion is solvated by six He atoms forming a bipyramid
structure which is located in a dimple partially surrounded
by the remaining He droplet, a consistent finding with re-
ported suggestions of a heliophilic and highly mobile impurity
embedded in helium. The molecular anion formed HeN–He∗−2
droplets with smaller binding energies in comparison with
those corresponding pure HeN systems. The observed geom-
etries indicate an outer location of the impurity with respect
to the helium atoms in agreement with results for systems
such a HeN–Rb2 or HeN–Cs2, mediated by similarly weak He–
impurity interactions.
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