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Abstract

This paper reports on an experiment testing whether a particular repre-
sentation of robotic control processes is adequate for capturing significant
variations in robot behavior. These variations can then be explored by a
selectionist mechanism that generates and tests variations. An ecosystem
modeled after a physical robotic ecosystem is introduced. The ecosystem
contains a robot that occasionally has to recharge, as well as competitors
that take away energy from the total system. The robot has to discover that
its viability requires combatting the competitors.

1 Introduction

Behavioral development implies the incremental acquisition of new behavioral
competences by an agent while remaining viable in an unknown dynamically
changing environment. Several approaches to behavioral development have
been discussed in the literature, including supervised neural networks that
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generalise or form associations based on a series of examples [14], reinforce-
ment learning algorithms [6] that do the same based on a reinforcement sig-
nal, and genetic algorithms that perform a parallel selectionist search through
a series of alternative behavioral networks [5]. Selectionist experiments have
also been reported by Edelman for categorisation competence [3] and Holland
for rule-based decision making as implemented by classifier systems [4].

This paper contributes to the selectionist paradigm. It focuses on the acquisi-
tion of competence for behavior regulation, i.e. the control of which behavior
will be performed, rather than the acquisition of new behavior (as in [11]).
We seek a mechanism whereby such competence can be acquired on-line and
while the robot stays viable. This requires that a representation must be
found such that a variation in this representation captures a significant dif-
ference in behavior. Second a search mechanism must be found that performs
the exploration of alternatives without endangering the viability of the agent.
This paper focuses on the first aspect. It proposes representations capturing
dynamic couplings between quantities and tests whether these representa-
tions adequately capture significant variations needed to handle a concrete
challenging example ecosystem. Another paper [13] focuses on a possible
search mechanism and shows for the same example that an exploration while
remaining viable is possible.

The rest of the paper has the following parts. The first part introduces the
ecosystem. The second part discusses the control system on the robot as
well as the selectionist mechanism. Then variations of behavioral programs
linking alignment with perceived energy level are studied. One of these vari-
ations turns out to yield the most adapted behavior. Some conclusions end
the paper.

2 The ecosystem

The experiments discussed in the paper involve an abstract ecosystem, mod-
eled after a physical ecosystem built in the laboratory (fig.1). The ecosystem
contains a robot (fig.2) and a charging station. The robot has a battery
which is depleted as it operates and moves around in the environment. The
robot can recharge itself by sliding into the charging station. The ecosystem
also features competitors. The competitors take away energy from the global



Figure 1: Robotic ecosystem that is assumed for the experiments. The robots
have a battery, a battery sensor, and photosensors. They can control their
own forward movement and slide into the charging station on which a lamp
is mounted.



Figure 2: Physical robot modeled in the experiments. The robot has a
charging rod on top which is linked to a contact switch. When the robot
slides in the charging station, this switch is closed.

energy flowing into the system and thus from the charging station. In the
physical ecosystem the competitors take the form of lamps mounted in boxes
(fig.3). When the robots run against the boxes, the competitors diminish in
strength but they regrow later. Thus the robot has to work continuously to
get sufficient energy in the charging station. This ecosystem was developed in
collaboration with David McFarland and has been designed to reflect many
essential characteristics of natural ecosystems.

The internal control processes on the robot use a behavior-oriented approach
[9], which means that behavior systems as opposed to actions are the primary
building blocks. Different behavior systems operate in parallel and the ob-
served behavior is the sum of all their influences. The intensity with which
a behavior system impacts global behavior is controlled by a motivational
parameter which is itself regulated using a dynamical system [12].



Figure 3: Competitors take the form of lamps mounted in a box. When the
robot pushes against a box, the lamp diminishes and thus takes away less
energy from the global energy flowing into the ecosystem.



2.1 Conventions

The definition of the ecosystem uses the following conventions. We will need
a set of quantities @ = {q1,...,¢,}. The value of a quantity is bounded.
0.0 < ¢; < 1.0 with some exceptions. The modeling and simulation assumes
a discretisation of time. The value of a quantity at time t is denoted as ¢(t, 7).
t is left out if the value intended is the current time. i is left out when we
just want to talk about a quantity in general.

A process is written as:
g v if pr (1)

which is to be read as “g; increases with v, when p,” where v, is a number or
a numerical expression and py is a proposition whose truth value determines
whether the increase or decrease should happen. Processes form a process
network because the influenced quantity g; of one process may itself be the
source of another process. Note that there is an implicit parallelism. All
processes run at the same time. The quantities are shared variables and
changed through side-effect. A further notational shorthand is the following:

g<=v ifp (2)

which is to be read as “q becomes v when p” where v is a number or a
numerical expression. If the proposition p is true at time t, the value of g
will be attempted to be bridged at the next time instant by the difference
between v and the current value of q. The above expression is therefore
equivalent to:

gt +1) «— (v—q(t)) ifp (3)

There is no guarantee that v is reached because another process may also
perform a change to another value. In general, no single process has ever
control, neither over another process nor over the final state of a quantity.

One special kind of proposition is
g < (4)

which is to be read as “q changes into v”, where v is a number or a numerical
expression denoting a number. This proposition is true if there is a change
from any kind of value into the value v.



2.2 Initial situation

The initial ecosystem (without competitors) contains a single robot and a
charging station. The robot starts out with two behaviors: one for forward
movement and one for alignment towards a light source using photosensors.
The operation of the ecosystem and these behaviors is governed by the fol-
lowing laws:

[1] When the agent is moving forward it uses energy at a certain rate 7;.
Let f be the speed of forward movement and e the energy level then this is
captured in the following process. By default r; = 0.1.

e —n f [Pl] (5)

[2] There is a constant energy loss at rate 7. By default, r, = 0.01.

e«—— —ry [P2] (6)

[3] When the agent has access to the charging station there is an increase in
energy at the rate r3. Let ¢ be 0.0 if there is contact and 1.0 if there is no
contact.

€e<+— T3 C [P3] (7)

[4] The motivation of the forward movement behavior is regulated by the
quantity by. There is a rate r, which determines the success with which this
motivation is translated into actual forward movement. The success is also
dependent on the amount of energy available. This leads to the following
process definition. By default r4 = 1.0.

f<=rsbse [P4] (8)

[5] The forward movement behavioral motivation decreases towards zero (the
resting state of the robot), meaning that if there are no forces pushing towards
forward movement, there should be a tendency towards halting. This is
captured in the following process definition, where 75 is the rate at which the
behavioral motivation decreases. By default r5 = 0.2.



Figure 4: Main parameters determining the geometrical layout of the charg-
ing station and its surrounding area. d determines the depth of the charging
station, m the minimal area which needs to be traversed after leaving the
station, and n the typical distance to be traversed before the station can be
entered again. j,k, and 1 model how far these quantities have been traversed.

by — —rs by [P5] (9)

[6] The charging station is assumed to have a certain depth d (fig.4). The
robot slides into the charging station and will slide through it depending on
its forward speed. This means that we must model the robot’s position in the
charging station or more precisely the distance of joined overlap j between
the robot’s charging apparatus and the charging station. When the robot
enters the charging station j is set equal to d. Then j evolves according to
the next process definition. By default, rg = 0.2.

je—-rfj [P6] (10)

[7] As long as j is positive, contact remains established:



1.0 if 5 > 0.0 [P7]
¢ 0.0 otherwise

(11)

[8] 7 is the travelling rate also used for sliding through the charging station.
k = m when the robot leaves the charging station.
k—— —r¢ f [P8] (12)

[9] 1 models the distance to be covered to reach the charging station once the
corridor around the station has been left. 1 decreases at the same rate as k
or j:

le—~r6 f  [p9] (13)

[10] The different distances j, k, and 1 are set to their corresponding maximum
values by the following processes:

je=d if c< 1.0 [plo] (14)
k<—m if j <00 [pll] (15)
l<—=nif k<00 [p12] (16)

[11] There is a contact sensor mounted on the charging rod which switches
on when contact is made with the charging station:

Sc <=c [P13] (17)

[12] The next processes are relevant for the alignment behavior. The first
one converts the alignment motivation (b,) to actual alignment, which will
depend on the available energy in the batteries e and on a rate r4 = 1.0:

a<=rsbae [Pl4] (18)



[12bis] alignment also uses up energy:

e«— —rya  [Pl4bis] (19)

[13] The traversal of | (determined by process [p9]) is made to depend on the

alignment as well:
l— —rga [pl5] (20)

2.3 Ecosystem with competitors

The ecosystem defined in the previous subsection is now extended. Not
only are competitors added but several non-linear effects are deliberately
introduced to make the ecosystem more interesting. For example, recharging
will no longer be linear but dependent on the level of the battery (as is indeed
the case with physical batteries).

First a global source of energy g is introduced. The global source is constantly
replenished. It is maximally equal to 1.0 and replenishment goes slower as
this limit is reached. The charging station takes energy away from this global
energy source if the robot is charging and the competitors take from it as well.
The robot can only sense indirectly the impact of the competitors when (a)
it is in the charging station and (b) the competitors are sufficiently strong to
cause a decrease of g, and hence a decrease of the amount of energy available
to the robot as it is recharging.

The competitors are distributed in the environment around the charging
station and at first the robot will hit a competitor by pure chance. The
probability with which a competitor is hit depend on the distance to the
charging station. This probability depends also on the number of competi-
tors p. The ecosystem can be made tougher for the robot by making the
competitors harder to find.

These considerations are translated in the following set of processes. First,
process [P3] which regulates the energy increase when the agent is in the
charging station is revised so that it is in relation to the energy in the global
energy source. The process is also made non-linear.

e—r3cg(l0—e) [P3] (21)
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There is a corresponding loss in the global energy source:

g —r3cg(1.0—¢) [P3bis] (22)

[13] The competitors take away energy from the global energy source g at
the rate rq.
g -mpg [P16] (23)

[14] The competitors grow non-linearly at the rate 7s:

p—rg (1.0—p) [P17] (24)

[15] The competitors non-linearly diminish at the rate 79 when the robot
touches them. The more competitors there are the more effect touching will
have. Touching is captured in the binary quantity c2. c2 is not a sensor but
a property in the world (just like ¢).

P &— —TgCa2 D [P]_S] (25)

[16] Hitting a competitor slows the robot down due to the obstacle avoidance
necessary for getting away from a competitor:

fe——-Trnep [P19] (26)

[17] Hitting a competitor depends probabilistically on the distance away from
the charging station 1, the speed of forward movement f, and a probability
factor ;.

c2 «— prob(ry1,l f) [P19] (27)
where
| 1.0 if random(n) < n/6) [PT7]
prob(6,n) = { 0.0 otherwise
(28)

The robot must have the physical means to detect the competitors at a
distance so that a second type of alignment can be used. In the physical
implementation this has been accomplished by using infrared light strobed
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at a certain frequency as ‘lamp’ and two infrared sensors mounted on the
left and right side of the robot’s body which filter for the same frequency.
These sensors make a second alignment behavior a, possible whose behavioral
motivation is controllable with the parameter b,5. The following processes
(which are analogous to those for the first kind of alignment) need to be

added:

[18] The first process converts the alignment motivation (b,2) to actual align-
ment, depending on the available energy in the batteries e and on a rate
rqy = 1.0:

ag <14 bz e [P20] (29)

[19] The second process models the energy used by alignment:

e—— —ryay [P21] (30)

[20] The alignment motivation also moves to a quiescent state, just like for-
ward movement. By default r5 = 0.2.

by — —r5 by [P22] (31)

3 The selectionist mechanism

3.1 Representation of control processes

The control processes on the robot can be viewed as dynamically coupled
maps. A dynamically coupled map DCM=< C,F,U > is an extension of
coupled maps which are a well researched formalism in complex systems
theory [7]. It consists of a set of quantities C' with associated values, a set of
functions (maps) F, and a function assignment U mapping a pair of quantities
4, 7] to a function at a particular time: U : C x C X T — F. The functions
define processes. F includes Z, a constant function Z(z;,z;) = 0.0 which
is assigned by default. Note that a function always takes two arguments
involving a target quantity ¢ and a source quantity j.
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Updating is governed by the following equation:

zi(t+1) = Zlf(m} t)(x:(t), (1)) (32)

The kinds of couplings that may occur between quantities is restricted. In
this paper the following couplings are used:

The similarity-coupling S couples the values associated with the quantities
¢ and j in such a way that the value of ¢ approaches that of 5. It is a kind
of goal-seeking coupling. The goal for ¢ is given by the value of the other
quantity 7. r determines the rate at which j should be approached.

S(,5) = zi(t + 1) = rz;(t)) — xi(t)] (33)

The reverse-coupling R couples the values associated with the quantities ¢
and 7 in such a way that they attain opposite values with respect to the
maximum value 1.0. It is another kind of generalisation of a goal-seeking
coupling.

R(i,j) =zi(t+1) =7[(1.0 — z;(t)) — z;(1)] (34)

Couplings can be made dependent on the evolution of the source quantity.
Two such conditions will be further explored in this paper:

e The coupling can be dependendent on an increase I in the source quan-
tity:
I(j) <= =z;(t—1) < z(t) (35)

e The coupling can be dependent on a decrease D in the source quantity:

D(j) <= z;i(t—1) > z;(t) (36)

The possible combinations of S, R, I and D are illustrated in fig. 5.

I call the representation of a coupling in the memory of the robot a bene, to
suggest an analogy with genes. Indeed, genes in some sense also represent
couplings because they co-determine the presence of enzymes which regulate
the nature and rate of processes in a metabolic process network. Sets of
benes are grouped in strands. One strand represents a set of couplings and
thus a process network.

13
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Figure 5: ¢; will follow ¢, in similar motion when a similarity coupling (S)
exists between ¢; and ¢p or in reverse motion (R) when a reverse coupling
exists. The figure shows the different possibilities depending on whether the
source quantity is increasing (I) or decreasing (D).

A bene is represented in the following way:
qu—di—dy—ga— (37)

where ¢; and ¢» are quantities (often called target and source quantities
respectively), d; € {S,R} expresses how ¢; will follow the change in go.
dy € {D, I} determines the required direction of change of ¢5. r is the rate.
The default value of r is r=1.0, in which case r is not written. The above
expression is equal to

@ <=rw if dg/dt<0 (38)
if dy is D (decreasing) or
¢ = rw if dg/dt >0 (39)
if dy is I (increasing).
g2 ifdy, =S
w:{ 1.0 —q ifdy =R
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(40)

Assuming two quantities: by for the motivation of forward movement and s.
for the sensed energy level, then the coupling by - R - D - s, - r [b1] reads as
“forward movement reversely follows the decreasing sensed energy level with
rate r”. It is equivalent to the following process:

by <—=r(1.0—s.) if d s./dt0 (41)

by default r = 1.0.

3.2 The search process

The following mechanism is proposed for regulating the search in the space of
possible variations [13]. There is a current strand C which represents the best
process network so far. At regular intervals, benes and corresponding strands
are constructed for each of the possible combinations of two quantities which
are randomly selected. Only four possibilities are considered in this paper:
follow in similar motion if increasing (S - I), follow in reverse motion if in-
creasing (S - D), follow in similar motion if decreasing (S - D) and follow in
reverse motion if decreasing (R - D). Each of these is tried very briefly in
combination with the current strand C giving an initial ranking. The possi-
ble combinations might not be better than what already exists on the robot
in which case they are ignored and other combinations are tried. If not, the
ranking is retested for a longer time period and the best strand is combined
with the current strand to form the new current strand. This current strand
is tested again with the others to see whether a further combination is bene-
ficial, and so on until no better performance from recombination is seen. The
procedure then repeats itself for other possible combinations of quantities.

The notion of viability [1] is used as selection criterion. A behavior is viable
when it keeps the organism within a region of its physical parameter space
that guarantees continued existence [8]. During a specific time period, a
region is carved out by actual behavior. When this region moves towards the
critical boundaries of the viability region, then the corresponding behavior
should undergo negative selection pressure.
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For example, one of the most important critical parameters for a robotic agent
is the level of its internal energy resources. The ideal situation occurs when
this level is at its maximum. During a particular time period T the robot’s
energy level fluctuates between a minimum men and a maximum level mazx.
The center of mass is defined as center(T') = min(T)+(maz(T)—min(T))/2.
If this center moves up, the robot becomes more viable and there should
be a positive selection for this behavior. In real world robots, many other
dimensions are to be considered as well. The experiments in this paper
however focus on energy maintenance only.

4 Experimental results

The goal of this paper is to investigate the adequacy of benes as a represen-
tation of the dynamics controling motivational variables and thus behavior
regulation. The representation is adequate if it captures competing alterna-
tives. A number of experiments have been done testing variations. Each time
the impact on viability was studied to see whether one variation would stand
out. The results for handling the initial situation are reported only briefly.
The results for handling the competitors, which is the most challenging task,
are discussed in more detail.

4.1 Initial Situation

Forward movement and energy level

There are four possibilities relating forward movement behavior to energy
level:

[b1] bf - R - I - se ; reversely follow increasing energy level
[b2] bf - R - D - se ; reversely follow decreasing energy level
[b3] bf - S - I - se ; follow increasing energy level
[b4] bf - S - D - se ; follow decreasing energy level

The only combination improving the viability of the robot is one where the
motivation of the forward movement behavior follows the decreasing per-
ceived energy level: by - S - D - s, [b4]
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Figure 6: The different combinations between the forward movement motiva-
tion and the energy level sensor are tried for 100 time steps each. b4 (the last
one tried) clearly gives the best performance. The robot slows down when
going to the charging station. The forward movement shown is actual for-
ward movement and not motivation for forward movement. Actual forward
movement depends on available energy and will therefore always decrease
when energy decreases.

This way the robot decreases its forward speed as the energy level decreases.
Other combinations have no or only a slight effect (fig.6). [b4] is the most
beneficial because this way the robot slows down while approaching and thus
sliding through the charging station. It also optimises energy use when it is
most scarce.

Alignment and energy level

The following couplings are possible between motivation for alignment (b,)
and sensed energy level:

b5 = [b, - R -1- s.] ; reversely follow increasing energy

b6 = [b, - R - D - s.] ; reversely follow decreasing energy
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Figure 7: The different combinations between the align motivation and the
energy level sensor are shown for 100 time steps each. Actual energy level and
alignment are shown. Success of alignment depends on forward movement
as well and on the available energy. [b6] is the winner although the others
except the first are also beneficial.

b7 = [b, - S - I- s.]; follow increasing energy
b8 = [b, - S - D - s.] ; follow decreasing energy
Experimenting with these couplings leads to a preference for the following:

bo-S-D - s, [b6]

The motivation of alignment follows the decreasing energy level. This is the
most appropriate behavior because the motivation to perform alignment to
the charging station goes up when the energy is getting low (fig. 7).

Forward movement and the contact sensor

The following couplings are possible between forward movement motivation
(bs) and the contact sensor
b9 = [by - R-1- s.| ; reversely follow increasing contact
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Figure 8: The different combinations of the forward movement motivation
and the contact sensor are tried for 100 time steps each. Actual energy
level and forward movement are shown. Only b9 (the first one) produces a
significant improvement in performance.

b10 = [bs - R - D - s.] ; reversely follow decreasing contact
b1l = [bs - S -I- s.] ; follow increasing contact
b12 = [bs - S - D - s.] ; follow decreasing contact

[b9] is indeed a significant improvement because the robot now halts in the
charging station based on a contact sensor (fig. 8). The last coupling [b12]
leads to death because the robot decreases its forward movement after leaving
the charging station and never regains speed in time. This illustrates that
restoration periods between trials are required for the robot to remain viable
despite negative experiences and that a new behavior should initially not be
pursued for too long.

The overall behavior with [b4], [b6], [b9] and a positive growth rate for the
competitors is shown in fig.9. As energy decreases, the robot’s forward speed
increases. This will bring it in the charging station where it stops (based
on [b12]) at time step 45. But as the competitors keep on growing, they
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Figure 9: The robot shows a cyclic behavior of going to the charging station
and then recharging.

eventually cause the energy level of the robot to decrease, even though it is
located in the charging station. This happens around time step 60, causing
the forward speed to go up and the robot to leave the charging station. We
see that on its way back to the charging station, the robot hits a competitor
(around time step 80) which causes an increase in the global energy g. Then
the same scenario repeats itself. The second round the robot is more lucky
and hits several competitors causing a substantial increase in global energy.

The story continues in fig.10. A cyclic behavior continues where the robot
alternates between recharging and seeking the charging station. On its way
to the charging station the robot occasionally hits one or more competitors.
This will cause it to slow down but it has no other effect.

The robot does not appear to be harmed by the competitors. However, this
scenario relies on the fact that the robot hits sufficiently often a competitor
by mere luck. The robot would quickly die if the pressures in this ecosystem
would increase, for example by decreasing the probability factor r;; influenc-
ing the chance of hitting a competitor, or by increasing the growth rate of the
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Figure 10: Continuation of scenario from fig.9. The cyclic behavior continues.

competitors rg, or by increasing the rate with which competitors consume
energy ry9. Let us therefore now turn to the problem how the robot might
improve its chances of hitting the competitors.

4.2 Handling the competitors

Alignment towards the competitors, controlled by the motivational variable
bs2 can be coupled to the energy level sensor as follows:

[b13] b2 - R - D - s, ; reversely follow decreasing energy level

[b14] b2 - S - D - s, ; follow decreasing energy level

[b15] b2 - R - 1 - s, ; reversely follow increasing energy level

[b16] bya - S - I - s, ; follow increasing energy level

The following sections consider these variations one by one.
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Figure 11: Behavior resulting when [b13] is added after 100 time steps.
Alignment motivation follows reversely a decrease in the energy level. Its
introduction is not detrimental to the agent.

4.3 The first variation: b,, - R - D - s,

The first variation is: b,y - R - D - s, [b13] This coupling prescribes that
the competitor alignment b,5 has to follow reversily a decrease in the energy
level. The results of introducing this coupling can be seen in fig.11. The
results are catastrophic. The robot does not survive. This means that the
ecosystem is too tough to allow an exploration of this variation or that the
overall regulatory mechanism should stop in time the effect of this coupling.

The alignment motivation change occurs the right time (namely when going
back to the charging station). However it comes too late and increases when
it should decrease. At the critical moment it distracts the robot away from
the charging station and takes badly needed energy away. This coupling is
clearly not beneficial for the agent.
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Figure 12: Behavior when [b14] is added after 100 time steps. Alignment
motivation follows a decrease in energy level. We see that a few competitors
are hit every time the robot has left the charging station.

4.4 The second variation: b,, - S - D - s,

The second variation is: b, - S - D - s, [b14]

This coupling prescribes that alignment follows the evolution of the energy
level when this is perceived to decrease. The effect can be seen in fig.12. The
motivation shoots up as soon as the energy decreases. The actual observed
alignment is much lower as it depends also on the available energy. It is obvi-
ous that this coupling has a positive influence. There is a continued regular
cycle where the robot recharges, seeks and hits the competitors and then
seeks the charging station. The alignment behavior decreases appropriately
so that the robot goes back to the charging station in time.

The stabilisation in the global energy is seen in the next figure (fig.13.) which
shows the evolution of g for the same period as fig.12. The robot does roughly
as much work as it needs to do to maintain the supplies that it will take out
later. Note that the robot has no sensor to measure the global energy and
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Figure 13: The global energy g stabilises because the robot takes as much
out as it puts in (indirectly) by combatting competitors. These data are for
the same experiments as shown in fig.9.

could therefore not receive a reinforcement signal based on this information.

Fig.14 shows what happens when the challenges in the ecosystem are in-
creased. The probability of finding by chance a competitor has been lowered
by half (r11 has been changed from 0.2 to 0.1). This would be mortal if the
coupling was not present. But now it has no effect whatsoever. The agent
has been able to wrestle itself away from chance and exploit the available
resources in the ecosystem.

4.5 The third variation: b,, - R -1 - s,

The next variation is: bs,s - R - I - s, [b15] The alignment motivation now
reversely follows an increase in the energy level. The results are seen in fig.15.
Predictably, the coupling has no impact on behavior. The reason is that the
increased alignment motivation happens at a time when it is not needed,
namely when the robot is in the charging station.
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Figure 14: The probability of hitting the competitors by chance has been

lowered but due to [b14], introduced after 100 time steps, no effect is seen
on performance.
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Figure 15: Variation [b15]
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where alignment reversely follows increases in

energy level is introduced after 100 time steps. It has no impact on behavior.
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Figure 16: Failure of [b15] to counteract the competitors causes the robot to
die after a longer time, namely around time step 500.

Although fig. 16 appears to show that the robot is viable, the lack of coun-
terforce to the competitors eventually causes them to increase so much that
the robot does not survive as is seen in fig.17.

4.6 The fourth variation: b,, - S -1 - s,

Finally the last variation is attempted: b, - S - I - s, [b16]

Alignment towards the competitors now follows an increase in the energy
level. Again there is no impact on behavior because alignment happens at
the time it is not needed. So, the end conclusion is clearly that only the
second variation, namely [b14] has to be retained.

The overall result with all the selected benes active is given in fig. 18.
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Figure 17: Variation [b16] where alignment follows increases in energy level
is introduced after 100 time steps. It has no impact on behavior.
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Figure 18: The final process network causes the desired activity cycle alter-
nating between charging, combatting the competitors, and foraging to find
back the charging station. Performance improves and then stabilises.
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5 Conclusions

The paper has explored a selectionist approach to behavioral development
in which a (possibly complex) behavior is generated and tried out. If the
behavior is beneficial with respect to the viability of the robot, then its
likelihood of remaining in the behavioral repertoire increases otherwise it
decreases. A selectionist approach has the advantage that completely novel
situations can be created and tried out, whereas a purely inductive approach
has to wait for situations to arise before something can be learned.

The paper has contributed to the selectionist approach to behavioral develop-
ment by proposing a particular representation of behavioral control processes
in the form of couplings between quantities represented as ‘benes’ and test-
ing the adequacy of this representation for capturing significant variations.
It was shown that a surprisingly small number of couplings is enough to cap-
ture the basic behavioral regulation needed for dealing with the ecosystem.
It was also shown that the viability criterion is adequate for selecting which
variation is most adapted.

The difficulty of the test experiment should not be underestimated. The
ecosystem is unknown to the robot and has a variety of non-linear dynam-
ical aspects. There are no prior examples on which some form of inductive
learning can take place. The robot must first generate a particular behavior
before its impact can be seen. There is no direct way to give credit to a
specific action, as required by most reinforcement learning methods. The
benefit of combatting the competitors becomes clear only much later. The
robot does not get immediate feedback from crucial aspects of the environ-
ment such as the global energy level. In addition, there are no discrete prior
categories, making it difficult to use if-then rules as the representation over
which selectionist operations take place (as used in genetic algorithms). Sen-
sory quantities are continuous and stream into the robot in real time and
behavior regulation must be continuous and take place within the real-time
constraints imposed by the environment.

There are still many open issues. Other types of couplings need to be added
to the repertoire of possible couplings, and there will be processes that link
more than two quantities. The presented experiments need to be carried
out in the physical ecosystem. I have not discussed in detail the overall
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selectionist procedure that regulates when variations are introduced or the
time frames in which these criteria are applied. This is discussed in another
paper [13]. Nevertheless the results reported in this paper are encouraging
and surprising, partly because one would expect that much more complex
mechanisms would have been needed to handle the competitors.
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Appendix: Overview of quantities.
External quantities

a: alignment to charging station

a2: alignment to competitors

: contact or not with the station

depth of station

energy level

forward movement

percentage of d already traversed
percentage of 1 already traversed
percentage of n already traversed
radius of corridor just outside station
: minimum distance to station after corridor has been traversed

B B P KR HO QO O

c2: contact with competitor
g: global energy
p: number of competitors

Internal quantities

bf: motivation of forward movement

ba: motivation of alignment (to charging station)

ba2: motivation of secondary alignment (to competitors)
sc: contact sensor

se: energy level sensor

rl: rate of energy use in forward motion
r2: rate of constant energy use

r3: recharge rate

r4: efficiency of forward movement

r5: rate for reaching rest state

r6: rate of travelling

r7: energy consumption by competitors
r8: competitor growth rate
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r9: effectiveness of dimming competitors
r10: rate at which obstacle avoidance slows forward movement
rll: probability factor for hitting competitors
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