ANTWERP PAPERS IN LINGUISTICS

nr. 9, 1976

THE FORLI.OLB PACKAGE FOR LIST PRDCESSING IN
FORTRAN IV - A USER’S MANUAL .

Luc Steels

UNIVERSITEIT ANTWERPEN

Universitaire Instelling Antwerpen

Departementen GER. en ROM. , Afdeling Linguistiek.

Universiteitsplein,l, B-2610 Wilrijk-Antwerpen.

https://core.ac.uk/display/45445195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT
The paper discusses a number of functions and subroutines which ell deal
with list processing and are written in the programming language FORTRAN IV.

After a brief introduction to the concept of list structures, a user's manual

is given.

-CONTENTS

Preface

1. List Structures
1.1. Lists and atoms
1.2. The representation problem

1.3. Trees

2. List Processing 1n FORTRAN IV
2.1. Representation
2,2. Initialization
2.3, I/0 routines
2.4. Processing functions
N

3. Operating systems

Conclusians

- Preface

Good tools are & cornerstone in the development and functioning of any (exact)
science, and great care is normally taken in their design and use. Apart

from the machinery involved in acoustic phonetics and related areas, in the
language sciences there is only one basic instrument and that is a digital
computer. However, digital computers are machines designed for a general
purpose, hence in order to make them more suitable for a particuler task,

it is necessary to develop some additional components and add them to

the machine. These components are normally compilers or interpreter systems
which accept a particular programming language designed for a particular

sort of problems. Our work is less ambituous than the design of a naw

programming language., although it serves the same purposa.

We started from the given fact that there was only a FORTRAN compiler available
at the computer we were suppcse toc use and that for this machine (a POF 11)

and the currently implemented aperating system (RSX) the desired software
[e.g. a LISP compiler or interpreter system) could not immediately be obtained,
To fill the gap a project was started concentrating on the development of
software for linguistic applications. This necessarily includes

(1) list processing, (ii) recursive programming, (iil} string manipulations,

(iv) flexibility in definition of fupctions (for work on semantics]).

It was decided that the capability of doirg list processing was the first
step. For this purpose a library of functions and subroutines was created.
- A first version of the librery has been used extensively by many persons
over the last few months.It was felt to beahandy tocl in coping with linmguistic
problems and a valuable help for people working on small machines withr
iimited supporting scoftware. In the second improved version, which is
documented in this paper, some new features (e.g. more flexible I/0) are
added, alsoc new routines are added and some parts (such as dot-notation of

list structures) were removed because they were not being used at all.

This paper is concelved as a user's manual of the library. The first
section gives a brief introduction to list structures. For a more extended
introduction and useful exercises we refer to the text books on LISP

(e.g. Weissman, 1865]). The second section explainms 21l the functions and

subroutines and how they should be used.

As this paper 1s meant as & reference text for people actuslly working

with the library, we assume throughout the text that the reader is familier
with programming and has a working knowledge of FORTRAN IV (e.g. as

covered by McCrackén. 1965). An interesting and very helpful textbook during
the implementation of the library was Weite’s book (Waite,1973) on the

implementation of software for non-numeric applications in generall

1. List structures

l. Lists and atoms

A data structure dis (i) a set of cells, which can contain a certain datum, and

(11) a relation among the cells: a way of crganizing them.
Some data structures are e.g.

a table:

ar

a linear array:

In these two data structures the location of the different cells of the data
structure is defined in an . implicit way, namely on the basis of the horizontal
or vertical order. We can retrieve a value in one of the cells by addressing the

position the cell takes in the date structure.

Suppose now that we make thé structure explicit by drawing arrows if two cells
are linked with each other.
Eegss .

(al

ar

(b)

A data structure where the relations between the cells are made explicit

by drawing links betwesn them is a list structure. To locate a data cell in

the structure we 'walk' through it till we come to the desired place.

From the examples it could be seen that in an explicitly linked data structure
a cell (or box) contains two parts. These two parts are known as the CAR and

the COR (pronouns 'cudder') of the cell:

CAR | COR

A CDR- or CAR-field contains either & data item or another pointer, i.e. a
link to another cell.

compare:

| 1° L]
v Vo

From now on we will call a datum: an ATOM; it is considered to be a nondivigible

gntity. The second category in the discussion is the list, being a number cf
cells linked onto each other by their respective pointers.

E.g.t

L | ——1 | —fF——15 —! 1 |

Note the slash at the end, it denotes the end of the list. Another name for
the slash is NIL. denoting that there is nothing in that part of the cell. If
g llst contains no elements at all then it is alsc repressented as NIL. In this
case NIL is celled the null list. S5a, If NIL is placed ip a CAR- or CDR-field

then we may assume that a list without any elements is attached to this field.

Some more definitions: consider:

(a)

(b)

¥ Y ¥ A

In {a) we have linked one cell to its successor, this is a one way list.
In (b} we have a link from ope cell both to its successcr and its predecessor,

a two way list. From now on we will only deal with one way lists.

If a list contains a pointer in one of its CAR-fields, then the list starting
from such a CAR-field 1s a sublist.
E.g.:

L’- —— S | —— U] el B | 7

A list with sublists is called a branched list, a'liét without sublists is

known as a linear list.

2. The representation problem

To have a successtul data structure it is not sufficient to have a graphical
representation. One must be eble to write down the graphical representation

in a linear way, i.e. algebralcally. For tables and vectors, we do this by
naming the whole date structure with a symbaol (say X), and the dif%erént cells
of the data structure are addressed by subscripts, e.g. X(1,2]) denotes the first

cell of the second column in a table called X.

For list structures the solution to the representation problem is not so
gasy, simply because cells cannot be addressed by subscripts on the basis
of thelr location , i.e. by referring to lines and columns. The problem is
solved by the introducticn of S-expressions with two perticular formats:

dot-notation and list-notation.

DOT-NDTATION

The dot-notation of a list structure is & dirsect mirror of its grapbical

representation. For each cell we introduce two brackets and one dot

N A

On the right side of the dot we write the CaAR and on the left side the COR,
If the CAR or CDR contains a pointer, then we replace this pointer by the

whole sublist depending from this pointer written in dot-notation.

Examples:

L’{ A B = (A . B)

= L. (I.0s.mT5N

= (((C .0, (BE.E)) . (A

. FJ1)

¥
B = ({(Cc . D}y .BYy.A

Y

C D

The fellowing strategy can be followed for the construction of dot-notations
from graphicel structures.

f1) Consider a list to be linear and whenever a pointer appears, introduce
a varleble name for the sublist depending from this pointsr.

(2) Similarly construct for each sublist on the same basis a linear list
with variables when necessary.

(3) Replace all variables by their respective dot-representations.

Cagat

L’l} | | —mf £ | —— G|H

~

F1 = (A . B)
(LA.B).C)

F2 =
F3=(((A.B).C).D]
FA=(F3. (E.(F.(G.,HJ3))

final result:

({(tA.BY.C).D).(E.{F.(G.H))))

— T rfrrtf,fr
~
™~
= N
//
> \
. y
STTTTIIIIII TN
\\\ o N \
a /) 7 o N AN/
\ [<))
I|1IIﬁL'. — | Y | _

\ /7,
~——— .\\\\\
N ——
lllllll -7
7
4
-~
\\
S e

E.G. gilven:

A

—r— 0 |M

L1

We have the following sublists

Lz + (A . L5 « (A, MIIN]

L1

(L3 . (O . I 1)

LZ

(0. M 1)

L3 = (L4 .

« 0)

(B

L4

G .R)

Ls

Replacing all the variables yields:

L3=({B.0DJ) . (0.M)) (La in L3T
Lz=(CCB.,.0).(0.Mm)). (D, I (L3 in L2)
tM1M=(CC{B.O).CO,M)).ID.I))Y.(A.I[LS5.CA.M)])
Finally:
tM=0((CB.Q),(0.M)1).(D.IJ¥T). (A,
{(G.R)Y.(LA.MITI)I
(L5 in L1)
Graphically we had the following sublists:
/-""'—"_'_"_"_—'—'_'_'——___' ‘_'-"_--.\
~ ~
7 N\
F W [F— [1]
— e — — /4—_\‘
I - “r ‘*~.\‘/' \\
l / —re—i) | I J &R Ls)
l { - T
e S N
d \
I I{ —t—=l0 | i
|1 L I|
-~ ~
NI N |
1\ L4 ! /
l U NS ST //l
\ \LZ.\""'—_ _____ __// //
N ‘\.\5 - L1 /
~ ——_—————— -~
~— -

e e . ————— — — — C— —— —

Although dot-notation 1s an immediste reflection of a graphical structure,
there is already cne sort of list structures that cannot be expressed namely
a clrcular list. A circular list is a list where a pointer in some field
points to a previous cell of the list.

Example:

v

Ly C : N e

m
]
0

[

L y 4‘____,4’//r
_

Clearly a dot-notetion of this graph would never come ‘toc an end.
The fact that circular listg mannot be expressed is however seldom felt as

a drawback, certainly not in linguistic practice.

LIST-NOTATION

Although-the dot-notation of lists is & very nice waey of writing graphs

into a linear format, it soon becomes extraordinary complex when the list
structures themselves grow. Therefore another representation has been designed:
list-notation. This goes as follows:

(1) A linear 1ist is transferred by writing all the elements of the respective
CAR-fields right after each other

E.g.:

b | gt T | ——— 5 | — T/ (graphicall
or
(L. (T« (S . (T . NILIDI (dot-notation)
or

(LIST) (list-notation)

(note that nething is provided if there is anp atomin the CDR-field]

- 11 =

(ii} As for dot-notation, as soon as there appears a pointer to a sublist

in one of the CAR-fields, construct the list-notation for thils sublist

and replace the pointer by this sublist.

Example:

1n dot-notation:

L C0C0L .« NIL) o 0T . NIL)

- S / (S, NIL)) . (T . NIL))

—

/

in list-notatiaon

CCorLyr sy)

The technigue for constructing doti-notation from graphical structures can also
be used here to construct list—nqtatiun from graphical structures.
Li} Consider a list to be linear and whensver a pointer appears, introduce
a varieble name for the sublist depending from this pointer.
(11) Similarly construct for each sublist on the same basis a linear list

with variables when necessary.
(ii1) Replace all variables by their respective list representations.

Example:

(i)

Let Lo =
L1

_']2..

(A L1 DE)
(BC)

then L1 in L, vyields :

(ii)

(A(BC)IDE)

/ B

In dot-netation:

(CCA W NILY « 0B . NIL)) . (((C . NIL) . (D . NIL)ID)

We have the following steps:

Fimally L5 =

L5
L1
L2
L3

(

(

(L1 L2 D)

(L3 B)

(c)

(A)
(AJB)Y(C)ID)

- 13 -

Restricticns on list-notation:
(al It is not possible to represent circular lists.

(b) Whenever an atom appears in a COR-field we have to use dot-notation.

To see more clearly the relation between dot-and list-notation and the
graphical representation we discuss the reverse way: from dot- or list-

notation back to a graphical representation.

For this purpose, we can use the reversal of the previously used strategy:
(i) Try to discover linear lists and give them a name
(ii) Construct the graphical representation for each linear list
(1ii) Reconstruct the whole by replacing all the variables by their

graphical representations.

Example:
(CCA. (B .NIL)) . (C. (D .NILY))Y o (CE . [F . NIL))

(6. (H. NILJ)))

L1=CA. (B.NL) or ———t B

Ltz=(cC.{D.NIL)) ar >

L4 ={6. (H.NIL)} or G| et H

/
L3 = (E. (F.NIL)) ar E ""_"'F/.
e

Congtruct L5 from L7 and L2

I5=CCA.{B.NILD) . CC ., [D.NIL)) or

y ——— e —— e ———

”~ .

\

/ \

LI TS T :

| \\-_c____-__ D_{-—L’Z/f
TR
/! \

A | smt—gpul B

N . / /;

_,—.—————--\

P

- 14 -

L6 from L3 and L4; LB =({(E . [F . NIL)) . (G« (H . NIL))

e S
4 G H \\
1l e g B - 4 1
!
i” | Y /
— =3
P ‘ + Ny E —hF LE f
7~ ! Qﬁb;1: _________ /ij ______ -*"”
L1l e inl N
. C Lo D \
7
-
Al LY e
a—
__~_\\‘~ /l’_
51/
“ Ve
‘_‘ ‘,"

D — —— —— —

In the same way we construct graphical representations from S-expressions
in list-notation. Example: (((AB}CDJ) (EF)GH]

L1 = =8|/

L2 E ——-!-IF /

3= (1 co)

b g | cl = o |/

or

_‘I..___....bc .;___..D/

—— —— ——— — tm——

7 ~\
f \
Al w———l B I
\\ / /
”
e L1 ~

Ty — o ——

- 15 -

bl 3] o 17| ! G 11— NIL

T —— e e — — —n —— —

/ o~

{/ ¥ \\\

[—f——gui C — ol / \I

|

: I
]

\ ¥ /

~ A -——-———rE / L3 e
s - . e

Note: The reader who is not yet thoroughly familiar with list. representations
should at this point consult a textbocok and make more exercises on the

translation from one representation into another one.

3. Trees

List structures are widely used in any sort of linguistic applicaticns.
There are two reasons for this (1) easy input and output of strings. and
sasy processing of alphanumeric date, and (2) (amd this is even more important)

easy representation of structures.
This last point will be illustrated more explicitly im this section. We will
discuss the standard means of representing tres structures as a special

case of list structures.

A typilecal representation used in linguistics is & labelled plane rooted graph

or tree.

’EB

5
NP AUX VP\\\\\
N M vV NP
Det N
slncerity may frightern the bay

An alternative linear representation of the same information is the

g0 called labelled bracketing:

{ { (SINCERITY JN)NP r(MAYJM]AUX

({ THE) (BOY),)])

((FRIGHTEN) oT NOne vp g

v

ar

[S[NP [NSINCERITY]] (AUX [M MAY))

[VP(V FRIGHTEN) {NP [DET THE) [N 80Y) 1))

respectively called right labelled bracketing and left labelled bracketing.
Now, if we take the left labelled bracketing and write all symbols on one

line we obtain:

(5 (NP (N SINCERITY) J [AUX (M MAY] } (VP (V FRIGHTEN) (NP (Det THE) (N BOY)))}

and this is nothing else but the list-noctaticn of a list structure,
The graphical representaticn of this is:

- 17 -

h\,' .

Chn

1/

olale]

VP

NP

——]

UP ___g

Det| ——fm——andthe /

Because of the importance of the relaticn between trees in graphical

and list-notation we define explicitly the relationships between the
two.

(i) Given a tree structure

AN

TATEA AN
with A, B1, Bn nonterminal nodes, then the egquivalent list-notation is

(A (BT ...) (B2 ...)=l BP vuu)2
(ii) Given a tree structure
: A
al .. an

with A a nonterminal nede and a1, ... , a, a terminal node, then the

equivalent list-notation is .

tA al ---an)
Example:
/S\ (S (WP vev) CAUX on) VP out))
TP ;UX VF)
TF "‘“IJX /V< (S (NP N wue 33 CAUX (M vy))
T T Y Ni\ (VW (V .en J CNP € Det ...)
. DTt T (N ...) 1))
finally: o
N M v
’ (s (NP { N sincerity)) (AUX (M may))
sincerity may frighten
(VP [Vmay JINP (Det the] (Nboy 37) 1)
Det N

" Reverse:

Given a list
(A o “2 ""ln]

with .

then the egulvalent tree 1s

Example:

’!9

sublists or atoms

Given (A (B C) D) the equivalent tree is

A

2N

- 20 -

5. List Processing in FORTRAN IV

Fortran IV is not a list processing language, that is a language where lists
até Gvailable as data structures. We will now discuss a number of subroutines
that make it nevertheless possible to work with list siructures in FORTRAN.
These functions and subroutines deel with the following aspacts:

(i) initialization

(1i) ipput/output

(iii) list processing.
Before discussing the use and functioning of all these subroutines, we give

same preliminary rematrks:-on the nature of the representation being used.
2.1. Representatiaon

For the machine representation of list structurss, we take a data structure
already available in FORTRAN: the integer declared Z-dimensional array.
Then we let each cell in the graph representation correspond to a row in
the table ard the three parts of the cell: the AF-field, the CAR-field

and the COR-field are the first, second ahd third column of the table
respecfively. So, we can address a Sart of a cell by giving a row and a

calumn.

This representation may not be the most compact one pogssible, it is
undoubtely the best solution as regards the transportibility to other

machine configurations.

Strings of characters (e.g. the name of an atom} are represented by

coding them inteo integers and storing these in the same table.

The user , however, does not need to worry about the actual representation
and the detailed mechanics of the storage and processing of list structures.
He can 'think® in terms of list structures and atoms instsad of integers
and table representations. In this way it becomes possible to write
interesting programs,using list processing, in FORTRAN without bothering
about the complexity of the details.,

As the graphical 'cells’ correspond to rows in the table, it follows that
pointers to lists are actually integers (denoting the appropriate row).

And {in the FORTRAN program} the name of the list is a variable with as

value the row in the table. Again, the user does not (and he does not need to)

know what the actual values are.

‘2’]

Note that

1. A pointer to a list is always a pointer to the first cell of the
whole list. But the routines (e.g. for output) consider this a pointer
to the whole list.

£.5. @ @ &)
Al ~=T—™B ™ c |/

If we call this list (in our Fortran program)] I, than the value of I

will be 1 (aecarding to our supposed labelling).
2. A pointer to an atom 1s a pointer to the base cell of the atom.

3. In the discussion, it is handy to label the cells in the list
structures in order to telk about them. These labels are not necessarily

those used in the actual processing.

4, NIL {the null 1list) has the value zero. That means that if @
is assigned to the variable NIL in a program, we can refer to the

nullist with NIL.

We now start the discussiun of the functions and subroutines that

make it possible to use list structures in FORTRAN.

2.2. Initialization

- As integer type data are used s&ll the time, it is useful to start
any program or stbroutine as follows:

IMPLICIT INTEGER (A-W)

- In a list processing system there 1s normally a so called free list
created at the start. When in need of a piece of list structured mehory,
one takes 'cells' from this free list and when these cells are no longer
needed they are returned to the freelist.

The creation of this freslist is the task of a special subroutine INIT,

after the subroutine is called, the system is ready to start.
Z2.3. Input/output rcutines

(1) INPUT
RLIST 1s an integer function with 3 parameters:
I1 a pointer to the position where the reading should start
IZ2 & poiﬁter which results in the final position after execution of the function

I3 a code for the device from which the system should read.

- 27 -

The result of RLIST is that all dscoding and storing is performed

and that a pointer to a list (or atom]) is returned as result.

The following conventions hold for the arguments:

1. If I1 is equal to @, than a new line of input 1s consumed but

the line is NDT printed cut during reading

If I1 is equal to 1, a new line of input is consumed and this
line 1s printed on the default output device.

If I1 is greater than 1, the system starts reading on the
latest consumed line.
Whenever a line is complately processed, but more characters are
needed, the system keeps reading new lines from the input device

until a complete list (or atom) is found.

2, IZ2 1s set to the final character used in the RLIST-process,
8o, with IZ we can keep on reading on the sameg line if we take
this as starting point for the next call of RLIST.

3. There are 4 devices normally connected te the system,
(1} by default: CR: (card reader) with logical unit numbsr 1

LP: (line printeriwith LUN B
(can be both connected to teletype during taskbuilding)

(ii) two files an disk: FORPP4.DAT and FOR@AS.DAT , i.2. LUN 4 and 5 respectively

~

Now,if I3 = @, then the input device is the card reader.

if I3 = 1, the input device is the FORBP4.DAT file on disk

if I3 = 2, the input device is the FORERS.DAT file on disk
Examples:
(1] I1 = RLIST (1,L,8)

A list (or atem) is read from the card reader, the input lines are

printed.
(2) I1 = RLIST (B , I, 1)

I2 = RLIST €I, I, 1)

Two lists (or atoms) are read from a file FORP®@4.DAT, the second
list (or atom) comes after the first one, possibly on the same line.

The line is not printed.

- 23 -

Notes:

1. Blanks are ignared if not meaningful,

2, Superfluous right brackets on the last card are ignored. (but if you
keep reading on the same line, an error message will follow:

'T40 MANY RIGHT PARENTHESES'.

3. A lack of right brackets will make the syastem laook for further
brackets and therefore consume the rest of input cards. Then a message
wlll be issued: °'TOO MANY LEFT PARENTHESES’.

So, a lack of right brackets is & fatal error, in that it is noticed

only when all cards have been read.

4. the null string can be represented in the input by NIL and ().
NIL is the only atom that is pressnt as soon as the program starts.
(The integer value of NIL is B.) '

5. Each character that is given as input is-coded directly into
an integer. We list here all the characters and their codings, other
characters are nct accepted by the input and output éubroutines.
If they are given as input, a message 'UNRECOGNIZED CHARACTER' will

be issued. ’
CHAR. CODE CHAR. CODE - CHAR. CODE
¥ 1 M 17 7 37
A 2 N 18 8 38
E 3 P 19 ! 39
I 4 0 20 | . 40
0 5 R 21 . 41
U 8 s 22 ' % 42
Y 7 T 23 ' / 43
B 8 v 24 - 44
c 9 W 25 o+ 45
D 10 X 26 _ 48
F 115 Z 27 47
G 12 (28 : 48
H 13) 29 ; 48
J 14 g 30 ? 50
K 15 1 31 " 51
L 16 2 32 = 52

3 33) 53

4 34

5 35

B 36

- 24 -

6. An important (but difficult) guestiom is the fact that there is
a fundamental distinction between the FORTRAN program and the
varlables for lists and atoms used therein and the users' specification
for the atoms and 1ists , a distincticon which is not so stringent in
LISP e.g. , due to the QUOTE-feature. '
Clearly the bridge betwsen the two is the RLIST function._Therefore
any atom that is used as an entity in the program should be read in
by RLIST. '
E.g. suppose 'NOUN® is an entity which is being referred to in the program,
we can write
NOUN = RLIST (41,I,1)
where NOUN is on the card. From then on the variable 'NOUN' (in the

FORTRAN program) will refer to the same object as the atom NOUN in input/output.
7. A specilal sort of atom, called p-atoms, can be processed by RLIST.

They are not stored in the initial atom dictionary , but on a special
array [of 200 characters length). Also all information about p-atoms

can be removed by one single operation (CLEARJ.

{ii) oUTPUT

(a) PRLIST is a subroutine with three parameters I1, I2Z,and I3.

I1 is a pointer to a list (i.e. to the first element on a list)

I2 is an integer value denoting the position on the outputline
from where the system should start printing;if I2 is B, a line is
left cpen and the system starts from the first character on the
next outputline.

I3 is the device on which the output must appear.

If I3 = @ then the output appears on the device with LUN = B,
{the line printer by default)

if I3 = 1 then the output eppears on the device with LUN = 4
(normally a file FORPR4.DAT on a disk)

if I3 = 2 then the ocutput appears on the device with LUN = 5

(hrormally a file FORBPS.DAT on a disk)

The result of PRLIST is that the whole list structure pointed at by

I1 1s recoded in alphanumeric 'characters and transferred to ths device,

- 25 -

NOTES:
1. PRIIST also handles atoms
2, If list notation is impossible, dot notation is used, but only at the
point where it is necessary:
g.g. givem (A . (B . (C . DJ)) , this will be printed as
(ABC . D

3. When IZ is preater than one, all characters before I2 on the output
line are blanks. One can use this feature for editing.
e.g. Suppose you want the following as output:
THE NAME IS : JOHN . where'the name is:' is in the program and
John an stom referred to by the variable name, then the output can
be cbtained by the following lines of FORTRAN.
CALL PRLIST (NAME,14,2)
WRITE (8,1) .
1 FORMAT [1H+,'THE NAME IS :')

(b) PLOTLI

A special program (called FLOT) has been implemented (in cooperation with
P.Reypens) to plot tree structures on the plotter.
Tree structures are list structures with the following restriction
(i} the first element of the list is an stom [because this is the label)
(11) the seccnd element is either am atom or a list as specified in
(1].

(1ii) there should be at least two elements in a list.

e;g.: given (A (B C) D)
= A

7\

B D

C

The list representation of a tree cerresponds exactly toc a right labelled

bracketing of the string formed by its leaves.

The user can use the program PLOT (which is ready for running on diskl],
after first writing the lists on a special file by means of a subroutine
called PLOTLI, and then runmning the program PLOT after his own job is

finished.

25

PLOTLI
PLOTLI is a subroutine of 4 arguments: I1,12,I3,I4.
I1 is a pointer to the list ‘
1Z denctes a Qalue for the size of characters, of horizontal lines and
the space between the leaves. This value is equal to IZ2 x 0,25 cm.
So, if IZ is set to 1, the size of the characters will be 0,25 cm
which is more or less the normal size. '
I3 denotes either 0 or 1. If I3 = 0 then the tree is not centered,
if I2 = 1 the tree is centered, i.e. the lines from dominating nodes
will end at the middle of the bar connecting the dominated nodes,
g.g.: given (ACBC)(D{EFIJIGI)

with I3 =0 with I3 =1

A
' 5 c'm_
l '] r q
C E G
c ! 5 |
| F
;

14 denctes either 0 or 1.
if I4 = 0 then the leaves will "hang' right under thelr domineting nodes,
if I4 = 1 then the leaves are plotted on ons line.
B.E.:
given the same list as in the above example:

with I4 =0 with I4 = 1
A A
B D B D
| 1=
E F
E

- 27 -

Note:

1. Files from PLOTLI are written cn FORPE4.CAT , so, do not confuse
this with other output on this file by PRLIST. ‘

2. When ell structures to be plectted are processed by PLOTLI, one
should call the CLOSE subroutine in the fortran program, in particuler
CALL CLOSE (4). This is needed to 'close' the file, i.e. add
an end of flle symbol to it.

Now we proceed with the list processing functions and subroutines themselves,
2. . Processing functions
(a) Elementary

There are 6 elementary functions and subroutines, three whitch WRITE
information in a field of a ceil, and three which READ information from

a field of a cell.
- REAE (thres integer. functions)

CAR (I1)

where I1 is a peinter (address) of a cell in the memory. The result is
the value of the CAR-field of the cell.

E.G.: Let I1 be (A.B C) then CAR(I1) is a pocinter to the atom A.

COR(I1)
where I1 is a pointer to a cell inm the memory. The result is the
value of the CDR-field of the cell.
®18+% |at 11 be (A B C) then COR(I1) is (B C)
Let I1 be (A (B C }) then COR(I1) is ((B C)}

AFLIT)
where I1 1s a pointer to & cell in the memory. The result is the value

of the AF-field of the cell.

€E+' gt I1 be A then AF(I1) is 1
le I1 be (A} then AF(I1) is O.

The AF contains either 1 or 0 and no other values.

- WRITE (%three subrautines)

BECAR (I1,I2) (read 'be car of I1 I2')

This subroutine. stores the value IZ in the CAR-fileld of the cell pointed
at by I1.

E.g. BECAR (I1,I2) with I1 (A B C) and IZ ((A)) then I1 becomes ((A) B C)

28

+

" BECOR(I%;I2) (read 'be cdr I1 I2")
this subroutine stores the value IZ in the CDR field of the cell'puinted

at by I1.
E.g.: CAlLL BECOR (I1,I2) where I1 is (A) and I2 is (A B C), results
in (AABC)
i.e.:
11 I2.

b e b | B | ——={¢ |]
after CALL BECOR{IT,IZ]

Ly

Al TT ™A | T 5| > |7

In view of the epplications of tree structures, we add two special

functions to ..it.

{1} sON (I1)
where I1 is a pointer to a 'node' in the tree. The result is the

leftmost node depencding from I71.
E.G.: Let M be [A (L BCD) (EFGJ))las & tree

A
B E
C D F G
then the son of I1 (which 1s the top cell) is (8 C O) and the son of this
is (C).

(ii) BRO (I1)

where I1 is a pointer to a 'node' in the tree. The result is a pointer
to the first node y on the right of a nede x, such that x and y are hoth
depending fram the same ncde z. When there is no such node, the result of

BRO is nil.

e;g; Given the same tree as in the previous example, then BRO(SON(I1))

is fEF G]

Note:

As regards the elementary functions there is also BEAF(I1,I2Z) , read

'be AF of I1 IZ2', which stores the value I2 in the AF-field of the cell
peinted at by I1. Unappropriate changing of the contents of the AF-fields
van however cause serious trouble, especielly for the output rcutines.

A normal user does however not need to change the contents of AF-fields.

29

{b) Storage manipulation

There are two special cperaticns to create a new cell and one to give

back an already created cell.

NEW (I1)
is & subroutine that takes a new cell from ths free list and sets
the pointer I1 equal to this cell., It 1s a sort of initializatien that

takes place whenever we want to start a new list.

BACK €I1]
is a subroutine which is the reverse of NEW, it returns one single

cell peointed at by I, back te the free list.

NEW and BACK are complementary in the sense that the execution of
CALL NEW (11}
CALL BACK (I1)

returns the whole memory structure as it was before the execution.
"Another way of stcorege manipulation is the pushdownstore feature.

PUSH (K,I) (read ' push K on I')

is a subroutine where I is & pointer to the first cell of a list.
It pushes the list I down, i.e. creates a new cell pn tep of I and
stores K in the CAR-field of the (new) top of the list.

E.g.: supposa 1 2 3
With I = 1 B w C - p | /|
4 5 B
free list — /

then after CALL PUSH (L,I) we get ,with L is the atom D
1 4 2

3 B

free list

—

Note that the pointer to the head of the 1list does not change.

POPUP (K,I) (read 'popup K from I')

1s a subroutine where I is again & polnter to the first cell of a list. The
subroutine takes the conternts of the first cell and sets it equal to K, then

ths first cell is removed from the list.

E.g. suppose (with I = 1)
1 2 3

My [/

then after CALL POPUP (K,I) we get

freslist

I

Mote that I still points to the same cell, it 1s in fact the second cell

that has been removed; K now points to the atom A.

Remarks:

1. It should be clear that a new element can only be placed on tocp of
the pushdown store AFTER the pushing of the list apd an element should
be read from the top BEFORE the popping up operaticn is performed.

2. To use a list as pushdown store, it should first be initielized by
calling NEW. When the last element is popped up from the list in

a paopup operation, the cell is aufomatically returned to the free list,
Other subroutines to remove informaticn

1. When INIT is cellad at any point in a program, all previcus information

is lost and the memory contains only the freelist,

2. To remove all information as regards p-atoms, the routine CLEAR

should bhe called

d. To remove a list structure without destroying the atoms, cne should
call the subroutine ERASE (I1) , where I1 is the address of the first
cell in the list.

- 31 -

(c) Other list processing routines

{1) ADG (I2,I1) (read 'add I2 to I1)

is a subroutine with 2 parameters I1 is a list, and I2 is an atom

or a8 linear list of ataoms.

After execution, esch atom of IZ is added toc I1 iff it is not present yet.

e.g. Let I1 = ({ ABC)
and IZ = (CBA)
then after CALL ADD (12, I1)
I1 = (A BC)

let 1= (ABC)
and 12 = (DEF)
then after CALL ADD (I2,I1)
1=(ABCDEF)

(2) ATTACH (IZ.I7) (read 'attach I2 to I1)

is a subroutine with 2 parameters, IZ is g list

After execution a copy of all elements of-gll elements of I2 is added to I1

e.g. LEEL I1 = (ABC)
and I2 = (C B A)
then after CALL ADD (I1,I2)
I1=(ABCCBA)

Note that IZ is avallable for further processing afterwards.

(2) APPEND (I1,I2,I23)

is & subroutine that (i) crestes a new cell, (ii) hangs it on the
COR of I1, (iii) puts IZ in the CAR of I1, and (iv) sets I3 equal to the
new cell.
APPEND is especially useful in the construction of list structures because
one can "walk further' with a pointer whig&e hanging new cells each time

to the 1ist.

{4) COPY (I1)

is an integer function that creates a completely new seguence of
cells identical in structuring and with the same atoms on the same
places as in the argument list I1. Copy returns as value a pointer to

the newly made list.

- 37 -

- {d) Manipulating the property list.

With each atom there corresponds a preperty list (for short p-list)
on which the user can store pa .5 of properties and veluss and consult
afterwards whether a certain property is present and if it is present

what property it is.

(i} PROP {I1,12,I3)
is a subroutine which stores the preperty IZ2 with the velue I3
on the property list of the atom I1.

IZ can be a linear list, I3 can be any sort of list or an atom.

(ii) GET (I1,I2,1I3)

is a subroutine which checks whether the property 12 is on the
p-list of the atom I1, if so I3 is set equal to the value of IZ, if rot
the value of I3 is set equal to NIL.

If IZ is a 1list then I3 1s returned iff all 1tems on the original list
which censtitute the property are presented on IZ2. There may

be mere elements in I3, and the order is of no importance.

(e) Predicates

Finally some predicates are available to check whether the contents of

the car-field of a cell is sgual to an atom or a list.

To use this predicates, they shculd be initially declared to he of
type LOGICAL.

{1) ATOM (I1)

this logical function checks whether the cell addressed by I1 is an atem
or not. If it 1s an atom the result of the function is .TRUE. else
the result is .FALSE.

(11) LIST (I1)
this logieal function checks whether the cell addressed by I1 is a list
or not. If it is 'a list, the result is .TRUE., else .FALSE.

- 33_

3. Operating systems {in relation to RSX)

The whole library of functions and subroutines is called FORLILDLE;1 and
is stored on disk [120.00] .

Suppose you have a main program called MAIN, which is in a compiled form
stored on disk , say DK1:, and some routines in it are used from the
library. Let us call the program which should result affer taskbuilding

PROG. Then the relevant instruction to the taskbuilder is:

TKB DK1: PROG = DK1: MAIN, DK1: BLOCK, DK1: FORLI.OLB;1/LB
The file DK1:BLOCK is a necessary speciel subroutine Filliﬁg a commonzchne
with data. '

Due to memory limitations, it 1s nct possible to 1ink the plot-routines
directly toc a program. Instead the relevant information is written on
disk by PLOTLI in a file called DK1: FORARB4.DAT and this file 1s used
by ancother program, avallable on thEaﬁZD.DD]disk called PLOT.

Suppose there was a larger memory for taskbuilding available, then

the pletting routines can be astivated by calling PLOTL with the

same paraméters as PLOTLI.

- 34 -

" CONCLUSIONS

The FORLI llbrary discussed in this paper is used for various linguistic
tasks such as parsing systems, gquestion/answering systems, production
systems, etcr. The library is constantly growing to cope with the problems
we are dealing with. At the moment special subroutines are constructed
for processing networks, e.g..

Although it is undoubtely more epproprilate to use such a programming
language as LISP, we are at the moment gquite happy with the library.

Gne of the advantages 1s that the programmer can manipulate the lists

in a very powerful way, more powerful than in LISP, and avoid unefficient

use of the store (think about garbege collectionl.

- 35 -

REFERENCES

Mc Cracken, D. {1965) A guide to FORTRAN IV Programming. Academic Press

New York.

Waite, W. (1973) Implementing software for non-numeric applications.

Englewood Cliffs.

Weissman, C. (1985) LISP 1.5. Primer. Belmont, California.

ISSUES OF THE ANTWERF PAPERS IN LINGUISTICS

1., - 1875 Luc Steels: Parsing systems for Regular and Context-free languages.
2., - 1975 Johan Van der Auwera: Semantic and Pragmatic Presupposition.
3., - 1975 Luc Steels: Completion gfammars and their applications

4, - 1976 Georges de Schutter & Eddy Kockx: Meervoudsvorming en vervoeging

in het Nederlands. Een morfofonologische proeve.

5, - 1976 Luc 3tesls & Dirk Vermeir: On the formal properties of completilon

grammars and their related automata.
6. - 1878 Luc Steels: Producing natural language from semantic informaticn.

7. - 41978 Georges de Schutter: Een semantisch-syntak tische beschrijving

van adjektieven in het Nederlands.

8. - 1876 Manuel Aguirre: Factuality and Modality.

Special Issue:

L, Steels fed.) Advances In natural language processing. Preprints of

a workshop held at the University of Antwerp (UIA), October 1976.

