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Abstract. Two explicit expressions of the canonical 8-form on a Riemannian

manifold with holonomy group Spin(9) have been given: One by the present
authors and another by Parton and Piccinni. The relation between these two

expressions is obtained. Moreover, it is shown that they are different only from

a combinatorial viewpoint.

1. Introduction and Preliminaries

The group Spin(9) belongs to Berger’s list of restricted holonomy groups of
locally irreducible Riemannian manifolds which are not locally symmetric. Mani-
folds with holonomy group Spin(9) have been studied by Alekseevsky [3], Brown
and Gray [6], Brada and Pécaut-Pison [5, 4], Abe [1], Abe and Matsubara [2],
Friedrich [8, 9], Lam [10], the present authors [7], Sati [15], Parton and Piccinni [12],
[13], [14], and Ornea, Parton, Piccinni and Vuletescu [11], among other authors. As
proved in [6], a connected, simply-connected, complete non-flat Spin(9)-manifold
is isometric to either the Cayley projective plane OP(2) ∼= F4/Spin(9) or its dual
symmetric space, the Cayley hyperbolic plane OH(2) ∼= F4(−20)/Spin(9) (see also
[3]).

We recall that a Spin(9)-structure on a connected, oriented 16-dimensional Rie-
mannian manifold (M, g) is defined as a reduction of its bundle of oriented orthonor-
mal frames SO(M), via the spin representation ρ(Spin(9)) ⊂ SO(16). Equivalently
(Friedrich [8, 9]), a Spin(9)-structure is given by a nine-dimensional subbundle ν9 of
the bundle of endomorphisms End(TM), locally spanned by a set of endomorphisms
Ii ∈ Γ(ν9), 0 6 i 6 8, satisfying the relations

IiIj + IjIi = 0, i 6= j, I2
i = I, IT

i = Ii, tr Ii = 0, i, j = 0, . . . , 8.

These endomorphisms define 2-forms ωij, 0 6 i < j 6 8, on M locally by ωij(X, Y )
= g(X, IiIjY ). Similarly, using the skew-symmetric endomorphisms IiIjIk, 0 6

i < j < k 6 8, one can define 2-forms σijk. The 2-forms {ωij, σijk} are linearly
independent and a local basis of the bundle Λ2M .

Moreover, ∆9 being the unique irreducible 16-dimensional Spin(9)-module, the
Spin(9)-module Λ8(∆∗

9) contains one and only one (up to a non-zero factor) 8-form
Ω8

0 which is Spin(9)-invariant and defines the unique parallel 8-form on OP(2). It
induces a canonical 8-form, which we denote again by Ω8

0, on any 16-dimensional
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manifold with a fixed Spin(9)-structure. This form is said to be canonical because
[6, p. 48] it yields, for the compact case, a generator of H8(OP(2), R).

Some expressions of Ω8
0 have been given. The first one by Brown and Gray [6,

p. 49], in terms of a Haar integral. An explicit expression was given in [4, pp. 150,
153] and [5], by using a vector cross-product. Unfortunately, this expression is not
correct (see [7] for a more detailed explanation). Another explicit expression was
then given in [2, p. 8], as a sum of 702 suitable terms (see also [1]). This expression
contains some errors (see [7] for a more detailed explanation).

We gave in [7] an explicit expression of Ω8
0, which we denote here by Ω8, in

terms of the 9 × 9 skew-symmetric matrix of local Kähler 2-forms, ω = (ωij).
The invariance and non-triviality of Ω8 was proved using the properties of the
automorphisms of the octonion algebra.

Another explicit expression of Ω8
0, as the fourth coefficient τ4(ω) of the charac-

teristic polynomial of the matrix ω, was given by Parton and Piccinni in [12]. To
prove the non-triviality of τ4(ω), they performed a computer computation with the
help of the software Mathematica.

The expression Ω8 of the (global) canonical 8-form on the Spin(9)-manifold
(M, g, ν9) is given [7] by

Ω8 =
∑

i,j,i′,j′=0,...,8

ωij ∧ ωij′ ∧ ωi′j ∧ ωi′j′ ,

where ωij = −ωji if i > j and ωij = 0 if i = j.
In turn, the expression τ4(ω) of the canonical 8-form on (M, g, ν9) is given [12]

by

τ4(ω) =
∑

06α1<α2<α3<α468

(ωα1α2
∧ ωα3α4

− ωα1α3
∧ ωα2α4

+ ωα1α4
∧ ωα2α3

)2.

Note that the fourth coefficient τ4(ω) of the characteristic polynomial of the skew-
symmetric matrix ω is given as the summation of the squared Pfaffians of the
principal 4 × 4-submatrices of ω.

Let R[x01, . . . , x78] be the commutative polynomial ring on the 36 variables xij,
i < j. Put xij = −xji, for i > j, and xii = 0 for convenience. Consider the
following three polynomial functions F, P, Q ∈ R[x01, . . . , x78],

(1.1) F =
∑

i,j,i′,j′=0,...,8

xijxij′xi′jxi′j′ , P =
∑

06i<j68

x2
ij,

and
Q =

∑

06α1<α2<α3<α468

(xα1α2
xα3α4

− xα1α3
xα2α4

+ xα1α4
xα2α3

)2.

The aim of the present paper is to prove that the (combinatorial) relation

(1.2) F = 2P 2 − 4Q,

holds in R[x01, . . . , x78].
Now, as proved in [7, Corollary 7], the 4-form

ω4 =
∑

06i<j68

ωij ∧ ωij ,

vanishes on any Spin(9)-manifold. This fact also follows easily from the results of
Brown and Gray [6, Section 5]: any Spin(9)-invariant 4-form on the space ∆9 is
trivial.
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Since all 2-forms commute (in particular, the forms ωij commute) and the 8-
form ω4 ∧ ω4, corresponding to the polynomial function P 2, vanishes, it follows
immediately from (1.2) the

Proposition 1.1. The expressions Ω8 and τ4(ω) of the canonical 8-form on the

Spin(9)-manifold (M, g, ν9), are related by

(1.3) Ω8 = − 4τ4(ω).

2. Proof of the main relation

We will denote the union of two disjoint sets A and B by A t B.
First of all consider the function F defined by (1.1). Denote by W the set of all

ordered pairs ij, where i, j = 0, . . . , 8. Let D = {ii, i = 0, . . . , 8} be the diagonal in
W and let D = W \ D. Since xii = 0 for all 0 6 i 6 8, we have that

F =
∑

(ij,i′j′)∈D×D

xijxij′xi′jxi′j′ .

Note that the sequence ij, ij′, i′j, i′j′ is a sequence of vertices of either a rectangle
or a degenerate rectangle made of entries of a square 9 × 9 matrix. This sequence
originates an either 1– or 2– or 4–element subset of W . So it is natural to represent

the product D × D as the union D × D = D
×

12 tD
×

4 of the two disjoint nonempty
subsets,

D
×

12 =
{

(ij, i′j′) ∈ D × D : i = i′ or j = j′
}

,

D
×

4 =
{

(ij, i′j′) ∈ D × D : i 6= i′, j 6= j′
}

.

Now, for each pair (ij, i′j′) ∈ D
×

4 , the 4–element subset (that is, the rectangle
{ij, ij′, i′j, i′j′}) of W has either 0 or 1 or 2 common elements with the diagonal

D ⊂ W . So it is natural to represent the set D
×

4 as the union of the two disjoint

nonempty subsets D
×

4,0 and D
×

4,12, where D
×

4,12 = D
×

4 \ D
×

4,0 and

D
×
4,0 =

{

(ij, i′j′) ∈ D × D : i 6= i′, j 6= j′, i 6= j′, i′ 6= j
}

.

Since xijxij′xi′jxi′j′ = x2
ijx

2
i′j′ for (ij, i′j′) ∈ D

×
12, and xijxij′xi′jxi′j′ = 0 if the

rectangle generated by the pair (ij, i′j′) ∈ D × D intersects the diagonal D, we
obtain that

F =
∑

(ij,i′j′)∈D
×

12

x2
ijx

2
i′j′ +

∑

(ij,i′j′)∈D
×

4,0

xijxij′xi′jxi′j′,

because, by the definition of D, one has D × D = D
×

12 tD
×

4,12 tD
×

4,0 (the union of
three disjoint nonempty subsets).

It is clear that 2P =
∑

ij∈D x2
ij because xij = −xji. Thus for the polynomial

function 4P 2 =
∑

(ij,i′j′)∈D×D x2
ijx

2
i′j′ we have that

4P 2 =
∑

(ij,i′j′)∈D
×

12

x2
ijx

2
i′j′ +

∑

(ij,i′j′)∈D
×

4,12

x2
ijx

2
i′j′ +

∑

(ij,i′j′)∈D
×

4,0

x2
ijx

2
i′j′.

Consider now the involution µ1 : D × D → D × D, (ij, i′j′) 7→ (ji, i′j′). Since
this map is a reflection with respect to the diagonal D, one has

(2.1) µ1(D
×

4,12) = D
×

12 and µ1(D
×

12) = D
×

4,12,
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so, in particular, #(D
×
12) = #(D

×
4,12). Indeed, for each pair (ij, ij′) ∈ D × D,

j 6= j′, generating a 2–element subset of W , the pair µ1(ij, ij
′) = (ji, ij′) ∈ D×D,

generates a 4–element subset (the rectangle {ji, jj′, ii, ij′}) having one common

point with the diagonal D. For each pair (ij, ij) ∈ D×D, generating an 1–element
subset in W , the pair µ1(ij, ij) = (ji, ij) ∈ D × D generates a 4–element subset
(the rectangle {ji, jj, ii, ij}) having two common points with the diagonal D. In

other words, µ1(D
×

4,12) ⊂ D
×

12 and µ1(D
×

12) ⊂ D
×

4,12. Since µ1 is an involution on

D × D and D
×
12 ∩ D

×
4,12 = ∅, relation (2.1) follows.

Now, by (2.1) we have

4P 2 = 2
∑

(ij,i′j′)∈D
×

12

x2
ijx

2
i′j′ +

∑

(ij,i′j′)∈D
×

4,0

x2
ijx

2
i′j′

because x2
ij = x2

ji. So that

F − 2P 2 =
∑

(ij,i′j′)∈D
×

4,0

(

xijxij′xi′jxi′j′ −
1

2
x2

ijx
2
i′j′

)

.

Since exactly four different pairs (ij, i′j′) ∈ D
×
4,0 determine the same 4–element

subset {ij, ij′, i′j, i′j′} ⊂ D, we obtain that

F − 2P 2 =
∑

{ij,ij′,i′j,i′j′}∈D4

(

4xijxij′xi′jxi′j′ − x2
ijx

2
i′j′ − x2

ij′x2
i′j

)

,

where D4 =
{

{ij, ij′, i′j, i′j′} ⊂ D, i 6= i′, j 6= j′, i 6= j′, i′ 6= j
}

.

To prove the relation (1.3), note that for each pair (ij, i′j′) ∈ D
×

4,0 and, conse-

quently, for each subset {ij, ij′, i′j, i′j′} ∈ D4, the sequence (i, j, i′, j′) consists of
distinct elements of the set {0, . . . , 8}. For each subset {α1, α2, α3, α4}, where 0 6

α1 < α2 < α3 < α4 6 8, there exist exactly 6 different subsets {ij, ij′, i′j, i′j′} ∈ D4

(rectangles) such that {i, j, i′, j′} = {α1, α2, α3, α4} (see Remark 2.1 below for a
particular case). These 4-element subsets are determined by the following pairs

(ij, i′j′) of the set D
×

4,0,

(α1α2, α3α4), (α2α1, α4α3), (α1α2, α4α3),

(α2α1, α3α4), (α1α3, α2α4), (α3α1, α4α2).

Thus F − 2P 2 =
∑

06α1<α2<α3<α468 A(α1, α2, α3, α4), where

A(α1, α2, α3, α4) = 4xα1α2
xα1α4

xα3α2
xα3α4

− x2
α1α2

x2
α3α4

− x2
α1α4

x2
α3α2

+ 4xα2α1
xα2α3

xα4α1
xα4α3

− x2
α2α1

x2
α4α3

− x2
α2α3

x2
α4α1

+ 4xα1α2
xα1α3

xα4α2
xα4α3

− x2
α1α2

x2
α4α3

− x2
α1α3

x2
α4α2

+ 4xα2α1
xα2α4

xα3α1
xα3α4

− x2
α2α1

x2
α3α4

− x2
α2α4

x2
α3α1

+ 4xα1α3
xα1α4

xα2α3
xα2α4

− x2
α1α3

x2
α2α4

− x2
α1α4

x2
α2α3

+ 4xα3α1
xα3α2

xα4α1
xα4α2

− x2
α3α1

x2
α4α2

− x2
α3α2

x2
α4α1

.
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Taking into account that xαaαb
= −xαbαa

and replacing each xαaαb
by −xαbαa

if
a > b, we obtain

A(α1, α2, α3, α4) = − 4xα1α2
xα1α4

xα2α3
xα3α4

− x2
α1α2

x2
α3α4

− x2
α1α4

x2
α2α3

− 4xα1α2
xα2α3

xα1α4
xα3α4

− x2
α1α2

x2
α3α4

− x2
α2α3

x2
α1α4

+ 4xα1α2
xα1α3

xα2α4
xα3α4

− x2
α1α2

x2
α3α4

− x2
α1α3

x2
α2α4

+ 4xα1α2
xα2α4

xα1α3
xα3α4

− x2
α1α2

x2
α3α4

− x2
α2α4

x2
α1α3

+ 4xα1α3
xα1α4

xα2α3
xα2α4

− x2
α1α3

x2
α2α4

− x2
α1α4

x2
α2α3

+ 4xα1α3
xα2α3

xα1α4
xα2α4

− x2
α1α3

x2
α2α4

− x2
α2α3

x2
α1α4

= − 8xα1α2
xα1α4

xα2α3
xα3α4

+ 8xα1α2
xα1α3

xα2α4
xα3α4

+ 8xα1α3
xα1α4

xα2α3
xα2α4

− 4x2
α1α2

x2
α3α4

− 4x2
α1α4

x2
α2α3

− 4x2
α1α3

x2
α2α4

= − 4(xα1α2
xα3α4

− xα1α3
xα2α4

+ xα1α4
xα2α3

)2.

Consequently, F − 2P 2 = −4Q, and relation (1.2) is proved.

Remark 2.1. As one may see in the pictures below, in a 4× 4 rectangle there exist
exactly 6 rectangles with different sets of vertices {ij, ij′, i′j, i′j′}, for {i, j, i′, j′} =
{1, 2, 3, 4}, not containing the diagonal vertices {11, 22, 33, 44}.
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