
e META-
ANALYSIS

Strengthening confidence in climate
change impact science
Mary I. O’Connor1,2*†, Johnna M. Holding3†, Carrie V. Kappel2,

Carlos M. Duarte3,4, Keith Brander5, Christopher J. Brown6,7,8, John F. Bruno9,

Lauren Buckley9, Michael T. Burrows10, Benjamin S. Halpern2,11,12,

Wolfgang Kiessling13, Pippa Moore14,15, John M. Pandolfi16,

Camille Parmesan17,18, Elvira S. Poloczanska7, David S. Schoeman19,20,

William J. Sydeman21 and Anthony J. Richardson7,22

1Department of Zoology and Biodiversity Research Centre,

University of British Columbia, Vancouver, BC, Canada V6T

1Z4, 2National Center for Ecological Analysis and Synthesis,
735 State Street, Suite 300, Santa Barbara, CA 93101, USA,
3Department of Global Change Research, Instituto
Mediterráneo de Estudios Avanzados, IMEDEA (UIB-CSIC),
07190 Esporles, Mallorca, Spain, 4The UWA Oceans Institute
and School of Plant Biology, University of Western Australia,
35 Stirling Highway, Crawley 6009, Australia, 5Centre for
Ocean Life, DTU Aqua, Charlottenlund Slot, 2920
Charlottenlund, Denmark, 6School of Biological Sciences, The
University of Queensland, St Lucia, Qld 4072, Australia,
7Climate Adaptation Flagship, CSIRO Marine and
Atmospheric Research, Ecosciences Precinct, Brisbane, Qld
4102, Australia, 8Global Change Institute, The University of
Queensland, St Lucia, Qld 4072, Australia, 9Department of
Biology, The University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599, USA, 10Scottish Association for
Marine Science, Scottish Marine Institute, Oban, Argyll
PA37 1QA, UK, 11Bren School of Environmental Science and
Management, University of California, Santa Barbara, CA
93106, USA, 12Imperial College London, Department of Life
Sciences, Silwood Park, Berkshire SL5 7PY, UK,
13GeoZentrum Nordbayern, Paläoumwelt, Universität
Erlangen-Nürnberg, Loewenichstrasse 28, 91054 Erlangen,
Germany, 14Centre for Marine Ecosystems Research, Edith
Cowan University, Perth, WA 6027, Australia, 15Institute of
Biological, Environmental and Rural Sciences, Aberystwyth
University, Aberystwyth SY23 3DA, UK, 16Australian
Research Council Centre of Excellence for Coral Reef Studies,
School of Biological Sciences, The University of Queensland,
St Lucia, Qld 4072, Australia, 17Plymouth University, Drakes
Circus, Plymouth, Devon PL4 8AA, UK, 18Section of
Integrative Biology, University of Texas, Austin, TX 78712,
USA, 19Faculty of Science, Health, Education and
Engineering, University of the Sunshine Coast,
Maroochydore, DC, Qld, Australia, 20Department of Zoology,
Nelson Mandela Metropolitan University, PO Box 77000,
Port Elizabeth, 6031, South Africa, 21Farallon Institute for
Advanced Ecosystem Research, 101 H Street, Suite Q,
Petaluma, CA 94952, USA, 22Centre for Applications in
Natural Resource Mathematics (CARM), School of
Mathematics and Physics, University of Queensland, St
Lucia, Qld 4072, Australia

ABSTRACT

Aim To assess confidence in conclusions about climate-driven biological change
through time, and identify approaches for strengthening confidence scientific con-
clusions about ecological impacts of climate change.

Location Global.

Methods We outlined a framework for strengthening confidence in inferences
drawn from biological climate impact studies through the systematic integration of
prior expectations, long-term data and quantitative statistical procedures. We then
developed a numerical confidence index (Cindex) and used it to evaluate current
practices in 208 studies of marine climate impacts comprising 1735 biological time
series.

Results Confidence scores for inferred climate impacts varied widely from 1 to 16
(very low to high confidence). Approximately 35% of analyses were not associated
with clearly stated prior expectations and 65% of analyses did not test putative
non-climate drivers of biological change. Among the highest-scoring studies, 91%
tested prior expectations, 86% formulated expectations for alternative drivers but
only 63% statistically tested them. Higher confidence scores observed in studies that
did not detect a change or tracked multiple species suggest publication bias favour-
ing impact studies that are consistent with climate change. The number of time
series showing climate impacts was a poor predictor of average confidence scores
for a given group, reinforcing that vote-counting methodology is not appropriate
for determining overall confidence in inferences.

Main conclusions Climate impacts research is expected to attribute biological
change to climate change with measurable confidence. Studies with long-term,
high-resolution data, appropriate statistics and tests of alternative drivers earn
higher Cindex scores, suggesting these should be given greater weight in impact
assessments. Together with our proposed framework, the results of our Cindex analy-
sis indicate how the science of detecting and attributing biological impacts to
climate change can be strengthened through the use of evidence-based prior expec-
tations and thorough statistical analyses, even when data are limited, maximizing
the impact of the diverse and growing climate change ecology literature.
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INTRODUCTION

Increasing evidence that climate change has altered biological

systems has spurred social, political and scientific concern

(Parmesan, 2006; Rosenzweig et al., 2008; Garcia et al., 2014).

Management decisions, future projections and scientific

advancement require clear attribution of observed biological

change to a suite of natural and anthropogenic pressures,

including climate change (Hegerl et al., 2010). Yet assessing con-

fidence in the attribution of responses to climate change is dif-

ficult without generally accepted procedures for inferring

climate impacts. As demand for reliable impact assessments

grows and empirical research proliferates, a framework for

assessing confidence in the purported attribution of biological

change to climate change is urgently needed.

Attribution is the process of detecting biological change and

inferring which pressures are the most likely causes of the

change (Hegerl et al., 2007, 2010). Inference about specific

impacts of climate change as reported in individual studies often

requires expert knowledge and a mechanistic understanding of

how the system in question operates, which must then be con-

veyed to non-expert and non-specialist readers alike. There are a

variety of approaches for causal attribution and inference in

observational and time-series studies, and some convey stronger

support for conclusions than others (Hegerl et al., 2007, 2010;

Morgan et al., 2009). Some attribution methods allow for sta-

tistical confidence assessments (Hegerl et al., 2010); however,

simpler attribution methods are left with informal confidence

assessments that are often based on ‘expert opinion’ and likeli-

hood statements accompanied by probability assignments

(sensu Hegerl et al., 2007, 2010; Rosenzweig et al., 2008). Even

with estimated probabilities, expert opinions involve substantial

subjectivity (Morgan et al., 2009).

Clear guidelines for the presentation and interpretation of

impacts research can strengthen confidence in conclusions

about the attribution of biological change to climate change.

Guidelines must be sufficiently broad to accommodate the wide

variety of research approaches and philosophies represented in

the literature on climate impacts, including classic Popperian

hypothesis testing and Bayesian methods of inference (Platt,

1964; McCarthy, 2007). Marine climate change impact research

occurs within diverse disciplines, including biological oceanog-

raphy, organismal physiology, community ecology and biogeog-

raphy, joining biological responses at local, regional and even

global scales with a range of climate metrics (Garcia et al., 2014).

Though each discipline recognizes principles of the scientific

method for drawing inference, these principles take various

forms when applied to the particular problem of attributing

biological change. Comparing the strengths and limitations of

inference across this diverse literature is not straightforward,

and is further complicated by the wide range of approaches used

to communicate the logic of inference. Here, we outline a frame-

work to guide the communication and assessment of inferences

in climate change impact studies with the goal of strengthening

conclusions about how climate affects biological systems. Using

this framework, we develop a specific index, the confidence

index (Cindex), to assess confidence in conclusions concerning

attribution in a sample of marine climate impact studies and to

identify areas of strength and those that need improvement in

future studies. We analyse current practices, finding that

researchers can maximize confidence in conclusions concerning

attribution by using prior expectations based on scientific evi-

dence from theory, models, experiments and historical data,

along with quantitative analyses of appropriate time-series data.

A FRAMEWORK TO GUIDE COMMUNICATION
OF INFERENCE IN CLIMATE IMPACT STUDIES

Strong inference that climate change has caused a biological

response rests on three pillars of the scientific method (Fig. 1).

First is a statement of an evidence-based prior expectation for

how climate factors affect biological patterns. Second are data:

appropriate climate and biological data must be available for

testing expectations. Third is quantitative analysis to detect

change through time and facilitate the inference of causality. An

example consistent with this framework is the conclusion that in

the Northern Hemisphere warming associated with climate

change has contributed to the reduction of glass eel populations

to small fractions of their historical abundances (Bonhommeau

et al., 2008). Bonhommeau et al. (2008) formulated the expecta-

tion that ocean warming has reduced the availability of food for

eel larvae and has thus reduced recruitment rates of young eels.

Their expectation is based on independent historical evidence of

correlated declines in food availability and eel recruitment. An

Figure 1 A framework outlining the basic scientific process
through which a question about attribution of biological change
to climate change can be answered, drawing on evidence from
theories, experiments and historical data. These evidence-based
expectations should guide the choice and use of appropriate data
to test the expectation, as well as statistical analyses that allow
researchers to distinguish a change through time due to climate
from no change, autocorrelation, non-stationarity or response to
an alternative driver. Successive iteration of this process reduces
the set of plausible expectations and/or builds confidence in a
single expected change.
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alternative causal pressure – overfishing – was considered and

discounted as the only driver of synchronized global declines in

eel recruitment. The authors analysed data on sea surface tem-

perature and marine primary production at a spatial (gridded

ocean basin) and temporal scale (four decades) sufficient to

detect the signal of ocean warming associated with climate

change (Henson et al., 2010), and they tested for responses in eel

recruitment data at multiple sites within the range of each

species. They then used appropriate statistical analyses to detect a

temperature-driven signal in eel recruitment throughout their

large geographic ranges. Together, these pillars of the framework

allowed Bonhommeau et al. (2008) to provide strong support for

the conclusion that ocean warming, and not confounding factors

such as autocorrelation or overfishing, is the primary cause of the

globally declining abundance of glass eels.

Climate impacts research should begin with prior expecta-

tions, or statements about a biological response to climate

change that can be evaluated against data. Expectations take

different forms in different philosophies of inference. In a

Popperian hypothesis testing approach, an expectation could be

a falsifiable hypothesis (Platt, 1964). In Bayesian inference,

expectations take the form of prior distributions (prior knowl-

edge) that are used in combination with observed data to

explore a hypothesis (McCarthy, 2007). Predictions are specific

deductions from hypotheses or conceptual frameworks. We use

the term ‘expectation’ here inclusively, and emphasize that the

important step is to formally invoke evidence in the statement of

a logical relationship between climate and biological change, but

the particular expression of that statement may vary among

statistical approaches or scientific disciplines. Importantly, our

use of ‘expectation’ is not meant to convey predisposition

toward a particular outcome such as a signal of climate change

in biological data.

Informative expectations draw upon multiple, independent

lines of evidence, and specify a relationship between climate

change, the biological response and natural variability in the

climate factor and biological variable that might be independent

of climate change (Table 1, Appendix 3 in Supporting Informa-

tion, Fig. 1). Expectations may specify the direction of response

(i.e. in Bonhommeau et al. (2008) warming will decrease the

availability of food for eel larvae) or may more generally specify a

climate effect, in contrast to no climate effect (e.g. Hsieh et al.

Table 1 Examples of general and specific prior expectations for the effects of climate change on marine ecological systems based on
evidence from theory, experimental and palaeoecological or historical data independent of observed climate change impacts.

Expectation to be tested

against time-series data Theory Experiment Palaeo

General expectation 1: Ocean warming shifts species

geographic ranges to higher latitudes and deeper water

Cheung et al. (2010)

(i) Physiological temperature dependence constrains

species range

Stillman & Somero (2000),

Kuo & Sanford (2009)

Greenstein & Pandolfi (2008)

(ii) Range limits are more dependent on ocean currents

than temperature

Gaylord & Gaines (2000)

(iii) Species geographic ranges change as species

interactions at the range borders change

Poloczanska et al. (2008) Harley (2003)

General expectation 2: OA reduces the abundance of

calcifiers

(i) OA reduces calcification causing dissolution of

CaCO3 shells in marine calcifiers

Orr et al. (2005) Gazeau et al. (2007) Moy et al. (2009)

(ii) OA has a greater effect on calcifiers that produce

aragonite and high magnesium–calcite forms of CaCO3

than those that produce low magnesium-calcite forms

of CaCO3

Ries et al. (2009) Kiessling & Simpson (2011)

(iii) Calcifiers that regulate pH levels at the site of

calcification were able to maintain calcification rates

de Beer & Larkum (2001),

Al-Horani et al. (2003)

Knoll et al. (2007)

General expectation 3: Climate change reduces population

connectivity

(i) Larval development times are shorter in warmer

water, reducing potential distance dispersed

O’Connor et al. (2007) Houde (1989), Pepin (1991)

(ii) OA reduces larval size for many marine

invertebrates, reducing potential survival and larval

duration

Kurihara (2008)

(iii) Warming and OA do not reduce connectivity

because ocean currents control dispersal distance

Gaylord & Gaines (2000)

OA, ocean acidification.
A longer list of expectations derived from the marine climate literature is presented in Appendix S3.
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(2005) state that ocean climate change should shift the geo-

graphic ranges of fish species). Prior expectations are articulated

early in the research process, prior to data analysis and ideally

when the study is designed.Explanations of climate impacts often

appear as post hoc interpretations without reference to prior

expectations, and post hoc interpretations do not provide an

equivalent level of support for conclusions (Crisp et al., 2011).

Despite the importance of prior expectations in scientific

inference (Platt, 1964; Crisp et al., 2011), surprisingly little

attention has been paid to procedures for generating and testing

prior expectations in climate change ecology (Rijnsdorp et al.,

2009). The first step is the development of prior expectations

based on theoretical, empirical or historical evidence (Fig. 1,

Table 1). Theoretical evidence takes the form of predictions

derived from logical frameworks, sometimes formalized math-

ematically. Theories can guide the generation of expectations,

with the advantage that theoretical frameworks mechanistically

link biological change to climate change in a series of logical,

deductive steps, allowing each step to be identified, evaluated

and tested. For example, metabolic theory relates biological rates

to temperature and produces predictions for non-intuitive

responses to warming such as stable abundance, despite effects

of warming on productivity (O’Connor et al., 2011).

Expectations can be based on experimental evidence, espe-

cially when theory is limited, as in the case of ocean acidification

(Table 1). Experiments may provide a quantitative estimate of

the magnitude and direction of how climatic factors affect bio-

logical processes, while controlling for other variables. Experi-

mental manipulations of multiple factors can also inform

expectations about synergistic or antagonistic effects (Crain

et al., 2008), and may provide insight into the shape of func-

tional responses (Zavaleta et al., 2003). For example, in marine

systems, numerous experiments have shown that lower pH

negatively affects calcification rates in corals (Ries et al., 2009).

These findings suggest that ocean acidification may have

reduced the abundance of coral, though the time-series data on

pH are not yet long enough to test for an acidification effect over

time. When generating expectations for changes through time,

experimental evidence should be used with care due to the

spatial and temporal constraints of experimental conditions.

Finally, expectations for how modern climate change affects

species distributions and relative abundances can be based on

historical evidence, including palaeontological and archaeologi-

cal evidence, encompassing centuries to hundreds of millions of

years. For example, an expectation that tropical coral reefs will

shift their geographic range poleward to track ocean warming is

based on evidence that warmer sea surface temperatures during

the last interglacial period (125 ka) resulted in Pleistocene coral

reefs in what is now the temperate zone of Western Australia

(Table 1; Greenstein & Pandolfi, 2008). Expectations based on

historical data do not, however, always provide mechanistic

understanding nor do they consider synergies between concur-

rent anthropogenic pressures that may not have co-occurred in

the past. Palaeontological studies have the advantage of long

time series where palaeobiological and palaeoclimatic proxy

data can be assessed simultaneously, though challenges include

dealing with gaps in data, variability in preservation of different

groups of organisms and often resolution of data that differs

from the temporal resolution of the biological response to envi-

ronmental change.

Importantly, evidence for generating expectations must be

independent of the data used to test the expectation. For

example, Bonhommeau et al. (2008) cite historical evidence that

eels eat plankton, together with historical evidence that the

abundance of plankton has changed with temperature. These

datasets are distinct from those used to test for a recent decline

in eel recruitment. Similarly, Nye et al. (2009) cite historical

evidence of shifts in the abundance and distribution of fish

species off the Canadian east coast to support a set of directional

expectations for how sea surface temperatures should affect fish

distributions off the coast of the north-eastern United States. In

each case, the expectation for biological change is not based on

the recent historical trend in the same system.

Carefully matching the expectation with available data allows

inferences to build on the first and third pillars (Fig. 1). For any

expected relationship between climate and a biological response,

the spatial and temporal scale of the underlying process pre-

scribes the scale and resolution of data appropriate for testing

the expectation (Henson et al., 2010). Expectations can also

guide the selection of climate metrics, an important step in

analysing combined local and regional effects (Garcia et al.,

2014). Sufficient data are often not available to properly test an

evidence-based expectation. In these cases, the expectation

could be restated, perhaps more generally (Table 1), to be test-

able with the data available. For example, in marine systems,

ecological time series are often shorter in duration and coarser

in resolution than required to test most expectations concerning

ecological impacts of climate change (Henson et al., 2010).

Henson et al. (2010), a rare example of an impact study that

determined data requirements for detecting a climate change

response prior to testing, calculated that attribution of

observed changes in primary production in oceanic gyres to

anthropogenic climate change requires a minimum of 30 years

of ocean colour data, whereas the principal source of ocean

colour data (a satellite) had only been operating for 14 years.

Many marine biological responses have been attributed to

climate change with datasets that are too short to deliver con-

clusive tests. When long-term, continuous datasets are absent,

several datasets of shorter duration may be concatenated to

create a longer time series (Poloczanska et al., 2008).

Finally, expectations can be used to identify appropriate quan-

titative tests (Fig. 1). Statistical analyses are necessary to detect a

change in particular climate and ecological variables, and to test

relationships between them whilst considering confounding

factors. Testing expectations against observational data presents

many challenges. The simple expectation that climate change is

causing biological change implies an expectation that internal

variability, other biotic or abiotic factors, or non-stationarity (the

tendency of time series to exhibit temporal trends in their statis-

tical properties) are not the only causes of the observed change.

Consequently, advanced time-series analyses are often required

to detect and attribute the impacts of climate change (Pyper &
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Peterman, 1998; Brown et al., 2011). Correlation analysis is com-

monly used in climate change studies, but this method has rarely

accounted for temporal or spatial autocorrelation, non-

stationarity or other important time-series issues. Failure to

control for these potentially confounding factors introduces

problems when assessing the statistical significance of correla-

tions between biological and climate data (Pyper & Peterman,

1998; Brown et al., 2011). Model-based methods of statistical

analysis, such as generalized additive modelling and structural

equation modelling, can account for multiple drivers of change

and autocorrelation simultaneously, allowing researchers to dis-

tinguish the contribution of climate change and its interaction

with other drivers (Brown et al., 2011).Testing prior expectations

that are mechanistically meaningful is important, because

neither correlation nor more sophisticated statistical tests alone

can determine causation. For instance, if two variables such as

fishing pressure and warming are strongly correlated, it will be

impossible to distinguish their effects on a species’ distribution

using statistical methods, whereas it may be possible to exclude

one driver from analyses on the basis of a prior expectations for

the direction and strength of effect.

METHODS

Application of the framework: a quantitative
assessment of current practices

The framework outlined here provides guidelines for strength-

ening inferences drawn from studies attempting to attribute an

observed ecological change to climate change (Fig. 1). These

guidelines may be applied when designing, reporting or inter-

preting a climate change impact study, and when synthesizing

studies in impact assessments or meta-analyses. To facilitate

such applications, we developed a confidence index (Cindex) that

applies a numerical score to individual conclusions about

impacts. We used the Cindex to assess current practices in the

marine biological literature, and to compare confidence in con-

clusions about the impact of climate change across taxonomic,

geographic and response-type groups. Although application of

some components of the framework, such as the minimum

number of years required (Table 2, Appendix S1), may be spe-

cific to marine climate change, the Cindex could be adapted easily

to other systems by changing the specific values of some scoring

categories.

Development of the confidence index

The Cindex measures confidence in scientific inferences derived

from climate change impact studies based on scores derived

from the scientific method and the spatial and temporal scale of

climate change in marine systems (Table 2). Total Cindex scores

reflect confidence in the strength of relationships between

climate change and biological variables (Fig. 1) based on the

type of information typically available for reporting. The Cindex

includes an expectation score (SE) that is based on whether a

prior expectation was clearly stated for how the biological vari-

able may respond to climate change, whether expectations

invoked specific evidence for putative climate pressures and

whether expectations were stated for alternative (non-climate-

change) causes or confounding factors (Appendix S1). A data

score (SD) is based on whether the spatial and temporal extent of

the data is well-matched to the scale of relevant climate change

(Henson et al., 2010). Scores reflect the number of years in the

dataset, the number of sites and the spatial extent of observa-

tions (local, regional). A quantitative score (SQ) is based on the

statistics used to test (or account for) change through time,

autocorrelation and alternative stressors (Brown et al., 2011).

The expectation, data and statistics scores (and their compo-

nents, Table 2) can be consolidated into scores for detection

(D = SD + SQi–iii) of biological change and understanding

(U = SE + SQiv–v) of how the biological change relates to climate

change (Table 2) (Kunkel et al., 2013). Detection implies a prior

expectation of change in the system, and consequently requires

data and statistical procedures that are sufficient to distinguish

change from a null pattern and variability inherent in the data,

such as natural variation in population size (Brown et al., 2011).

Understanding relationships between biological change and

climate change (or an alternative causal factor) requires the

testing of biological and climate data against prior expectations

for how the biological system should respond to observed

climate change as well as considering and testing for alternative

causal factors. Together, high D and U scores convey high con-

fidence in conclusions concerning attribution, and thus may

indicate studies that are most relevant to synthetic impacts

assessments.

The maximum possible Cindex score, 18, describes a data-rich

statistical test of a clearly stated, evidence-based expectation for

how climate change affects a biological response, including a

concurrent test for the role of alternative causal factors. Notably,

confidence in conclusions concerning the cause of a biological

change is independent of a study’s findings. A conclusion may

earn high confidence regardless of whether a biological response

is attributed to climate change, to other causal factors, or no

change was detected. For example, scores do not indicate

whether the prior expectation was supported by the statistical

test: a high-scoring study may find that climate change is not

driving biological change, and the methods used may convey

high confidence in this conclusion.

Analysis of Cindex scores

We applied the Cindex to 1735 biological time series, or ‘observa-

tions’, in 208 marine climate change impact studies to evaluate

overall confidence in assessments of marine biological responses

to climate change (Appendix S2). Here, we consider an ‘obser-

vation’ to be a time series of a single biological variable (i.e.

abundance or phenology).

For this dataset, Poloczanska et al. (2013) determined

whether each observation was consistent with the original

authors’ stated or implied expected impact of climate change.

The characterization of ‘consistent’, ‘not consistent’ or ‘no

change’ is not included in the Cindex, which remains neutral on
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the outcome of an analysis with regard to the direction or mag-

nitude of its concluded biological response to climate change.

After calculating Cindex scores for each observation, we

matched these scores with the previous classification of

consistency.

Cindex total scores were not normally distributed (Shapiro–

Wilks test: W = 0.98, P < 0.001), and we tested for differences in

scores among ocean, taxonomic groups and response-type

groups using Kruskal–Wallis nonparametric tests. Although the

grouping of observations within studies represents a kind of

pseudoreplication, we chose not to model the study-level vari-

ation. Our objective was to assess confidence in conclusions at

the level of observation because these are typically the units used

in subsequent meta-analyses and syntheses that inform a collec-

tive understanding of climate impacts, and study-level factors

are likely to contribute to these patterns.

RESULTS

Results of Cindex analysis in marine biological studies

We found a wide range of Cindex scores (from 1 to 16) across our

set of biological observations (Fig. 2). Most observations scored

highly in only one category (e.g. data, SD), and no observation

scored highly in all three categories. The maximum possible

scores for expectations (SE), data (SD) and statistics (SQ) were

achieved by 210 (12%), 32 (2%) and 120 (7%) observations,

respectively (Fig. 2). More than 35% of observations were not

Table 2 The confidence index (Cindex) is
composed of three subscores: (a) the
statement and testing of prior
expectations for climate impacts as well
as for alternative causal factors, (b) the
data available to test the expectations,
and (c) the quantitative or statistical
analyses applied. The Cindex score can be
objectively assessed in a climate impact
study and is calculated for a single
observed change (e.g. a biological
time-series dataset) and the associated
analyses and inferences surrounding the
cause of that change. The two columns
indicate scores that contribute to
detection (D) of change and
understanding (U) of how climate affects
change, respectively (Kunkel et al., 2013).

Detection (D) Understanding (U) Score

(a) Expectations (SE) Max. = 6

(i) 0 = no clear prior expectation stated

+2 = prior expectation is clearly stated

(ii) +2 = study invokes specific evidence to

support prior expectation

(iii) +1 = prior expectations are based on

multiple lines of evidence

(iv) +1 = prior expectations for alternative

causal factors are articulated or

confounding factors are

discounted

(b) Data (SD) Max. = 6

Temporal

(i) 0 = ≤ 10 years of data

+1 = 11–25 years of data

+2 = > 25 years of data

+ 1 = data spans > 30 years

(ii) +1 = continuous data (annual)

Spatial

(iii) 0 = single site study

+1 = multiple site study

(iv) 0 = local (≤ 1000 km2)

+1 = regional (> 1000 km2)

+1 = broad scale (> 100,000 km2)

(c) Quantitative analysis (SQ) Max. = 6

(i) +1 = biological trend was statistically

tested to distinguish from no

trend

(iv) +2 = relationship between biological

variable and climatic variable was

statistically tested

(ii) +1 = a trend in a climatic variable

was statistically tested to dis-

tinguish from no trend

(v) +1 = alternative causal factors tested

(iii) +1 = temporal/spatial

autocorrelations have been

considered

Max. = 9 Max. = 9 Max. = 18

Strengthening confidence in climate impact science

Global Ecology and Biogeography, 24, 64–76, © 2014 The Authors. Global Ecology and Biogeography
published by John Wiley & Sons Ltd

69



reported in association with a prior expectation, and only 35%

of statistical tests involved a test of an alternative driver of the

observed result.

The highest scoring observations (330 observations, or 19%,

across 37 studies) earned scores of six or more out of a possible

nine in both detection (D) and understanding (U) (Fig. 3a,

Appendix 2). Of these, 91% articulated a prior expectation and

86% articulated an expectation for an alternative causal factor;

100% statistically tested a change in climate but only 63% sta-

tistically tested for a change in an alternative causal factor; 90%

used time series with more than 30 years of data; and 98% were

multisite comparisons. Biological change was considered by the

original authors to be consistent with expected effects of climate

change in 226 (68%) of these high-scoring observations.

Biological change through time was not detected for all obser-

vations (Poloczanska et al., 2013) (Table 3). Observations for

which change was detected (consistent with climate change)

earned the lowest average Cindex scores (Kruskal–Wallis test:

χ2 = 23.2, d.f. = 2, P < 0.001; Table 3) due to lower expectation

and statistics scores (Table 3). When multiple species responses

were reported in the same study, observations tended to earn

higher scores than observations reported in studies that only

considered one or two species (Kruskal–Wallis test: χ2 = 8.93,

d.f. = 1, P < 0.003). The difference is due to statistics scores

(Kruskal–Wallis test: χ2 = 11.54, d.f. = 1, P < 0.0007) and data

scores (Kruskal–Wallis test: χ2 = 10.96, d.f. = 1, P < 0.001).

To assess patterns in confidence of inferred climate change

responses, we considered only observations for biological

change consistent with climate change, as determined by a

study’s authors (n = 1098 observations; Appendix 2). Scores dif-

fered among ocean regions (Kruskal–Wallis test: χ2 = 29.23,

d.f. = 4, P < 0.001, Table 4), with the Pacific and Atlantic oceans

tending to earn higher confidence scores than other regions

Figure 2 Distribution of Cindex scores for marine climate impact
studies, along with distributions of subscores for prior
expectations, data and quantitative scores. A solid black line
indicates the mean score and a dashed line indicates the median
score.

Figure 3 The confidence index (Cindex) quantifies confidence in
attribution of an observed biological change to climate change.
Attribution requires formal detection of change in a biological
system, as well as formal understanding of how climate relates to
the observed change (Table 1). Increasing total confidence is
indicated by the red arrow. Black lines represent isoclines. Higher
scores convey higher confidence in the conclusions of a a study.
Cindex scores vary with available data and research approaches, and
influence confidence in the current scientific attribution of
biological responses to climate change as measured by the mean
(± SD) Cindex score for studies grouped by ocean region (a), taxon
(b) and biological response (c).
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(Fig. 3, Table 4). Taxonomic groups also differed (Kruskal–

Wallis test: χ2 = 233.03, d.f. = 6, P < 0.001), and the highest

confidence scores were observed for larval bony fish, followed

by vertebrates and benthic cnidarians (Fig. 3c, Table 4).

Phenological responses earned significantly lower Cindex scores

than abundance, distribution, demography, calcification and

community change (Fig. 3, Table 4) (Kruskal–Wallis test:

χ2 = 53.89, d.f. = 5, P < 0.001).

Detection scores, primarily reflecting the availability of data,

explain differences in confidence scores among ocean regions

(Fig. 3a). In contrast, understanding scores for how climate

influences different responses explain differences among bio-

logical response types (Fig. 3c): phenological observations

received detection scores similar to those of other observation

types, but earned lower understanding scores (Fig. 3d). In

general, confidence scores for observations of benthic organisms

were limited by detection scores, while confidence scores for

observations of planktonic organisms scored highly for detec-

tion but weakly for understanding (Fig. 3b).

DISCUSSION

Recommendations for increasing confidence in
climate impact studies

As quantified by the Cindex, observations of marine biological

change are attributed to climate change with, on average, mod-

erate confidence. Our findings suggest high confidence in

attribution to climate change for changes involving larval bony

fish, Pacific and Atlantic ocean regions and distributional, cal-

cification and community-level responses. These findings differ

from a confidence ranking based only on sampling effort

(number of observations) (Table 4), and suggest that estimates

of confidence based on vote counting do not necessarily align

with estimates based on the integrated use of data, statistics and

evidence-based expectations.

Several of our findings could reflect subtle publication biases

in the impacts literature. When no change was detected in a

biological time series, or when observations were contrary to an

expected result of climate change, these conclusions earned

higher confidence scores than analyses for which change was

consistent with expectations. In addition, observations from

multispecies assemblages tended to earn higher confidence.

Multispecies studies tend to report changes (or no change)

through time for all species in a dataset, regardless of consist-

ency with expected impacts of climate change (e.g. Hsieh et al.,

2005). These patterns in Cindex scores are consistent with litera-

ture bias against studies that show no effect of climate change.

Solutions to publication bias include enhancing opportunities

for publishing results that are not found to be consistent with

climate change (Parmesan & Yohe, 2003) and for individual

researchers to determine data needs based on prior expectations

and then to report all results, including any that are indetermi-

nate or counter to expectations.

Most observations did not earn high confidence scores. In an

effort to highlight priorities for future research, we explore

where points were lost and suggest possible solutions to three

common problems we observed in our synthesis.

Table 3 Mean confidence index (Cindex) scores and results of Kruskal–Wallis test for differences in scores among groups of observations
considered by a study’s original authors to be consistent or opposite to expected, or no change. Letter superscripts indicate significant
differences among groups, based on Mann–Whitney pairwise comparisons of group means and variances. Bold values indicate significant
P-values relative to criteria (α-levels indicated in the table) reflecting Bonferroni adjustments for multiple tests.

i j

Difference in

means (i – j)

Difference in

median (i − j) W P

Cindex score α = 0.02

Consistent No change 9.97−10.58 = −0.62 10−11 = −1 196,388 < 0.01

Opposite to expected 9.97−10.88 = −0.91 10−11 = −1 105,389.5 < 0.01

No change Opposite to expected 10.58−10.88 = −0.29 11−11 = 0 44,775.5 0.48

Expectation score α = 0.02

Consistent No change 2.97−3.30 = −0.33 3−3 = 0 207,683.5 < 0.02

Opposite to expected 2.97−3.69 = −0.72 3−5 = −2 97,831 < 0.01

No change Opposite to expected 3.30−3.69 = −0.39 3−5 = −2 38,808.5 < 0.01

Data score α = 0.02

Consistent No change 3.76−3.76 = 0.01 4−3 = 1 224,198 0.78

Opposite to expected 3.76−3.89 = −0.13 4−4 = 0 116,087 0.14

No change Opposite to expected 3.76−3.89 = −0.12 3−4 = −1 43,901.5 0.24

Stats score α = 0.02

Consistent No change 3.22−3.52 = −0.30 3−3 = 0 202,323.5 < 0.02

Opposite to expected 3.22−3.29 = −0.07 3−3 = 0 120,108.5 0.50

No change Opposite to expected 3.52−3.29 = 0.23 3−3 = 0 50,626.5 0.05
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Table 4 Mean Cindex scores and results of linear models testing for differences in scores for observations of different ocean regions, taxa or
biological responses. All observations included here detected change that was considered by a study’s original authors to be consistent with
climate change. Bold values indicate significant P-values relative to criteria (α) reflecting Bonferroni adjustments for multiple tests, as
indicated.

Factor (i) n Mean score Median score Contrast (j) W P

Ocean region α = 0.005

Atlantic Ocean 595 9.93 10 Pacific Ocean 73,079.5 0.014

Polar seas 37,483 0.140

Semi-enclosed seas 21,362 < 0.003

Indian Ocean 20,083.5 0.005

Pacific Ocean 274 10.79 10 Indian Ocean 4870.5 < 0.001

Polar seas 18,805 0.004

Semi-enclosed seas 10,380 0.002

Polar Seas 116 9.34 10.5 Semi-enclosed seas 3835 0.128

Indian Ocean 2717.5 0.107

Semi-enclosed Seas 58 8.72 9 Indian Ocean 1684.5 0.604

Indian Ocean 55 8.80 8

Taxa α = 0.002

Vertebrates 543 10.47 10 Plankton 42,156.5 < 0.001

Benthic invertebrates 33,362.5 < 0.001

Larval bony fish 47,790.5 < 0.001

Benthic cnidarians 10,649 0.130

Plants 6325 0.920

Squid 1091 0.990

Plankton 219 8.35 9 Benthic invertebrates 20,556.5 0.176

Larval bony fish 20,526 < 0.001

Benthic cnidarians 5481 < 0.001

Plants 1809.5 0.026

Squid 391 0.714

Benthic invertebrates 174 8.77 9 Larval bony fish 1323.5 < 0.001

Benthic cnidarians 1337 < 0.001

Plants 1414 0.021

Squid 340 0.941

Larval bony fish 101 14.44 15 Benthic cnidarians 350.5 < 0.001

Plants 2128.5 < 0.001

Squid 199 0.965

Benthic cnidarians 34 10.75 11 Plants 497.5 0.075

Squid 67 0.980

Plants 23 9.82 9 Squid 46 1

Squid 4 10.50 10.5

Observation type α = 0.003

Abundance 487 9.98 10 Distribution 77,951.5 0.003

Phenology 45,683 < 0.001

Demography 10,307 0.865

Community change 6919.5 0.434

Calcification 4817.5 0.077

Distribution 363 10.51 11 Phenology 38,386.5 < 0.001

Demography 1752.5 0.366

Community change 5535 0.880

Calcification 4830.5 0.586

Phenology 149 8.29 9 Demography 4107.5 0.005

Community change 3010 0.007

Calcification 2838.5 < 0.001

Demography 43 10.02 10 Community change 715.5 0.593

Calcification 6160 0.355

Community change 31 10.68 9 Calcification 426.5 0.522

Calcification 25 10.84 11
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Data may be insufficient to test an expectation of

climate-driven change

Weak SD scores were common (Fig. 2). Studies from the

Indian Ocean or focusing on benthic taxa, for example, scored

low on detection (Fig. 3) because relatively few long-term

datasets exist or have been analysed in the context of the impacts

of climate change. One solution is to increase investment in

time-series datasets so that these may be available for future

analysis (Reichman et al., 2011). In addition, efforts to support

public archiving of data will ensure that existing data can be

used well into the future (Wolkovich et al., 2012; Vines et al.,

2014).

Statistical analysis may have been inappropriate or had

insufficient power to detect change and test for

climate-driven causes

Fewer than 10% of analyses of time series scored the maximum

possible statistics scores; correlation analyses were most com-

monly used (Brown et al., 2011). Brown et al. (2011) reviewed

an expanded version of the database we have analysed here and

provided recommendations on the most robust approaches for

tackling statistical challenges. More complex methods of detect-

ing causation such as the convergent cross mapping (CCM)

approach can help to identify causation by the increased ability

of independent variables to predict dependent variables – and

vice versa in the case of non-external independent variables –

over time (Sugihara et al., 2012). This lack of convergence can

cause re-examination of time series to produce conflicting

results (Myers, 1998). CCM proves useful in the case of external

forcing on two non-coupled variables, as cross-mapping will

show no evidence of convergence between the two biological

variables thus demonstrating no causation between them,

although they may appear correlated (Sugihara et al., 2012).

Prior expectations for climate impacts and alternative

explanations may be lacking, vague or insufficient in the

final manuscript

Many studies (119 of 208 in our sample) lacked a clearly stated

expectation for how climate change may affect the study system.

Possible explanations for not stating a prior expectation in a

climate impact study include the assumption by the authors (or

reviewers) that readers possess expert knowledge sufficient to

independently assume an expectation, convention in certain dis-

ciplines or cultures to de-emphasize prior expectations in scien-

tific reporting and analyses, and uncertainty in the expected

biological response to climate change.

When data are limited, the statement of prior expectations

can strengthen confidence in attribution. For one iconic taxon,

reef-building corals, for which extensive time-series data are

generally lacking, climate impacts are attributed with moderate

confidence in our database (Fig. 3). Studies of benthic

cnidarians, including reef-building corals, scored higher Cindex

values than other taxa with moderate detection scores (Fig. 3b),

reflecting the use of evidence-based expectations to support

conclusions about how climate has affected corals (De’ath et al.,

2009; Pandolfi et al., 2011). Furthermore, prior expectations

allow for proper selection of climate metrics when the vulner-

ability of a species to climate change is species or system specific

(Garcia et al., 2014).

Our analysis quantified confidence in attribution within

primary research studies, and we used these results to identify

strengths and opportunities for improvement in climate impact

studies. The framework we have developed, and the associated

confidence index, does not suggest that a greater number of

observations confers greater confidence in the conclusions. The

Cindex and the framework from which it is derived suggest that

greater confidence is achieved by integrating independent evi-

dence for climate impacts into expectations that are then statis-

tically tested against time-series data. Other approaches for

assessment and attribution, such as meta-analyses and hierar-

chical models, pooled observations and consolidate shared

information across groups to reduce uncertainty and thereby

strengthen inference (Hedges et al., 1999; Gelman, 2006). These

statistical approaches are necessary to determine the strength of

evidence provided by a set of observations. The Cindex can be

used within synthetic statistical frameworks as a weighting

factor, to give greater influence to observations with a higher

confidence score, strengthening cross-study comparisons such

as those made by the Intergovernmental Panel on Climate

Change (IPCC) Assessment Reports and advancing the study of

climate change ecology. Currently the IPCC uses ‘expert

opinion’ linked to a probability rating to determine strength of

attribution to climate change within meta-analyses. Ranking

studies or time series using a numerical scale as we suggest here

would reduce the subjectivity that may be inherently present in

expert judgements (Morgan et al., 2009) such that the confi-

dence in attribution to climate change could be averaged per

species, per region or per response type as we have done here.

Because observations are ranked in an ordinal manner, greater

emphasis can be placed on those observations with greater con-

fidence when defining percentage consistency with climate

change, as done in many meta-analyses of climate impacts (e.g.

Parmesan & Yohe, 2003; Poloczanska et al., 2013), thus better

reflecting the current state of knowledge of the impacts of

climate change on biological changes.

CONCLUSIONS

We have offered the Cindex as a more transparent approach to

assessing confidence in climate impacts studies, given the vari-

ability in presentation and methods in this literature. Strengths

of the Cindex include its synthesis of evidence from a broad pool

of scientific information to formulate testable expectations con-

sistent with the scientific method, and some degree of transpar-

ency in how confidence is assessed and compared. The approach

therefore overcomes some of the limitations associated with less

transparent methods based on subjective expert opinions.

Nonetheless, reproducibility remains a major challenge in

climate impacts research and assessments. The challenge of
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reproducibility is two-fold. First, given the same data, are con-

clusions and confidence assessments reproducible? Second, are

findings reproducible when longer or more extensive datasets

become available (Myers, 1998)? Our confidence index is one

attempt to develop a confidence assessment procedure that may

be more reproducible than expert opinions (Morgan et al.,

2009) due to the clearly defined categories and transparent

assignment of scores. The Cindex only indirectly addresses a

second challenge of reproducibility, by encouraging communi-

cation of logic such that research processes and conclusions

might be reproducible even with more data. However, if histori-

cal data and analytical code are not made available with publi-

cations, a deeper understanding of biological change through

time may be hampered, despite the availability of more data

(Wolkovich et al., 2012; Vines et al., 2014).

We found that many studies present compelling, but not

conclusive, evidence that climate change more than other

factors has affected marine biological systems. Confidently

attributing biological change to climate change is essential

to the application of scientific research to decision making.

To improve this process, we have outlined an approach for

assessing confidence in attribution at the level of the research

analysis. Future investment in long-term datasets and the basic

science to support evidence-based prior expectations for climate

impacts will directly strengthen confidence in impacts studies

and assessments.
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