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Abstract

Many studies have analyzed the impact of climate change on crop productivity, but comparing the performance of water
management systems has rarely been explored. Because water supply and crop demand in agro-systems may be affected
by global climate change in shaping the spatial patterns of agricultural production, we should evaluate how and where
irrigation practices are effective in mitigating climate change effects. Here we have constructed simple, general models,
based on biological mechanisms and a theoretical framework, which could be useful in explaining and predicting crop
productivity dynamics. We have studied maize in irrigated and rain-fed systems at a provincial scale, from 1996 to 2009 in
Spain, one of the most prominent ‘‘hot-spots’’ in future climate change projections. Our new approach allowed us to: (1)
evaluate new structural properties such as the stability of crop yield dynamics, (2) detect nonlinear responses to climate
change (thresholds and discontinuities), challenging the usual linear way of thinking, and (3) examine spatial patterns of
yield losses due to water constraints and identify clusters of provinces that have been negatively affected by warming. We
have reduced the uncertainty associated with climate change impacts on maize productivity by improving the
understanding of the relative contributions of individual factors and providing a better spatial comprehension of the key
processes. We have identified water stress and water management systems as being key causes of the yield gap, and
detected vulnerable regions where efforts in research and policy should be prioritized in order to increase maize
productivity.
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Introduction

Spatio-temporal patterns of agricultural production are clearly

influenced both by climate change and agricultural management

practices. Recently, many studies have analyzed the impact of

climate change on crop productivity [1], but comparing the

performance of different crop management systems has rarely

been explored (exc. [2]). To be specific, we need to evaluate how

and where irrigation practices (e.g. rain-fed versus irrigated) are

effective in mitigating the effects of climate change, because water

constraints and crop demand in agro-systems could be increased

due to climate change [3–7]. Identifying whether there are any

differences in the principal bio-physical factors and mechanisms

that explain both systems will enable us to improve crop

productivity without expanding the cropland area and to diminish

the adverse impacts of agriculture for social and ecological systems

[8].

We do not know much about crop response to climate change

yet, and still less about the differential response between irrigated

and rain-fed systems [4]. Increases in agriculture production could

potentially come from increases in irrigated crops, because higher

yields could be attained with reduced production variability [9].

However, this also depends on soil and management factors that

result in spatial patterns of yields [10]. Secondly, irrigation can

influence local climate by inducing cooling, but this may depend

on the extent of the irrigated area, the level of soil moisture

alteration and cloud response to irrigation [11]. Third, average

yields in rain-fed systems are commonly 50% or less of yield

potential (high yield gap), suggesting ample room for improvement

[12] but, again a great spatial variability has been found [13].

Yield gaps could be bigger in cropping systems that experience

wider ranges of variation under climate conditions [10]. Fourth,

plant population (or density) is known to affect the yield potential

at a given location [12] and grain yield stability [14]. However, to

our knowledge, there are no previous studies explicitly comparing

endogenous processes under different water management systems.

Finally, simulation at a broad scale level cannot fully explain the

above process, and process-based crop models do not always relate

to observed yields [15]. Finer spatial scales and historical data of

irrigated versus rain-fed systems could help to compare modelled

or simulated yield potentials [12].

Analyzing the sensitivity of irrigated and non-irrigated (rain-fed)

crops to past climate changes is crucial to an understanding of the

vulnerability of agriculture to climate change in the future,
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particularly in regions that already suffer from this under present

conditions. This paper explores biophysical factors and water

management practice constraints to maize (Zea mays L.) in Spain.

Spatial shifts northwards have been projected for maize, due to the

extremely hot, dry summers in south-central Europe [16,17],

particularly in Spain [18]. The expected effects of climate change

on Spain’s agriculture would not be uniform. Mediterranean (arid

and semiarid) regions may be particularly sensitive, where a

decrease in the general availability of hydric resources and an

increase in evaporative demand, especially during summer, will

affect irrigation requirements [19]. Namely, it is one of the most

prominent ‘‘hot-spots’’ in future climate change projections [20],

where a mean reduction of 17% in water resources [21,22] has

been predicted. For this drought-prone zone, all climate change

scenarios imply the need to significantly increase the contribution

of irrigation water. Therefore, identifying and quantifying the links

between water management practices and food production is

crucial in addressing the intensified conflicts between water

scarcity and food safety.

The objective of this paper is to determine how climate

variability affects maize production in Spain under irrigated and

rain-fed conditions. First, we have analyzed the regulatory

structure of maize production dynamics under both water

management systems. Second, we have evaluated the mechanisms

(in ecological parameters) underlying climate perturbations on

maize yields. Third, we have assessed whether the importance of

maize production structures (i.e. intrinsic regulation) and climate

change perturbations (i.e. exogenous factors) could change

according to the type of management (i.e. rain-fed and irrigated)

and the geographical location. Fourth, we have estimated the

potential yield of each region and water management using the

previous models and analyzing the spatial variability of yield losses

due to water stress [23]. We have combined information on spatial

autocorrelation water stress patterns for maize yields to identify the

importance of climate constraints at a regional scale.

Methods and Materials

Database
Provincial maize yield levels (Zea mays; production per hectare,

kg/ha) for 1996–2009 were obtained from statistical yearbooks

[24]. We studied selected provinces that had both rain-fed and

irrigated systems (Fig. 1), and displayed trends in yield fluctuation

in Fig. S1. We used Global Historical Climatology Network

(GHCND) data on monthly temperature and rainfall (mean,

minimum, maximum and extreme; [25]). Various summary

statistics of the growing season (July to October) weather were

then computed: EMNT extreme minimum temperature (uC),

EMXT extreme maximum temperature (uC), MMNT mean

minimum temperature (uC), MMXT mean maximum temperature

(uC), MNTM mean temperature (uC), EMXP extreme maximum

daily precipitation total (l/m2) and TPCP total precipitation (l/

m2). We also examined carbon dioxide emission (CO2), an

important atmospheric gas that contributes to global warming.

The annual country-level emissions of CO2 (kt) were taken from the

World Bank’s World Development Indicators (WDI; [26]).

Diagnosis and statistical models of yields dynamics
We have analyzed and predicted maize yield responses to the

impact of climate change in Spain through the use of models based

on the population dynamics theory. Of course this is not a true

population in the reproductive sense, but crop systems obey the

same rules as all other dynamic systems, both natural and

engineered.

First, where necessary, we used sequencing (i.e., splitting the

series into two stationary segments) and detrending (i.e., rotating

the series around the linear or quadratic trend) to generate a

stationary time series. Second, we estimated the logarithmic rate of

change of the yield as Rt~Yt{Yt{1 (the same response variable

as [1,27]), where Yt represents the provincial yield in a year t(the

logarithm of the detrended yield) and Yt{1 is the same series with

one year of delay (lag 1).

We were able to detect and analyze non-trivial feedback

processes by examining their relationship Rt~f (Yt{d ), where the

function f described how the crop yield change rate varied with

yield level, and this has been called the R-function. We used the

partial rate correlation function (or PRCF) to estimate the order of

the dynamical process and determine how many time lags (d )

should be included in the model for representing the feedback

structure. This function detects the feedback order removing the

confounding effect by calculating the partial correlation between

Rt and Yt{d with the effects of lower lags removed [28].

We then used the generalized version of the exponential form of

the discrete time logistic model [29,30] in terms of the R-function

to represent pure endogenous models in the function f :

Rt~rmax{exp(aYt{dzc) ð1Þ

where Yt{d represents the yield data at time t{d (where d was

obtained from PRCF function), rmax is a positive constant

representing the maximum finite rate of change (and is estimated

as the maximum rate of change from the observed data), c is a

measure of the ratio between demand and offer of limiting resources

and a is the nonlinearity of the curve. The nonlinearity of this model

includes a biological realistic property: its net reproductive rate is

bounded [29], that is, the performance of any crop must have an

upper bound simply because no crop can produce an infinite

number of grains that subsequently contribute to the crop yield.

Finally, we used the Royama classification of exogenous effects

as a framework to deduce causal mechanisms of the climate

change impact on these crop yields in a spatial-temporal study

[29]. To include exogenous perturbations, we modelled rmax and c

of (1) as linear functions of climate conditions, each of which has

an explicit biological interpretation. In this way, we set up

mechanistic hypotheses about the exogenous effects of climate on

these yields data [29].

If an exogenous factor (i.e. climate or gas emissions) changes

rmax and has an additive or independent perturbation effect on

crop yield levels, it shifts the R–function curve along the y-axis

(‘‘vertical’’ perturbations):

r�max~rmaxzbZt{d0

Rt~rmax{exp(aYt{dzc)zbZt{d0
ð2Þ

where Zt{d0 is the exogenous factor (for lags or d 0 and 1; in

logarithm scale). This model produces alterations to both rmax and

the carrying capacity (equilibrium point of the population, Rt~0),

changing the level of equilibrium and its stability.

If an exogenous factor (i.e. climate or gas emissions) changes c

and has a non-additive perturbation effect on crop yield levels, and

influences the equilibrium point of the population shifting the R-

function curve along the x-axis (’’lateral’’ perturbations):

c�~czbZt{d0

Rt~rmax{exp(aYt{dzczbZt{d0 )
ð3Þ
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Lateral perturbations do not change the pattern of dynamics

around equilibrium because they do not change the slope at the

equilibrium.

We fitted Eqs. 1–3 using nonlinear least squares regressions with

the nls library in the software R [31,32]. In particular, the models

were fitted by minimizing the Akaike criterion with a correction

for finite sample sized (AICc):

AICc~(2k{2lnL)z
2k(kz1)

n{k{1

where k is the number of parameters and L is the maximized

value of the likelihood function for the model, and n denotes the

sample size. Also, we maximized the pseudo R2 measures based on

the deviance residual [33]. Models were chosen on the basis of

their goodness-of-fit (assessed using root mean square error RMSE

and the log-likelihood values), their ability to describe the correct

feedback structure, and their appropriateness.

Yield losses due to suboptimal water availability (YGRw)
We propose a new estimation of the potential yield or

equilibrium productivity [34] at the provincial level as the

equilibrium value of the models. By solving Eqn. (1–3) for the

equilibrium dynamics Yt~Yt{1~K (when Rt~0), we calculated

the maize yield level at equilibrium, sometimes called the carrying

capacity (Mg/ha). For non-pure endogenous models we made

potential yield estimations for each year as the exogenous factor

changed. Then we calculated the percentage of yield losses due to

suboptimal water availability (YGRw; Eqn. 4; view [35]), which

indicated how close the rain-fed yield potential is to the irrigated

value for a given site (%).

YGRw~
YPIR{YPRF

YPIR

ð4Þ

We obtained some time-invariant YGRw values when, in the same

province, irrigated and rain-fed YP were estimated from pure

endogenous models, so that we calculated the averaged YGRw for

each province, and studied its spatial variability without taking

into account the temporal dimension of the data.

We determined whether there was any spatial autocorrelation in

YGRw with the global Moran’s I (spatial correlation on average, of

an entire map). At this stage, we were not yet trying to determine

the causes, although the results could have motivated a hypothesis.

We assumed: 1) that there was no spatial patterning due to some

underlying but unmodelled factor, and 2) that the assigned spatial

weights were those that generated the autocorrelation. Then we

tested whether YGRw was more spatially clustered than by chance.

The matrix that represents spatial dependence (W) uses a binary

indicator of neighbourhood (i.e. the spatial weights, wij, are defined

as wij = 1 if the i and j provinces are contiguous neighbours, wij = 0

otherwise, based on rook contiguity; [36]). We used row-

standardisation (style W) that favours observations with few

neighbours. We calculated a non-parametric approach to infer-

Figure 1. Definition of study regions (provinces) with percentage of total maize production for 1996–2009. Only provinces with both
irrigated and rain-fed systems were analyzed.
doi:10.1371/journal.pone.0098220.g001
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ence on Moran’s I using 999 simulations (Monte Carlo permu-

tation test). Also, local indicators of spatial association (or LISA)

were calculated to detect ‘‘hot spots’’ where there was a strong

autocorrelation, and ‘‘cold spots’’, where there were none. The

results were plotted on a Moran scatterplot: the target variable on

the x-axis, and the (spatially-weighted) sum of neighbouring values

on the y-axis; these are called spatially lagged values. We identified

the high-influence areas.

We analyzed the environmental spatially distributed causes of

averaged YGRw through a Simultaneous Autoregressive Model

(SAR; [36]) that considers spatial autocorrelation of residuals:

YGRw~ZT bze ð5Þ

where, for each province, YGRw is the percentage of yield losses

due to suboptimal water availability, Zis a matrix of averaged

climate variables (see Database section; except country-level CO2

emissions), e~B(Y{ZT b)zE is the error term, and E represents

residual errors (assumed to be independently distributed according

to a Normal distribution with zero mean and diagonal covariance

matrix s2
e ). The error terms are modelled so that they depend on

each of the other areas to account for their spatial dependence (B
is a matrix that contains the dependence parameters; B~lW ,

where l is a spatial autocorrelation parameter and W is a matrix

that represents the spatial dependence explained above). Global

Moran’s I was computed for the residuals to test if the SAR model

accounts for all the spatial autocorrelations in YGRw. For the

spatial analysis we used spdep library in the software R [37].

Results

Regulatory structure and exogenous perturbation
models

After sequencing and detrending, all the sites exhibited first-

order negative feedback (PRCF(1)) as being the most important

component of yield growth rate (Figure S2; except for irrigated

maize in Vizcaya and rain-fed systems in Tarragona). Major sites

showed the highly significant (p,0.05) effect of endogenous

processes as determinants of the structure of crop productivity

regulation (Table S1).

We evaluated gas emission (CO2) and climate factors (temper-

ature and precipitation; see Database section), as exogenous

perturbations of the production curve (R-function). Table S1

shows several models that were selected as climate change impacts

on maize production for each Spanish region and management

system. The stochastic versions of the step-ahead predictions of the

models are shown in Fig. S3. As expected, the effects of climate on

maize production were not uniform, and depended on the

irrigation management system (Figure 2). Maize yields were

significantly related to minimum temperatures (possibly night

ones) in 11 sites and by maximum temperature in another 5 sites.

Generally, there were positive effects of temperature for irrigated

systems, except for Almerı́a (for minimum temperature –EMNT-)

and Ourense (mean temperature –MNTM-). However, for rain-fed

systems, we detected negative effects of warming on major sites,

with the exception of Málaga and Albacete (both for EMNT). As

expected, precipitation was not important for irrigated systems

(except for maximum precipitation –EMXP- in Navarra), but it

was an important factor in some rain-fed managements. There

were positive effects of precipitation on Teruel and Soria (for a

total –TPCP- and maximum rainfall), and negative ones in

Córdoba (TPCP and EMXP) and Zaragoza (TPCP) on rain-fed

crops. Finally, CO2 emissions negatively affected maize in Lugo

(irrigated), Ourense and Soria (both rain-fed), and positively only

in Ávila (rain-fed).

Temperature acted mainly as having non-additive (lateral)

effects on maize yield dynamics, whereas CO2 emission acted as

additive (vertical) effects (Table S1; Figure 3 and S4). Finally,

rainfall exerted non-additive effects when it had a negative impact

on maize, but when it obtained positive responses the effects were

of both types (additive or non-additive; Table S1; Figure S4). For

example, Figure 3 shows positive and non-additive (lateral) effects

of temperature on rain-fed maize in Albacete and irrigated maize

in Sevilla. That is, the increase in temperature had a positive effect

on both maize systems, and more so at high yield levels. Figure 3

also indicates a negative and additive (vertical) effect of CO2

emission on Ourense (same strength for all yield levels), and a

positive and non-additive (lateral) rainfall effect on rain-fed maize

in Soria (more important for high yield levels).

Relative yield losses due to suboptimal water availability
(YGRw)

We first visualized the spatial relation of YGRw (Figure 4), where

several high YGRw values were shown in central and southern

provinces of Spain. The global Moran’s I value (I = 0.39) was of an

opposite sign and much larger in absolute value than the

expectation (E[I] = 20.034); this was quite unlikely to be equal

to the expectation of no spatial association. The probability of

incorrectly rejecting the null hypothesis of no association (type I

error) was 0.0021. The Monte Carlo approach also rejects the null

hypothesis (the true value for Moran’s I is zero; Imc = 0.406,

p = 0.005; Figure S5). The Moran scatterplot (Figure 5; the vector

of values and the neighbour list with weights) showed points with a

great influence, which are identified by a special symbol and their

name. The highest-leverage area is marked on Almerı́a; it has the

highest YGRw (84.56) and a zero weighted spatially-lagged

proportion, because it did not have any adjacent areas in the

study. Soria and Palencia had low YGRw, and a low spatially-

lagged proportion; these are the low-YGRw neighbourhoods

adjacent to low-YGRw neighbourhoods. They have a great

influence on the slope (global Moran’s I). From Figure 5 it is

clear that most of the global Moran’s I significance comes from the

local Moran’s I from high YGRw in Almerı́a, and low YGRw

associated with low YGRw, in the Soria and Palencia area in the

north.

There was clear evidence of local clustering, 6 areas (Ciudad

Real, Cuenca, Albacete, Valencia, A Coruña and Pontevedra)

showed sufficiently high local Moran’s I to reject the null

hypothesis with less than a 5% chance of Type I error. These

areas were not highlighted in the Moran scatterplot, as they did

not greatly influence the global Moran’s I but were locally-

clustered.

There was a significant spatial correlation in the residuals,

because the estimated value of lambda was 0.141 and the p-value

of the likelihood ratio test 0.0354. Only averaged temperature

(MNTMt) was significant for the SAR model, suggesting that

provinces with higher temperature have larger YGRw percentages.

The model found was: YGRw~{64:42z5:69 �MNTMt the

SAR model, which accounted for the whole spatial autocorrelation

Figure 2. Effects of temperature, precipitation and CO2 emission, on maize productivity for rain-fed and irrigated crops. Provinces
for both water management systems were selected for the analysis. All models are from Table S1.
doi:10.1371/journal.pone.0098220.g002
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in YGRw (global Moran’s test for residuals was I = 20.00811,

p = 0.422). Thus, the autocorrelation in the linear model residuals

was explained.

Discussion

In the present study, the impact of climate variability on maize

yields in Spanish rain-fed and irrigated systems was investigated

for the period 1996–2009. We explored the endogenous structure

(regulation) and the exogenous perturbations effects on maize

production at a regional scale.

Regulatory structure: endogenous feedback
We found that maize productivity had a persistently negative

effect on crop yields for a one year time delay (first order negative

feedback, PRCF(1)). Maize productivity was characterized by

negative first-order feedback structure in major sites and in both

irrigation systems. Namely, there were biomass or density-induced

feedback loops in the growth, survival rates, seed germination or

grain production rates of individual plants, tending to stabilize

their dynamics [38]. In Spain, the seeds produced are used for the

next year and, therefore, a year’s crop performance could change

seed viability and vigour, which also affects the performance of the

following crops (changing the demand for resources). Also, a crop

Figure 3. Yield rate of change against the log observed yield level (with one year of delay) and the exogenous factor that perturbs
the productivity function (R-function). Exogenous factors include carbon emissions (CO2t), precipitation (TPCPt_1), and maximum and minimum
temperature (EMXTt_1 and EMNTt_1). Additive (vertical) and non-additive (lateral) perturbation effects were detected. Colours indicate the R-function
value. See Table S1 for description of models and Figure S4 for their graphs.
doi:10.1371/journal.pone.0098220.g003
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system could alter habitat conditions; in fact, the frequent practice

of crop rotation is a testimony to the importance of negative

feedbacks in agricultural systems (i.e. it modifies resource supplies).

This produces high-frequency dynamics due to year-to-year

endogenous variability in maize yields. Our logistic models appear

to capture the essential features of the fluctuations observed, and

suggest a mechanistic explanation for the latter. This implies that,

to understand the response of maize productivity to climate, we

must also know the endogenous feedback structure of the system.

Our models are important to conceptualizing the problem of

regulated versus unregulated systems. If a system were to be

controlled entirely by an exogenous process (unregulated systems),

then the series would perform a random walk and we saw no sign

of the generated series becoming stabilized, but it drifted

increasingly away from the origin with the passing of time [29].

However, persistence implies regulation (but not necessarily vice

versa) and, therefore, the rate of change in a persistent crop

productivity system is not statistically independent of the yield level

and should be bounded (i.e. regulated systems).

Climate change effects: exogenous perturbations
In line with previous studies, temperature during the growing

season was the most important weather variable influencing maize

yields [39]. However, we deciphered the effects of climate on

maize productivity providing new interpretations. First, diagnostic

analysis suggested that temperature acts mainly as a non-additive

(lateral) perturbation in maize productivity. Therefore, the

relationship between temperature and maize yields was nonlinear

and could not be captured adequately by a linear or quadratic

functional relation as in previous studies [40]. Our analysis

suggests a biological reason for the nonlinear interaction between

climate and maize yield level. Temperature had no direct impacts

on yield rate of change (affecting rmax; additive or vertical effects),

but influenced the availability or requirements of some limiting

factor or resource (changing c; non-additive or lateral effects).

There is probably a relationship between extreme heat and plant

water stress, increasing water demand and/or soil water content in

rain-fed systems, in agreement with the recent results of Lobell et

al. [41]. This is because, the effects of high temperature are

experienced only when the maize yield level is close to equilibrium

[29]. This kind of perturbation exerts strong effects on the average

level of yield but few on the intrinsic periodicity induced by

endogenous feedback.

Secondly, rain-fed maize yields are negatively affected by

temperature increases, but irrigated systems may gain from

warming in some regions. As expected, rain-fed crop damage

may result from greater water and heat stress during hot growing

seasons. However, unexpected positive effects of temperature in

irrigated systems are possibly a consequence of heat tolerance,

which is consistent with other studies on local adaptation to hot

temperatures being able to minimize stress effects [40] or the

cooling effect of irrigation [42]. Therefore, we detected some

adaptation to heat stress that could mitigate the projected heat-

related losses, at least in a few regions with irrigated systems.

Thirdly, climate variability and extreme events are more

important than averages. Thus, we detected that minimum

temperature was the dominant factor in maize production, in

agreement with other recent studies for maize [43–45] and rice

[46]. Currently, a new paradigm has been originated: crop yields

have declined with a higher minimum or night temperature

[46,47] or when there was a marked asymmetry between maxima

and minima [48]. One possible explanation includes the facts that

the grain-growth rate has increased and that the duration of grain-

filling has been shortened as the temperature increased, producing

lower crop production (yield levels) [49]. Mohammed & Tarpley

[47] proposes a list of the effects of high night temperatures on

crop production. Also, our findings are in line with the results of

recent research which argue that global minimum temperatures

are increasing faster than maximum temperatures, and the need to

explore the ecological consequences of this phenomenon

[41,50,51]. Therefore, we wish to highlight the importance of

considering extreme climate variables in crop production studies,

and limiting the use of averages or accumulative climate data

which ignore inter-annual variability of climate and extreme

events. Our results differ from those of most studies which do not

take into account food production structure regulation, and those

which use degree-days [40] concepts which assume a cumulative

or additive effect of temperature on crop yield and do not

adequately account for the effects of extreme temperatures (high

or low) either.

In the study period, precipitation was not a major abiotic factor

limiting maize yield of cultivated rain-fed crops in Spain. We only

detected positive effects of precipitation for irrigated maize in

Navarra, Teruel and Soria. Also, growing season rainfall

negatively affected rain-fed maize yield in Córdoba and Zaragoza,

possibly due to flood and waterlogging problems causing

production losses. Again, we agree with Lobell et al. [41], who

argue that the apparent paradox of the scant effect of precipitation

on rain-fed maize yield whereas, on the contrary, there is a water

stress effect of temperature, can be solved with the following

reflection ‘‘large precipitation changes are required to rival the effect of

temperature on water stress, because high temperature affects both water

demand and supply’’.

As in the study of Long et al. 2006 [52], ours study indicates that

there was a smaller CO2 effect on maize yield than previously

presumed. Impacts of higher CO2 on maize yield were reduced

probably because it is a C4 plant, and also because of the national

scale of the variable in our study.

Spatial variability of yield losses due to water stress
We found that the global spatial pattern of yield losses due to

water stress is not a random one (Figure 4); there was a high

influence in Palencia, Soria (lowest) and Almerı́a (highest). We

detected clusters of ‘‘cold spots’’ in northern Spain (A Coruña and

Pontevedra) and ‘‘hot spots’’ in central provinces (Ciudad Real,

Figure 4. Relative yield losses due to suboptimal water
availability (YGRw; %). The percentage of yield losses due to
suboptimal water availability indicates how close rain-fed yield
potential are to the irrigated value for a given site.
doi:10.1371/journal.pone.0098220.g004
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Cuenca, Albacete, Valencia; Figure 5). Neither cluster greatly

influenced the global Moran’s I but they were locally-clustered.

Moreover, we modelled spatial YGRw values with climate variables

and found that the mean temperature was the highest constraint of

maize productivity due to water stress. In conclusion, policy action

to decrease the relative yield gap due to water stress on maize

productivity has the potential to geographically target high YGRw

areas. Future work will help determine other non-climatic causal

relationships between YGRw and an array of factors that could

influence water management practices in maize (e.g. access to

water, management technology, soil conditions, etc.).

A recent comparison of simulated and observed yield patterns

highlights the value of data in the spatial distribution of yields for

understanding the causes of landscape yield variability [10].

However, to our knowledge, this is the first study explicitly

evaluating the spatial pattern of real relative yield gaps due to a

water management system and its sensitivity to underlying climate

factors. The results demonstrate that spatial patterns of yield loss

due to water stress possess substantial information on the relative

importance of water management factors for maize productivity.

The need for an analysis to identify and implement adaptation

options in agriculture emphasizes the importance of regional scales

(federal, provincial, and territorial governments). Global and non-

spatial studies can provide only a very partial and potentially

misleading insight into the true impact of climate change, where

aggregation can indeed conceal vulnerability and climate change

costs [53]. However, individual regions (provinces) allow a better

analysis of uncertainty and risks, thus providing practical

recommendations to farmers.

Conclusions

We identified the same regulation structure for both manage-

ment systems, i.e. a negative first-order feedback process that tends

to stabilize the crop’s dynamics. We analyzed the underlying

mechanisms of the interaction between climate variation and

regulatory structure on maize production. Different climate

variables appear to operate differently on maize productivity.

We found that the effect of temperature (mainly extreme values)

cannot be evaluated independently of crop productivity as in

previous studies, because its consequences are experienced only

when maize yield level is close to equilibrium (lateral perturba-

tion). We suggest that high maize yield crops are especially

vulnerable to weather-related yield variations. These data support

the belief that lower yields are more suitable for low-input

conditions, because climate might be more severe in crops that

interact strongly with productivity [14].

Our results also indicate that it may be important to consider

explicitly the irrigation system and spatial variability. Rain-fed

agriculture may be at risk as heat waves will be more intense, more

frequent and longer (particularly in Seville, Cádiz, Almerı́a,

Navarra and Ávila; see Fig. 2). Irrigation seems to allow some

tolerance to warming but future levels of water availability would

be compromised if water restrictions and irrigation costs increased,

as climate change projections indicate. We propose a new

framework to estimate yield potential as the equilibrium yield or

yield carrying capacity. Climate change is not uniform over Spain

and the effectiveness of irrigated and rain-fed management varies

with the location, producing different regional vulnerabilities and

potential yields. Accordingly, the general strategies for adapting

maize productivity to climate change will vary between different

zones in Spain.

Supporting Information

Figure S1 Time series of maize yield level for rain-fed
(red) and irrigated (blue) systems. Each provinces of Spain

were analyzed for 1996–2009.

(TIFF)

Figure S2 Partial rate correlation function (PRCF).
(TIFF)

Figure S3 Comparison of observed crop yield levels
(points, obs) for the period 1997–2009 with stochastic
predictions from models fitted to the data until the year
1996 (broken line, sim) and 95% confidence intervals for
forecasts (shaded area, 95PPU). P-factor is the percent of

observations that are within the given uncertainty bounds and R-

factor represents the average width of the given uncertainty

Figure 5. Spatial autocorrelation analysis of the relative yield
losses due to suboptimal water availability (YGRw). Top: Moran
scatterplot; bottom: high-influence areas neighbours: no influence
(None), high proportion with low proportion neighbours (HL), the
reverse (LH), and both high (HH). We define the break between ‘‘low’’
and ‘‘high’’ as the third quartile.
doi:10.1371/journal.pone.0098220.g005
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bounds divided by the standard deviation of the observations. See

Table S1 for description of models and variables.

(TIFF)

Figure S4 R-functions: yield rate of change against the
log observed yield level (with one year of delay). Climate

factors had vertical (additive) and lateral (non-additive) perturba-

tions on the R-function. Colors indicate the value of the R-

function. See Table S1 for description of models and variables.

(TIFF)

Figure S5 A non-parametric approach to inference on
Moran’s I using 999 simulations (Monte Carlo permu-
tation test).
(TIFF)

Table S1 Summary statistics of nonlinear logistic models, 1996–

2009. We evaluated pure Endogenous models (E), and additive (or

Lateral, L) and non-additive (or Vertical, V) models that also

represent the effect of exogenous perturbations. Different crop

management systems were analyzed (IR = irrigated and RF = rain-

fed). %Total percentage of total crop production in Spain, K

carrying capacity or potential yield, rmax maximum finite

reproductive rate, a non-linearity coefficient, c the ratio between

demand and offer of limiting resources, b coefficients for different

exogenous effects, R2 pseudo-coefficient of determination, logLIK

log-likelihood, RMSE root-mean-square error and AICc corrected

Akaike information criterion. NOTE: *p,0.05, **p,0.01, Num-

ber of not avaiable data (NA) were indicated by I. CO2 carbon

dioxide emission (kt, country-level emissions), and summary

statistics of the growing season weather: EMNT extreme minimum

temperature (uC), EMXT extreme maximum temperature (uC),

MMNT mean minimum temperature (uC), MMXT mean maxi-

mum temperature (uC), MNTM mean temperature (uC), EMXP

extreme maximum daily precipitation total (l/m2), TPCP total

precipitation (l/m2).
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