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Abstract

Our research aims to provide a means for independent entities to autonomously develop a set

of shared conventions which will allow them to communicate with each other. The communication

system thus developed needs to be e�cient, robust, learnable and tolerant of noise occurring at all

stages in the communication process. This paper proposes a system based on repeated interactions,

coupled with learning procedures that allows shared communication systems to be developed even in

the presence of noise.

1 Introduction

A number of researchers have already addressed the

question of self-organization and propagation of lex-

ical conventions in a population of arti�cial agents.

The �rst reported research on the subject was car-

ried out by [1] and [2]. Both demonstrate that a sim-

ple, genetically-encoded signalling system can emerge

without central control through selection pressure

acting on the system. MacLennan also showed that

addition of a simple learning algorithm allowed com-

munication conventions to propagate more quickly.

These studies assumed what might be termed a

"Saussurean" convention: that the same signal should

be used for both reception and transmission of the

message. [3] showed that such a convention could

emerge naturally by genetic evolution, and [4] has

identi�ed constraints which help to determine the

emergence of the convention. Experimental studies

in the formation of form-meaning associations include

both connectionist approaches, such as that of [5],

and symbolic, for example [6]. In the latter study,

lexical coherence was shown to emerge from a posi-

tive feedback loop based on preferential selection of

words successfully used in the past.

All these results assume the ideal case of 'perfect'

communication, involving { among other things {

shared knowledge of the topic. This assumption is

very unrealistic with respect to real-world systems

where unpredictable errors (stochasticity) may oc-

cur throughout the communication process. Errors

in signal production, transmission and reception due

to inherent unreliability in the sender and receiver's

signalling apparatus or in the transmission medium

are an unavoidable feature of all real-world commu-

nication. Perceptual uncertainty can interfere with

correct identi�cation of the communication topic. Ex-

periments carried out in SONY CSL Paris show that

algorithms designed for use in conditions of perfect

communication are ine�cient in 'noisy' environments.

Introduction of stochastic elements into the com-

munication process leads to an immediate drop in

communicative success through { for instance { fail-

ure to recognise imperfectly-produced or -transmitted

forms. For a real-world application, a mechanism ca-

pable of tolerating this kind of variation is essential.

2 The naming game model

This paper proposes an interaction model for develop-

ing shared conventions in a noisy environment. This

model, termed the naming game, is an enriched ver-

sion of one �rst presented by [6], redesigned in order

to allow it to function when communication is im-

perfect. Through repeated formalised interactions,

a set of agents adaptively construct a shared set of

form-meaning associations. The present implementa-

tion of the naming game focuses on the association of

atomic forms and meanings, but the results reported

here, however, do not depend on this simpli�cation,

and the mechanisms described are also applicable to

systems based on complex forms and meanings.

Using this architecture, shared conventions emerge

through repeated interactions between agents. To

represent form-meaning associations, each agent has

a lexicon which is a time-dependent relation between

meanings and forms coupled with a score representing

the strength of the form-meaning association. Each

agent's lexicon is initially empty; di�erent agents may

have di�erent lexicons, and the lexicons support syn-

onymy (use of di�erent forms for the same mean-

ing) and homonymy (di�erent meanings for the same

form). The formalised interaction { the naming game

{ involves a speaker and a hearer communicating

about a topic in a given context, which consists of

a set of objects. The speaker signals a topic to the

hearer using non-linguistic means (such as pointing).

At the same time, the speaker retrieves all forms as-

sociated with the topic meaning in his lexicon, selects
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one form and produces it. The hearer perceives the

linguistic and non-linguistic information generated by

the speaker, considers the possible forms and mean-

ings evoked by this information, and signals to the

speaker the topic identi�ed as a result of this consid-

eration. If the topic signalled by the speaker agrees

with that identi�ed by the hearer, the game succeeds.

The key to the architecture is the way that it deals

with stochasticity at all stages of the communica-

tion process (Figure 1). Stochasticity is modelled

by operators a�ecting accuracy of production, trans-

mission and perception. To cope with this potential

noise, the hearer must consider a number of candi-

date forms and meanings and evaluate each (either

in sequence or in parallel). The hearer constructs a

meaning score for each possible meaning, re
ecting

the likelihood that a given meaning is intended. At

the same time, a form score is computed for each

candidate form, based on the distance between the

actual perceived form and the candidate form. Using

the associations between form and meaning stored in

the lexicon, the hearer constructs a decision-matrix

in which the form scores, meaning scores and the

strength of each previously-recorded form-meaning

association are combined as a weighted sum to pro-

duce a score for a possible association between each

candidate form and each candidate meaning. The

form-meaning association with the highest score is

extracted from the matrix, yielding the hearer's in-

terpretation of the speaker's communication. The

use of the decision matrix allows the hearer to cope

with noise introduced at any stage of the commu-

nication process. In order for shared conventions to

emerge, both speaker and hearer must adapt their in-

ternal lexicons based on the result of the interaction,

success leading to reinforcement of those associations

that led to successful communication and weakening

competing associations. Similarly, in the case of fail-

ure, the associations responsible for the miscommu-

nication are weakened.

Other repair actions are possible. When failure oc-

curred because one of the agents lacked a necessary

form, the agent in question may extend its lexicon

to include the required form. When failure was due

to a mismatch between the intended and perceived

meanings, both speaker and hearer decrement those

form-meaning associations in their internal lexicons

which were responsible for the failed communication.

Repeated independent adaptation of the lexicon leads

to the emergence of a robust but 
exible shared com-

munication system.

3 Experimental results

In this section we present the results of several ex-

periments to illustrate the performance of this new

architecture (a more complete set of experiments can

be found in [7]). These experiments were carried out
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Figure 1: The Naming Game Model: (1) The speaker

selects a topic M3 in the context and provides extra-

linguistic information about this meaning (for in-

stance by pointing). It also scans its lexicon and

picks the form with the highest score: "MOPA".

(2) The linguistic and extra-linguistic information

are perceived by the hearer. The information may

have been altered during transmission (the direction

pointed may be shifted, "MOPA" may be perceived

as "MOBA" or some other similar variant. (3) The

hearer selects a set of possible forms and meanings

close to the ones perceived, evaluates each of them

and integrates them with its lexicon knowledge in a

decision matrix in an attempt to determine the mean-

ing intended by the speaker. (4) The game succeeds

because the hearer has identi�ed the correct meaning.

Both speaker and hearer update their lexicons.
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Figure 2: Evolution of average game success and co-

herence in a population of 400 agents for 10 objects.

An equilibrium state is reached in which the agents

gain an average success of 100% coupled with and a

high, stable coherence.

on the Babel simulation platform developed at Sony

CSL Paris [8]. In order to study the global order

of the system, we follow two macroscopic variables:

communicative success and coherence. These vari-

ables are invisible to the agents because no agent has

a complete overview of the behavior of the group.

Communicative success quanti�es the average suc-

cess after n games. When average success approaches

total success, this must mean that the conventions

are su�ciently shared to speak of the emergence of a

shared lexicon. But, because a form may have many

meanings and the same meaning may be expressed

by multiple forms, communicative success does not

necessarily mean complete coherence. An agent may

very well know a form but prefer not to use it itself.

The language of the group is thus seen as being the

set of word-meaning associations that are preferred

by the largest number of agents. The coherence of

the language is then equal to the average number of

agents that favor the most preferred word-meaning

associations.

3.1 Convergence towards equilibrium states

We �rst investigate the properties of naming games in

the ideal case of closed populations of agents without

any stochasticity. Figure 2 shows a �rst simulation

experiment involving 400 agents naming 10 objects.

We see that coherence and average communicative

success both increase until they reach 100%.

The number of games necessary to reach total com-

municative success grows with the population size.

Figure 3 shows several communicative success curves

for di�erent population sizes, using an x-axis scale ex-

pressed in games/agent (the total number of games

divided by the population size). On average, around

150 games/agent are needed to reach the maximum
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Figure 3: Several communicative success curves for

di�erent population size on a renormalised scale of

games/agent. Complete communicative success is

achieved even for large populations.

communicative success, which means that each agent

has to play around 150 naming games to build a lex-

icon that will allow it to communicate reliably.

The same kind of studies can be carried out for the

size of the object set (the number of meanings). Fig-

ure 4 shows that the number of games needed to reach

total success grows linearly with set size for meaning

sets smaller than 200 items. In this domain, each

agent needs to play 10 to 15 naming games involving

each meaning of the world to build a vocabulary that

supports complete communicative success.

In the rest of the paper, the x-axis scale will be

shown in games/agent.meaning. For practical rea-

sons, the experiments only involve 20 agents naming

10 objects, but the results could be generalised to

larger populations and meaning sets.

3.2 Resilience to population change

The lexicon built by the agents is resistant (to a cer-

tain extent) to changes in the population. This can be

shown by introducing an in- and out
ux in the popu-

lation. The individual lexicons of any agents leaving

the population are lost when they are removed (thus

unique words contained only in those lexicons may

be lost when the agent is removed). When new vir-

gin agents enter, they have to acquire the language

of the other agents in the group. They may occa-

sionally create a new word (with a small probability,

namely the word creation probability pc) but this new

word is generally unable to compete against the dom-

inance of the existing preferred word. Acquisition of

the existing language by a new agent happens with-

out any addition or change to the model, as shown in

�gure 5 which also plots the language change. Change

is quanti�ed by comparing the state of the language

at two time points and counting the number of pre-

ferred form-meaning pairs that changed. We see that
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Figure 4: Several communicative success curves for

di�erent meaning set size on a renormalised scale of

games/agent.meaning. The number of games needed

to reach total success grows linearly for meaning sets

smaller than 200 items.

the language changes rapidly in the beginning as the

populationmoves towards total average game success,

but that thereafter the language remains stable. Fig-

ure 5 shows what happens when the population is in a

state of continual 
ux. As new agents come in, game

success and coherence drop because the new agent has

to acquire the language of the group. But if there are

not too many agents coming in, the group will main-

tain a high success rate. More importantly, the lan-

guage itself does not change at all. It is transmitted

culturally from one generation to the next. When the

rate of population renewal is too high, the language

disintegrates, also illustrated in Figure 5. There is

rapid language change because the new agents start

to create new word-meaning associations, but these

conventions cannot propagate through the population

rapidly enough to become a stable part of the lan-

guage.

3.3 Stochasticity in non-linguistic

communication

Stochasticity in non-linguistic communication can be

investigated by probabilistically introducing a ran-

dom error in the perceived attributes of the topic.

The properties of the meaning expressed can, for in-

stance, be shifted by a �xed value. The probability is

called the topic-recognition stochasticity ET . Figure

6 shows the �rst results for an experiment exploring

variations in ET . When ET is high (phase one), there

is so much confusion that a language does not form at

all. When ET is decreased to 0.0 (phase two), a lan-

guage starts to form quickly. This language maintains

itself, even if ET is again increased (third phase).

This experiment shows that there must be a mini-

mum level of reliability in non-linguistic communica-

tion during the initial phases of language formation
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Figure 5: Once formed, a language remains stable

even if there is an in- and out
ow of agents in the

population. This graph shows both language change

and the average game success. In the �rst part, the

language forms itself in a closed population. During a

second phase, an in- and out
ow of agents (1 agent is

replaced every 100 games) is introduced, the language

remains the same and success is maintained. In the

third phase the turnover is increased to 1 agent every

10 games and the language disintegrates. Average

game success rapidly falls to very low levels.
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Figure 6: Exploration of variations in the stochastic-

ity of non-linguistic communication. In the �rst phase

stochasticity is high ET = 0:7, a coherent language

does not form. In the second phase stochasticity is ab-

sent, ET = 0:0, a language forms. In the third phase

stochasticity is increased again to ET = 0:7. Commu-

nication can tolerate a high level of stochasticity, jus-

tifying linguistic communication complementary to

non-linguistic communication.
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Figure 7: Exploration of variations in form stochastic-

ity. In the �rst phase stochasticity is high EF = 0:5.

A language only forms slowly. In the second phase it

is low EF = 0:0, and a language forms. When form

stochasticity is reset so that EF = 0:5, the language

proves resilient under higher form stochasticity and

average game success stays very high.

for a language to form. Once the language has boot-

strapped itself, however, linguistic communication is

able to overcome the unreliability of non-linguistic

communication.

3.4 Stochasticity in form transmission

We now introduce a second stochastic operator that

causes a transformation of the form transmitted. For

example, the speaker may produce "moba" but the

hearer may perceive "mopa". The parameter con-

trolling this stochasticity is EF , the form-recognition

stochasticity: it is the probability that a character in

the string of the form will mutate (string mutation

can be considered analogous to phonetic distortions

introduced by ambient noise or production errors in

real world communication).

Figure 7 shows the results of experiments varying

this particular parameter. In the �rst phase EF = 0:5

a language may eventually form but takes rather a

long time. EF = 0 causes the language to appear

immediately. In the third phase, we again increase

the stochasticity. The language is seen to be resilient.

Gamesmay occasionally fail, but the language itself is

not a�ected. As with human language users, the com-

bination of non-linguistic communication and expec-

tations based on the lexicon partially o�set the prob-

lems in determining what form has been used. These

experiments clearly show that once a language has

formed, it counterbalances errors in message trans-

mission.

4 Potential applications

In this section, we present two possible applications

of the naming game architecture. Neither has, as yet,

been the subject of a research project.

4.1 Speech interaction with devices

The naming game can be embedded in consumer elec-

tronic devices to enable interaction through speech.

Of course in this case the necessary speech modules

need to be integrated for recognising and producing

speech sounds. The role of the system proposed in

this pqper is to allow users to teach their own vo-

cabulary for controlling devices, so that the interface

becomes truly adapted whatever the source language.

4.2 Adaptive protocols in the Internet

Agents need a shared set of conventions to commu-

nicate. These conventions can be determined for a

particular domain and take the form of norms that

all agent designers respect. Major standardization

initiatives, such as the de�nition of the KQML lan-

guage [9], have made to reach world-wide consensus

on agent interaction protocols. But for continuously

growing and not centrally controlled networks such

as the Internet, global standards are di�cult to de-

�ne and maintain. Once these conventions are �xed,

they cannot evolve further. This lack of adaptivity

may turn out to be an important drawback for agents

interacting in an open environment where new sit-

uations and requirements can arise. One potential

application of the present research is the de�nition

of adaptive protocols that allow agents to collectively

build a shared set of conventions [10]. With this tech-

nology agents would continuously adapt in order to

communicate with one another, without the need of

any central controlling agency.

5 Conclusions

The architecture presented in this paper allows shared

communication systems to be developed even in the

presence of noise (i.e. errors in production, trans-

mission or reception of signals). This is an essential

requirement for real-world applications, where per-

fect communication cannot be assumed. The use of

a weighted decision matrix allows noise-tolerant com-

munication and learning, while reinforcement learn-

ing techniques establish a stable set of shared conven-

tions.

Initial embodiment of the architecture is in the

form of a software system using symbolic representa-

tions. The nature of the representations used by the

system also makes it suitable for implementation as

part of an embedded system based on purpose-built

hardware.

6 Acknowledgement

This research was carried out at the Sony Computer

Science Laboratory in Paris. We are indebted to

Mario Tokoro and Toshi Doi for the opportunity to

5



work in this superb research environment. And to

Mario Tokoro in particular for suggesting that the

role of stochasticity might play an important role in

making the linguistic system more robust.

References

[1] B. MacLennan. Synthetic ethology: An ap-

proach to the study of communication. In

C. Langton, editor, Arti�cial Life II, Redwood

City, Ca., 1991. Addison-Wesley Pub. Co.

[2] G. M. Werner and M. G. Dyer. Evolution of

communication in arti�cial organisms. In C. G

Langton, C. Taylor, and J.D. Farmer, editors,

Arti�cial Life II, Vol.X of SFI Studies in the Sci-

ences of Complexity, Redwood City, Ca., 1991.

Addison-Wesley Pub.

[3] J. Hurford. Biological evolution of the saus-

surean sign as a component of the language ac-

quisition device. Lingua, 77:187{222, 1989.

[4] M. Oliphant. The dilemma of saussurean com-

munication. Biosystems, 1{2(37):31{38, 1996.

[5] E. Hutchins and B. Hazlehurst. How to invent

a lexicon: the development of shared symbols in

interaction. In N. Gilbert and R. Conte, editors,

Arti�cial Societies: The Computer Simulation of

Social Life. UCL Press, 1995.

[6] L. Steels. Self-organizing vocabularies. In

C. Langton, editor, Proceeding of Alife V, Nara,

Japan, 1996.

[7] L. Steels and F. Kaplan. Stochasticity as a source

of innovation in language games. In C. Adami,

R. Belew, H. Kitano, and C. Taylor, editors, Pro-

ceedings of Arti�cial Life VI, pages 368{376, Los

Angeles, June 1998. MIT Press.

[8] A. McIntyre. Babel: A testbed for research in

origins of language. In Proceedings of Coling-

ACL 98, pages 830{835, Montreal, August 1998.

[9] Arpa Knowledge Sharing Initiative. Speci�cation

of the kqml agent-communication language. July

1993.

[10] L. Steels. The origins of ontologies and communi-

cation conventions in multi-agent systems. Jour-

nal of Agents and Multi-Agent Systems, 1(1),

1997.

6


