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ON THE EXPLICIT EXPRESSIONS OF THE CANONICAL
8-FORM ON RIEMANNIAN MANIFOLDS
WITH Spin(9) HOLONOMY

M. CASTRILLON LOPEZ, P. M. GADEA, AND I. V. MYKYTYUK

ABSTRACT. Two explicit expressions of the canonical 8-form on a Riemannian
manifold with holonomy group Spin(9) have been given: One by the present
authors and another by Parton and Piccinni. The relation between these two
expressions is obtained. Moreover, it is shown that they are different only from
a combinatorial viewpoint.

1. INTRODUCTION AND PRELIMINARIES

The group Spin(9) belongs to Berger’s list of restricted holonomy groups of
locally irreducible Riemannian manifolds which are not locally symmetric. Mani-
folds with holonomy group Spin(9) have been studied by Alekseevsky [3], Brown
and Gray [6], Brada and Pécaut-Pison [5, 4], Abe [1], Abe and Matsubara [2],
Friedrich [8, 9], Lam [10], the present authors [7], Sati [15], Parton and Piccinni [12],
[13], [14], and Ornea, Parton, Piccinni and Vuletescu [11], among other authors. As
proved in [6], a connected, simply-connected, complete non-flat Spin(9)-manifold
is isometric to either the Cayley projective plane OP(2) = F,/Spin(9) or its dual
symmetric space, the Cayley hyperbolic plane OH(2) 2 Fy_20)/Spin(9) (see also
3).

We recall that a Spin(9)-structure on a connected, oriented 16-dimensional Rie-
mannian manifold (M, g) is defined as a reduction of its bundle of oriented orthonor-
mal frames SO(M), via the spin representation p(Spin(9)) C SO(16). Equivalently
(Friedrich [8, 9]), a Spin(9)-structure is given by a nine-dimensional subbundle v of
the bundle of endomorphisms End(T'M ), locally spanned by a set of endomorphisms
I; e T(v?), 0 < i < 8, satisfying the relations

LI+ LI =0, i#j, I!=1 I'=1I trl;=0, i,j=0,...,8.

These endomorphisms define 2-forms w;;, 0 < ¢ < j < 8, on M locally by w;;(X,Y)
= ¢(X, ;I;Y). Similarly, using the skew-symmetric endomorphisms I;I;I, 0 <
i < j <k <8, one can define 2-forms ;. The 2-forms {w;;, o;;x} are linearly
independent and a local basis of the bundle A?M.

Moreover, Ag being the unique irreducible 16-dimensional Spin(9)-module, the
Spin(9)-module A®(A}) contains one and only one (up to a non-zero factor) 8-form
Qf which is Spin(9)-invariant and defines the unique parallel 8-form on OP(2). It
induces a canonical 8-form, which we denote again by Q8, on any 16-dimensional
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manifold with a fixed Spin(9)-structure. This form is said to be canonical because
[6, p. 48] it yields, for the compact case, a generator of H%(OP(2),R).

Some expressions of Qf have been given. The first one by Brown and Gray [6,
p. 49], in terms of a Haar integral. An explicit expression was given in [4, pp. 150,
153] and [5], by using a vector cross-product. Unfortunately, this expression is not
correct (see [7] for a more detailed explanation). Another explicit expression was
then given in [2, p. 8], as a sum of 702 suitable terms (see also [1]). This expression
contains some errors (see [7] for a more detailed explanation).

We gave in [7] an explicit expression of QS which we denote here by Q8 in
terms of the 9 x 9 skew-symmetric matrix of local K&hler 2-forms, w = (w;;).
The invariance and non-triviality of Qf was proved using the properties of the
automorphisms of the octonion algebra.

Another explicit expression of 2§, as the fourth coefficient 74(w) of the charac-
teristic polynomial of the matrix w, was given by Parton and Piccinni in [12]. To
prove the non-triviality of 74(w), they performed a computer computation with the
help of the software Mathematica.

The expression Q8 of the (global) canonical 8-form on the Spin(9)-manifold
(M, g,v?) is given [7] by

08 = E wij N wijr N wirg N wisjry

where Wij = —Wjj if 7 > j and Wij = 0ifi = ]
In turn, the expression 74(w) of the canonical 8-form on (M, g,1?) is given [12]
by

7'4("‘)) = Z (Walaz A Wagay — Waras N\ Wasay T Wagag N Wa2a3)2-
0<ar<az<az<as<8
Note that the fourth coefficient 74(w) of the characteristic polynomial of the skew-
symmetric matrix w is given as the summation of the squared Pfaffians of the
principal 4 x 4-submatrices of w.

Let Rlzo1, . . ., z78] be the commutative polynomial ring on the 36 variables z;;,
i < j. Put 255 = —xj;, for ¢ > j, and x;; = 0 for convenience. Consider the
following three polynomial functions F, P, @Q € R[zoz, . . ., x7s),
(11) F = Z LijjLig! it § Tl 57 P = Z :E?j,

i,4,4",5'=0,...,8 0<i<j<8
and
= Z (TarasTasas — TarasTazas + 33041@4433042043)2-
0o <aa<az<as<8

The aim of the present paper is to prove that the (combinatorial) relation
(1.2) F =2P? —4Q,
holds in R[.IOl, ceey .’,E78].

Now, as proved in [7, Corollary 7], the 4-form
(.«)4 = Z Wij A Wij,
0<i<j<8

vanishes on any Spin(9)-manifold. This fact also follows easily from the results of
Brown and Gray [6, Section 5]: any Spin(9)-invariant 4-form on the space Ag is
trivial.
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Since all 2-forms commute (in particular, the forms w;; commute) and the 8-
form w* A w?, corresponding to the polynomial function P?, vanishes, it follows
immediately from (1.2) the

Proposition 1.1. The expressions Q¥ and 74(w) of the canonical 8-form on the
Spin(9)-manifold (M, g, v°), are related by
(1.3) QF = —dry(w).

2. PROOF OF THE MAIN RELATION

We will denote the union of two disjoint sets A and B by AU B.

First of all consider the function F' defined by (1.1). Denote by W the set of all
ordered pairs ij, where i,7 =0,...,8. Let D = {ii,s = 0,...,8} be the diagonal in
W and let D =W \ D. Since x;; = 0 for all 0 < i < 8, we have that

F= Z LijjLig! it j Tl 57
(i4,i'j")EDXD
Note that the sequence ij,15",4'j,4'j’ is a sequence of vertices of either a rectangle

or a degenerate rectangle made of entries of a square 9 x 9 matrix. This sequence
originates an either 1- or 2— or 4-element subset of W. So it is natural to represent

the product D x D as the union D x D = 3?2 u 32 of the two disjoint nonempty
subsets,

=X R T T )

Dy, ={(ij,i'j) e DxD:i=14 or j=j'},

Dy ={(ij.i'j) eDxD:i#d, j#5}.
Now, for each pair (ij,i'j') € 32 , the 4—element subset (that is, the rectangle
{i7,15',7'7,7'7’}) of W has either 0 or 1 or 2 common elements with the diagonal
D C W. So it is natural to represent the set ﬁz as the union of the two disjoint
nonempty subsets ﬁ:o and ﬁ;u, where ﬁzu =Dy \ﬁ;o and

Dio=1{j,i'j)eDxD:i#d, j#5,i#5,i#j}

. e =X .
Since ;i @i jTijr = x?jx?/j/ for (ij,4'j') € D1y, and ;x5 245 = 0 if the
rectangle generated by the pair (ij,i'j") € D x D intersects the diagonal D, we
obtain that

2.2
F = Z xijxi/j/ + Z xijxij/xi/jxi/j/,
(i4,i’5)ED (i4,i'§")€Dy 4

because, by the definition of D, one has D x D = 3?2 u 3212 u 320 (the union of
three disjoint nonempty subsets).
It is clear that 2P = 3 —x?j because x;; = —x;;. Thus for the polynomial

i5€D
3 2 __ 2,2
function 4P* =}, . .n By Ti;¥i; we have that
2 E 2 .2 E 2,2 E 2,2
4P = xijxi/j/ —+ xijxi/j/ —+ xwxl/y
(i4,i'§")EDYy (ijyi/j/)eﬁf,m (ijvi/j/)eﬁz,o

Consider now the involution p1: D x D — D x D, (ij,4'j') — (ji,i'5"). Since
this map is a reflection with respect to the diagonal D, one has

—X —X —X —X
(2.1) /Ll(D4,12) =Dy and pi(Dqy) = D4,12a
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so, in particular, #(D,y) = #(ﬁ;u). Indeed, for each pair (ij,ij') € D x D,
j # j', generating a 2-element subset of W, the pair u; (ij,ij') = (ji,ij') € D x D,
generates a 4—element subset (the rectangle {ji,jj’,4i,4j'}) having one common
point with the diagonal D. For each pair (ij,4j) € D x D, generating an 1-element
subset in W, the pair u1(ij,ij) = (ji,ij) € D x D generates a 4-element subset
(the rectangle {ji,jj,ii,4j}) having two common points with the diagonal D. In
other words, (3;12) C Dyy and ju(Dyy) C 3;12. Since 4 is an involution on
D xD and D,y N ﬁ;u = (), relation (2.1) follows.
Now, by (2.1) we have

2 _ E 2 .2 E 2 .2
4P =2 .I,L-jxi/j/ + xijxi/j/
(i4,i'j") €D, (i5,'5")€D 5 o

because x?j = 3:?1 So that

— = -Iijxij/xi/jxi/j/ — §‘rijxi/j/ .
(i3,i'5)€D5 o

Since exactly four different pairs (ij,i'j') € ﬁ;o determine the same 4-element
subset {ij,ij’,i'7,i'j'} C D, we obtain that
F — 2P2 = Z (4$ij$ij/$i/j$i/j/ - :E?jftl% i :E?j/x?/j),
{44,i5',i5,i'5'}€Da

where Dy = {{ij,ij',7'j,i'j’y C D,i #i', j#j,i# i, #j}.

To prove the relation (1.3), note that for each pair (ij,4'j’) € ﬁ;o and, conse-
quently, for each subset {ij,ij’,4'j,i'j'} € Dy, the sequence (4, 4,1, j') consists of
distinct elements of the set {0, ...,8}. For each subset {a1, s, a3, ay}, where 0 <
a1 < ap < ag < ag < 8, there exist exactly 6 different subsets {ij,ij’,4'5,4'j'} € Dy
(rectangles) such that {i,7,7,j'} = {a1, a2, a3,a4} (see Remark 2.1 below for a
particular case). These 4-element subsets are determined by the following pairs

(i7,7'j") of the set 3;0,

(arag, aszay), (asaq, auas), (aras, auas),

(o1, asay), (aras, asay), (asar, agas).

Thus F' —2P? = 37\ s cascascs AlQ1, a2, as, as), where
A(Oq, Q2, (3, OZ4> =4%a,0:Tar0sTasasTazas — "Eilag‘rigo% - xila4 igaz
+ 4$a2a1$a2a3$a4a1$a4a3 - xiza1$i4a3 - xiza3x34a1
+ 4$a1a2$a1a3$a4a2$a4a3 - xilag'ri4a3 - xila3$i4a2
+ 4$0¢20¢1$a20¢4x0¢30¢1x0¢30¢4 - xigalxiga4 - xiga4xiga1
+ 4$0¢10¢3xa10¢4x0¢20¢3x0¢20¢4 - xilagxigouL - xila4xiga3

2 2 2 2
+ 4$a3a1$a3a2$a4a1$a4a2 - 'ragalxa4a2 - xagaszuLal .
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Taking into account that x,,a, = —%a,e, and replacing each a,q, by —Zaya, if
a > b, we obtain

A(Oq, a2, ('3, 014) = - 4$a1a2$a1a4$a2a3$a3a4 - xilag'xigo% - xila4xiga3
- 4$0¢10¢2xa20¢3$0¢10¢4x0¢30¢4 - xilag'rigo% - xigag'xilo%
+ 4$0¢10¢2xa10¢3$0¢20¢4x0¢30¢4 - xilag'rigo% - xilag'xigmL
+ 4$0¢10¢2xa20¢4$0¢10¢3x0¢30¢4 - xilag'rigo% - xiga4xila3
+ 4$0¢10¢3xa10¢4$0¢20¢3x0¢20¢4 - xilag'rigo% - xila4xiga3

2 2 2 2
+ 4$a1a3$a2a3$a1a4xa2a4 - xa1a3$a2a4 - xa2a3$a1a4

= —8ZayasTarasLasasTazas T 8TarasTarasLasasTasas

2 2
+ 8{Eala3$ala4$a2a3$a2a4 - 4xa1a2xa3a4
2 2 2 2
- 43304104433042043 - 43304104333042044

- _4($a1a2$a3a4 — LajasLazay + $a1a4$a2a3) :

Consequently, F — 2P? = —4Q, and relation (1.2) is proved.

Remark 2.1. As one may see in the pictures below, in a 4 x 4 rectangle there exist
exactly 6 rectangles with different sets of vertices {ij,ij’,4'7,4'j'}, for {i,7,7,7'} =
{1,2,3,4}, not containing the diagonal vertices {11,22,33,44}.
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