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Summary	

The	 outer	membrane	 (OM)	 of	 Gram-negative	 bacteria	 is	 highly	 packed	with	 OM	
proteins	 (OMPs)	 and	 the	 trafficking	 and	 assembly	 of	 OMPs	 in	 Gram-negative	
bacteria	is	a	subject	of	intense	research.	Structurally,	OMPs	vary	in	the	number	of	
β-strands	 and	 in	 the	 size	 and	 complexity	 of	 extra-membrane	 domains,	 being	
extreme	 examples	 the	 members	 of	 the	 type	 V	 protein	 secretion	 system	 (T5SS),	
such	as	the	autotransporter	(AT)	and	intimin/invasin	families	of	secreted	proteins,	
in	 which	 a	 large	 extracellular	 "passenger"	 domain	 is	 linked	 to	 a	 β-barrel	 that	
inserts	in	the	OM.		Despite	their	structural	and	functional	diversity,	OMPs	interact	
in	the	periplasm	with	a	relatively	small	set	of	protein	chaperons	that	facilitate	their	
transport	 from	 the	 inner	 membrane	 (IM)	 to	 the	 β-barrel	 assembly	 machinery	
(BAM	 complex),	 preventing	 aggregation	 and	 assisting	 their	 folding	 in	 various	
aspects	 including	 disulfide	 bond	 formation.	 This	 chapter	 is	 focused	 on	 the	
periplasmic	 folding	 factors	 involved	 in	 the	 biogenesis	 of	 integral	 OMPs	 and	
members	 of	 T5SS	 in	 E.	 coli,	 which	 is	 used	 as	 a	 model	 system	 in	 this	 field.	
Background	 information	 of	 these	 periplasmic	 folding	 factors	 is	 provided	 along	
with	 genetic	methods	 to	 generate	 conditional	mutants	 that	 deplete	 these	 factors	
from	 E.	 coli	 and	 biochemical	 methods	 to	 analyze	 the	 folding,	 surface	 display,	
disulfide	formation	and	oligomerization	state	of	OMPs/T5SS	in	these	mutants.	

	 	



Introduction	

The	biogenesis	of	OMPs	initiates	in	the	bacterial	cytoplasm	and	encompasses	their	
translocation	 across	 the	 IM	 to	 the	 periplasm	 via	 the	 Sec	 pathway	 before	 final	
folding	 and	 assembly	 in	 the	 OM	 by	 the	 β-barrel	 assembly	 machinery	 (BAM	
complex)	 (1-4).	 OMPs	 contain	 an	 N-terminal	 cleavable	 signal	 sequence	 that	 is	
recognized	by	the	SecYEG	translocon.	In	the	cytoplasm,	OMPs	bind	to	SecB,	which	
maintains	them	in	a	fully	unfolded	state	until	they	reach	the	translocase	that	drives	
translocation	 of	 the	 polypeptide	 across	 the	 IM	 in	 an	 unfolded	 conformation	 (5).	
Subsequently,	in	the	periplasm	the	polypeptides	are	assisted	by	different	types	of	
folding	factors	and	escorted	to	the	BAM	complex	for	OM	assembly	(6,	7).		

The	identification	of	extracytoplasmic	folding	factors	started	in	the	early	nineties	
with	the	discovery	of	disulfide	bond	formation	by	DsbA	and	the	peptidylprolyl-cis-
trans-isomerase	 PpiA	 (8,	 9).	 In	 1996,	 as	 a	 result	 of	 the	 search	 for	 proteins	 that	
decreased	the	σE-dependent	response	constitutively	induced	by	the	accumulation	
of	 misfolded	 proteins	 in	 the	 periplasm,	 SurA,	 FkpA	 and	 Skp	 proteins	 were	
identified	as	periplasmic	folding	factors	(10).	In	that	same	year,	SurA	and	Skp	were	
shown	 to	 bind	 and	 assist	 the	 folding	 of	 OMPs,	 confirming	 their	 function	 as	
molecular	chaperones	(11,	12).	Since	these	initial	discoveries,	the	work	of	the	past	
decades	has	 led	to	the	 identification	of	numerous	periplasmic	 folding	factors,	 the	
obtention	 of	 their	 crystalized	 structures	 and	 elucidation	 of	 the	 molecular	
mechanisms	and	events	that	participate	in	the	biogenesis	of	OMPs	(1-4,	13-17).		

The	 periplasm	 contains	 numerous	 folding	 catalysts,	 that	 in	 some	 cases	 present	
overlapping	 functions:	 chaperones	 for	 preventing	 undesirable	 off-pathway	
interactions	 or	 aggregation	 of	 improperly	 folded	 polypeptides	 (e.g.	 Skp,	 SurA,	
DegP,	 HdeA	 and	 Spy),	 peptidyl–prolyl	 cis/trans	 isomerases	 (PPIases)	 catalyzing	
cis/trans	isomerization	of	proline	peptide	bonds	in	proteins	(e.g.	SurA,	FkpA,	PpiA,	
PpiD),	 oxidorreductases	 that	 mediate	 the	 formation	 and	 exchange	 of	 disulfide	
bonds	 (e.g.	 DsbA,	 DsbC),	 and	 proteases	 (e.g.	 DegP).	 These	 proteins	 assist	 the	
folding	 of	 OMPs	 but	 also	 other	 types	 of	 periplasmic	 and	 membrane-associated	
proteins.	The	structure	and	function	of	 the	above	mentioned	folding	factors	have	
been	 reviewed	 recently	 (3,	 13,	 17,	 18).	 In	 addition	 to	 the	 above-mentioned	
proteins,	 the	periplasm	of	Gram-negatives	contains	other	 types	of	 folding	 factors	
that	 are	 specifically	 dedicated	 to	 assist	 the	 subunits	 of	 surface	 organelles	 (e.g.	
fimbria,	 pili,	 etc.).	 The	 function	 of	 dedicated	 periplasmic	 chaperones	 of	 fimbrial	
subunits	(e.g.	PapD,	FimC)	has	been	reviewed	recently	(19).	

The	 periplasmic	 chaperones	 are	 also	 involved	 in	 the	 protection	 of	 OMPs	 under	
stress	 conditions.	 Envelope	 stress	 induces	 the	 accumulation	 of	 misfolded	 or	
aggregated	 OMPs	 in	 the	 periplasm,	 which	 is	 lethal	 to	 the	 cell.	 To	 avoid	 cellular	
damage,	Gram-negative	bacteria	have	 evolved	 signal	 transduction	pathways	 (e.g.	
σE	 and	 Cpx	 systems)	 that	 sense	 and	 respond	 to	 stress,	 in	 part	 by	 upregulating	
periplasmic	folding	factors	(e.g.	SurA,	Skp,	FkpA)	and	proteases	(DegP)	(13,	20).		

The	 SurA	 polypeptide	 is	 composed	 of	 four	 domains:	 an	N-terminal	 domain,	 two	
central	 PPIase	 domains	 (PPIase	 1	 and	 2)	 of	 the	 parvulin	 family	 and	 a	 short	 C-
terminal	domain	(21).	The	N-	and	the	C-terminal	regions	have	chaperone	activity,	
whereas	 the	PPIase	 activity	 exclusively	 resides	 in	 the	PPIase	domain	2	 (22),	 the	
PPIase	domain	1	could	be	responsible	for	substrate	selection	because	it	was	shown	



to	selectively	bind	peptides	that	are	rich	in	aromatic	residues	and	characteristic	for	
OMPs	 (23).	 SurA	 has	 a	 strong	 preference	 for	 binding	 Ar-X-Ar	 tripeptide	 motifs,	
commonly	 found	in	the	C-terminus	of	OMPs,	being	Ar	any	aromatic	and	X	can	be	
any	residue	(24).	SurA	binds	OMPs	immediately	after	they	leave	the	Sec	translocon	
before	signal	sequence	cleavage	(25),	and	 it	has	been	shown	to	 interact	with	 the	
AT	serine	protease	EspP	from	enterohemorrhagic	E.	coli	(EHEC)	O157:H7	(26).	It	
is	 also	 the	 may	 chaperone	 assisting	 folding	 of	 EHEC	 Intimin	 (27).	 Interestingly,	
SurA	was	 also	 detected	 in	 association	with	 BamA,	 the	 central	 component	 of	 the	
BAM	complex	(26,	28,	29).	These	and	other	experimental	observations	(30),	have	
led	propose	that	SurA	binds	unfolded	OMPs	in	the	periplasm	and	transports	them	
to	 BamA,	 where	 they	 are	 taken	 by	 the	 periplasmic	 polypeptide	 transport-
associated	 (POTRA)	 domains	 through	 a	 β-augmentation	 mechanism.	 SurA	 and	
BamB	 have	 been	 also	 suggested	 to	 function	 in	 the	 same	 folding	 pathway	 of	
numerous	 OMPs	 (25,	 31-33).	 Recently,	 Ricci	 and	 collaborators	 have	 shown	 that	
defects	in	OMP	assembly	caused	by	mutations	of	BamA	or	BamB	can	be	corrected	
by	gain-of-function	mutations	in	the	PPIase	1	domain	of	SurA,	suggesting	that	the	
activity	 of	 SurA	 could	 be	 regulated	by	 interactions	 between	 its	 PPIase	 1	 domain	
and	BamA/BamB	(34).		

Skp	 is	a	 small	protein	of	about	17	kDa	 that	 forms	a	homotrimer,	which	binds	 its	
substrate	 in	 a	 1:1	 stoichiometry.	 The	 crystallized	 trimer	 shows	 a	 structure	with	
three	α-helical	tentacles	protruding	from	a	basal	trimerization	interface	forming	a	
central	 cavity	 that	 holds	 substrates	 protecting	 them	 from	 aggregation	 (35,	 36).	
Recent	 structural	 and	 biophysical	 analysis	 showed	 that	 Skp	 forms	 transient	
interactions	with	OMP	polypeptides	 that	are	 sequence	unspecific	and	weak,	 thus	
allowing	 Skp	 to	 interact	with	 a	 broad	 range	 of	 different	 substrates.	 The	 authors	
speculate	 that	 the	 flexibility	 of	 the	 interaction	 between	 Skp	 and	 the	 OMP	
substrates	 could	 also	 facilitate	 its	 release	 to	 a	 downstream	 receptor	 in	 the	 Bam	
complex	bearing	higher	affinity	for	a	particular	sequence	in	the	OMP	(37).	In	vivo,	
Skp	binds	unfolded	OMPs	while	they	are	still	engaged	in	translocation	through	Sec	
translocon	 (38,	 39).	 Site-specific	 photocrosslinking	 experiments	 have	
demonstrated	 that	 Skp	 interacts	 with	 the	 AT	 EspP,	 which	 is	 at	 the	 same	 time	
engaged	with	components	of	the	BAM	complex	(26,	40).	Intriguingly,	although	Skp	
was	shown	to	 interact	with	more	than	30	envelope	proteins	of	E.	coli	 (40-42),	 to	
date	 no	OMP	 appears	 to	 depend	preferentially	 on	 Skp	 for	 folding	 in	E.	 coli	 (43).	
However,	 recent	 experiments	 in	 Neisseria	 meningitidis	 demonstrated	 that	 two	
major	 OMPs,	 PorA	 and	 PorB,	 use	 Skp	 preferentially	 (44),	 and	 Skp	 was	
demonstrated	 to	be	required	 for	 the	efficient	assembly	of	 the	AT	 IcsA	 in	Shigella	
flexneri	(45).		

DegP	belongs	to	the	serine	proteases	high	temperature	requirement	(HtrA)	family	
and	is	considered	both	a	chaperone	and	a	protease	(46-48).	The	DegP	monomer	is	
composed	of	 a	N-terminal	 trypsin-like	protease	domain	 and	 two	C-terminal	 PDZ	
domains	 allowing	DegP	 to	 recognize	 its	 substrates	 (47).	 DegP	 exists	 in	 different	
oligomeric	 forms,	 ranging	 from	 a	 6-mer	 to	 a	 24-mer	 with	 a	 3-mer	 as	 the	
fundamental	 building	 block.	 In	 the	 presence	 of	 the	 substrate,	 the	 homotrimers	
further	 oligomerize	 via	 PDZ1–PDZ2	 interactions	 into	 oligomeric	 cage-like	
structures	 that	 exhibit	 both	 protease	 and	 chaperone	 activity	 (48-53).	 The	 likely	
reason	for	the	different	oligomeric	states	of	DegP	is	to	provide	functional	control	of	
its	efficient	but	rather	indiscriminate	proteolytic	activity	(52).	DegP	is	upregulated	



by	 the	 σE	 and	 the	 Cpx	 systems	 in	 response	 to	 heat	 shock	 or	 to	 other	 envelope	
stresses	 performing	 both	 the	 antagonistic	 functions	 of	 protein	 repair	 and	
degradation	 (13).	 DegP	 was	 proposed	 to	 act	 as	 a	 molecular	 chaperone	 mainly	
based	 on	 the	 observations	 that	 captures	 folded	 OmpA	 and	 OmpC	 (48).	
Interestingly,	 complementation	 experiments	 with	 a	 DegP	 protein	mutated	 in	 its	
protease	active	site	(DegP-S236A)	rescued	full	expression	of	EspP	in	a	degP	mutant	
strain	with	severe	reduction	of	EspP	secretion	(42).	 In	 the	case	of	EHEC	 Intimin,	
DegP	was	shown	 to	act	mainly	as	a	protease	 to	degrade	unfolded	polypeptide	 in	
the	periplasm	 (27).	Recently,	Ge	and	 collaborators	used	genetically	 incorporated	
non-natural	 amino	 acids	 for	 the	 identification	 of	 DegP	 substrates	 by	
photocrosslinking	and	co-purification	 in	E.	 coli	 cells,	 and	 identified	several	OMPs	
including	OmpC,	F,	A,	X,	W	and	NmpC	 (54).	 In	 this	work,	 the	authors	 stated	 that	
DegP	 mainly	 functions	 as	 a	 protease	 with	 hardly	 any	 appreciable	 chaperone	
function	(54).		

Two	 pathways	 have	 been	 shown	 to	 assist	 the	 biogenesis	 of	 OMPs:	 SurA	 and	
Skp/DegP	pathways.	Genetic	analysis	performed	in	E.	coli	 indicated	that	bacterial	
cells	 that	 lack	 either	 SurA	 or	 Skp	 are	 viable,	 but	 cells	 that	 lack	 SurA	 and	 Skp	 or	
SurA	and	DegP	are	not	viable	 (synthetic	 lethality).	This	discovery	 suggested	 that	
DegP/Skp	and	SurA	operate	 in	parallel	pathways	that	are	 functionally	redundant	
(55).	In	E.	coli,	OMP	assembly	preferentially	depends	on	SurA,	suggesting	that	the	
DegP/Skp	pathway	functions	as	a	backup	to	rescue	OMPs	that	fall	off	of	the	SurA	
pathway,	particularly	under	stressful	conditions	(27,	28,	43).	The	major	arguments	
in	 favor	of	 this	hypothesis	 is	 that	whereas	 strains	 lacking	 surA	 have	a	decreased	
OM	density	(28)	and	are	hypersensitive	to	detergents	and	hydrophobic	antibiotics,	
an	 indicative	 of	 OM	 perturbations	 (43),	 deletion	 of	 the	 skp	 gene	 only	 leads	 to	 a	
moderate	reduction	 in	OMPs	(56)	and	shows	a	much	 less	severe	phenotype	than	
surA	mutants	(28).	In	an	alternative	model,	it	has	been	proposed	that	Skp	and	SurA	
cooperate	 sequentially	 in	 the	 same	 pathway	 (57).	 Interestingly,	 it	 has	 been	
reported	 that	 both	 SurA	 and	 Skp	 perform	 distinct	 roles	 in	 the	 biogenesis	 of	 the	
essential	 OMP	 LptD,	 indicating	 that	 both	 pathways	 might	 act	 in	 concert	 to	
efficiently	assemble	certain	OMPs	(58).	Despite	of	the	numerous	findings,	the	exact	
role	 of	 the	 various	 players	 involved	 is	 far	 to	 be	 clear	 (59).	 It	 is	 still	 difficult	 to	
provide	a	detailed	description	of	the	role	of	the	periplasmic	folding	factors	that	is	
universally	applicable	 to	all	OMPs.	The	preference	 for	periplasmic	 folding	 factors	
seems	to	be	protein	and	potentially	species-specific	(14).	

Besides	 SurA,	 the	 periplasm	 of	 E.	 coli	 contains	 several	 other	 PPIases:	 PpiD	 and	
PpiA,	whose	 function	 in	 OMP	 biogenesis	 remains	 to	 be	 clarified	 (17),	 and	 FkpA.	
FkpA	belongs	 to	 the	FKBP	 family	of	PPIases,	presents	general	 chaperone	activity	
(60)	 and	 is	 upregulated	 by	 the	 σE	 system	 in	 response	 to	 envelope	 stress	 (61).	
Structuraly,	 FkpA	 is	 a	 V-shaped	 homodimer	 comprised	 of	 two	 monomers,	 each	
containing	 a	 C-terminal	 domain	 with	 PPIase	 activity	 and	 an	 N-terminal	
dimerization	 domain	 constituted	 by	 three	 α-helices	 that	 accommodate	 the	
chaperone	 activity	 (62).	 The	 activity	 of	 FkpA	 as	 a	 periplasmic	 chaperone	 was	
initially	demonstrated	using	heterologous	proteins	expressed	 in	E.	 coli.	Although	
there	 is	 limited	data	 regarding	 the	natural	 substrates	of	 this	 folding	 factor,	FkpA	
was	shown	 to	bind	unfolded	EspP	passenger	domain	with	high	affinity	 (63),	and	
recently	 it	 has	 been	 proposed	 that	 this	 chaperone	 plays	 a	 role	 in	 the	 folding	 of	
LptD	and	FhuA	(59,	63).	



The	periplasmic	 disulfide	 bond	 catalysts	DsbA	 and	DsbC	 that	 carry	 out	 disulfide	
bond	formation	and	isomerization	have	been	shown	to	improve	both	the	speed	of	
otherwise	 slow	 steps	 in	 protein	 folding	 and	 the	 stability	 of	 proteins.	 DsbA	 is	 a	
monomeric	protein	with	a	thioredoxin	fold	and	has	a	CXXC	catalytic	motif	with	a	
redox-active	cysteine	pair	(Cys30–	Cys33)	(64).	It	has	been	suggested	that	DsbA	is	
the	main	oxidant	in	the	periplasm	having	more	than	300	in	vivo	substrates	in	E.	coli	
(65),	including	Imp	(66),	OmpA	(67),	or	the	passenger	domains	of	intimin	(27)	and	
IcsA	 (68).	 DsbA	 also	 forms	 disulfide	 bonds	 in	 LptD,	 the	 OMP	 translocon	 of	 LPS	
(69).	 It	 has	 been	 shown	 that	 DsbA	 introduces	 disulfide	 bonds	 nonspecifically	
between	consecutive	cysteines	into	proteins	entering	the	periplasm	(70),	without	
regard	 for	 the	 correct	 disulfide	 pairing	 that	 is	 found	 in	 the	 native	 conformation.	
The	 isomerization	 of	 incorrect	 disulfide	 bonds	 is	 catalyzed	 by	 the	 disulphide	
isomerase	DsbC	(71).	DsbC	is	a	V-shaped	homodimeric	protein,	and	each	monomer	
consists	 of	 two	 domains:	 an	 N-terminal	 dimerization	 domain	 and	 a	 C-terminal	
thioredoxin-like	 domain	with	 a	 CXXC	motif	 bearing	with	 a	 redox-active	 cysteine	
pair	 (Cys98-Cys101)	 (72),	 which	 should	 be	 maintained	 in	 its	 reduced	 state	 for	
proper	 isomerase	activity	 in	a	process	mediated	by	 the	disulfide	reductase	DsbD	
(73).	 Currently,	 it	 is	 becoming	 apparent	 the	 importance	 of	 Dsb	 systems	 for	
bacterial	 pathogenesis,	 and	 numerous	 Gram-negative	 pathogens	 either	 encode	
several	copies	of	their	Dsb	genes	or	posses	functional	Dsb	paralogs	(74).	The	study	
of	dsb	mutants	of	various	bacterial	pathogens	has	shown	an	impaired	assembly	of	
different	 adhesive	 organelles	 (18)	 and	 attenuation	 (75,	 76),	 revealing	 the	
implication	of	Dsbs	in	bacterial	virulence	and,	importantly,	that	disulfide	formation	
systems	are	interesting	targets	for	the	design	of	new	antimicrobial	drugs.		

Overall,	a	possible	picture	for	OMP	biogenesis	is	that	major	OMPs	and	certain	ATs	
and	 LptD	 may	 recruit	 Skp	 and/or	 FkpA	 at	 an	 early	 stage	 for	 preventing	
aggregation.	 SurA	 plays	 a	 role	 for	 targeting	 the	 OMP	 β-domain	 and	 the	 AT	
passenger	 domain	 of	 EspP	 to	 the	 BAM	 complex	 (3,	 40,	 57,	 77).	 Although	 the	
function	of	FkpA	is	still	unclear,	it	has	been	reported	that	this	protein	assists	Skp	in	
the	folding	of	certain	OMPs	(59).	FkpA	may	be	a	novel	quality	control	factor	under	
heat-shock	 conditions	 (78).	 	 DsbA	 and	 DsbC	 catalyze	 the	 formation	 of	 disulfide	
bonds	 in	 cysteine-containing	 polypeptides.	 The	 role	 of	DegP	 as	 a	 chaperone	 still	
remains	to	be	elucidated	but	it	clearly	plays	an	important	role	as	a	protease	in	the	
quality	control	of	OMP	biogenesis.	In	general,	translocation	incompetent	OMPs	are	
degraded	 by	 DegP,	 relieving	 the	 cell	 from	 the	 toxic	 effects	 associated	 with	 the	
presence	of	misfolded	polypeptides.		

Despite	 the	recent	advances	and	the	 intense	research	 in	OMP	biogenesis,	we	still	
have	 a	 relatively	 poor	 understanding	 of	 how	 OMPs	 and	 ATs,	 as	 structural	
challenging	 substrates,	 are	 maintained	 in	 a	 translocation	 competent	 state	 and	
transported	across	the	periplasm	by	the	different	folding	factors.	Also,	defining	the	
exact	 role	 of	 the	 different	 players	 and	 how	 they	 interact	 and	 regulated	 are	
important	questions	 that	 remain	unanswered.	 It	 is	 becoming	apparent	 that	 even	
homologous	 chaperones	 in	 different	 species	 function	 quite	 differently.	 Hence,	
further	 studies	 are	 thus	 required	 to	 allow	 an	 in-depth	 understanding	 of	 the	
molecular	mechanisms	that	govern	the	periplasmic	transit	and	assembly	of	OMPs.		

	



Section	I.	Genetic	strategy	for	analyzing	the	role	of	periplasmic	folding	factors		

1.	Obtention	of	conditional	depletion	mutants	of	periplasmic	folding	factors	
in	E.	coli	

The	evidences	for	the	functional	role	of	periplasmic	chaperones	have	been	defined	
in	 vivo	 using	 genetically	 modified	 strains	 bearing	 either	 null	 mutations,	 or	 in	
conditional	depletion	strains,	 in	which	 the	expression	of	 the	chaperone	gene	can	
be	regulated	allowing	control	of	protein	levels	(28,	55).		

The	 procedure	 presented	 here	 describes	 the	 generation	 of	 a	 conditional	mutant	
strain	 in	 which	 an	 inducible	 araC-PBAD	 promoter	 cassette	 replaces	 the	 native	
promoter	of	surA	on	the	chromosome	(Figure	1).	The	transcriptional	activity	of	the	
PBAD::surA	 allele	 can	be	 controlled	by	 the	presence	 in	 the	 growth	medium	of	 the	
inducer	L-arabinose	or	the	repressor	D-glucose.	This	strategy	was	used	to	obtain	
conditional	mutants	 in	surA	 (27,	33)	and	bamA	 (27).	This	approach	can	be	easily	
adapted	to	the	periplasmic	folding	factor	of	interest	in	each	case.	

In	 this	 approach	we	 adapted	 a	method	 developed	 by	 the	 laboratory	 of	 Dr	 Jean-
Marc	Ghigo	that	combines	the	lambda-red	linear	DNA	recombination	method	with	
site-directed	 insertion	 of	 a	 repression	 and	 expression	 (RExBAD)	 cassette	 that	
replaces	 a	 native	 promoter	 with	 a	 functional	 pBAD	 promoter	 (79).	 The	 mutant	
strains	 described	 here	 were	 obtained	 by	 one-step	 inactivation	 of	 chromosomal	
genes	 with	 PCR	 products	 in	 E.	 coli	 cells	 bearing	 the	 bacteriophage	 lambda-red	
recombination	system	(80,	81).		

To	avoid	recombination	in	the	araC	gene	we	generated	an	E.	coli	UT5600	knockout	
strain	 devoid	 of	 araC	 termed	 UT5601.	 Subsequently,	 this	 strain	 was	 used	 for	
generating	the	RExBAD	conditional	mutant	with	regulated	surA	expression	termed	
UTPBAD::surA.	

2.	Materials	

2.1.	Bacterial	culture	

1.	Incubators	and	shakers	set	at	30°C,	37°C	or	42°C.	

2.	 Spectrophotometer	 and	 cuvettes	 for	 measuring	 optical	 densities	 of	 bacterial	
cultures.	

3.	LB	medium:	10	g	tryptone,	5	g	yeast	extract	and	10	g	NaCl.	Low	salt	LB	medium:	
10	g	tryptone,	5	g	yeast	extract	and	5	g	NaCl.	Combine	the	dry	reagents	above	and	
add	 distilled	 water	 to	 950	 ml.	 Adjust	 pH	 to	 7.5	 with	 1	 N	 NaOH	 and	 bring	 the	
volume	up	to	1	liter.	SOC	medium:	Add	the	following	to	900	ml	of	distilled	H2O,	20g	
Tryptone,	5	g	Yeast	Extract,	2	ml	of	5M	NaCl,	2.5	ml	of	1M	KCl,	10	ml	of	1M	MgCl2,	
10	ml	 of	 1M	MgSO4.	Adjust	 to	 1L	with	 distilled	H2O.	BHI	 broth	medium:	 37	 g	 of	
powder	with	1	liter	of	distilled	water.	Autoclave	on	liquid	cycle	at	15	psi	and	121°C	
for	20	min	and	store	at	room	temperature.	For	LB	agar	plates,	add	15	g	agar	to	1	
liter	of	LB,	autoclave	as	above	and	allow	it	to	cool	at	room	temperature	for	at	least	
55°C.	Add	antibiotics	as	needed,	and	pour	into	100	mm×15	mm	petri	plates	using	
25–30	ml	per	plate.		



4.	Ampicillin	(sodium	salt).	Dissolve	1	g	of	sodium	ampicillin	in	distilled	deionized	
water	to	a	 final	volume	of	10	ml.	Filter-sterilize	the	ampicillin	solution	through	a	
0,22	µm	filter.	Store	the	ampicillin	in	aliquots	at	-20°C	(or	at	4°C	for	3	months).	

5.	Kanamycin	(monosulfate).	Make	kanamycin	to	a	final	concentration	of	50	mg/ml	
in	distilled	deionized	water.	Filter-sterilize	as	above	and	store	in	aliquots	at	−20°C.	

6.	Zeocin.	The	stock	solution	is	dissolved	at	100	mg/ml	in	distilled	deionized	water.	
Filter-sterilize	as	above	and	store	in	aliquots	at	−20°C.	Do	not	store	at	4°C	for	more	
than	a	week.	(See	Note	1).		

7.	20%	L-Arabinose	stock.	Dissolve	10	g	in	50	ml	of	distilled	deionized	water	and	
filter	sterilize.	

8.	 20%	D-Glucose	 stock.	Dissolve	 10	 g	 in	 50	ml	 of	 distilled	 deionized	water	 and	
filter	sterilize.	

9.	 TG1zeoRExBAD	 E.	 coli	 bacterial	 strain	 is	 a	 gift	 of	 Dr.	 Jean-Marc	 Ghigo.	 The	
zeoRExBAD	 (zeoR	 araC	 PBAD)	 promoter	 cassette	 is	 a	 modification	 of	 the	
catRExBAD	cassette	(79).	

10.	UT5600	E.	coli	bacterial	strain	(82).	

11.	 pKD4	 plasmid:	 Template	 for	 gene	 disruption.	 OriR6Kgamma,	 (AmpR,	 KmR),	
rgnB(Ter).	The	Km	resistance	gene	is	flanked	by	FRT	sites.	Gene	Bank:	AY048743	
(81).		

12.	 pKD46	 plasmid:	 Lambda	 Red	 recombinase	 expression	 plasmid.	 repA101(ts),	
araBp-gam-bet-exo,	oriR101,	(AmpR).	Gene	Bank:	AY048746	(81).		

13.	 pCP20	 plasmid:	 Has	 the	 yeast	 Flp	 recombinase	 gene,	 ts-rep,	
[cI857](lambda)(ts),	(AmpR,	CmR)	(83).		

2.2.	Recombineering	reagents	

1.	Thermocycler	(e.g.,	T100	Thermal	Cycler,	BioRad).	

2.	Biorad	MicroPulser	Electroporator	(#165-2100).	

3.	 Electroporation	 cuvettes	 –	 sterile,	 0.2	 cm	 gap,	 package	 of	 50	 (Bio-Rad,	 165-
2086).	

4.	Agarose.	Use	at	0.75–1.5%	for	analysis	of	PCR	products.	

5.	Vent	DNA	polymerase	(NEB,	M0254S).	Enzyme	used	for	generating	PCR	recom-	
bineering	substrates.	

6.	Taq	DNA	polymerase.	Enzyme	used	for	colony	PCR.	

7.	 DpnI	 enzyme	 (NEB,	 R0176S).	 Restriction	 enzyme	 used	 to	 cleave	 methylated	
DNA.	

8.	QIAprep	Spin	Miniprep	kit	(Qiagen).	Used	for	the	isolation	of	plasmids.	



9.	QIAquick	PCR	purification	kit	(Qiagen)	and	Qiaex	II	gel	extraction	kit	(Qiagen).	
Used	 for	 the	 purification	 of	 PCR	 products	 to	 be	 used	 as	 substrates	 for	
recombineering.	

10.	Elution	buffer:	10	mM	Tris–HCl,	pH	8.5.	

11.	dNTPs:	2.5	mM	each	of	dATP,	dCTP,	dGTP,	dTTP.	

12.	Sterile	distilled	water	and	sterile	distilled	deionized	water.	

13.	Glycerol.	

14.	 Electroporation	 washing	 buffer:	 Dilute	 50	 ml	 of	 glycerol	 in	 450	ml	 distilled	
deionized	water	and	sterilize	using	0,22	µm	filters.	Store	at	4°C.	

2.3.	Denaturing	SDS-PAGE	

1.	 Electrophoresis	 system:	 Bio-Rad	 Mini-PROTEAN	 3	 or	 equivalent.	
Electrophoresis	 power	 supply	 (PowerPac	 Basic	 Power	 Supply.	 Bio-Rad,	 164-
5050EDU)	or	equivalent.	

2.	 Running	 gel	 buffer	 (1	M	Tris-HCl,	 pH	8.8):	Dissolve	 90.9	 g	 Tris-base	 in	 1	 L	 of	
dH2O,	adjust	to	pH	8.8	with	HCl.	

3.	 Stacking	 gel	 buffer	 (1	M	Tris-HCl,	 pH	6.8):	Dissolve	 30.3	 g	 Tris-base	 in	 1	 L	 of	
dH2O,	adjust	to	pH	6.8	with	HCl.	

4.	30%	Acrylamide	solution:	29.2%	acrylamide/0.8%	bis-acrylamide	(See	Note	2).		

5.	Ammonium	persulfate	(APS)	25%.	Dissolve	2.5	g	APS	in	a	total	volume	of	10	ml	
of	distilled	water.	Filter	(0.45	μm)	and	make	1-ml	aliquots.	Store	a	working	aliquot	
at	4°C	and	the	rest	of	the	aliquots	at	–80°C.	

6.	10%	SDS.	Dissolve	10	g	of	SDS	in	80	ml	of	distilled	water,	and	then	add	distilled	
water	to	100	ml.	This	stock	solution	is	stable	 for	6	months	at	room	temperature.	
Caution:	Wear	a	dust	mask	for	protection	against	breathing	SDS	powder.	

7.	Tetramethylethylenediamine	(TEMED).		

8.	5X	Running	buffer:	5X	Electrophoresis	buffer:	15.1	g	Tris	base,	72	g	glycine,	and	
5	g	SDS	in	1	liter	of	distilled	water.	

9.	2×	sample	buffer:	Dissolve	2	mg	bromophenol	blue	 in	1.25	ml	of	1	M	Tris–HCl	
(pH	6.8),	2	ml	of	glycerol,	4	ml	of	10%	SDS,	0.5	ml	of	β-mercaptoethanol	(2-ME),	
and	2.25	ml	of	dH2O.	Store	in	aliquots	at	−20°C.	

10.	 Molecular	 weight	 marker	 (e.g.,	 a	 prestained	 protein	 markers,	 Bio-Rad,	 or	
equivalent).	

2.4.	Western	blotting	

1.	Semidry	transfer	apparatus	(e.g.,	Trans-Blot	SD,	Bio-Rad,	or	equivalent).		

2.	5X	transfer	buffer:	15.1	g	Tris	and	72	g	glycine	in	1	liter	of	distilled	water.		



3.	1X	 transfer	buffer:	Mix	300	ml	of	H2O,	100	ml	of	5X	 transfer	buffer,	100	ml	of	
methanol,	and	1.9	ml	of	10%	SDS.		

4.	PVDF	membrane	(e.g.,	Immobilon-P,	Millipore).	

5.	Methanol	

6.	Extra-thick	blot	paper	(e.g.,	Bio-Rad);	2–3	mm	thickness.		

7.	Primary	antibody:	anti-GroEL	monoclonal	antibody-peroxidase	(POD)	conjugate	
(1:5,000;	 Sigma)	 and	 anti-OmpA	 (1:20,000;	 a	 gift	 of	 Hiroshi	 Nikaido),	 anti-Skp	
(1:1,000;	 a	 gift	 of	 Matthias	 Mueller),	 anti-MBP-DegP	 (1:5,000;	 a	 gift	 of	 Michael	
Ehrmann),	anti-SurA	(1:10,000;	a	gift	of	Roberto	Kolter),	anti-Fim	D	(33).		

8.	Secondary	antibody:	bound	rabbit	antibodies	were	detected	with	protein	A-POD	
conjugate	(1:8,000;	Zymed)	(See	Note	3).		

9.	PBS:	Dissolve	8	g	NaCl,	0.2	g	KCl,	1.44	g	Na2HPO4	and	0.24	g	KH2PO4	in	800	ml	of	
distilled	 water.	 Adjust	 pH	 to	 7.4	 with	 HCl;	 add	 distilled	 water	 to	 1	 liter	 and	
autoclave.	

10.	PBS-0.1%	Tween	20	(PBST):	Mix	on	magnetic	stirrer	1	ml	Tween	20	(Sigma,	P-
1379)	in	1	liter	of	PBS.	

11.	Blocking	and	antibody	dilution	solution:	dissolve	5	g	of	non-fat	dry	milk	in	100	
ml	of	PBST.	

12.	X-ray	film.		

3.	Methods	

3.1.	Obtention	of	UT5600	ΔaraC	(UT5601)	E.	coli	strain		

1.	 The	 targeting	 substrate	 for	 recombineering	 is	 a	 PCR	 product	 consisting	 in	 a	
Kanamycin	 (Km)	 drug	marker	 flanked	 by	 upstream	 and	 downstream	 regions	 of	
araC	 target	site	amplified	 from	pKD4	plasmid	 template.	The	primers	 for	 the	PCR	
are	shown	below.	The	20	bases	on	the	3´end	of	each	oligonucleotide	(lower	case)	
anneal	to	and	amplify	the	Km	cassette,	 the	rest	of	the	bases	on	the	5	end	of	each	
primer	(upper	case)	contain	the	upstream	sequence	and	the	reverse	complement	
of	the	downstream	sequence.		

AraC	KO1	(5’-	CCC	TAT	GCT	ACT	CCG	TCA	AGC	CGT	CAA	TTG	TCT	GAT	TCG	TTA	
Cgt	gta	ggc	tgg	agc	tgc	ttc)	and	AraC	KO2	(5’-	CCG	CCA	AAG	CTC	GCA	CAG	AAT	CAC	
TGC	CAA	AAT	CGA	GGC	Cat	atg	aat	atc	ctc	ctt	agt)	were	used	as	primers	for	PCR	on	
pKD4	template.			

2.	Prepare	a	PCR	reaction	(75	µl)	as	follows:	60,75	µl	sterile	deionized	water,	7,5	µl	
10×	Vent	PCR	buffer	 (NEB),	 1,5	µl	 dNTPs	 (10	mM),	 1,5	µl	 primer	AraC	KO1	 (20	
µM),	 1,5	 µl	 primer	 AraC	 KO2	 (20	 µM),	 1,5	 µl	 pKD4	 (10	 ng)	 and	 0,75	 µl	 Vent	
polymerase	(NEB)	used	as	a	high	fidelity	polymerase.	

3.	Perform	standard	PCR	as	follows:	(step	1)	95°C,	4	min;	(step	2)	94°C,	30	s;	(step	
3)	59°C,	30	s;	(step	4)	74°C,	2	min.	Repeat	last	three	steps	29	times;	(step	5)	74°C,	



5	min;	(step	6)	hold	at	4°C.	The	extension	times	should	be	increased	for	products	
expected	to	be	longer	than	1	kb.	When	completed,	load	10	µl	of	the	PCR	on	a	1%	
agarose	gel	to	check	for	correct	size	and	purity	of	the	PCR	product.	Clean	the	PCR	
product	 with	 QIAquick	 PCR	 purification	 kit	 (Qiagen)	 and	 elute	 DNA	 in	 50	 µl	 of	
elution	buffer.	

4.	Degrade	chromosomal	DNA	that	may	be	present	in	the	sample	with	DpnI	(NEB),	
a	methylation-dependent	 restriction	enzyme	 that	cleaves	Gm6A^TC	sites.	Mix	43	
µl	 of	 the	 PCR	product	with	 1	µl	 of	DpnI	 (NEB)	 and	5	µl	 of	 10X	CutSmart	Buffer	
(NEB)	and	incubate	at	37°C	for	two	hours.	

5.	Gel-purify	the	PCR	product	using	a	gel	extraction	kit	(Qiaex	II,	Qiagen)	following	
manufacturer´s	instructions	and	elute	in	50	µl	of	sterile	deionized	water.	

6.	 Transform	 UT5600	 E.	 coli	 bacterial	 strain	 (82)	 with	 Red-recombineering	
plasmid	 pKD46	 (AmpR)	 following	 a	 protocol	 suited	 for	 this	 purpose.	 Plate	
transformation	 at	 30°C	 on	 LB	 plates	 containing	 100	 µg/ml	 Amp	 overnight.	
Inoculate	 a	 fresh	 colony	 into	 25	 ml	 LB	 containing	 100	 µg/ml	 Amp	 and	 grow	
overnight	at	30°C.	

7.	 In	 a	 125	ml	 flask,	 inoculate	 20	ml	 of	 LB	 containing	 100	µg/ml	 ampicillin	 and	
0.2%	(v/v)	L-Arabinose	with	200	µl	of	the	5	ml	overnight	(ON)	culture	containing	
pKD46.	Grow	cells	shaking	(210	rpm)	at	30°C	to	an	OD	of	0.5	(~108	cells/ml).	

8.	Chill	 the	culture	on	 ice	 for	5	minutes	and	pour	 it	 into	pre-chilled	sterile	50	ml	
Falcon	 tubes.	 Collect	 cells	 by	 centrifugation	 in	 swinging	 bucket	 bench	 top	
centrifuge	at	3,800	×	g	 for	20	minutes	and	4°C.	Handle	 tubes	gently	 so	as	not	 to	
disturb	the	cell	pellet.	Pour	off	supernatant	slowly,	resuspend	the	cells	in	25	ml	of	
ice-cold	10%	glycerol	and	collect	 the	cells	by	centrifugation	as	above.	Resuspend	
the	cell	pellet	in	5	ml	of	ice-cold	10%	glycerol	and	centrifuge.	Resuspend	the	cells	
in	100 µl	of	ice-cold	10%	glycerol	by	gently	pipeting	back	and	forth.	Make	sure	no	
clumps	are	present.	Place	cells	on	ice	and	use	within	30	min.	This	amount	of	cells	is	
good	 for	 two	 to	 three	 trials	 using	 50	 µl	 of	 electrocompetent	 cells	 per	
electroporation.		

9.	 Prechill	 the	 electroporation	 cuvettes	 (0.2	 cm,	 Bio-Rad)	 in	 ice	 for	 10	min.	 In	 a	
prechilled	sterile	Eppendorf	tube,	mix	50	µl	of	electrocompetent	cells	with	3	µl	of	
DNA	containing	0.1	to	0.5	ng	of	PCR	product.	Do	not	exceed	this	volume	of	DNA-
containing	sample	since	it	will	cause	arcing	during	electroporation.	

10.	 In	 a	 Micropulser	 electroporation	 apparatus	 (Bio-Rad)	 select	 EC2,	 a	 preset	
protocol	for	transformation	of	E.	coli	cells	using	0.2	cm	cuvette.		

11.	Transfer	the	DNA-bacteria	mixture	to	a	prechilled	cuvette	and	incubate	on	ice	
for	 1	 min.	 Quickly	 dry	 the	 cuvette	 with	 kimwipes,	 place	 the	 cuvette	 into	 the	
electroporation	 chamber,	 and	 release	 charge.	 Immediately	 add	 1	 ml	 of	 SOC	
medium	to	the	cuvette.	Pipet	back	and	forth	a	few	times	and	transfer	cells	to	a	15	
ml	sterile	Falcon	tube	or	similar.	Add	another	ml	of	SOC	medium	to	the	cuvette	and	
repeat	the	process.		



12.	Grow	the	2	ml	bacterial	culture	for	120	min	shaking	at	30°C.	This	step	allows	
phenotypic	 expression	 of	 the	 resistance	 marker	 gene	 prior	 to	 exposure	 to	 Km	
selection.	 Spread	0.2	ml	 aliquots	 of	 the	 culture	 on	 LB	Amp	 (100	µg/ml)	Km	 (25	
µg/ml)	 plates	 and	 incubate	 at	 30°C	 overnight.	 Alternatively,	 the	 pKD46	 plasmid	
could	be	cured	by	growing	the	cells	on	Km	(25	µg/ml)	plates	at	37°C	overnight.	

13.	 Screening	 of	 recombinants:	Restreak	 candidate	AraC	 gene	 knockout	 colonies	
on	LB	Amp	(100	µg/ml)	Km	(25	µg/ml)	plates	and	incubate	at	30°C	overnight.		

14.	 Colony	 PCR	 can	 be	 used	 to	 verify	 the	 structure	 of	 the	 recombinant.	 Use	 a	
standard	 Taq	 polymerase	 and	 a	 primer	 located	 upstream	 or	 downstream	 of	 the	
sequences	used	for	targeting	the	gene	replacement:	AraC2	(5’-	CTG	GTG	GCG	ATC	
TCT	TCA	CCG	GTA	GC),	and	a	primer	annealing	to	the	drug	marker	cassette:	k2	(5’-	
CGG	TGC	CCT	GAA	TGA	ACT	GC).	Perform	standard	PCR	as	follows:	(step	1)	95°C,	4	
min;	(step	2)	94°C,	30	s;	(step	3)	55°C,	1	min;	(step	4)	72°C,	90	s.	Repeat	last	three	
steps	29	times;	(step	5)	72°C,	10	min;	(step	6)	hold	at	4°C.	When	completed,	load	
10	µl	of	the	PCR	on	a	1%	agarose	gel.	

3.2.	Obtention	of	UTPBAD::surA	E.	coli	strain	

1.	The	zeoRExBAD	(zeoR	araC-PBAD)	cassette	was	amplified	from	the	chromosome	
of	E.	coli	strain	TG1zeoRExBAD	using	specific	oligonucleotide	primers	hybridizing	
with	the	upstream	promoter	region	of	the	surA	gene	(5′	primer)	and	the	beginning	
of	their	coding	sequences	(3′	primer),	named	ZEOBAD	surA1	(5′-CGC	AAG	AGA	TGC	
TGC	GTT	CGA	ACA	TTC	TGC	CGT	ATC	AAA	ACA	CTT	TGT	GAa	gca	atg	ctt	gca	taa	tgt	
gcc	tgt	c-3′)	and	ZEOBAD	surA2	(5′-CTG	GTA	TTC	GCG	ATC	ATG	GCG	ATA	CCG	AGA	
AGC	AGC	GTT	TTC	CAG	TTC	TTC	CAT	 cgt	 ttc	 act	 cca	 tcc	 aaa	 aaa	acg	ggt-3′).	The	
uppercase	 letters	 correspond	 to	 the	 sequence	 hybridizing	 to	 surA	 upstream	 or	
coding	sequences.	The	lowercase	letters	correspond	to	the	sequence	hybridizing	to	
the	 zeoRExBAD	 cassette.	 In	 bold	 is	 the	 first	 codon	 of	 surA	 coding	 sequence.	 Use	
standard	PCR	conditions,	as	described	above.	The	PCR	 fragment	with	zeoR	araC-
PBAD	cassette	is	approximately	1.9	kb.	

2.	 Clean	 the	 PCR	 product	with	 QIAquick	 PCR	 purification	 kit	 (Qiagen)	 and	 elute	
DNA	in	50	µl	of	elution	buffer.	Digest	chromosomal	DNA	with	DpnI	(NEB).	Mix	43	
µl	of	the	PCR	product	with	1	µl	of	DpnI	(NEB)	and	5	µl	of	NEB	buffer	4	(10X)	and	
incubate	at	37°C	for	two	hours.	Gel-purify	 the	PCR	product	using	the	Qiaex	II	gel	
extraction	kit	and	elute	in	50	µl	of	sterile	deionized	water.	

3.	Preparation	of	electrocompetent	UT5601	E.	coli	cells	carrying	pKD46:	Inoculate	
a	fresh	colony	of	UT5601	E.	coli	cells	carrying	pKD46	into	25	ml	LB	containing	Amp	
(100	µg/ml)	and	Km	(25	µg/ml).	Grow	overnight	shaking	at	30°C.	

4.	 In	a	125	ml	 flask,	 inoculate	20	ml	of	LB	containing	Amp	(100	µg/ml),	Km	(25	
µg/ml)	and	0.2%	(v/v)	L-Arabinose	with	200	µl	of	a	5	ml	overnight	culture.	Grow	
cells	shaking	(210	rpm)	at	30°C	to	an	OD	of	0.5	(~108	cells/ml).	

5.	Proceed	as	described	in	sections	8	to	11	from	subheading	3.1.		

6.	After	electroporation,	grow	2	ml	of	the	bacterial	culture	for	120	min	shaking	at	
30°C.	Spread	0.2	ml	aliquots	of	the	culture	on	low	salt	LB	medium	containing	0.2%	



(v/v)	arabinose	and	Zeo	(40	μg/ml).	The	presence	of	L-arabinose	 is	 required	 for	
surA	 expression	 in	 putative	 UTPBAD::surA	 cells.	 Incubate	 at	 37°C	 overnight	 to	
remove	pKD46	plasmid.		

7.	Screening	of	recombinants:	Restreak	candidate	UTPBAD::surA	colonies	on	low	salt	
LB	Zeo	 (40	μg/ml)	 plates	 containing	0.2%	 (v/v)	 arabinose	 and	 incubate	 at	 30°C	
overnight.		

8.	The	insertion	of	the	zeoRExBAD	cassette	in	the	promoter	region	of	surA	can	be	
tested	by	colony	PCR	with	oligonucleotides	Zeo1	(5′-CAC	TGG	TCA	ACT	TGG	CCA	
TGG	TTT	AG-3′)	and	SurA2	(5′-CAT	TAA	TCC	ATC	AAC	GTC	GCT	TTC	CAG	CAC-3′).	
Use	standard	PCR	conditions,	as	described	above.	When	completed,	 load	10	µl	of	
the	PCR	on	a	1%	agarose	gel.	(See	Note	4)	

Elimination	 of	 Km	 selection	marker:	 if	 desired,	 the	 Km	 selective	marker	 can	 be	
removed	after	 transformation	with	 temperature-sensitive	helper	plasmid	pCP20.	
This	FLP	expression	plasmid	is	resistant	to	ampicillin	at	30°C	(81).		

9.	Grow	transformed	UTPBAD::surA	bacteria	with	pCP20	plasmid	on	LB	Amp	(100	
μg/ml)	 plates	 containing	 0.2%	 (v/v)	 arabinose	 and	 incubate	 at	 30°C	 overnight.	
Induce	 the	 flipase	 and	 plasmid	 loss	 by	 shifting	 the	 temperature	 to	 42°C	 and	
overnight	incubation.	The	resulting	integrants	are	then	spread	on	nonselective	LB	
medium	 agar	 at	 40°C	 for	 overnight.	 Cell	 colonies	 appearing	 on	 plates	 are	 again	
picked	 and	 patched	 onto	 LB	 agar	 plates	 containing	 Amp	 and	 Km,	 respectively.	
Consequently,	 the	 integrants	 are	 picked	 for	 exhibiting	 sensitivity	 to	 both	 Amp	
(indicating	loss	of	the	helper	plasmid)	and	Km	(indicating	removal	of	the	marker).	

3.3.	Functional	analysis	of	SurA	depletion	

As	 mentioned	 before	 the	 expression	 of	 SurA	 in	 this	 conditional	 mutant	 can	 be	
controlled	by	the	presence	in	the	growth	medium	of	the	inducer	L-arabinose	or	the	
repressor	D-glucose.	The	conditional	expression	of	SurA	and	its	impact	in	the	OM	
folding	of	the	usher	protein	FimD	of	type	1	fimbriae	are	monitored	as	follows.	

1.	Inoculate	a	single	colony	of	UTPBAD::surA	in	20	ml	of	liquid	brain	heart	infusion	
(BHI)	medium	containing	0.4%	(w/v)	L-arabinose	and	Kanamycin	(25	µg/ml)	(See	
Note	5).	Grow	the	culture	at	37°C	under	static	conditions	for	16	hours.	Dilute	the	
preinoculum	 cultures	 to	 an	 OD600	 of	 0.05	 in	 10	 ml	 of	 fresh	 medium	 containing	
either	 0.4%	 (w/v)	 L-arabinose	 (inducing	 conditions)	 or	 0.4%	 (w/v)	 D-glucose	
(repressing	 conditions)	 and	 Kanamycin	 (25	 µg/ml).	 Grow	 the	 cultures	 at	 37°C	
without	 shaking	 for	 type	 1	 fimbriae	 expression	 (FimD)	 and	 after	 3	 hours	 dilute	
them	in	10	ml	of	inducing	or	depletion	medium	to	an	OD600	of	0.05	and	grew	for	an	
additional	3	hours.	Repeat	 this	process	one	more	 time.	Follow	 the	growth	of	 the	
bacterial	 cultures	 by	 taking	 OD600	 readings	 each	 hour.	 Before	 culture	 dilution	
(indicated	 by	 roman	 numbers	 I,	 II,	 and	 III	 in	 Figure	 2A)	 remove	 samples	 (0.25	
OD600	units)	for	western	botting.		

2.	 Harvest	 bacteria	 by	 centrifugation	 (3,300	 ×	 g,	 3	min)	 and	 prepare	whole	 cell	
extracts	as	 follows.	Resuspend	 the	 cell	pellet	 in	25	μl	of	PBS	and	mix	 it	with	 the	
same	volume	of	2×	SDS	sample	buffer.		



3.	Sonicate	the	samples	on	ice	(5-10	s)	with	a	thin	needle	at	maximum	power	and	
spin	(14,000	x	g,	5	min)	to	remove	insoluble	material	before	loading	onto	an	SDS-
PAGE	gel.		

4.	 Load	 samples	 in	 12%	 SDS-PAGE	 and	 perform	Western	 blotting	 to	 detect	 the	
levels	of	folded	and	unfolded	FimD,	OmpA;	the	periplasmic	chaperones	SurA,	Skp,	
and	DegP;	and	cytoplasmic	GroEL	as	an	internal	loading	control.	The	procedure	for	
SDS-PAGE	and	Western	blotting	has	been	precisely	described	elsewhere	(84,	85).	

3.4.	Example	of	results.		

As	 shown	 in	 Figure	 2B,	 the	 steady-state	 level	 of	 SurA	 during	 continuous	
exponential	growth	with	L-arabinose	is	clearly	sufficient	for	proper	expression	and	
folding	of	FimD	and	OmpA.	However,	depletion	of	SurA	from	bacteria	grown	with	
D-glucose	diminished	the	levels	of	FimD.	The	OmpA	expression	also	decreased	in	
depleting	medium,	although	not	as	dramatically	as	FimD,	since	folded	OmpA	was	
clearly	 detectable	 when	 SurA	 was	 depleted	 from	 bacteria.	 Since	 DegP	 is	 not	
significantly	upregulated	under	these	conditions,	these	results	indicate	that	SurA	is	
required	for	FimD	folding	and	insertion	in	the	OM	of	E.	coli.		

	

Section	II.	Biochemical	assessment	of	OMP	folding	

1.	Mobility	shift	and	protease	accessibility	assays	for	OMPs		

Herein,	we	describe	two	simple	methods	traditionally	used	to	evaluate	the	folding	
of	OMPs,	which	are	based	in	the	compact	folding	adopted	by	correctly	folded	OMPs	
in	the	OM	that	confers	distinct	biochemical	properties.		

Usually	natively	 folded	OMPs	do	not	denature	 in	SDS	sample	buffer	 if	not	heated	
before	 SDS-PAGE,	whereas	OMPs	 displaying	 folding	 defects	 are	 sensitive	 to	 SDS.	
Thus,	 independently	 of	 their	 oligomeric	 state,	 the	 folding	 conformation	 of	 OMPs	
can	 be	 easily	 distinguished	 by	 analyzing	 their	 heat-modifiable	 property	 in	 SDS-
PAGE	 (86,	 87).	 Correctly	 folded	OMPs	acquire	 a	 compact	 SDS-resistant	 structure	
that	migrates	faster	in	SDS-PAGE	gels	than	the	unfolded	polypeptides.		

Also,	 OMPs	 are	 usually	 highly	 resistant	 to	 proteases	 when	 they	 are	 correctly	
assembled	 in	 the	 OM,	 being	 either	 totally	 protected	 against	 the	 proteolytic	
treatment	 or	 yielding	 discrete	 degradation	 products,	 such	 as	 the	 membrane	
embedded	β-barrel	portion	of	the	OMP.	This	can	be	assessed	in	vivo	by	incubating	
bacterial	 cells	 with	 proteases	 such	 as	 trypsin	 or	 proteinase	 K.	 An	 increased	
sensitivity	to	protease	treatment	 is	often	seen	as	an	 indicative	of	an	alteration	 in	
the	folding	of	the	protein.		

As	an	example,	we	will	show	the	heat-modifiable	mobility	of	the	OMP	intimin	and	
its	resistance	to	the	treatment	with	proteinase	K.		

Intimins	 are	 large	 polypeptides	 (ca.	 95	 kDa)	 located	 at	 the	 surface	 of		
enteropathogenic	 and	 enterohemorrhagic	 E.	 coli	 strains	 (EPEC	 and	 EHEC,	
respectively)	(Figure	3A).	The	N	region	of	intimins	(residues	1	to	550)	anchors	the	
protein	 in	 the	OM	and	 is	highly	conserved	among	 intimins	 from	different	 strains	



(>95%	identity).	This	region	contains	a	β-barrel	domain	embedded	in	the	OM	(88).	
The	extracellular	C	region	of	intimins	is	less	conserved	(ca.	50	to	70%	identity)	and	
forms	a	rigid	rod	that	binds	to	the	translocated	intimin	receptor	(Tir)	(89,	90).	This	
region	contains	three	immunoglobulin-like	domains	(named	D0,	D1,	and	D2)	and	a	
C-type	lectin	like	domain	(D3)	(91).	IntiminEPEC	contains	two	Cys	residues	(Cys-860	
and	 Cys-937)	 in	 domain	 D3	 that	 form	 an	 intra-domain	 disulfide	 bond	 (92,	 93)	
catalyzed	by	DsbA	the	periplasm	(27).	

2.	Materials	

2.1.	Bacterial	culture	 	

1.	Incubators	and	shakers		

2.	 Spectrophotometer	 and	 cuvettes	 for	 measuring	 optical	 densities	 of	 bacterial	
cultures.	

3.	 LB	medium	 and	 LB	 agar	 plates	 as	 describe	 above	 on	 paragraph	 2.1	 Bacterial	
culture	of	Section	I.		

4.	E.	coli	UT5600	wild	type	(82),	UT5600dsbA	(94)	and	EPEC	E2348/69	strain	(95).	

5.	 pCVD438	 plasmid	 expressing	 intiminEPEC	 (eae)	 (96).	 This	 plasmid	 carries	 the	
eaeA	gene	from	EPEC	under	the	control	of	its	natural	promoter	and	was	previously	
used	for	complementation	of	Δeae	mutants	of	EPEC	and	C.	rodentium	(97).	

6.	Chloramphenicol	(34	mg/ml).	Dissolve	340	mg	chloramphenicol	stock	in	10	ml	
(100%)	 ethanol.	 	 If	 necessary,	 vortex	 solution	 to	 ensure	 the	 antibiotic	 is	 fully	
dissolved.	Filter	sterilze	this	solution	using	a	0.2	µm	syringe	filter.	Aliquot	(500	µl	-	
1	ml	aliquots	are	useful)	and	store	at	-20°C	until	use.		

8.	β-mercaptoethanol	(2-ME).	

2.2.	Protease	digestion		

1.	Sonicator.	

2.	Proteinase	K	(PK)	at	10	mg/ml	(Sigma).	See	Note	6.	

3.	Phenyl-methylsulfonyl	fluoride	(PMSF)	100	mM.	Dissolve	17.4	mg	PMSF	in	1	ml	
of	ethanol.	Caution:	Wear	gloves	as	PMSF	is	highly	toxic	and	carcinogenic.	

4.	PBS:	Dissolve	8	g	NaCl,	0.2	g	KCl,	1.44	g	Na2HPO4,	and	0.24	g	KH2PO4	in	800	ml	of	
distilled	 water.	 Adjust	 pH	 to	 7.4	 with	 HCl;	 add	 distilled	 water	 to	 1	 liter	 and	
autoclave.	

2.3.	Denaturing	SDS-PAGE		

Prepare	materials	as	in	Subheading	2.3,	Section	I,	with	the	following	modifications	

1.	 Prepare	 urea-SDS	 sample	 buffer	 (2×)	 for	 achieving	 complete	 denaturation	 of	
intimin	polypeptides.	The	urea-SDS	 sample	buffer	 (1×)	 contains	60	mM	Tris-HCl	
(pH	6.8),	2%	(w/v)	SDS,	4	M	urea,	5	mM	EDTA,	5%	(v/v)	glycerol,	0.005%	(w/v)	
bromophenol	blue,	and	1%	(v/v)	2-ME.	See	Note	7.	



2.4.	Western	blot	

Prepare	materials	as	in	Subheading	2.4,	Section	I.	The	antibodies	are	as	follows:	

1.	Primary	antibody:	rabbit	anti-Int280EPEC	polyclonal	serum	(1:200;	a	gift	 from	
Gad	Frankel).		

2.	Secondary	antibody:	bound	rabbit	antibodies	were	detected	with	protein	A-POD	
conjugate	(1:8,000;	Zymed).		

3.	Methods	

3.1.	Mobility	 shift	 assay	 and	 Proteinase	 K	 digestion	 of	 intimin	 expressed	 in	
EPEC	and	E.	coli	K12	bacteria	

1.	 For	 expression	 of	 intimin	 in	 EPEC	 bacteria,	 inoculate	 a	 fresh	 colony	 of	 EPEC	
E2348/69	strain	(95)	in	25	ml	LB	medium	and	grow	statically	at	37°C	for	16	h.		

2.	Dilute	the	bacterial	culture	in	fresh	LB	medium	to	a	final	optical	density	at	600	
nm	(OD600)	of	0.1	and	grow	under	identical	conditions	for	2	hours	in	the	presence	
or	absence	of	10	mM	2-ME.	The	reducing	agent	2-ME	is	included	for	reducing	the	
disulphide	 bond	 (Cys-860	 and	 Cys-937)	 present	 in	 intimin	 that	 renders	 this	
polypeptide	sensitive	to	PK.	

3.	 Measure	 the	 optical	 density	 at	 600	 nm	 of	 both	 cultures	 (+/-	 2-ME)	 and	
centrifuge	0.5	ODs	(3,300	×	g,	3	min).	Resuspend	the	cell	pellet	in	1	ml	of	PBS	and	
harvest	the	cells	by	centrifugation	(3,300	×	g,	3	min).	

4.	Redisperse	the	cell	pellet	in	1	ml	of	PBS	and	divide	into	three	aliquots	of	330	µl.	
Resuspend	 two	 aliquots	 in	 25	 µl	 of	 PBS	 and	 add	 the	 same	 volume	 of	 urea-SDS	
sample	buffer	 (2×).	 Incubate	one	of	 the	aliquots	at	100°C	 for	30	minutes	 (boiled	
sample),	and	kept	the	other	on	ice	(unboiled	sample).		

5.	Add	40	µg/ml	of	PK	to	the	third	aliquot	on	ice	(PK	treated).	Incubate	at	37°C	for	
20	minutes.	Stop	the	reaction	with	1	µl	of	PMSF	(100	mM).	Resuspend	it	in	25	µl	of	
PBS	 and	 add	 the	 same	 volume	 of	 urea-SDS	 sample	 buffer	 (2×).	 Boil	 it	 for	 30	
minutes.	

6.	Sonicate	the	samples	on	ice	(5-10	s)	with	a	thin	needle	at	maximum	power	and	
spin	(14,000	x	g,	5	min)	to	remove	insoluble	material	before	loading	onto	an	SDS-
PAGE	gel.		

7.	 Load	 samples	 in	 8%	 SDS-PAGE	 and	 perform	Western	 blotting	 to	 detect	 EPEC	
intimin	 with	 anti-Int280EPEC	 polyclonal	 serum	 (raised	 against	 the	 secreted	
domains	D1,	D2,	and	D3).	The	procedure	 for	SDS-PAGE	and	western	blotting	has	
been	precisely	described	elsewhere	(98).	

8.	For	heterologous	expression	of	EPEC	 intimin	 in	wild	 type	E.	coli	UT5600	or	 in	
the	 isogenic	 dsbA	 mutant,	 transform	 UT5600	 and	 UT5600dsbA	 bacteria	 with	
pCVD438	 plasmid	 (CmR)	 following	 a	 protocol	 suited	 for	 this	 purpose.	 Plate	
transformation	at	30°C	on	LB	plates	containing	34	µg/ml	Cm	and	grow	overnight.		



9.	 Inoculate	 a	 fresh	 colony	 of	 UT5600/pCVD438	 or	 UT5600dsbA/pCVD438	
bacteria	into	25	ml	LB	medium	containing	Cm.		

10.	Grow	overnight	shaking	(160	rpm)	at	37°C	for	constitutive	expression.		

11.	Dilute	the	bacterial	culture	in	fresh	LB	medium	to	a	final	optical	density	at	600	
nm	(OD600)	of	0.1	and	grow	under	identical	conditions	for	2	hours	in	the	presence	
or	absence	of	10	mM	2-ME.		

12.	Repeat	from	step	3.	

3.2.	Example	of	results.	

The	 intimin	 band	 shows	 a	 mobility	 of	 ∼95	 kDa	 in	 the	 boiled	 samples,	
corresponding	to	 the	expected	mass	of	 full-length	 intimin	and	 indicating	 that	 the	
polypeptide	was	completely	denatured	after	boiling	in	the	SDS-urea	buffer	(Figure	
3B	and	C,	lane	2).	In	those	samples	kept	at	4°C	intimin	showed	a	faster	mobility	in	
SDS-PAGE	 as	 expected	 for	 a	 folded	 β-barrel	 protein	 (Figure	 3B	 and	 C,	 lane	 1).	
Intimin	 requires	 boiling	 in	 the	 presence	 of	 4	 M	 urea	 and	 2%	 SDS	 for	 complete	
unfolding	indicating	the	formation	of	a	very	stable	β-barrel	in	both	EPEC	and	E.	coli	
K-12.	

Intimin	 also	 shows	 high	 resistance	 to	 extracellularly	 added	 proteases	 when	
expressed	in	EPEC	and	E.	coli	UT5600/pCVD438.	Full-length	intimin	bands	did	not	
exhibit	any	sign	of	proteolytic	digestion	after	incubation	of	intact	bacteria	with	PK	
(Figure	3B	and	C,	lane	3).	Nonetheless,	intimin	is	sensitive	to	PK	when	the	reducing	
agent	 2-ME	 was	 added	 to	 the	 growth	 medium	 of	 EPEC	 and	 E.	 coli	
UT5600/pCVD438.	 Bacteria	 grown	 with	 2-ME	 and	 incubated	 with	 PK	 showed	
almost	the	complete	digestion	of	the	full-length	intimin	band	and	the	simultaneous	
appearance	of	a	∼66-kDa	proteolytic	product	(Figure	3B	and	C,	lane	6).	The	growth	
of	EPEC	and	E.	coli	UT5600/pCVD438	bacteria	with	2-ME	did	not	affect	folding	of	
the	β-barrel	of	intimin,	as	demonstrated	by	its	resistance	to	urea-SDS	denaturation	
and	 its	 heat-modifiable	 mobility	 (Figure	 3B	 and	 C,	 lanes	 4	 and	 5).	 These	 data	
indicate	 that	 such	 reducing	 conditions	 render	 intimin	 accessible	 in	 the	
extracellular	medium	to	the	action	of	the	protease,	and	suggest	that	the	increased	
sensitivity	to	PK	was	caused	by	alterations	elsewhere	in	the	protein.	

Intimin	 shows	 identical	 heat-modifiable	 mobility	 and	 resistance	 to	 urea-SDS	
denaturation	 in	 wild-type	 E.	 coli	 UT5600/pCVD438	 bacteria	 and	 dsbA	 mutant	
UT5600dsbA/pCVD438	bacteria	(Figure	4).	However,	as	observed	under	reducing	
growth	 conditions	 (Figure	 3B	 and	 C),	 intimin	 produced	 in	dsbA	mutant	 bacteria	
was	 sensitive	 to	 PK	 digestion	 (Figure	 4).	 Therefore,	 the	 absence	 of	 DsbA	makes	
intimin	 less	 stable	 and	 susceptible	 to	 protease	 digestion,	 likely	 due	 to	 the	
misfolding	 of	 the	 secreted	 D3	 domain	 that	 contains	 the	 single	 disulfide	 bond	
between	Cys-860	and	Cys-937.	

	

	

	



Section	III.	Disulfide	bond	formation	in	OMPs	

1.	 Analysis	 of	 the	 redox	 state	 of	 cysteine	 residues	 in	 OMPs	 with	 alkylating	
agents	

In	this	method	we	determine	whether	two	cysteine	residues	present	 in	a	protein	
are	 oxidized	 by	DsbA	 to	 form	 a	 disulfide	 bond.	 This	 is	 an	 important	 question	 to	
address	when	investigating	the	molecular	mechanisms	that	take	place	during	the	
periplasmic	 transit	 of	 OMPs.	 For	 instance,	 DsbA	 catalyzes	 the	 formation	 of	 the	
disulfide	 bond	 (Cys-860-Cys-937)	 present	 in	 the	 D3	 lectin-like	 domain	 of	 EPEC	
intimin,	indicating	that	this	secreted	C-terminal	domain	is	at	least	partially	folded	
prior	to	its	translocation	across	the	OM	(27).		

For	 this	 purpose,	 an	 alkylation	 assay	 is	 performed	with	 the	 polyethylene	 glycol	
(PEG)-conjugated	maleimide	 (mPEG-MAL,	 ca.	 5000	Da)	 or	with	 4-acetamido-40-
maleimidylstilbene-2,20-	disulfonic	acid	(AMS,	ca.	500	Da)	that	covalently	binds	to	
free	sulfydryl	groups	in	proteins.	

Maleimide-activated	crosslinkers	(mPEG-MAL	or	AMS)	react	with	the	free	thiolate	
groups	of	 reduced	 cysteine	 residues	 (-SH)	 in	proteins	 at	 near	neutral	 conditions	
(pH	6.5-7.5)	 to	 form	covalent	 thioether	 linkages	 increasing	 their	molecular	mass	
and	preventing	any	further	oxidation.	Hence,	disulfide	bonds	in	protein	structures	
(e.g.,	 between	 cysteines)	 must	 be	 reduced	 to	 free	 thiols	 to	 react	 with	 such	
maleimide	reagents.	In	contrast,	cysteine	residues	involved	in	a	disulfide	bond	are	
not	 modified.	 Thus,	 oxidized	 proteins	 migrate	 with	 the	 expected	 size	 in	 non-
reducing	 SDS-PAGE,	 whereas	 reduced	 proteins	 are	 shifted	 towards	 higher	
molecular	weights.	See	Note	8.	

2.	Materials	

2.1.	Bacterial	culture	 	

1.	Incubators	and	shakers		

2.	 Spectrophotometer	 and	 cuvettes	 for	 measuring	 optical	 densities	 of	 bacterial	
cultures.	

3.	 LB	 medium:	 10	 g	 tryptone,	 5	 g	 yeast	 extract,	 10	 g	 NaCl.	 Combine	 the	 dry	
reagents	above	and	add	distilled	water	to	950	mL.	Adjust	pH	to	7.5	with	1	N	NaOH	
and	bring	the	volume	up	to	1	liter.	Autoclave	and	store	at	room	temperature.	

4.	 LB	 agar	 plates:	 add	 15	 g	 agar,	 autoclave	 as	 above	 and	 allow	 to	 cool	 at	 room	
temperature	 for	 at	 least	 55	 oC.	 Add	 antibiotics	 as	 needed,	 and	 pour	 into	 100	
mm×15	mm	petri	plates	using	25–30	ml	per	plate.		

5.	 Three	 E.	 coli	 strains	 are	 used	 in	 our	 study:	 E.	 coli	 UT5600	 wild	 type	 (82),	
UT5600dsbA	(94)	and	EPEC	E2348/69	strain	(95).	

6.	The	pCVD438	plasmid	expressing	intiminEPEC	(eae)	(96).	

7.	 Chloramphenicol.	 Dissolve	 340	 mg	 chloramphenicol	 stock	 in	 10	 mL	 (100%)	
ethanol.	 	 If	 necessary,	 vortex	 solution	 to	 ensure	 the	 antibiotic	 is	 fully	 dissolved.	



Filter	sterilze	solution	using	a	0.2	µm	syringe	filter.	Aliquot	(500	µL	-	1	mL	aliquots	
are	useful)	and	store	at	-20	°C	until	use.		

2.2.	Alkylation	assay	

1.	1	M	dithiothreitol	(DTT):	Dissolve	0,15	g	in	1	ml	H20		

2.	Alkylation	buffer	(AK):	80	mM	Tris-HCl	[pH	6.8],	150	mM	NaCl	

3.	 10	mM	mPEG-MAL:	Dissolve	 0,05	 g	 in	 0,25	ml	AK	buffer.	 It	 is	 prepare	 on	 the	
moment,	ready	to	use	because	lost	fastly	the	alkylation	activity.	See	Note	9.	

4.	 100%	 (w/v)	 Trichloroacetic	 acid	 (TCA):	 dissolve	 500g	 TCA	 (as	 shipped)	 into	
350	ml	dH2O,	store	at	RT.	

5.	Acetone	

6.	Glycerol	

7.	PBS:	Dissolve	8	g	NaCl,	0.2	g	KCl,	1.44	g	Na2HPO4,	and	0.24	g	KH2PO4	in	800	ml	of	
distilled	 water.	 Adjust	 pH	 to	 7.4	 with	 HCl;	 add	 distilled	 water	 to	 1	 liter	 and	
autoclave.	

2.3.	Non-reducing	SDS-PAGE		

Prepare	materials	as	described	in	Subheading	2.3	of	Section	I.		

1.	 Prepare	 non-reducing	 urea-SDS-sample	 buffer	 (2×)	 (without	 2-ME)	 The	 non-
reducing	urea-SDS	sample	buffer	(1×)	contains	60	mM	Tris-HCl	(pH	6.8),	2%	(w/v)	
SDS,	 4	M	 urea,	 5	mM	EDTA,	 5%	 (v/v)	 glycerol	 and	 0.005%	 (w/v)	 bromophenol	
blue.		

2.4.	Western	blotting	

Prepare	materials	as	in	Subheading	2.4,	Section	I.	The	antibodies	are	as	follows:	

1.	Primary	antibody:	rabbit	anti-Int280EPEC	polyclonal	serum	(1:200;	a	gift	 from	
Gad	Frankel).		

2.	Secondary	antibody:	bound	rabbit	antibodies	were	detected	with	protein	A-POD	
conjugate	(1:8,000;	Zymed).		

3.	Methods	

3.1.	Alkylation	assay	of	intimin	expressed	in	EPEC	and	E.	coli	K12	bacteria	with	
mPEG-MAL	

1.	 Transform	 UT5600	 and	 UT5600dsbA	 E.	 coli	 bacterial	 strains	 with	 pCVD438	
plasmid	(CmR)	 following	a	protocol	suited	 for	 this	purpose.	Plate	 transformation	
at	30°C	on	LB	plates	containing	34	µg/ml	Cm	overnight.		

2.	 For	 expression	 of	 intimin	 in	 E.	 coli	 K-12	 strains,	 inoculate	 a	 fresh	 colony	 of	
UT5600	 or	 UT5600dsbA	 bacteria	 carrying	 pCVD438	 plasmid	 into	 25	 ml	 LB	
medium	containing	Cm	(34	µg/ml).		



3.	Grow	overnight	shaking	(160	rpm)	at	37°C	for	constitutive	expression.	

4.	 For	 expression	 of	 intimin	 in	 EPEC	 bacteria,	 inoculate	 a	 fresh	 colony	 of	 EPEC	
E2348/69	strain	(95)	in	25	ml	LB	medium	and	grow	statically	at	37°C	for	16	h.		

5.	Dilute	the	bacterial	culture	in	fresh	LB	medium	to	a	final	optical	density	at	600	
nm	(OD600)	of	0.05,	and	grown	under	identical	conditions	for	additional	4	hours.		

6.	 Harvest	 UT5600dsbA/pCVD438,	 UT5600/pCVD438	 and	 EPEC	 bacteria	 by	
centrifugation	(3,300	×	g,	3	min).	Resuspend	the	cells	to	an	OD600	of	1.0	in	2	ml	of	
PBS	and	pellet	again	by	centrifugation	(3,300	×	g,	3	min).	Wash	twice	with	1	ml	of	
PBS	by	centrifugation	(3,300	×	g,	3	min).	

7.	Resuspend	the	cell	pellet	 in	0.5	ml	of	buffer	AK	and	divide	the	suspension	into	
four	aliquots	of	100	μl.	Incubate	two	of	them	with	100	mM	dithiothreitol	(DTT)	on	
ice	 for	 10	min	 and	 then	 incubate	 at	 60°C	 for	 an	 additional	 10	min	 (DTT-treated	
samples).	See	Note	10.	

8.	 Wash	 DTT-treated	 and	 untreated	 samples	 with	 1	 ml	 of	 PBS	 two	 times	 by	
centrifugation	(3,300	×	g,	3	min).	Resuspend	one	sample	from	each	group	in	50	µl	
of	 AK	 buffer	 containing	 10	 mM	 mPEG-MAL	 (mPEG-Mal,	 Mr	 5,000;	 Nektar	
Therapeutics,	San	Carlos,	CA),	and	resuspend	 the	remaining	samples	 in	50	µl	AK	
buffer.	Perform	the	alkylation	reaction	for	30	minutes	at	room	temperature.	

9.	Precipitate	the	proteins	with	trichloroacetic	acid	(10%	[wt/vol])	for	1	h	at	4°C,	
and	recover	the	precipitates	by	centrifugation	(14,000	×	g,	15	min).		

10.	 Wash	 the	 protein	 pellets	 with	 1	 ml	 of	 ice-cold	 acetone,	 followed	 by	
centrifugation	(14,000	×	g,	15	min).		

11.	Dry	pellet	by	placing	tube	in	95°C	heat	block	for	5-10	min	to	drive	off	acetone	
and	 resuspend	 in	 30	 μl	 of	 AK	 buffer	 containing	 1%	 (w/v)	 SDS	 and	 5%	 (v/v)	
glycerol.	 Samples	 were	 mixed	 with	 the	 same	 volume	 of	 nonreducing	 urea-SDS-
sample	buffer	(2×)	(without	2-ME)	before	being	loaded	onto	SDS-PAGE	gels.		

12.	The	redox	state	of	intimin	is	analyzed	by	standard	SDS-PAGE	and	Western	blot	
protocols	as	describedd	previously.	Immunodetection	of	intimin	is	performed	with	
rabbit	polyclonal	anti-intimin-280EPEC	antibody	(1:200;	a	gift	from	Gad	Frankel).	
Bound	 rabbit	 antibodies	 were	 detected	 with	 protein	 A-POD	 conjugate	 (1:8,000;	
Zymed).	

3.2.	Example	of	results.	

To	 gain	 a	 direct	 evidence	 of	 the	 formation	 disulfide	 bond	 (Cys-860-Cys-937)	 by	
DsbA,	 the	 in	 vivo	 redox	 state	 of	 intimin	 was	 compared	 in	 wild-type	 and	 dsbA	
mutant	E.	coli	K-12	strains	carrying	pCVD438.	The	experiment	shows	that	intimin	
reacts	 to	 mPEG-MAL	 when	 expressed	 in	 the	 dsbA	 mutant,	 in	 which	 a	 high-
molecular-weight	band	corresponding	to	alkylated	intimin	appears	(Figure	5,	lane	
7).	In	contrast,	intimin	expressed	in	wild-type	EPEC	or	UT5600/pCVD438	bacteria	
was	 not	 reactive	 to	 the	 alkylating	 agent	 (Figure	 5C,	 lanes	 2	 and	 5)	 unless	 the	
disulfide	bond	in	D3	was	reduced	by	the	incubation	of	bacteria	with	the	reducing	
agent	DTT	(Figure	5C,	lane	3).	



	

Section	IV.	Analysis	of	cuaternary	structure	of	OMPs.	

1.	 Blue-native	 PAGE	 (BN-PAGE)	 and	 cross-linking	 with	 DSP	 to	 follow	 the	
cuaternary	structure	of	OMPs	

BN-PAGE	 relies	 on	 the	 solubilization	 of	 protein	 complexes	 from	 the	 membrane	
with	 mild	 non-ionic	 detergents	 (99).	 These	 detergents	 also	 help	 to	 prevent	
disruption	 of	 the	 protein–protein	 interactions.	 The	 protein	 complexes	 are	
negatively	 charged	 with	 Coomassie	 brilliant	 blue	 G-250	 facilitating	 thus	 their	
migration	 towards	 the	 anode	 and	 separation	 according	 to	 its	 size.	 During	
electrophoresis,	protein	complexes	separation	is	obtained	with	high	resolution	by	
the	decreasing	pore	size	in	the	polyacrylamide	gradient	gel.	Always	the	sample	is	
kept	on	native	condition,	the	polyacrylamide	gels	are	native	(without	SDS)	and	the	
electrophoresis	is	under	native	conditions	(without	SDS	and	with	Coomassie	blue	
G-250).	 To	 this	 aim,	 the	 sample	 is	 kept	 on	 ice	 during	 the	 preparation	 steps	 and	
running	 gel.	 This	 procedure	 avoids	 protein	 degradation	 as	 well	 as	 loss	 of	 the	
quaternary	structure	because	separation	of	protein	subunits	of	the	complex.		

Intimin	 is	 reported	 to	 form	 a	 homodimer	 when	 purified	 (100).	 N-terminal	
fragments	of	intimin	(Int550,	and	construct	Neae	with	the	D0	Ig	like	domain)	and	
full	length	intimin	were	tested	by	BN-PAGE	to	evaluate	their	dimeric	structure	(27)	
(Figure	6).	

To	stabilize	protein	complexes,	intact	E.	coli	cells	can	treated	by	means	of	chemical	
cross-linking	 in	 vivo	 with	 specific	 agent	 as	 dithiobis-succinimidyl	 propionate	
(DSP).	 	 DSP	 is	 a	 homobifunctional	 amine-reactive	 N-hydroxysuccinimide	 (NHS)	
ester	which	has	a	spacer	arm	of	12	Å	and	a	disulfide	bond	that	can	be	cleaved	with	
reducing	agents	(e.g.	2-ME).	Reducing	agents	allow	identification	of	the	individual	
components	within	an	oligomeric	complex.	The	advantage	of	this	technique	is	that	
it	 can	 do	 it	 with	 intact	 cells	 without	 any	 treatment	 or	 purification.	 The	
concentration	 of	 crosslinker,	 as	 well	 as	 the	 length	 and	 temperature	 of	 the	
crosslinking	 reaction,	 are	 critical	 parameters	 and	 should	 not	 be	 varied.	 Few	
crosslinking	 results	 in	 a	 ladder	 of	 partially	 crosslinked	 products	 whereas	 over	
crosslinking	 can	 produce	 a	 wrong	 conclusion	 because	 on	 non-specific	 cross-
reaction	that	do	not	reflect	true	interactions.	

C-terminal	β-domain	of	ATs	were	used	as	a	model	to	test	quaternary	structure	into	
the	OM.	Each	construct	for	of	the	C-terminal	domain	are	tagged	with	an	epitope	(E-
tag)	 to	 allow	 the	 detection	 with	 specific	 mAb	 antibody	 in	 a	Western	 blot.	 After	
induction	of	these	constructs	with	IPTG,	cell	cultures	were	incubated	with	DSP	and	
bacterial	suspensions	were	mixed	with	either	reducing	or	nonreducing	SDS-PAGE	
sample	buffer,	boiled	and	subjected	to	Western	blotting	with	anti-E	tab	mAb-POD	
(101)	(Figure	7).	

2.	Materials	

2.1.	Bacterial	culture	 	

1.	Incubators	and	shakers		



2.	 Spectrophotometer	 and	 cuvettes	 for	 measuring	 optical	 densities	 of	 bacterial	
cultures.	

3.	 LB	medium	 and	 LB	 agar	 plates	 as	 describe	 above	 on	 paragraph	 2.1	 Bacterial	
culture	of	Section	I.		

4.	E.	coli	UT5600	wild	type	(82)	and	EPEC	E2348/69	(95).	

5.	pInt550	and	pNeae	plasmids	expressing	intiminEPEC	(eae)	polypeptides	(27).	ATs	
plasmids	with	C-terminal	domain	fused	to	6xHistidine-tag	and	E-tag	(101).	All	the	
plasmid	are	CmR	and	derivated	from	pAK-Not	(82).	

6.	Chloramphenicol	(Cm)	as	previously	describe.	

7.	1	M	IPTG:	dissolve	1	g	in	5	ml	dH2O.	Filter-sterilize	the	IPTG	solution	through	a	
0,22	µm	filter.	Store	the	IPTG	in	aliquots	at	-20°C	and	one	aliquot	ready	to	use	at	
4°C.	

2.2.	BN-PAGE	

1.	Electrophoresis	system:	Bio-Rad	Mini-PROTEAN	3	or	equivalent.	

2.	 Electrophoresis	 power	 supply	 (PowerPac	 Basic	 Power	 Supply.	 Bio-Rad,	 164-
5050EDU)	 or	 power	 supply	 capable	 of	 providing	 constant	 voltage	 of	 150	 V	 or	
higher.		

3.	Electrophoresis	buffer:	50	mM	Bis-Tris-HCl,	500	mM	6-aminocaproic	acid,	10%	
(v/v)	glycerol	pH	7.0.		

4.	The	cathode	buffer	consisted	of	50	mM	Tricine,	15	mM	Bis-Tris-HCl	pH	7.0	and	
0.002%	(w/v)	Coomassie	blue	G250.		

5.	The	anode	buffer	contained	50	mM	Bis-Tris-HCl	pH	7.0.	

6.	 Protein	 standards	 of	 high	 molecular	 mass	 (66	 to	 669	 kDa)	 for	 native	
electrophoresis	 (commercial)	 were	 resuspended	 at	 a	 2.5	 mg/ml	 final	
concentration	 in	 50	mM	Bis-Tris-HCl	 pH	7.0	 containing	750	mM	6-aminocaproic	
acid.		

7.	Sample	buffer:	20	mM	Tris-HCl	pH	8.0,	10	mM	NaCl,	1%	(w/v)	Zwittergent	3-14,	
8.7%	(v/v)	glycerol	and	0.5%	(w/v)	Coomassie	blue	G-250.	

Stocks	 solution:	 10%	 (w/v)	 Zwittergent	 3-14,	 87%	 (v/v)	 glycerol	 and	5%	 (w/v)	
Coomassie	blue	G-250.	

8.	 To	 prepare	 the	 separating	 (polyacrylamide	 gradient	 gel)	 and	 stacking	 gel	 is	
necessary	the	following	solutions:		

-	AB	solution:	49.5%	T	and	3%	C		

%T,	total	concentration	of	both	monomers	acrylamide	and	bis-acrylamide.	

%C,	percentage	of	cross-linker	relative	to	the	total	concentration.	

-	Buffer	3x:	150mM	Bistris/HCl	pH	7.0,	1.5	M	6-aminocaproic	acid	



-	Glycerol	87%	(v/v)	

-	10%	(w/v)	ammonium	persulfate	(APS)	solution.	Store	at	-20°C	for	long	time	and	
at	4°C	for	up	to	2	weeks.	

-	N,N,N,N´-tetramethyl-ethylenediamine	(TEMED)	

2.3.	Cross-linking	with	DSP	

1.	PBS:	Dissolve	8	g	NaCl,	0.2	g	KCl,	1.44	g	Na2HPO4	and	0.24	g	KH2PO4	in	800	ml	of	
distilled	 water.	 Adjust	 pH	 to	 7.4	 with	 HCl;	 add	 distilled	 water	 to	 1	 liter	 and	
autoclave.	

2.	Buffer	1	M	Tris-HCl	pH	7.5	to	quenched	crosslinking	reaction.	

3.	 DSP	 (dithio-bis[succinimidyl	 propionate])	 crosslinker	must	 be	 dissolved	 in	 an	
organic	 solvent,	 such	 as	 DMSO,	 and	 then	 added	 to	 an	 aqueous	 crosslinking	
reaction.	 Stock	 solution	was	 prepared	 at	 250	mM	 on	 DMSO	 by	 rigorous	 vortex-
mixing	plus	1	min	incubation	at	37°C.	A	few	particles	may	remain	still	insoluble.	

2.4.	Denaturing	SDS-PAGE	and	Western	blotting	

As	previously	describe	on	Materials	Section	I.	

1.	Primary	antibody:	E-tag	mAb-POD	conjugate	(1:2,000;	GE	Bioscience)	and	rabbit	
anti-Int280EPEC	polyclonal	serum	(1:200;	a	gift	from	Gad	Frankel).	

2.	Secondary	antibody:	bound	rabbit	antibodies	were	detected	with	protein	A-POD	
conjugate	(1:8,000;	Zymed).	

3.	Methods	

3.1.	BN-PAGE	of	outer	membrane	extract	

1.	Prepare	polyacrylamide	gradiente	gels	between	4-20%	with	a	gradient	forming	
and	based	on	(99).	This	set	up	allows	the	separation	of	protein	complexes	 in	the	
molecular	mass	range	from	∼50	kDa	to	700	kDa.	

Prepare	 separately	 the	 higher	 (20%)	 and	 lower	 (4%)	 percentage	 of	 acrylamide,	
the	 same	 volume.	 Lower	 percentage	 of	 separating	 gel	 (4%	 acrylamide)	 and	
stacking	gel	(4%	acrylamide)	are	prepared	equal:	242	µl	AB	solution,	1	ml	buffer	
3x,	 25	 µl	 APS,	 2.5	 µl	 TEMED	 and	 1730	 µl	 water,	 without	 glycerol.	 The	 higher	
percentage	 of	 separating	 gel	 mix	 (20%	 acrylamide):	 1212	 µl	 AB	 solution,	 1	 ml	
buffer	 3x,	 690	 µl	 glycerol,	 15	 µl	 APS,	 2	 µl	 TEMED	 and	 81	 µl	 distilled	 water.	
Addition	 of	 TEMED	 and	 APS	 at	 the	 end	 of	 the	 process,	 just	 before	 open	 valves.	
Always	 the	higher	percentage	of	acrylamide	solution	 to	do	 the	gradient	gel	must	
have	 20%	 of	 glycerol	 and	 put	 in	 the	 position	 close	 to	 the	 exit	 in	 the	 gradient	
forming.	 Place	 the	 gradient	 forming	 with	 a	 magnet	 rod	 inside	 the	 higher	
concentration	 on	 a	magnetic	 stirrer	 and	 connect	 with	 the	 casting	 stand.	 Ensure	
that	all	ports	are	closed,	between	the	collectors	of	acrylamide	solutions	and	with	
the	casting	stand.	Use	soft	agitation	to	avoid	air	bubbles	inside	acrylamide	solution.	
Open	the	two	valves	at	the	same	time	and	let	the	solutions	rinse	between	the	glass	
plates.		



Add	distilled	water	to	the	top	of	separating	gel	during	the	polymerization	process	
of	the	gradient	gel	that	should	be	done	around	90	min.	Remove	distilled	water	and	
dry	 the	 area	 above	 the	 separating	 gel	 completely	 with	 thick	 blot	 paper	 (e.g.	
Whatman)	and	add	the	stacking	gel	with	12-well	comb.	

2.	 To	 obtain	 the	 sample,	 pellet	 the	 membrane	 fraction	 of	 your	 cell	 culture	 by	
centrifugation	 after	 lysis	 step	 (with	 French	 Press	 or	 sonication).	 Remove	 the	
supernatant	containing	all	soluble	or	faint	associated	proteins	to	the	membranes.	
Solubilize	 the	 pellet	 on	 20	 mM	 Tris-HCl	 pH	 8.0,	 10	 mM	 NaCl	 and	 1%	 (w/v)	
Zwittergent	 3-14	 by	 gentle	 agitation	 and	 kept	 on	 ice.	 Concentrate	 sample	 100x	
when	 resuspended	 membrane	 pellet	 with	 respect	 the	 initial	 volume	 culture.	
Sonicate	 the	 sample	 in	 a	 cold	 sonication	 bath	 improve	 the	 solubilization	 of	 the	
samples	and	reduce	the	time	to	spend	on	it.	It	is	important	to	avoid	foam	formation	
during	 solubilization	 process.	 In	 case	 of	 foam	 it	 can	 hinder	 full	 sample	
solubilization.	 Centrifuge	 during	 30	 min	 at	 4°C	 and	 100,000	 x	 g	 to	 pellet	 the	
unsolubilized	 material	 that	 can	 affect	 in	 a	 negative	 way	 to	 the	 subsequent	
electrophoretic	 separation	 of	 the	 protein	 complexes.	 Before	 gel	 loading,	 20	µl	 of	
this	OMP	extract	was	mixed	with	2.5	µl	glycerol	87%	(v/v)	and	2.5	µl	Coomassie	
blue	G-250	5%	(w/v)	and	kept	on	ice.		

Protein	complex	solubilization	is	the	most	critical	step,	for	this	is	important	select	
the	 appropriate	 detergent	 in	 which	 is	 going	 to	 solubilize	 and	 at	 what	
concentration.	Protein	interaction	must	be	stable	with	the	detergent	selected.	

3.	 Load	 5	 to	 10	 µl	 of	 OMPs	 and	 resuspended	 protein	 standards	 per	 well,	 and	
electrophoresis	was	run	for	45	min	at	100	V	and	for	ca.	1	h	at	500	V.	As	soon	as	the	
blue	 Coomassie	 dye	 front	 has	 reached	 half	 of	 the	 separating	 gel,	 pause	 the	
electrophoretic	 run	 and	 remove	 the	 blue	 cathode	 buffer	 from	 the	 upper	 buffer	
chamber.	 Refilled	 with	 colorless	 blue	 native	 cathode	 buffer	 and	 continue	 the	
electrophoretic	run.	The	electrophoresis	finish	when	the	blue	Coomassie	dye	front	
line	has	reached	the	bottom	of	the	separating	gel	(See	Note	11).		

4.	 Disassemble	 the	 buffer	 chamber	 unit	 and	 the	 glass	 plate	 sandwich	 too	 and	
remove	the	stacking	gel.	Remove	blue	staining	of	the	gel	with	distilled	water.	The	
blue-gel	 can	 transferred	 directly	 onto	 a	 PVDF	 membrane	 using	 a	 semidry	
electrophoresis	transfer	apparatus	to	check	protein	complexes	with	antibodies.	

3.2.	Treatment	with	DSP	of	intact	E.	coli	cells	

1.	 1	 ml	 of	 a	 culture	 of	 E.	 coli	 strain	 selected	 on	 late	 exponential	 growth	 phase,	
OD600nm	around	1-1.5,	is	centrifuge	at	3300	x	g	3	min.	The	pellet	is	resuspended	
in	100	µl	PBS	with	or	without	DSP	2.5	mM,	concentrated	the	sample	10	times.	DSP	
must	be	prepared	freshly,	ready	to	use.	

2.	 Cross-linking	 was	 carried	 out	 for	 30	 min	 at	 room	 temperature	 (RT)	 with	
occasional	vortex-mixing.		

3.	Crosslinking	reaction	must	be	stooped	to	ovoid	undesirable	 interactions	of	 the	
oligomeric	complex.	For	this	reason,	it	was	added	5	µl	of	1	M	Tris-HCl	pH	7.5,	to	a	
final	concentration	of	50	mM.	The	incubation	was	done	for	15	min	at	RT	to	quench	
the	reaction.	



5.	The	cells	were	washed	 twice	with	10	mM	Tris-HCl	pH	7.5	and	resuspended	 in	
the	same	buffer	at	the	same	volume.		

6.	One	volume	of	SDS-PAGE	with	or	without	2-ME	5%	(vol/vol)	was	added	to	the	
samples,	and	then	they	were	boiled	10	min	before	gel	loading	(See	Note	12).	

7.	 After	 chemical	 crosslinking	 monomeric	 and	 oligomeric	 species	 be	
immunoprecipitated	 and/or	 analyzed	 by	 Western	 blotting	 using	 specific	
antibodies.		

3.2.	Example	of	results.	

The	intimin	polypeptides	run	in	the	BN-PAGE	with	a	mobility	corresponding	to	the	
expected	size	of	dimers	(Figure	6).		

With	 DSP	 we	 evaluated	 the	 quaternary	 structure	 of	 C-terminal	 domains	 of	
different	 ATs	 from	 Gram-negative	 bacteria	 expressed	 in	 E.	 coli	 (101).	 DNA	
fragments	encoding	 the	C-terminal	domain	of	 the	 selected	ATs,	were	cloned	 into	
the	 expression	 vector	 pAK-Not	 (82).	 	 The	 plasmids	 obtained,	 named	 pHEA	 (C-
terminal	 domain	 of	 EhaA),	 pHES	 (C-terminal	 domain	 of	 ShdA),	 pHEI	 (C-terminal	
domain	 of	 IgAP),	 pHEN	 (C-terminal	 domain	 of	 NalP)	 and	 pHEBA	 (C-terminal	
domain	 of	 BruA),	 encode	 polypeptides	 containing	 the	 N-terminal	 signal	 peptide	
(sp)	of	PelB,	followed	by	the	His	tag	(H)	and	E	tag	(E)	epitopes	and	their	respective	
C-terminal	 domains.	 The	 expression	of	 these	HE-tagged	C-terminal	 domains	was	
induced	with	 IPTG	 in	E.	 coli	 K-12	 strain	UT5600.	After	 incubation	with	DSP	 and	
with	either	non-reducing	(Figure	7A)	or	reducing	SDS-PAGE	buffer	(Figure	7B)	the	
samples	 were	 analyzed	 by	 Western	 blotting	 and	 developed	 with	 anti-E-tag	
antibody.	 Only	 HES	 showed	 oligomeric	 state	 with	 a	 strong	 crosslinking	 band	
around	98	kDa	corresponding	 to	 the	predicted	size	 for	a	dimer.	On	 the	contrary,	
the	rest	of	C-terminal	domain	ATs	were	weakly	cross-linked	(HEA	and	HEBA)	or	
not	cross-linked	at	all	(HEI	and	HEN),	suggesting	that	they	mainly	form	monomers	
in	the	OM	in	vivo.		

	

V.	Notes.	

1.	 Any	 E.	 coli	 strain	 that	 contains	 the	 complete	 Tn5	 transposable	 element	 (i.e.	
DH5αF	́IQ,	 SURE,	 SURE2,	MC1066)	 encodes	 the	 ble	 (bleomycin)	 resistance	 gene.	
These	strains	will	confer	resistance	to	Zeocin.	Plates	containing	Zeocin	are	stable	
for	1	month	when	stored	at	4°C.	

2.	SDS-PAGE	on	polyacrylamide	gels	of	8%	for	OMPs	around	90-100	kDa	or	10%	
for	OMPs	around	45-65	kDa.	

3.	 For	 POD-developing,	 a	 chemiluminescence	 reaction	 was	 prepared	 using	 a	
mixture	of	1.25	mM	luminol	(Sigma)	and	42	μM	luciferin	(Roche)	in	100	mM	Tris–
HCl	(pH	8.0).	Following	a	rapid	rinse	 in	PBS,	the	membranes	were	soaked	in	this	
mixture	 and	 H2O2	 added	 at	 0.0075%	 (v/v).	 Alternatively	 enhanced	 peroxidase	
chemiluminescence	 developer	 (Roche)	 was	 employed.	 In	 all	 cases,	 after	 a	 one	
minute	 incubation	 in	 the	 dark,	 the	 PVDF-membranes	 were	 exposed	 to	 an	 X-ray	
film	(X-OMAT,	Kodak).	



4.	 In	 the	 chromosome	 of	 wild-type	 E.	 coli,	 the	 surA	 gene	 is	 transcribed	 with	
downstream	 genes	 pdxA,	 ksgA,	 apaG	 and	 apaH.	 These	 genes	 are	 involved	 in	
functions	 unrelated	 to	 surA	 (e.g.	 pyridoxal	 5'-phosphate	 biosynthesis	 and	
methylation	of	16S	rRNA).	In	addition,	these	genes	are	transcribed	in	pdxA-	ksgA-
apaG-apaH	and	apaG-apaH	transcripts	due	to	the	presence	of	promoters	upstream	
pdxA	and	apaG	(http://biocyc.org/ECOLI).	

5.	The	BHI	medium	is	used	for	optimal	production	of	type	1	fimbriae	(102)	and	for	
expression	 of	 endogenous	 FimD	 in	 E.	 coli	 (33).	 LB	 medium	 was	 also	 used	 for	
depletion	studies	of	BamA	and	SurA	(27).	

6.	In	this	protocol	we	used	Proteinase	K	as	the	protease	of	choice.	Other	proteases	
can	 be	 used	 (e.g.,	 trypsin).	 In	 brief,	 induced	 E.	 coli	 cells	 were	 washed	 and	
resuspended	 in	 PBS,	 trypsin	 was	 added	 externally	 (10	 μg/ml).	 Samples	 were	
incubated	 for	20	min	 at	 37°C	 and	 stopped	by	 adding	 trypsin	 inhibitor	 (5	μg/ml;	
Sigma).	 Total	 protein	 extracts	 from	 these	 cells	 can	 be	 analyzed	 by	 Western	
blotting.	

7.	We	found	that	intimin	requires	boiling	in	the	presence	of	4	M	urea	and	2%	SDS	
for	complete	unfolding,	 indicating	 the	 formation	of	a	very	stable	β-barrel	 in	both	
EPEC	and	E.	coli	K-12	(27).	

8.	 Extraneous	 thiols	 (most	 reducing	 agents)	 must	 be	 excluded	 from	 maleimide	
reaction	buffers,	because	they	will	compete	for	coupling	sites.	

9.	mPEG-Mal	can	be	substituted	with	AMS.	4-acetamido-4′-maleimidylstilbene-2,2′-
disulfonic	acid	(AMS,	Mw	∼500	Da),	as	described	in	(103).	

10.	 The	 DTT	 treatment	 is	 performed	 as	 a	 control	 in	 order	 to	 determine	 the	
mobility	of	the	reduced	form	of	the	polypeptide.	
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Figure	Legends	

	

Figure	1.	Construction	of	SurA	depletion	E.	coli	mutant	strain.	 (A)	Scheme	of	
the	 RExBAD	 casette	 amplified	 by	 PCR	 from	 the	 TG1zeoRExBAD	 strain	 using	
primers	ZEOBAD	SurA1	and	ZEOBAD	SurA2	and	insertion	of	the	RExBAD	cassette	
by	 λred-driven	 homologous	 recombination	 after	 transformation	 with	 the	 PCR	
product	 containing	 the	 zeoRExBAD	 cassette	 and	 flanking	 DNA	 of	 the	 surA	
promoter	region.	(B)	Schematic	of	PBAD	controlled	surA	allele	 in	 the	UTPBAD::surA	
strain.		

	

Figure	 2.	 Expression	 of	 FimD	 in	 the	 conditional	 E.	 coli	 surA	 mutant.	 (A)	
Growth	curves	of	static	cultures	of	UTPBAD::surA	strain	grown	in	rich	BHI	medium	
containing	 D-glucose	 (Glu)	 or	 L-arabinose	 (Ara)	 and	 maintained	 in	 exponential	
phase	by	repeated	dilutions	with	the	same	medium.	Samples	 from	these	cultures	
were	 taken	 at	 the	 indicated	 times	 (I,	 II,	 and	 III)	 for	 Western	 blot	 analysis.	 (B)	
Whole-cell	 protein	 extracts	 from	 bacteria	 harvested	 at	 the	 indicated	 times	 (I,	 II,	
and	 III)	 from	cultures	shown	 in	panel	A	were	analyzed	by	Western	blotting	with	
anti-FimD,	 anti-OmpA,	 anti-SurA,	 anti-Skp,	 anti-DegP,	 and	 anti-GroEL	 antibodies.	
Control	 samples	were	 obtained	 from	 cultures	 of	UTPBAD::surA	 grown	 in	medium	
with	L-arabinose.	Reproduced	from	(85)	with	permission	from	ASM.	

	

Figure	 3.	 Intimin	domain	 organization	 and	 expression	 in	 EPEC	 (E2348/69)	
and	 E.	 coli	 K-12.	 (A)	 Schematic	 drawing	 of	 intimin	 illustrating	 its	 domain	
organization.	The	first	550	amino	acid	residues	of	intimin	(Int550)	contain	a	signal	
peptide	 (sp)	 located	 at	 the	 N	 terminus	 (N),	 a	 putative	 peptidoglycan-binding	
domain	(LysM),	and	an	OM-embedded	domain	predicted	to	fold	as	a	β-barrel.	The	
immunoglobulin-like	 (D0,	 D1,	 and	 D2)	 and	 the	 lectin-like	 (D3)	 domains	 are	
displayed	on	the	bacterial	surface.	Domain	D3	contains	a	disulfide	bond	indicated	
with	 an	 “S-S”.	 (B)	 Western	 blotting	 performed	 with	 a	 rabbit	 anti-Int280EPEC	
polyclonal	 serum	 (detecting	 domains	 D1,	 D2,	 and	 D3)	 of	 whole-cell	 protein	
extracts	from	EPEC	bacteria	grown	in	LB	in	the	presence	(+)	or	absence	(−)	of	10	
mM	2-ME.	Intact	bacteria,	harvested	from	this	culture,	were	incubated	with	(+)	or	
without	(−)	PK.	The	whole-cell	extracts	were	prepared	in	urea-SDS	sample	buffer	
(2%	SDS,	4	M	urea)	and	boiled	(+)	or	not	(−)	as	indicated.	The	mobility	of	unfolded	
(U)	 and	 folded	 (F)	 intimin	 is	 labeled	 on	 the	 right,	 and	 the	 masses	 of	 protein	
standards	 are	 shown	 on	 the	 left	 (in	 kilodaltons).	 (C)	Western	 blot	 probed	 with	
anti-Int280EPEC	 of	 whole-cell	 protein	 extracts	 from	 E.	 coli	 K-12	 strain	 UT5600	
carrying	pCVD438.	Reproduced	from	(27)	with	permission	from	ASM.	

	

Figure	 4.	 Intimin	 expression	 in	 a	 dsbA	 mutant	 of	 E.	 coli	 K-12	 and	 PK	
sensitivity.	Western	 blot	 with	 anti-Int280EPEC	 of	 whole-cell	 protein	 extracts	 in	
urea-SDS	 sample	 buffer	 of	E.	 coli	 UT5600	 and	 its	 isogenic	dsbA	mutant	 carrying	
pCVD438.	 Samples	 were	 treated	 as	 in	 Figure	 3.	 Reproduced	 from	 (27)	 with	
permission	from	ASM.	



	

Figure	 5.	 Alkylation	 with	 mPEG-MAL	 of	 intimin	 expressed	 in	 EPEC,	
UT5600/pCVD438	 and	UTdsbA/pCVD438.	 Treated	 samples	were	 subjected	 to	
non-reducing	 SDS-PAGE	 and	 Western	 blotting	 developed	 with	 anti-Int280EPEC	
serum.	Samples	incubated	with	the	reducing	agent	DTT	and/or	with	the	alkylating	
agent	mPEG-MAL	are	indicated	(+).	The	bands	corresponding	to	alkylated	intimin	
polypeptide	are	labeled	with	arrows.	The	masses	of	protein	standards	are	shown	
on	the	left	(in	kDa).	Reproduced	from	(27)	with	permission	from	ASM.	

	

Figure	 6.	 Outer	 membrane	 localization	 and	 dimerization	 of	 intimin	
polypeptides.	 Blue-native	 PAGE	 of	 solubilized	 OMPs	 from	 the	 outer	membrane	
fractions	 of	 E.	 coli	 UT5600/pInt550,	 UT5600/pNeae	 and	 EPEC	 bacteria.	 Intimin	
polypeptides	were	detected	by	Western	blot	 incubating	the	membrane	with	anti-
Int280EPEC	serum	followed	by	incubation	with	a	mixture	of	protein	A-POD	and	anti-
E-tag	mAb-POD.	The	mass	of	native	protein	standards	(GE	Amersham)	is	shown	on	
the	left	(in	kDa).	Reproduced	from	(27)	with	permission	from	ASM.	

	

Figure	7.	Analysis	of	the	quaternary	structure	of	the	AT	C-terminal	domains	
in	vivo.	(A)	Cross-linking	with	DSP	of	ATs	C-terminal	domains	expressed	in	E.	coli	
to	determine	 the	 formation	of	oligomeric	 complexes	 in	 vivo.	DSP-treated	 (+)	 and	
untreated	(-)	samples	were	subjected	to	non-reducing	SDS-PAGE,	and	the	Western	
blot	was	probed	with	anti-E	 tag	mAb-POD.	 Samples	 incubated	with	 the	 reducing	
agent	2-ME	are	indicated	(+).	(B)	Samples	treated	as	in	A	but	subjected	to	reducing	
SDS-PAGE.	Reproduced	from	(101)	with	permission	from	ASM.	
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