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In Huntington’s disease (HD), the expansion of polyglutamine (polyQ) repeats at the N terminus of the ubiquitous protein huntingtin
(htt) leads to neurodegeneration in specific brain areas. Neurons degenerating in HD develop synaptic dysfunctions. However, it is
unknown whether mutant htt impacts synaptic function in general. To investigate that, we have focused on the nerve terminals of motor
neurons that typically do not degenerate in HD. Here, we have studied synaptic transmission at the neuromuscular junction of transgenic
mice expressing a mutant form of htt (R6/1 mice). We have found that the size and frequency of miniature endplate potentials are similar
in R6/1 and control mice. In contrast, the amplitude of evoked endplate potentials in R6/1 mice is increased compared to controls.
Consistent with a presynaptic increase of release probability, synaptic depression under high-frequency stimulation is higher in R6/1
mice. In addition, no changes were detected in the size and dynamics of the recycling synaptic vesicle pool. Moreover, we have found
increased amounts of the synaptic vesicle proteins synaptobrevin 1,2/VAMP 1,2 and cysteine string protein-�, and the SNARE protein
SNAP-25, concomitant with normal levels of other synaptic vesicle markers. Our results reveal that the transgenic expression of a mutant
form of htt leads to an unexpected gain of synaptic function. That phenotype is likely not secondary to neurodegeneration and might be
due to a primary deregulation in synaptic protein levels. Our findings could be relevant to understand synaptic toxic effects of proteins
with abnormal polyQ repeats.

Introduction
Polyglutamine (polyQ) diseases are inherited neurological disor-
ders caused by CAG triplet-repeat expansions in several genes
that confer toxicity to the mutated proteins (Orr and Zoghbi,
2007). Huntington’s disease (HD), the most common polyglu-
tamine disease, is caused by an abnormally long polyQ repeat in
the N-terminal region of hungtingtin (htt) (The Huntington’s
Disease Collaborative Research Group, 1993). Although htt is
ubiquitously expressed in neuronal and non-neuronal cells, the
most vulnerable neurons in HD are the striatal medium spiny
neurons and the cortical pyramidal neurons. Likely, mutant-htt
becomes toxic through multiple molecular mechanisms, includ-
ing synaptic dysfunction (Smith et al., 2005; Rozas et al., 2010).
Detailed studies of synaptic alterations in HD mouse models in
the brain regions that typically degenerated in HD have reported
different phenotypes depending on synaptic type, brain region,
and level of degeneration (Zeron et al., 2002; Cepeda et al., 2003,

2007; Smith et al., 2005; Cummings et al., 2009; Rozas et al.,
2010). In any case, recognition of primary synaptic alterations in
central synapses in HD is challenging because they are likely hid-
den by secondary changes in circuit plasticity and by neurode-
generation. A recent study on a novel HD model in Drosophila
found enhanced neurotransmitter release leading to neurode-
generation in neuromuscular synapses expressing mutant htt
(Romero et al., 2008). Here, to discern primary synaptic changes
from changes due to neurodegeneration, we have used R6/1 mice
that develop a neurodegenerative motor phenotype that is slower
and moderate compared to the phenotype in R6/2 mice (Ribches-
ter et al., 2004). Evoked neurotransmitter release from R6/1 mice
motor neurons was not only robust and reliable, indeed, it was
unexpectedly enhanced in comparison to control synapses.

Materials and Methods
Mice. Previously described R6/1 mice (Mangiarini et al., 1996) were used
for experiments in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and with the Committee
of Animal Use for Research at the University of Seville. Male and female
mice were used.

Electrophysiology. The levator auris longus (LAL) muscle was dissected
as described previously (Angaut-Petit et al., 1987), stretched, and pinned
in a Sylgard-coated perfusion chamber. High-resistance (20 – 40 M�)
glass microelectrodes filled with 3 mM KCl were placed close to the nerve
terminal (10 –50 �m) to minimize electrotonic filtering of postsynaptic
potentials (Fatt and Katz, 1952). Nerve was drawn to a suction electrode
for electrical stimulation using a Model 2100 Isolated Pulse Stimulator
(A-M Systems). For the experiment described in Figure 4, two isolated
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pulse stimulators were used. Muscle action potentials were blocked by
1.5–2 �M �-conotoxin (Alomone Labs). The perfusing Ringer solution
contains the following (in mM): 130 NaCl, 5 KCl, 1 MgSO4, 0.5
Na2HPO4, 20 NaHCO3, 2 CaCl2, and 15 glucose; pH was 7.4. The solu-
tion was continuously bubbled with 95% O2/5% CO2. All experiments
were performed at room temperature. Postsynaptic potentials were re-
corded with a EPC10 patch-clamp amplifier (HEKA) in current-clamp
mode, filtered (Bessel, 2.9 kHz), and acquired at sampling rate of 10 kHz
using Pulse software (HEKA). Off-line analysis was performed with Axo-
graph X for Windows. The amplitudes of endplate potentials (EPPs) and
miniature EPPs (MEPPs) were normalized to �75 mV, assuming 0 mV as
the reversal potential for ACh-induced current (Magleby and Stevens,
1972a,b) using the formula EPPnormalized � EPP � (�75/Vm ), where Vm is
the measured resting membrane potential. Next, the amplitude of
EPPnormalized was corrected for nonlinear summation (McLachlan and
Martin, 1981) using the following formula: EPP� � EPPnormalized /[1 �
f (EPPnormalized /E)]. E is the difference between the membrane potential
(Vm ) and the equilibrium potential for ACh current (0 mV). The value f
(set to 0.8) is a factor that improves the accuracy of the nonlinear correc-
tion by taking into account the effect of the membrane capacitance of the
muscle fiber (Martin, 1976; McLachlan and Martin, 1981). The quantal
content (QC; i.e., the number of ACh quanta released upon a single nerve
impulse) at each neuromuscular junction (NMJ) was calculated by di-
viding the EPP� by the normalized MEPP amplitude. To calculate QC
during a stimulation train, the amplitude of MEPPs immediately re-
corded after the train was used.

Imaging. For FM2-10 destaining experiments, LAL muscles were dis-
sected and stretched in Ringer solution. D-Tubocurarine was used to
avoid muscle contraction, and the muscle was incubated in FM2-10 (In-
vitrogen, 40 �M) for 5 min before the stimulation was applied (90 s at 10
Hz). After the stimulus, the muscle remained in FM2-10 for 5 min to
complete the endocytosis and then was washed extensively. Experiments
were performed at room temperature. Preparations were visualized with
a Nikon Eclipse E600FN upright microscope, using 10� air and 60� (1.0

NA) water-immersion objectives. Fluores-
cence was excited using a Polychrome IV
monochromator (Till Photonics) (488 nm, 100
ms exposure time). Images were acquired at 1
Hz with 2 � 2 binning by an Andor Ixon 885
(Andor Technologies) camera using Till Vision
Software. Analysis and measurements were
performed in the original images using ImageJ.
Images were background subtracted (from
ROIs drawn beside the NMJs) and corrected
for photobleaching.

Immunohistochemistry. Muscles were fixed
in PBS with 4% paraformaldehyde for 3 h and
permeabilized in PBS Triton X-100 1% with
fetal bovine serum at 5% (overnight incuba-
tion). After being rinsed in PBS, muscles were
incubated in a solution (PBS, Triton X-100
0.2%, and FBS 10%) containing primary anti-
bodies for at least 8 h or overnight. The follow-
ing primary antibodies and dilutions were
used: rabbit anti-Syb1 (104 002, Synaptic Sys-
tems), 1:500; goat anti-Htt (N-18, Santa Cruz
Biotechnology), 1:200; mouse anti-SV2 (devel-
oped by Dr. Buckley and obtained from the
Developmental Studies Hybridoma Bank, de-
veloped under the auspices of the National In-
stitute of Child Health and Human
Development and maintained by The Univer-
sity of Iowa), 1:500; rabbit anti-synaptophysin 1
(101 002, Synaptic Systems), 1:300; rabbit anti-
SNAP-25 (I733, gift from Dr. Thomas Südhof,
Stanford University, Palo Alto, CA) (McMahon
and Südhof, 1995), 1:500; rabbit anti-cysteine
string protein-� (CSP-�) [R807, gift from Dr.
Thomas Südhof (Fernández-Chacón et al.,
2004)], 1:500; rabbit anti-synaptotagmin 1,2

[V216, gift from Dr. Thomas Südhof (Ullrich and Südhof, 1994)], 1:200; and
rabbit anti-Syntaxin 1A and anti-Syntaxin 1B, gift from Dr. Joan Blasi (Uni-
versity of Barcelona, Barcelona, Spain) (Ruiz-Montasell et al., 1996), 1:50.

Secondary antibodies were used at 1:1000 concentration for 3 h. Then,
muscles rinsed in PBS were mounted using SlowFade Gold antifade (In-
vitrogen). Preparations were visualized using a 60� 1.42 NA oil-
immersion objective mounted on an Olympus Fluoview confocal
microscope. For quantification of fluorescence intensity, images from
WT and R6/1 junctions were collected using the same conditions of
excitation, resolution, zoom, and step size (1 �m between each image).
Using ImageJ, each slice from the z-stack was summed to each other to
obtain a unique image, and the reference marker (SV2) was used to create
a mask around the NMJs. The average pixel intensity obtained from each
synapse for the desired marker was divided by the SV2 average intensity
to yield a normalized value. Others image treatments or filtering were
avoided.

Immunoblots. For immunoblotting, LAL muscles of WT mice and
R6/1 mice were extracted in Ringer solution (see above) and then ho-
mogenized in lysis solution [20 mM Tris-HCl, pH 7.4, 1% IGEPAL, 150
mM NaCl, and 1 mM EDTA, supplemented with protease inhibitors (Sig-
ma): 1 mM NaF, 1 mM Na3VO4, 1 mM PMSF, leupeptin (2 �g/ml), apro-
tinin (2 �g/ml), and pepstatin A (1 �g/ml)] using a glass homogenizer.
Protein concentrations were determined using BCA assay (Pierce).
Equivalent amounts of proteins from wild-type and R6/1 transgenic mice
were analyzed by SDS-PAGE and immunoblotting using antibodies as
follows: CSP-� (R807), 1:1000; synaptobrevin 2/VAMP2 (Cl 69.1, Syn-
aptic Systems), 1:1000; SNAP-25 (I733), 1:50; syntaxin 1A (I378, gift
from Dr. Thomas Südhof (McMahon and Südhof, 1995), 1:50; dynamins
1–3 (Pan-Dyn, 115 002, Synaptic Systems), 1:500; and �-actin (A 2066,
Sigma), 1:1000, as loading control. Peroxidase-labeled secondary anti-
bodies (Sigma and Biomedal) [anti-mouse (1:10,000) and anti-rabbit
(1:5000)] were revealed using ECL Plus (GE Healthcare). Luminescence
was acquired with a ChemiDoc XRS System (Bio-Rad).

Figure 1. Increased evoked neurotransmitter release at the NMJ in R6/1 mice. A, Exemplary recordings of spontaneous release.
B, Single (black) and averaged (gray) MEPPs (right) from one endplate in WT and R6/1 fibers. C, Cumulative histogram of MEPP
amplitude shows no size differences between WT (black) and R6/1 (gray) MEPPs. D, Spontaneous release frequency is slightly, but
not significantly, increased at R6/1 synapses (p � 0.07, Student’s t test). E, Exemplary recordings of EPPs from WT (black) and R6/1
(gray) mice. F, Increased EPP amplitude (in millivolts) and QC released per action potential at R6/1 synapses compared to WT
(***p � 0.001 for both amplitude and QC, Student’s t test).
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Results
Increased EPP amplitude and quantal content at the NMJ of
R6/1 mice
We used the levator auris longus nerve–muscle preparation
(Angaut-Petit et al., 1987) to characterize synaptic transmission
at the NMJ of 5- to 6-month-old R6/1 transgenic mice. We found
no significant changes in resting membrane potential (�61.5 �
1.6 mV, n � 26 in WT vs �57.4 � 1.8 mV, n � 26 in R6/1, p �
0.11, Student’s t test). First, we recorded MEPPs to examine
spontaneous release (Fig. 1A) and found similar MEPP ampli-
tudes in R6/1 and WT mice (Fig. 1B,C) (0.73 � 0.08 mV, n � 26
for WT; 0.73 � 0.04 mV, n � 26 for R6/1), indicating no alter-
ations in the acetylcholine content of single vesicles. MEPP fre-
quency was slightly higher in the R6/1 mice but not significantly
different from MEPP frequency in controls (1.84 � 0.23 Hz in
R6/1, n � 45 vs 1.46 � 0.15 Hz in WT, n � 47) (Fig. 1D). In
contrast, EPPs, evoked by nerve stimulation using a suction elec-
trode, turned out to have a dramatically higher amplitude in R6/1
junctions than EPPs recorded from control junctions (Fig. 1F)
(37.5 � 2.4 mV, n � 26 for WT; 58.7 � 4.2 mV, n � 26 for R6/1,
p � 0.001, Student’s t test). Quantal content estimation indicated
that control nerve terminals released, on average, 50 vesicles per
action potential, while terminals from R6/1 mice released 60%
more vesicles: 80 vesicles per action potential (Fig. 1F). Thus, the
augmented evoked release could be due to an increased readily
releasable synaptic vesicle pool, to a higher release probability of
every synaptic vesicle, or to both.

Strong short-term depression and normal recycling vesicle
pool at R6/1 synapses
Synapses with high release probability typically display high
synaptic depression: the amplitude of postsynaptic responses
becomes progressively lower during stimulation with high-
frequency action potential trains. In contrast, synapses with
lower release probability exhibit lower synaptic depression or
even facilitation (Zucker and Regehr, 2002). Control synapses
stimulated with trains of 5 action potentials at different frequen-
cies responded with either a moderate synaptic depression (at 10
Hz stimulation frequency) or with synaptic facilitation followed
by a weak depression (at 30 and 100 Hz stimulation frequencies)
(Fig. 2A). In contrast, R6/1 synapses exhibited synaptic depres-
sion at every stimulation frequency that was significantly stron-
ger than synaptic depression in control synapses (Fig. 2A). This
observation is consistent with the notion that release probability
is increased at R6/1 synapses. To test whether the underlying
cause of such an increase was the existence of bigger synaptic
vesicle pools, we challenged synapses with longer stimulation
trains. Under those conditions, the efficient recycling and refill-
ing of vesicle pools is required to sustain synaptic transmission
during the train (Delgado et al., 2000; Rizzoli and Betz, 2005).
EPP amplitude in control synapses dropped quickly at the begin-
ning of the train to reach the steady-state amplitude maintained
until the train ended (Fig. 2B). The steady-state amplitude was lower
at 100 Hz, the highest frequency tested. R6/1 synapses responded
similarly to wild-type synapses; however, the initial depression was
deeper and the steady-state amplitudes reached lower values than at

Figure 2. Strong synaptic depression at the R6/1 NMJ. A, Exemplary recordings of EPPs in
response to electrical nerve stimulation at three different frequencies: 10, 30, and 100 Hz (top).
Averaged responses (bottom) showed enhanced depression at R6/1 synapses compared with
WT, a typical feature of synapses with high release probability. B, Synapses were challenged
with longer trains (100 action potentials, AP) at 10, 30, and 100 Hz to induce depletion of the
readily releasable pool (RRP). Mutant synapses showed faster and deeper pool depletion, as
expected for high release probability.

Figure 3. Enhanced release from a recycling synaptic vesicle pool with normal size. A, EPPs
evoked by 10 s duration stimulation trains at 30 Hz (top) and 100 Hz (bottom) from WT (black)
and R6/1 (gray) synapses. B, The total number of quanta released during a train was obtained as
the summation of every quanta released by each action potential. Total quanta released at 30 Hz
was higher in mutant (24.9% increase) than in WT synapses (*p�0.035, Mann–Whitney test).
However, no changes were observed at a stimulation frequency high enough (100 Hz) to release
completely the recycling pool. The exemplary traces shown in A obtained in the same fibers
yielded a cumulative QC at 30 Hz of 8978 quanta (WT) and 13,678 quanta (R6/1); at 100 Hz, the
values were 20,320 (WT) and 19,011 (R6/1) quanta.
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wild-type synapses (Fig. 2B, arrows). Furthermore, for high stimu-
lation frequencies (30 and 100 Hz), EPP amplitudes in R6/1 synapses
failed to hold a constant steady-state level and the amplitude pro-
gressively ran down until the end of the train (Fig. 2B, asterisks). In
addition, out of this set of data, we generated cumulative plots of the
quantal content released during the stimulation train and attempted
to extrapolate the size of the readily releasable synaptic vesicle pool as
previously described in central synapses (Schneggenburger et al.,
1999; Moulder and Mennerick, 2005). However, that approach
was not valid in our experiments, because recovery from depression
was not negligible for the initial time interval before reaching the
steady-state phase of depression (data not shown). In any case, our
data did not support the existence of bigger recycling synaptic vesicle
pools or increased rate of pool refilling from a putative reserve pool

(Poskanzer and Davis, 2004; Rizzoli and
Betz, 2005). Instead, our data, again, ex-
posed a greater avidness of R6/1 synapses for
evoked release that was high enough to
compromise recycling mechanisms that
could not cope with the augmented syn-
aptic vesicle exocytosis. However, those
observations are rather indirect and did
not rule out that, concomitant with the
enhanced release, R6/1 synapses carried a
thinner recycling pool. To get insight into
that possibility, we computed the total
quantal content released upon nerve stim-
ulation during 10 s at 30 and 100 Hz.
Stimulating at 30 Hz, the total number of
vesicles released was significantly higher
in R6/1 synapses (Fig. 3A,B). However,
for stronger stimulation rate at 100 Hz,
although control and R6/1 junctions re-
leased more vesicles than at 30 Hz, the
R6/1 and control synapses behaved alike
(Fig. 3A,B). Probably, we detected a
higher number of released vesicles from
R6/1 terminals at 30 Hz, and not at 100
Hz, because at a lower frequencies vesicle
recycling is likely not a limiting step for
exocytosis. In addition, we also used those
recordings to measure the MEPP fre-
quency at the end of every train and found
that, under those conditions, the fre-
quency of MEPPs was increased in R6/1
junctions (after 30 Hz trains: 4.54 � 0.65
Hz in R6/1, n � 35 vs 2.98 � 0.93 Hz in
WT, n � 37, p � 0.05, Student’s t test;
after 100 Hz trains: 10.09 � 1.20 in R6/1,
n � 35 vs 6.86 � 0.79 Hz in WT, n � 37,
p � 0.02, Student’s t test). Furthermore,
we set up conditions for imaging release
with the styryl dyes FM2-10 (Ribchester et
al., 1994; Perissinotti et al., 2008). Dye
loading into motor neuron terminals in-
cubated with FM2-10 was performed by
stimulating synaptic vesicle exocytosis
and endocytosis with a long train of action
potentials (90 s at 10 Hz) (Fig. 4A), fol-
lowed by extensive wash to remove non-
internalized dye. Subsequent strong nerve
stimulation (120 s at 50 Hz) resulted in
almost complete destaining of the termi-

nals, as expected for the emptying of the recycling pool of synap-
tic vesicles (Fig. 4B). Destaining took place with the same kinetics
and amplitude in wild-type and R6/1 junctions (Fig. 4B). How-
ever, stimulation with shorter trains at lower frequencies (40 s at
10 Hz), to release only a fraction of the recycling vesicle pool, led
to faster and stronger destaining of R6/1 terminals than of con-
trols (Fig. 4C,D). Notably, those observations, consistently with
the electrophysiological measurements, confirmed that vesicle
release from R6/1 terminals was strikingly heightened. Moreover,
those results pointed to similar size of the recycling pool of syn-
aptic vesicles in wild-type and R6/1 terminals. In addition, con-
sistent with normal recycling mechanisms, we found no changes
in the recovery of synaptic responses after induction of strong
synaptic depression (30 s at 10 Hz) (Fig. 4E).

Figure 4. Imaging of enhanced release with FM2-10 styryl dye. A, NMJs were first loaded with FM2-10 by stimulating 90 s at 10
Hz and then challenged (separately) with different stimulation trains. B, In response to 120 s at 50 Hz stimulation train, both WT
and R6/1 synapses lost the FM2-10 dye almost completely. No obvious changes in destaining kinetics were observed between WT
and R6/1. C, D, Upon milder stimulation with 40 s at 10 Hz trains, mutant synapses destained more and faster than WT synapses,
as expected for higher release probability at R6/1 synapses. E, Recycling pool recovery from depletion (induced by a 30 s at 100 Hz
train) was assessed by measuring EPP amplitude evoked by sequential stimulation at 2 Hz. Although the depression is stronger for
R6/1 synapses (for clarity, only 1 point of 10 is drawn), the recovery was very similar in WT and mutant synapses. Thus, no obvious
abnormalities occurred in the refilling of the recycling pool at R6/1 synapses.
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Synaptic overexpression of synaptobrevin 1,2/VAMP 1,2,
CSP-�, and SNAP-25 at the R6/1 motor terminals
Since the synaptic phenotype that we have found might be medi-
ated by a direct effect of htt on the molecular machinery of syn-
aptic vesicle exocytosis, we searched for htt expression at the
NMJ. Using specific fluorescently labeled antibodies against htt,
we could not detect any expression at the wild-type junctions. In
contrast, at the R6/1 junctions, htt expression was high enough to
be clearly detected with immunohistochemical techniques in
many junctions (Fig. 5A). In any case, htt expression was not
uniformly distributed among all the junctions and, instead, ex-
hibited a variegated pattern. As a control marker for immunohis-
tochemistry, we used antibodies against the synaptic vesicle
protein synaptobrevin 1/VAMP1 (Fig. 5A). The synaptic surface
labeled with synaptobrevin 1/VAMP1 antibodies were similar in
control and R6/1 mice (163.5 � 11.5 �m 2, n � 64 for controls
and 169.8 � 7.2 �m 2, n � 76 for R6/1), suggesting that the
terminals were not degenerated. Unexpectedly, however, the
signal intensity for synaptobrevin 1/VAMP1 was apparently
stronger in the mutants than in the controls. Indeed, a closer
examination of junctions doubly labeled with antibodies against
htt and synaptobrevin 1 revealed a linear relationship be-
tween the intensity of the two markers (Fig. 5B). Next, we per-
formed double labeling using antibodies against synaptobrevin
1/VAMP1 and against another synaptic vesicle protein, synaptic
vesicle protein 2 (SV2) (Fig. 6A). Interestingly, quantification of
both signal intensities demonstrated a significant increase in the
intensity of synaptobrevin 1/VAMP1 staining normalized to SV2
staining (Fig. 6D). Next, we extended our study to other synaptic
vesicle proteins and found normal levels of other synaptic vesicle

markers such as synaptophysin 1 (Fig. 6B) and synaptotagmin
1,2, but not for CSP-�, which was unexpectedly increased. In
addition, we checked the levels of the SNARE proteins SNAP-25
and syntaxin 1 A,B. Surprisingly, we observed a significant in-
crease in the SNAP-25 staining at the R6/1 junctions (Fig. 6C,D).
In contrast, we could not detect changes of fluorescence intensity
for syntaxin 1 A,B; however, since the signal obtained with anti-
syntaxin 1 A,B antibodies was rather weak and with higher back-
ground than for the other markers (data not shown), we decided
to complement our study with immunoblots. In contrast to the
Western blot analysis of synaptic protein levels in brain, the anal-
ysis of synaptic proteins from the neuromuscular junction at the
tiny levator auris longus muscle is challenging because the
amount of synaptic proteins is very low. We have nevertheless set
up conditions to detect proteins by Western blot in neuromus-
cular preparations from R6/1 and control mice by pooling the
protein extracts from several mice. In agreement with the immu-
nofluorescence experiments, we have found stronger signals for
SNAP-25 and CSP-� in protein extracts from R6/1 mice. Other
proteins, such as syntaxin 1A, dynamins (1–3), and actin, did not
show any obvious change. We also tested the antibody against
synaptobrevin 1 that we successfully used for immunofluores-
cence staining, but unfortunately we did not detect any signal,
indicating that the antibody does not work for our immunoblots.
Then, we decided to check synaptobrevin 2/VAMP2 levels in
Western blots and, interestingly, found that the levels of synap-
tobrevin 2/VAMP2 were increased in the R6/1 protein extracts. In
summary, among all the proteins studied, we did not detect any
decrease in the levels of any of them; however, synaptobrevin
1,2/VAMP 1,2, CSP-�, and SNAP-25 turned out to be increased
at the junctions of R6/1 mice.

Discussion
Increased quantal content and strong synaptic depression
We have found a gain-of-function phenotype in neurotransmit-
ter release at the motor nerve terminals of R6/1 transgenic mice,
a mouse model of polyglutamine disease. In the context of previ-
ous studies of synaptic function in HD, our findings are novel
because they demonstrate for the first time that expanded htt
increases synaptic release at vertebrate motor nerve terminals.
We have shown that, at the NMJ of R6/1 mice, there are no
differences in MEPP amplitude, but the amplitude of evoked
release is 60% higher than in control mice (Fig. 1). To minimize
errors in the quantal content estimation, we have corrected the
effect of nonlinear summation on EPP amplitude as previously
described (McLachlan and Martin, 1981) using a correction fac-
tor ( f � 0.8) (see Materials and Methods). The introduction of
that factor improves overcorrection introduced by older meth-
ods (Martin, 1955), and it has been used in different mouse neu-
romuscular preparations (Plomp et al., 1992; Wood and Slater,
1997; Bullens et al., 2002; Bewick et al., 2004; Chen et al., 2010).
Current-clamp measurements of quantal content could be rela-
tively inaccurate if compared with absolute quantal content
values obtained with voltage-clamp recordings as previously de-
scribed in other preparations (Wood and Slater, 1997). However,
we do not have any reason to suspect that the significant increase
in quantal content that we have found in R6/1 synapses would
be different if we measured synaptic transmission with voltage
clamp. Furthermore, as expected for synapses with high release
probability, R6/1 synapses undergo strong synaptic depression
(Fig. 2). We cannot rule out that the number of release sites,
regarded as the number of morphologically defined active zones,
is increased. However, that change alone would not be enough to

Figure 5. Direct correlation between the expression of mutant-htt and synaptobrevin
1/VAMP1 in R6/1 synapses. A, Htt immunoreactivity was not detected at the NMJ in WT mice. In
contrast, the same antibody labeled R6/1 junctions, as expected for expanded-htt expression at
the synapse. Htt labeling was unevenly distributed among different junctions, suggesting a
variegated expression pattern. B, Linear relationship between htt and synaptobrevin 1 expres-
sion. Scale bars, 10 �m.
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explain the phenotype. An increase in the number of release
sites without increasing the probability that vesicle fusion oc-
curs at a given active zone should not lead to higher synaptic
depression. Consistent with an unchanged number of release
sites, we do not see changes in the synaptic surface area between
R6/1 and controls; however, in future studies, electron micros-
copy analysis will be useful to get deeper insight into that issue.

Normal recycling vesicle pool at R6/1 synapses
In addition, we have used electrophysiology and imaging to ob-
serve that the dynamics and vesicle pool size are similar in R6/1
and control synapses. (1) The total number of quanta released, at
the end of a train, is higher at R6/1 synapses at 30 Hz but equal to
controls at 100 Hz (Fig. 3). Likely, at the higher frequency, the
limiting step for release is not exocytosis but the similar recycling
capacity (Denker and Rizzoli, 2010) in mutant and control syn-
apses. (2) Destaining of styryl dyes from R6/1 terminals, induced
by short stimulation trains, is higher and faster than in controls.

In contrast, destaining due to the release
of the total recycling pool, induced by
stronger stimulation trains (Perissinotti et
al., 2008), was identical in R6/1 and con-
trol terminals (Fig. 4). (3) The time course
of the recovery of EPP amplitudes after
synaptic depression was the same for both
genotypes, consistent with the notion that
vesicle recycling at R6/1 terminals is not
altered (Fig. 4). In summary, the gain of
function that we have observed does not
come from a bigger or faster refilling of
the recycling synaptic vesicle pool.

Release enhancement not due
to neurodegeneration
We have not found morphological signs
of nerve terminal damage; therefore, the
phenotype is likely not due to secondary
neurodegenerative alterations. Indeed, it
would be difficult to explain how synaptic
run-down caused by neurodegeneration
would translate into enhancement of re-
lease. R6/2 mice undergo fast and progres-
sive NMJ degeneration characterized by
early muscle atrophy and robust synaptic
transmission, followed by neurotransmit-
ter release impairment before death (Rib-
chester et al., 2004). In contrast to our
observation in R6/1 mice, motor nerve
terminals of R6/2 mice apparently do not
have any increase in neurotransmitter re-
lease. Perhaps such a phenotype might be
masked or counterbalanced by the stron-
ger degeneration in R6/2 mice. Neverthe-
less, our findings at the NMJ of R6/1 mice
are in agreement with the large size of
evoked EPSCs and the decreased paired-
pulse ratio at some stimulation frequen-
cies described in cortical synapses from
R6/2 mice (Cummings et al., 2009). In ad-
dition, our findings are consistent with a
recent study on a novel Drosophila HD
model expressing human full-length htt
with a 128 polyQ expansion (128Qhtt FL)

(Romero et al., 2008). Similar to our observations in R6/1 mice,
motor neurons from larvae expressing 128Qhtt FL exhibited nor-
mal spontaneous release and a significant increase in the ampli-
tude of evoked excitatory junction potentials. Interestingly, adult
flies expressing 128Qhtt FL developed degeneration of motor neu-
rons that was prevented upon genetic manipulations that re-
duced exocytosis (Romero et al., 2008). Strikingly, the increase in
neurotransmitter release that we observe in R6/1 does not require
the polyQ expansion within the full-length htt, as occurs at the fly
128Qhtt FL model. That implies that the mere polyQ expansion at
the N-terminal portion of htt, and not necessarily the full-length,
might be sufficient to induce the synaptic phenotype. This notion
could be relevant to investigate synaptic phenotypes in other
models of polyQ diseases. Future experiments should test
whether genetic or pharmacological synaptic manipulation in
R6/1 mice at early phases could indeed prevent neuronal
degeneration.

Figure 6. Synaptic overexpression of synaptobrevin 1,2/VAMP 1,2, CSP-�, and SNAP-25 at the R6/1 motor terminals. A, B,
Increase of synaptobrevin 1/VAMP1 (Syb1) but not of synaptophysin 1 (Syphy1) in mutant synapses, compared with SV2. C,
Increased levels of SNAP-25 at R6/1 synapses. D, Quantitation of fluorescence intensity for several synaptic proteins normalized to
SV2 fluorescence in WT and R6/1 mutant junctions. (Significant differences: *p � 0.026 or ***p � 0.001, Student’s t test). E,
Immunoblots from protein extracts of LAL from WT and R6/1 mice reveals increased levels of SNAP-25, CSP-�, and Syb2. No
obvious changes are detected in dynamins 1–3, syntaxin 1A, or �-actin. The secondary antibodies against mouse IgG reacts with
IgG light (IgG LC) and heavy (IgG HC) chains of IgG. Blot from left panel corresponds to a pool of muscles from 4 WT and 4 R6/1 mice,
and blot from right panel corresponds to a pool from 2 WT and 2 R6/1 mice. Scale bars, 10 �m. The sign (�) means longer
exposure.
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Alterations in Ca 2� release from intracellular stores?
Tang et al. (2003, 2005) have demonstrated that expanded htt
binds and facilitates activity of type 1 inositol 1,4,5-triphosphate
receptor (InsP3R1), indicating that abnormally increased neuro-
nal Ca 2� levels may be important in HD pathogenesis. We can-
not rule out the possibility that mutant-htt might enhance
neurotransmitter release by promoting Ca 2� release from intra-
cellular stores at the motor nerve terminals of R6/1 mice. If that
were the case, we should detect a Ca 2�-dependent elevation in
the MEPP frequency in resting conditions (Llano et al., 2000; Xu
et al., 2009); however, we detected that MEPP frequency was
slightly, but not significantly, higher at the R6/1 terminals (Fig.
1D). In contrast, Romero et al. (2008) reported elevated resting
synaptic Ca 2� levels at the 128Qhtt FL strain with no changes in
the frequency of spontaneous release (for review, see Rozas et al.,
2010). We nevertheless recorded a higher MEPP frequency in
R6/1 junctions after high-frequency stimulation trains, but we
cannot distinguish whether such an increase is due to (1) abnor-
mally high cytosolic [Ca 2�], (2) an effect downstream of a Ca 2�-
dependent step of exocytosis activation, or (3) both. Future
experiments will have to address that question.

Increased levels of synaptic SNAREs and CSP-�
Interestingly, since 128Qhtt FL accumulated in the cytoplasm and
never in the nucleus, Romero et al. (2008) considered that poten-
tial transcriptional alterations were not involved in the synaptic
phenotype in the fly. Since we have detected htt immunoreactiv-
ity at the NMJ of R6/1 mice, we favor the hypothesis of a direct
action of htt likely mediated by protein–protein interactions at
the synapse. Our most surprising molecular observation is the
increased levels of specific synaptic proteins, the SNAREs synap-
tobrevin 1,2/VAMP 1,2 and SNAP-25, and the synaptic vesicle
protein CSP-� (Fig. 6). Such a specific protein change cannot be
explained by a general or uniform decrease, which could be, for
example, expected to occur as a consequence of severe synaptic
damage. Instead, expanded htt, by unknown mechanisms, leads
to selective alterations of, at least, a few synaptic proteins. A pre-
vious study has shown a selective decrease of the synaptic vesicle
protein vesicular acetylcholine transporter (VAChT) concomi-
tant with a normal level of synaptophysin at the NMJ of R6/1
mice (Smith et al., 2006). We do not know the mechanism by
which expanded htt might selectively increase the level of synaptic
proteins. However, we have recently shown that the expanded-
htt expression induces a transient impairment of the ubiquitin/
proteasome system (UPS) that is rescued upon sequestration of
expanded htt in protein aggregates (Ortega et al., 2010). On the
other hand, Wang et al. (2008) have shown that synaptic proteins
(SNAP-25 and PSD-95) fused to a fluorescent reporter of UPS
activity do not undergo degradation in R6/2 synapses. Therefore,
the general transient impairment of the UPS could become a
rather long-lasting impairment at the synaptic terminals, perhaps
because the microtubule-dependent sequestration of expanded
htt (Kopito, 2000; Muchowski et al., 2002) is less efficient at the
synaptic compartments. In addition, by unknown molecular
mechanisms, pharmacological inhibition of the UPS increases
neurotransmitter release in hippocampal cultures (Willeumier et
al., 2006; Rinetti and Schweizer, 2010). Although we do not have
yet enough elements to build up a mechanistic molecular model
to explain the enhanced release in R6/1 synapses, it is likely that
the upregulation of two SNARE proteins (synaptobrevins and
SNAP-25) might be part of the molecular changes contributing to
the gain of function phenotype in neurotransmitter release. On
the other hand, CSP-�, which has been shown to interact with

mutant-htt (Miller et al., 2003), is required to maintain SNAP-25
levels (Chandra et al., 2005). Both proteins, CSP-� and SNAP-25,
become reduced in Drosophila mutants lacking the palmitoyl
transferase huntingtin-interacting protein 14 (Ohyama et al.,
2007; Stowers and Isacoff, 2007). Therefore, in future studies, it
would be interesting to explore the functional significance of a
parallel synaptic increase of CSP-� and SNAP-25 in mouse mod-
els of polyglutamine diseases.
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Castellano-Muñoz M, Rosenmund C, Montesinos ML, Sanes JR,
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Rozas JL, Gómez-Sánchez L, Tomás-Zapico C, Lucas JJ, Fernández-Chacón R
(2010) Presynaptic dysfunction in Huntington’s disease. Biochem Soc
Trans 38:488 – 492.
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