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ABSTRACT 27 

Water stress affects many agronomic traits that may be regulated by the phytohormone 28 

abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in 29 

many citrus cultivars that develop peel damage in response to dehydration. To study 30 

peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative 31 

role of ABA in this process, we have performed a comparative large-scale 32 

transcriptional analysis of water-stressed fruits of the wild-type ‘Navelate’ orange 33 

(Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant ‘Pinalate’, which 34 

is more prone to dehydration and to develop peel damage. Major changes in gene 35 

expression occurring in the wild-type line were impaired in mutant fruit. Gene ontology 36 

analysis revealed the ability of ‘Navelate’ fruits to induce the ‘response to water 37 

deprivation’ and ‘di-, tri-valent inorganic cation transport’ biological processes, as well 38 

as the repression of the ‘carbohydrate biosynthesis’ process in the mutant. Exogenous 39 

ABA triggered relevant transcriptional changes and repressed the ‘protein 40 

ubiquitination’ process although it could not fully rescue the physiological behaviour of 41 

the mutant. Overall, results indicate that dehydration responsiveness requires ABA-42 

dependent and independent signals, and highlight that the ability of citrus fruits to 43 

trigger molecular responses against dehydration is an important factor in reducing their 44 

susceptibility to develop peel damage. 45 
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INTRODUCTION 52 

Plant growth, crop agricultural productivity and quality are adversely affected by both 53 

biotic and abiotic stress factors. The effect of water stress on physiological and 54 

molecular responses of model plants has been largely described (Bray et al., 2000; 55 

Bartels and Sunkar, 2005; Seki et al., 2007). However, in spite of the relevance of this 56 

environmental factor on fruit quality, knowledge of these mechanisms in fruits is 57 

limited. Nevertheless, transcriptomic studies conducted in grapes indicate that genes, 58 

gene categories, and regulatory elements are differently affected by dehydration 59 

occurring before or after harvesting the fruit and also by the stress severity (Grimplet et 60 

al., 2007; Rizzini et al., 2009; Deluc et al., 2009; Zamboni et al., 2010).  61 

Studies conducted in plants show that water stress causes removal of water from 62 

cytoplasm to extracellular space causing a reduction in the cytosolic and vacuolar 63 

volumes and an alteration of reactive oxygen species homeostasis, which originates 64 

accumulation of toxic substances but also the production of signal transduction 65 

molecules (Miller et al., 2010). Accumulation of sugars, poly-alcohols, amino acids, 66 

amines and ABA in response to water stress have been demonstrated in the model plant 67 

Arabidopsis thaliana and in a number of important horticultural crops (Bartels and 68 

Sunkar, 2005; Seki et al., 2007). Since these metabolites function as osmolytes, 69 

antioxidants, scavengers and/or signalling molecules that can help plants to tolerate 70 

abiotic stresses, changes in their homeostasis are thought to be associated with the 71 

maintenance of structure and function of cellular component networks. Therefore, the 72 

metabolic pathways of these compounds have been largely investigated (Seki et al., 73 

2007) although regulatory networks and cross-talk between their components need 74 

further investigation (Yamaguchi-Shinozaki and Shinozaki, 2006; Shinozaki and 75 

Yamaguchi-Shinozaki, 2007). Deregulation of these water stress metabolites and/or 76 
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responsive genes can be finally manifested as cellular damaged tissues (Alférez et al., 77 

2008). Moreover, mechanisms occurring in grape berries dehydrated after harvest 78 

(Grimplet et al., 2007; Zamboni et al., 2010) or in berries from water-stressed vines 79 

(Deluc et al., 2009) indicated that dehydration may have a profound effect on the 80 

expression of genes associated with the biosynthesis of relevant compounds that 81 

ultimately impact fruit quality. Functional characterization of the stress-induced genes 82 

also highlights the relevance of the secondary metabolism, which may be affected by 83 

the rate and intensity of dehydration (Rizzini et al., 2009). Furthermore, it should be 84 

also considered the relevance of fruit surface properties in the dehydration of detached 85 

fruits.  86 

The tight relationship between ABA and dehydration is well known (Bartels and 87 

Sunkar, 2005; Shinozaki and Yamaguchi-Shinozaki, 2007), although ABA-independent 88 

pathways may also operate in response to dehydration (Riera et al., 2005). Plant 89 

hormone mutants have been extensively used to elucidate signal transduction pathways 90 

and to define the involvement of hormones in physiological processes. Focusing on 91 

ABA, natural and induced knockout and overexpressing mutants of biosynthetic and 92 

signalling transduction genes in Arabidopsis (Armstrong et al., 1995; Koornneef et al., 93 

2004) and other plant species (Pena-Cortes et al., 1989; Groot and Karssen, 1992; 94 

Schwartz et al., 1997; Burbidge et al., 1999) have been characterized. However, the 95 

availability of artificially generated mutants is very uncommon in woody plants. 96 

Therefore, the access to spontaneous fruit hormone mutants is of particular scientific 97 

interest. A spontaneous fruit-specific ABA-deficient mutant from the wild-type 98 

‘Navelate’ orange (Citrus sinensis L. Osbeck), named ‘Pinalate’, has been described 99 

(Rodrigo et al., 2003). ‘Pinalate’ orange presents distinctive yellow-coloured fruit 100 

because of a partial blockage of the carotenoid biosynthetic pathway, causing a fruit-101 
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specific ABA-deficiency. Moreover, harvested ‘Pinalate’ fruit shows higher dehydration 102 

and much higher susceptibility than its parental to develop peel depressions, which in 103 

advanced stages become bronze and necrotic (Alférez et al., 2005; Sala et al., 2005). 104 

This physiological disorder, known as ‘non-chilling peel pitting’ (NCPP), ‘rind 105 

breakdown’ or ‘rind staining’ (Agustí et al., 2001; Lafuente and Sala, 2002), occurs in 106 

many citrus cultivars at temperatures above 11 ºC, with water stress being an important 107 

causal factor in both attached and detached fruits (Alférez et al., 2003; Lafuente and 108 

Zacarías, 2006). Therefore, because of its higher susceptibility to develop NCPP and to 109 

dehydration, and its fruit-specific ABA deficiency, ‘Pinalate’ fruit is a valuable 110 

experimental system to understand the involvement of ABA in the molecular 111 

mechanisms underlying the response of citrus fruits to water stress causing eventually 112 

peel damage.  113 

In the last decade, ‘omics’ tools have been widely used to characterize regulatory 114 

networks involved in plant abiotic stress responses (Urano et al., 2010). Numerous 115 

transcriptomic studies have been conducted to analyze model and crop plants 116 

transcriptome under various stress conditions, and have identified thousands of stress-117 

responsive genes (Vij and Tyagi, 2007). Genome-wide studies have been also carried 118 

out in fruits with the aim of characterizing ripening or their responses to several stresses 119 

or hormone treatments (Maul et al., 2008; Ziliotto et al., 2008; Liu et al., 2009) but 120 

information on changes occurring in the transcriptome of water-stressed fruits is limited 121 

to grapes (Grimplet et al., 2007; Rizzini et al., 2009; Deluc et al., 2009). Over the past 122 

years, the Spanish Citrus Functional Genomic Project (CFGP) has generated useful 123 

tools for citrus transcriptomic research. Citrus cDNA microarrays have been developed 124 

in this Consortium (Forment et al., 2005; Martínez-Godoy et al., 2008), and the latest 125 

generation contains 21081 (20K) putative citrus unigenes, which offers a good 126 
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representation of the citrus genome. In the framework of the CFGP, important insights 127 

in citrus biology have been already achieved (Cercós et al., 2006; Gandía et al., 2007; 128 

Agustí et al., 2008; Alós et al., 2008; Huerta et al., 2008; Brumós et al., 2009; Ballester 129 

et al., 2011). Global changes in gene expression in response to drought have been 130 

characterized in citrus seedlings (Gimeno et al., 2009). However, in spite of the 131 

relevance of dehydration in fruit quality, a large-scale transcriptomic profile of citrus 132 

fruit in response to this stress has not been conducted so far. 133 

With the aim of characterizing molecular mechanisms involved in the response of 134 

harvested citrus fruits to dehydration and the potential role of ABA in this process, as 135 

well as to elucidate the possible relationship existing between these two components 136 

and the occurrence of NCPP, a large-scale transcriptional analysis in the flavedo of 137 

‘Navelate’ and its mutant ‘Pinalate’ oranges has been conducted by using the CFGP 138 

20K microarray. To that end, fruits from both cultivars were stored at a temperature and 139 

RH causing moderate water stress and the appearance of peel damage. In addition, 140 

transcriptomic changes occurring in ‘Pinalate’ fruit treated with ABA were examined. 141 

 142 

143 
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MATERIALS AND METHODS 144 

Plant material and ABA treatment 145 

Full mature fruits of ‘Navelate’ (Citrus sinensis L. Osbeck) orange and its spontaneous 146 

ABA-deficient mutant ‘Pinalate’ were randomly harvested from adult trees grown in 147 

experimental orchards under normal cultural practices at ‘The Spanish Citrus 148 

Germoplasm Bank’ at Instituto Valenciano de Investigaciones Agrarias (Moncada, 149 

Valencia, Spain). After harvest, fruits without any damage or visual defects were 150 

immediately delivered to the laboratory. To test whether application of ABA modified 151 

the postharvest response of ‘Pinalate’ fruit to dehydration, fruits from both cultivars 152 

were divided into two groups. The first group was treated with ABA (Sigma-Aldrich, 153 

St. Louis, MO, USA) by dipping the fruits for 1 min in an aqueous solution of 1mM 154 

ABA containing 0.7% ethanol to dissolve the hormone, while fruits of the second group 155 

were just treated with water containing 0.7% ethanol by following the same procedure. 156 

Fruits were dried at room temperature and then stored in the dark at 12 ºC and 70-75% 157 

RH for up to 6 weeks. The ABA treatment was repeated every 2 weeks to ensure high 158 

ABA levels during fruit storage. Likewise, ‘Pinalate’ and ‘Navelate’ control fruits were 159 

dipped into 0.7% ethanol at these times. Periodically, flavedo (outer coloured part of the 160 

peel) samples were collected from the total surface of fruits, frozen and homogenized in 161 

liquid nitrogen, and kept at -80 ºC for later analysis. Three biological replicates, each 162 

consisting of 5 fruits, were collected at each sampling period.  163 

 164 

Peel damage incidence and water loss measurement 165 

A visual rating scale from 0 (no peel damage) to 4 (severe damage), based on surface 166 

necrosis and intensity of peel browning, was used to evaluate the incidence of NCPP in 167 

fruits stored at 12 ºC and 70-75% RH. The average NCPP index was calculated by 168 
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summing the products of the number of fruits in each category by the value assigned to 169 

each category in the rating scale, and then dividing the resulting sum by the total 170 

number of fruits evaluated. In citrus fruit, water is lost mainly through the peel surface. 171 

Therefore the cumulative percentage of fruit weight loss occurring during storage was 172 

expressed per cm2 of fruit surface area. Fruit surface was estimated by using the 173 

Turrel’s tables after measuring the diameter and height of the fruits (Turrel, 1946). 174 

Results are the means of 3 replicates of 10 fruits each ± SE. 175 

 176 

RNA isolation, cDNA labelling and microarray hybridization 177 

Total RNA was extracted from frozen flavedo samples by a modified method of the 178 

previously described by Rodrigo et al. (2004), as reported by Ballester et al. (2006). 179 

Total RNA was treated with Ribonuclease-free DNase (Ambion/Applied Biosystems, 180 

Austin, TX, USA) following the manufacturer’s instructions for removing possible 181 

genomic DNA contaminations. Thereafter, the amount of RNA was measured by 182 

spectrophotometric analysis (Nanodrop, Thermo Fisher Scientific, Madrid, Spain) and 183 

its quality was verified by agarose gel electrophoresis and ethidium-bromide staining. 184 

cDNA synthesis and purification, dye coupling, and labelled-cDNA purification were 185 

accomplished according to the method described by Forment et al. (2005). cDNA 186 

samples were Cy5-labelled and co-hybridized with a Cy3-labelled cDNA reference pool 187 

from a mixture containing equal amounts of RNA from all experimental samples 188 

assayed. The use of this reference sample has been widely used in Citrus transcriptomic 189 

research since it represents a powerful tool for reducing the number of hybridizations to 190 

make all the possible pairwise comparisons between samples (Agustí et al., 2008). 191 

Microarray hybridization and slide washes were performed by a modified method of 192 

that proposed by Forment et al. (2005) as described by Ballester et al. (2011). The 193 
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cDNA microarrays used were developed in the framework of the CFGP 194 

(http://bioinfo.ibmcp.upv.es/genomics/cfgpDB/), and contained 21081 putative 195 

unigenes (20K) isolated from 52 cDNA libraries of citrus generated from a wide range 196 

of varieties, developmental and fruit ripening stages, and from different tissues 197 

subjected to biotic and abiotic stress conditions (Martínez-Godoy et al., 2008). 198 

 199 

Microarray data acquisition and analysis 200 

Hybridized microarrays were scanned by using a GenePix 4000A scanner (Axon 201 

Instruments, Sunnyvale, CA, USA) equipped with GenePix Pro 6.0 image acquisition 202 

software (Axon Instruments), following manufacturer’s instructions to adjust the 203 

channels intensity ratio to 1.0 and the percentage of saturated spots close to 1%. Non-204 

homogeneous and aberrant spots were discarded. Only spots with a background-205 

subtracted intensity greater than 2-fold the mean of background intensity were used for 206 

normalization and further analysis. In order to compensate labelling differences among 207 

samples and other non-biological sources of variability, results were normalized by 208 

using Print-Tip-Lowess method, included in the Acuity 4.0 software (Axon 209 

Instruments), by using background subtracted median values and an intensity-based 210 

Lowess function within and among microarrays. Thereafter, differentially expressed 211 

genes for all possible pairwise comparisons were determined by applying the 212 

Significant Analysis of Microarrays (SAM) program (Tusher et al., 2001) from the 213 

TM4 Microarray Software Suite (Saeed et al., 2003). Genes that satisfied a statistical 214 

threshold (False Discovery Rate) lower than 0.01 were identified as differentially 215 

expressed genes. FatiGO+ (Babelomics, http://bioinfo.cipf.es/), developed by Al-216 

Shahrour et al. (2004), was used to identify biological processes significantly under- or 217 

over-represented in a particular set of differentially expressed genes relative to a 218 
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reference group containing all genes present in the microarrays having an Arabidopsis 219 

homologous. Gene ontology analysis for induced and repressed genes was 220 

independently performed applying a Fisher two tailed test with a p-value lower than 221 

0.05. In this analysis, the specificity of the biological process increases with the GO 222 

level from 3 to 9. Multivariate analyses as Principal Component (PCA) and Hierarchical 223 

Cluster Analysis (HCA) (ANOVA test, Benjamini-Hochberg FDR < 0.05) were 224 

performed by using the MultiExperiment Viewer (MeV) tool of TM4 Microarray 225 

Software Suite (Saeed et al., 2003).  226 

 227 

qRT-PCR expression analysis 228 

Reverse transcription followed by quantitative polymerase chain reaction analysis 229 

(qRT-PCR) was performed to validate microarray results and to examine the time-230 

course expression pattern of selected genes along fruit storage by using a LightCycler 231 

480 Instrument (Roche Diagnostics, Mannheim, Germany) equipped with LightCycler 232 

SW 1.5 software. A two-step qRT-PCR assay was designed as suggested by Udvardi et 233 

al. (2008). cDNAs were synthesized from all analyzed samples by using 400 U of 234 

SuperScript III RT (Invitrogen, Paisley, United Kingdom) in presence of 0.5 μg of 235 

Oligo(dT) 20-mer (Invitrogen) and 10 U of Ribonuclease Inhibitor (Invitrogen) 236 

according to manufacturer’s instructions. Gene-specific primers were designed using 237 

DNAMAN 4.03 software (Lynnon BioSoft, Quebec, Canada). Both synthesized cDNA 238 

and the primer pairs were thereafter incubated with LightCycler 480 SYBR Green I 239 

Master (Roche Diagnostics) at 95 ºC for 10 min followed by 40 cycles at 95 ºC for 10 s, 240 

60 ºC for 5 s and 72 ºC for 10 s. Forward (F) and reverse (R) sequences for specific 241 

primers and correlation coefficients (r2) between the log2-transformed expression values 242 

as measured by microarray and RT-PCR analyses for each gene are shown in Table 1. 243 
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To rule out non-specific amplified products, melting curve analysis were performed and 244 

the reaction products were sequenced. To transform fluorescent intensity measurements 245 

into relative mRNA levels, a 2-fold dilution series of a mixture containing an equal 246 

amount of each cDNA sample was used and standard curves were constructed for all 247 

studied genes. Reference genes CsACT (F 5’-TTAACCCCAAGGCCAACAGA-3’; R 248 

5’-TCCCTCATAGATTGGTACAGTATGAGA-3’), CsEF1α (F 5’-249 

ATTGACAAGCGTGTGATTGAGC-3’; R 5’-TCCACAAGGCAATATCAATGGTA-250 

3’), CsGAPDH (F 5’-CGTCCCTCTGCAAGATGACTCT-3’; R 5’-251 

GGAAGGTCAAGATCGGAATCAA-3’) and CsTUB (F 5’-252 

GCATCTTGAACCCGGTAC-3’; R 5’-ATCAATTCGGCGCCTTCAG-3’), whose 253 

constitutive expression along fruit storage was confirmed by using geNorm program 254 

(Vandesompele et al., 2002), were used for data normalization. Statistical analysis (Pair 255 

Wise Fixed Reallocation Randomisation Test) was carried out by using the Relative 256 

Expression Software Tool (REST, http://rest.gene-quantification.info) (Pfaffl, 2001). 257 

Each sample was analyzed in triplicate and mean ratios ± SE were calculated.  258 

 259 

ABA analysis 260 

ABA analysis was performed as described by Lafuente et al. (1997). ABA was 261 

extracted from 1 g fresh weight (FW) frozen flavedo with 80% acetone containing 0.5 g 262 

L−1 citric acid and 100 mg L−1 of butylated hydroxytoluene. After centrifugation, the 263 

supernatant was diluted in 3 serial dilutions in ice-cold TBS (6.05 g L-1 Tris, 8.8 g L-1 264 

NaCl and 0.2 mg L-1 MgCl2) adjusted to pH 7.8 with 6N HCl. Three samples for each 265 

dilution were analyzed by an indirect ELISA method using the ABA-4’-BSA conjugate 266 

that was synthesized as previously reported by Weiler (1980) with some modifications 267 

(Norman et al., 1988). The results are the means of 3 replicate samples ± SE. 268 
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 269 

Statistics 270 

A mean comparison using the Tukey´s test and Statgraphics.5.1 Software (Manugistics, 271 

Inc.) was performed to determine significant differences at p ≤ 0.05 in NCPP, fruit 272 

weight loss per surface area and ABA levels between samples of ‘Navelate’ and 273 

‘Pinalate’ fruits, treated or not with ABA, during fruit storage at 12 ºC and 70-75% RH. 274 

 275 

 276 

277 
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RESULTS 278 

Susceptibility of ‘Navelate’ and the ABA-deficient mutant ‘Pinalate’ fruit to non-279 

chilling peel pitting and dehydration and influence of exogenous ABA 280 

The susceptibility of fruits of the ABA-deficient mutant ‘Pinalate’ to NCPP was much 281 

higher than that of fruits of its parental ‘Navelate’ (Fig. 1A). Peel pitting was already 282 

visible by 1 week in stored ‘Pinalate’ fruits, while in ‘Navelate’ fruits the incidence of 283 

the disorder was barely detected. This difference between mutant and wild-type fruits 284 

was much more evident as storage progressed, reaching the highest difference by 3 285 

weeks, when mutant fruits showed about a 5-fold higher NCPP index than the parental 286 

fruits (Fig. 1A). By this period, the weight loss per surface area in mutant fruits was 287 

twice that of ‘Navelate’ fruits (Fig. 1B). ABA level in the flavedo of freshly harvested 288 

(FH) ‘Pinalate’ fruits was about 5-fold lower than in ‘Navelate’ fruits (Fig. 1C). A rapid 289 

increase in the ABA content occurred in ‘Navelate’ peel by 1 week, while it remained at 290 

low levels in ‘Pinalate’ fruits along storage (Fig. 1C). By the end of the experiment (6 291 

weeks), ABA content in parental fruits was about 4-fold higher than in the mutant. In 292 

this context, it is noteworthy that ABA-treated ‘Pinalate’ fruits had even slightly higher 293 

phytohormone levels than the wild type from the beginning of the experiment (Fig. 1C) 294 

but the treatment had little effect on reducing the susceptibility of the mutant to NCPP 295 

(Fig. 1A) or its dehydration rate (Fig. 1B). Likewise, exogenous ABA did not 296 

significantly modify the severity of NCPP or weight loss per surface area in wild-type 297 

fruits (Fig. S1) 298 

 299 

Comparative transcriptional profiling during storage conditions inducing 300 

moderate water stress 301 
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Considering the sharply increase in ABA content in ‘Navelate’ oranges by 1 week, and 302 

also the marked difference in NCPP index between varieties by 3 weeks, both time-303 

points were selected for microarray hybridizations to compare changes in transcriptional 304 

profiling of both genotypes with respect to FH fruits. The above mentioned results 305 

indicate that applying ABA did not rescue the phenotype of the mutant. In order to 306 

determine whether increasing endogenous ABA levels in the mutant may simulate the 307 

molecular responses induced by moderate water stress in the wild-type phenotype, 308 

ABA-treated ‘Pinalate’ fruits were also included in the transcriptome analysis. Venn 309 

diagrams summarize the number of differentially expressed genes (SAM, FDR < 0.01) 310 

in fruits stored for 1 (Fig. 2A) or 3 (Fig. 2B) weeks respect to FH fruits.  311 

Major changes in the number of differentially expressed genes occurred by 1 week in 312 

‘Navelate’ fruits (Fig. 2A) and by 3 weeks in ‘Pinalate’ (Fig. 2B). This effect was even 313 

more marked in the ABA-treated fruits (Fig. 2B). It is also noteworthy that repression 314 

prevailed in both cultivars along whole storage. Major inductions (1131 genes) occurred 315 

in parental fruits by 1 week, while a small set of up-regulated genes was found in both 316 

‘Pinalate’ fruits treated or not with ABA (182 and 65, respectively) (Fig. 2A). Likewise, 317 

‘Navelate’ showed the highest number of down-regulated genes by 1 week (1956). The 318 

expression of 322 of them also decreased in ‘Pinalate’, although this number was 319 

reduced (65) when ABA was applied (Fig. 2A). By 3 weeks (Fig. 2B), the number of 320 

induced (192) and repressed (269) genes in the flavedo of ‘Navelate’ fruits was less 321 

remarkable. By contrast, a high increment in the number of down-regulated genes was 322 

observed in ‘Pinalate’ (1221) and this effect was enhanced by applying ABA (2237) 323 

(Fig. 2B).  324 

Principal Component (PCA) and Hierarchical Cluster Analysis (HCA) were performed 325 

to validate the repeatability of the microarray data across replications and to cluster 326 
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samples according to their global gene expression profile. ANOVA test revealed that 327 

1471 genes, from a total of 21081, showed differential expression and were used for 328 

PCA and HCA. In all conditions, the transcriptional profile of the 3 separate RNA 329 

replicate samples were tightly clustered (Fig. 3A). On the other hand, PCA revealed 330 

marked differences in gene expression patterns between FH and stored fruits (X axis, 331 

explaining 44 % of the total variation), and also between FH fruits of both genotypes 332 

(variation Y and Z axes = 18.8 %, Fig. 3A). ‘Pinalate’ (P) fruits stored for 1 week (1W) 333 

were distributed in the middle of the three axes, close to mutant fruits stored for 3 weeks 334 

(P3W). By this period, fruits of ’Navelate’ (N1W) were clustered in the upper part of 335 

the Y axis and far from those stored for 3 weeks (N3W). ABA-treated ‘Pinalate’ fruits 336 

stored for 3 weeks (P3W+A) grouped together, far from both P3W and P1W+A fruits 337 

(Fig. 3A). HCA confirmed results obtained by PCA. ‘Navelate’ and ‘Pinalate’ FH fruits 338 

were separately clustered in an independent branch from the stored samples, which were 339 

grouped by storage period (Fig. 3B). Interestingly, P1W+A fruits clustered into an 340 

independent group. 341 

 342 

Functional categorization of differentially expressed genes 343 

Gene ontology analysis identified biological processes significantly under- or over-344 

represented in the sets of differentially expressed genes selected from the SAM analysis. 345 

This analysis revealed that repressed genes in ‘Navelate’ fruit stored for 1 week were 346 

enriched in biological processes related to biopolymer, heterocycle and RNA 347 

metabolism, and to cellular biosynthesis with respect to FH fruits, while induced genes 348 

were enriched in the response to water deprivation and the di-, tri-valent inorganic 349 

cation transport processes (Table 2). However, the differentially expressed genes in 350 

‘Navelate’ fruits stored for 3 weeks were not statistically grouped in any biological 351 
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process. Likewise, no biological process was over-represented in either ‘Pinalate’ or 352 

‘Pinalate + ABA’ fruits stored for 1 week. In contrast, the down-regulated genes in the 353 

mutant fruits stored for 3 weeks, treated or not with ABA, were statistically enriched in 354 

the same processes. Among these processes, responses to biotic and abiotic stimulus, 355 

including light, temperature, jasmonic acid, wounding and to other organism, as well as 356 

processes related to energy derivation and carbohydrate biosynthesis were identified. 357 

Interestingly, the inhibition of ‘protein ubiquitination’, associated with protein 358 

degradation, was the unique biological process differentially affected by the ABA 359 

treatment in mutant fruits (Table 2).  360 

Genes belonging to the most relevant and specific biological processes (higher GO 361 

levels) are shown in Table 3. Among genes belonging to ‘water deprivation’ biological 362 

process, genes involved in ABA synthesis and perception (NCED1, ZEP and PP2C), 363 

ABA-responsive genes (HVA22E, Lea5 and ADH) and ABA-dependent transcription 364 

factors (HB7, NAC4 and ABF4) were found. Furthermore, genes included in this process 365 

encoded aquaporins, vacuolar proton-pump, and other proteins playing protective roles 366 

against dehydration (Table 3). Within the inorganic cation transport process, iron 367 

transporters and chelators, several copper transporters and two calcium-dependent 368 

transporter proteins were identified (Table 3). It is also noteworthy to highlight that the 369 

most specific process (‘carbohydrate biosynthesis’) repressed in both ‘Pinalate’ and 370 

‘Pinalate’ fruits treated with ABA, included not only biosynthesis-related genes but also 371 

genes related to cell-wall metabolism, a MYC transcription factor and an inositol-3-372 

phosphate synthase (Table 3). The unique biological process affected by exogenous 373 

ABA in ‘Pinalate’ fruits (‘protein ubiquitination’) included 6 genes belonging to a 374 

super-family of E3-ubiquitin ligases involved in protein degradation and with high 375 

similarity to plant U-box domain-containing proteins (PUB) of Arabidopsis (Table 3). 376 
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 377 

Expression profiles for selected genes by qRT-PCR analysis 378 

Quantitative RT-PCR analysis was conducted to validate microarray gene expression 379 

data and to further characterize expression patterns of selected genes in fruits exposed to 380 

moderate water stress for up to 6 weeks. Comparison between the transcript abundance 381 

data obtained by the 20K microarray and by RT-PCR analysis with gene-specific 382 

primers revealed a high correlation for all selected genes with r2 values between 0.90 383 

and 0.98 (Table 1). Among genes belonging to ‘response to water deprivation’ 384 

biological process, the genes CsRD19 and CsRD21, with homology to dehydration 385 

responsive genes of Arabidopsis (AT4G39090 and AT1G47128, respectively), the 386 

CsHVA22E, homologous to an ABA-inducible gene (AT5G50720), and the gene 387 

CsNCED1 (AT3G14440), involved in ABA biosynthesis, were selected. A rapid and 388 

transient increase in relative expression levels of these genes was observed by 1 week in 389 

parental fruits. Interestingly, the relative expression level of CsNCED1 also increased in 390 

the flavedo of ‘Pinalate’ fruit, but such increase was much lower than that occurring in 391 

‘Navelate’. Moreover, such increases were not induced by applying ABA to the mutant 392 

(Fig. 4A). Within the ‘di-, tri-valent inorganic cation transport’ biological process, 393 

CsCOPT2 and CsCOPT5 genes, with homology to copper transporters of Arabidopsis 394 

(AT3G46900 and AT5G20650, respectively), and CsNRAMP1 and CsNRAMP3, 395 

homologous to iron transporter genes (AT1G80830 and AT2G23150, respectively), 396 

were selected. The expression levels of all these genes in FH mutant fruits were higher 397 

than in the parental fruits (Fig. 4B). However, a higher increase in their expression was 398 

detected in wild-type fruits exposed to moderate dehydration for 1 week than in mutant. 399 

From these genes, only the expression levels of CsCOPT5 continued increasing in 400 

response to dehydration for up to 3 weeks. Accumulation of CsNRAMP1 was, in 401 



 18

general, higher during storage in ‘Navelate’ fruits. In contrast, expression levels of 402 

CsCOPT2 and CsNRAMP3 were higher in ‘Pinalate’ fruits. Interestingly, the expression 403 

pattern of these two genes in mutant fruits treated with ABA was more similar to that of 404 

parental fruits than to the mutant fruits (Fig. 4B). On the other hand, citrus unigenes 405 

CsIPS and CsMYC, with homology to genes encoding a inositol-3-phosphate synthase 406 

(AT2G22240) and a MYC transcription factor (AT1G32640), respectively, were 407 

selected as representative genes of the ‘carbohydrate biosynthesis’ biological process. 408 

Both genes were repressed in the ABA-treated and non-treated ‘Pinalate’ fruits, though 409 

their expression levels in FH mutant fruits were higher than in ‘Navelate’ fruits (Fig. 410 

4C). Expression levels of CsMYC transcription factor also decreased in the parental, 411 

while that of CsIPS increased from 1 to 3 weeks of storage (Fig. 4C). Genes CsPUB9 412 

and CsPUB21 encoding proteins showing homology to E3-ubiquitin-ligases of A. 413 

thaliana involved in ABA (AT3G07360) and pathogen (AT5G37490) responses 414 

respectively, were selected among genes of the ‘protein ubiquitination’ biological 415 

process (Table 3). The rate of decrease in expression levels of both genes was similar in 416 

parental and mutant fruits but applying ABA had a marked effect on favouring 417 

repression (Fig. 4D). 418 

419 
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DISCUSSION 420 

The working hypothesis was that the ABA-deficiency may be an important factor for 421 

the high susceptibility of ‘Pinalate’ fruit to dehydration and to NCPP. To test this 422 

hypothesis and to understand the molecular mechanisms underlying both processes in 423 

citrus fruit, a comparative large-scale transcriptional analysis has been performed in 424 

harvested ‘Navelate’, ‘Pinalate’ and in ABA-treated ‘Pinalate’ fruits stored under 425 

conditions (12 ºC and 70-75% RH) causing moderate water stress and peel damage. The 426 

higher susceptibility to NCPP (Fig. 1A) and dehydration (Fig. 1B) observed in 427 

‘Pinalate’ fruit agree with previous data showing that, under the same storage 428 

conditions, fruit weight loss and the decrease in water potential of the flavedo tissue was 429 

higher in fruits of the mutant (Alférez et al., 2005).  430 

Differential gene expression analysis (Fig. 2) further revealed the higher ability of 431 

‘Navelate’ fruit to develop earlier molecular responses. These responses might 432 

contribute to reduce detrimental effects caused by dehydration and hence to the delay in 433 

peel damage development with respect to mutant fruit, which showed evident damage 434 

by 1 week. Thus, gene ontology analysis revealed that the most specific biological 435 

processes induced only in ‘Navelate’ fruit by 1 week were ‘response to water 436 

deprivation’ and ‘di-, tri-valent inorganic cation transport’ (Table 2), which fit into 437 

classical plant responses to water deficit and osmotic adjustment (Shinozaki et al., 438 

1998; Ramanjulu and Bartels, 2002). This result is also in concordance with previous 439 

findings showing that transport and abiotic stress-related genes are differentially 440 

regulated by dehydration in detached grape berries (Grimplet et al., 2007; Rizzini et al., 441 

2009; Zamboni et al., 2010). As expected, most of the genes belonging to the ‘response 442 

to water deprivation’ biological process (Table 3) were related to ABA. Thus, genes 443 

involved in ABA synthesis and perception (NCED1, ZEP and PP2C), ABA-dependent 444 



 20

transcription factors (HB7, NAC4 and ABF4), and also genes encoding ABA-responsive 445 

proteins (HVA22E, Lea5 and ADH) were identified, which highlights that the responses 446 

of ‘Navelate’ oranges to dehydration are modulated, at least in part, by the 447 

phytohormone. Among ABA-dependent genes belonging to this process, it is also worth 448 

mentioning those encoding proteins with homology to the plasma membrane PIP1B and 449 

PIP1E aquaporins as they play important roles adjusting osmotic potential in dehydrated 450 

plants (Shinozaki et al., 1998; Shinozaki and Yamaguchi-Shinozaki, 2007). Therefore, 451 

and considering the fact that the number of stomata per surface area in fruits of both 452 

cultivars is similar (Alférez and Zacarías, unpublished data), the above results indicate a 453 

higher ability of ‘Navelate’ fruits to synthesize ABA, which controls stomata closure to 454 

reduce dehydration, and also to modulate ABA-related genes important for cell 455 

homeostasis and viability and hence for the reduction of peel damage. Other genes 456 

within this process (e.g. CsRD19 and CsRD21) have not been classified as up-regulated 457 

by ABA in different plant systems (Koizumi et al., 1993; Coupe et al., 2003). From the 458 

results of the present work, it cannot be ruled out that they are ABA-dependent in citrus 459 

fruits since they were not induced by dehydration in the mutant. Nevertheless, genes 460 

within other categories like CsCOPT5 and CsNRAMP3 were induced by dehydration in 461 

both ‘Navelate’ and the ABA-deficient ‘Pinalate’ fruits. In addition, the expression of 462 

these genes did not increase either in ‘Pinalate’ fruits after the ABA treatment. 463 

Therefore, these results in citrus fruit might support previous findings suggesting the 464 

involvement of ABA-independent genes in the response to dehydration in plants (Riera 465 

et al., 2005). In this context, it should be mentioned that the occurrence of alternative 466 

dehydration-responsive pathway(s) to minimize water-loss in plants under ABA 467 

deficiency has been reported (Wilkinson and Davies, 2010). Furthermore, it cannot be 468 

excluded that physico-chemical properties of the fruit surface may be altered in the 469 
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mutant since ABA may affect epicuticular wax biosynthesis in plants (Islam et al., 470 

2009) and also cuticle permeability, development and composition in fruits (Curvers et 471 

al., 2010). Although the effect of different hormones on the synthesis or morphology of 472 

epicuticular waxes have been shown in citrus fruits (El-Otmani et al., 1986; Cajuste et 473 

al., 2010), that of ABA has not been described yet. Therefore, the availability of the 474 

spontaneous ‘Pinalate’ ABA-deficient mutant and its high susceptibility to dehydration 475 

encourages new investigations aimed to determine how ABA deficiency impacts the 476 

cuticle wax composition.  477 

Besides the ‘response to water deprivation’ process, the inorganic cation transport 478 

appears to be operating in the lower susceptibility of ‘Navelate’ fruit to dehydration and 479 

NCPP. The transport and/or the sequestration of ions constitute a plant strategy to 480 

prevent water loss from the cytoplasm to the extracellular matrix and the subsequent 481 

osmotic stress originated by dehydration (Shinozaki et al., 1998; Ramanjulu and 482 

Bartels, 2002). Prevention of water and osmotic stress has been mainly attributed to 483 

potassium, chloride and calcium ions. However, results obtained in the present work 484 

revealed that the ‘di-, tri-valent inorganic cation transport’ biological process, induced 485 

only in ‘Navelate’ fruit by 1 week, involved calcium (ECA3 and GNC1), iron (FER4, 486 

IRT1, NRAMP1 and NRAMP3) and copper chelators and transporters (COPT1, COPT2, 487 

COPT5 and SAG14). Copper and iron cations are trace elements and, consequently, 488 

their concentration inside the cell might barely affect cell osmotic pressure. Therefore, 489 

an attractive possibility from the present results is that these metal transporters could 490 

play a role in the tolerance of citrus fruit to dehydration by modulating ABA-responsive 491 

pathways. This would be in concordance with previous findings indicating that these 492 

ions may affect the ABA-dependent signal transduction pathway in plants (Sudo et al., 493 

2008). Within the context of this work, it is noteworthy that iron and copper cations are 494 
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required as cofactors of superoxide dismutases that may contribute to the lower 495 

susceptibility of ‘Navelate’ fruit to develop NCPP (Sala et al., 2005). It is known that an 496 

excess of metals may lead to the disruption of cellular processes and finally to cell 497 

death, and that the prevention of such harmful effects require the participation of metal-498 

binding proteins and transporters (Puig et al., 2007). Thus, the higher increase in the 499 

expression levels of iron and copper transporters detected in the wild-type fruit (Fig. 500 

4B), suggests that the impaired ability of the ABA-deficient mutant to regulate metal 501 

homeostasis could be relevant for its higher susceptibility to dehydration and NCPP.  502 

Most of the differentially expressed genes were down-regulated in the mutant by 3 503 

weeks (Fig. 2B) and grouped into numerous biological processes (Table 2), being 504 

‘carbohydrate biosynthesis’ the most specific. This is in agreement with previous results 505 

showing a higher reduction in soluble sugars and starch in ‘Pinalate’ respect to parental 506 

fruits during development of NCPP (Holland et al., 2005), and highlights the interplay 507 

between ABA and sugars in plants. This process grouped not only genes involved in the 508 

metabolism of soluble sugars and starch but also in the metabolism of cell wall 509 

polysaccharides and putative regulatory elements, such as a MYC transcription factor 510 

and a gene (CsIPS) involved in regulating the levels of inositol-3-phosphate, which 511 

constitutes a node for the crosslink among several signalling pathways (Kaur and Gupta, 512 

2005). The CsMYC transcription factor displays a 63% of identity with the ABA-513 

responsive AtMYC2, which triggers the slow adaptive response of Arabidopsis to 514 

dehydration (Abe et al., 2003; Bartels and Sunkar, 2005) and, therefore, the CsMYC 515 

transcript might be involved in the tolerance of citrus fruit to water stress. Nevertheless, 516 

this Citrus gene appears not to be a limiting step in this process since its expression 517 

levels continuously decreased in the ABA-deficient mutant but also in the parental fruit. 518 

Expression analysis showed that CsIPS transcript levels also decreased in ‘Pinalate’ 519 
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fruit for up to 6 weeks but transiently increased in the wild-type phenotype when the 520 

highest difference in NCPP between both varieties was observed (Fig. 4C, 3 weeks). 521 

This result suggests a higher availability of the second messenger inositol-3-phosphate 522 

in the wild type, which might favour putative signalling pathways involved in the 523 

protection of fruit against detrimental effects caused by water stress and NCPP, whereas 524 

these pathways might be impaired in the ABA-deficient mutant. The above results, 525 

together with the high number of down-regulated genes belonging to the ‘carbohydrate 526 

biosynthesis’ process in mutant fruit, and the well known protective roles of sugars 527 

against osmotic and water stresses in plants (Bartels and Sunkar, 2005; Seki et al., 528 

2007), suggest that the repression of this biological process is relevant for the 529 

susceptibility of citrus fruit to such stresses leading to peel damage. The repression of 530 

this process was also associated with the enhancement of NCPP in ‘Navelate’ fruits 531 

exposed to a different stress (Establés-Ortiz et al., 2009), indicating the relevance of 532 

carbohydrate metabolism in the convergence of the mechanisms underlying NCPP.  533 

The interpretation of results derived from the application of plant growth regulators to 534 

hormone-deficient mutants may be complex as these treatments may fail to recover the 535 

wild-type phenotypes. Different examples can be found in the literature in fruits 536 

(Sandhu et al., 2011) and also in seedlings (Mahouachi et al., 2011) in spite of the 537 

ability of seedling plants to use foliar- or roots-applied hormones and to translocate 538 

them to almost all plant parts (Mäkelä et al., 1996). Results from ABA treatment on 539 

‘Navelate’ fruits suggests that endogenous levels of the phytohormone might be 540 

sufficient to trigger cellular processes coping with dehydration and further 541 

consequences related to peel damage in the wild-type orange since NCPP index and 542 

weight loss were not significantly affected by the ABA application (Fig. S1). 543 

Interestingly, application of ABA increased the hormone content in the flavedo of 544 
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‘Pinalate’ mutant fruit to levels that were always slightly higher than those of the 545 

parental, triggered changes in the expression of thousands of genes, and repressed the 546 

‘protein ubiquitination’ biological process. However, it did not modify either the 547 

expression levels of a subset of ABA-regulated genes (Bartels and Sunkar, 2005) (Table 548 

S1) or rescue the wild-type phenotype since exogenous ABA slightly affected the 549 

incidence of NCPP and did not modify the cumulative weight loss of mutant fruits. 550 

Therefore, these results, together with the obtained by multivariate and qRT-PCR 551 

analyses (Fig. 3 and 4), indicate that exogenous ABA modulates gene expression in 552 

‘Pinalate’ fruits but it is not fully effective either redirecting the mutant transcriptome 553 

towards that of the parental fruit or recovering its phenotype. These results might be 554 

unexpected but there are several examples showing that ABA did not rescue normal 555 

phenotype in ABA-deficient mutants (Busk and Pagès, 1998). In addition, plants may 556 

be less sensitive to exogenous ABA under normal conditions than to the stress-induced 557 

rises in endogenous ABA (Imay et al., 1995). In agreement with these ideas, Mahouachi 558 

et al. (2011) reported that ABA treatment did not stimulate physiological responses of 559 

papaya seedlings exposed to drought, whereas treatments favouring the rise of 560 

endogenous ABA levels were able to trigger physiological responses coping with 561 

dehydration. Taking together these ideas and that ‘Pinalate’ has reduced ABA levels 562 

during the whole period of development and ripening (Rodrigo et al., 2003), it cannot 563 

be ruled out the possibility of an altered ABA-perception system in ‘Pinalate’ fruit, as 564 

reported in other hormone-deficient mutants (Guo and Ecker, 2004), or some defect in 565 

the ABA signalling transduction pathway that would impair its responses to the ABA 566 

treatment. Therefore, it would be interesting to further investigate whether there are 567 

differences in the regulation of the ABA-signalling components, which have been 568 



 25

recently characterized in Arabidopsis (Park et al., 2009; Ma et al., 2009), between 569 

mutant and wild-type fruits under water stress conditions.  570 

In spite of the relevance of plant sensitivity for triggering hormone-responses, Hoth et 571 

al. (2002) found that treating seedlings of the Arabidopsis ABA-insensitive mutant 572 

abi1-1 with ABA induced relevant changes in the expression of genes and processes 573 

regulated by the hormone although, as expected, it did not rescue the typical ABA-574 

insensitive phenotype. The modulation of protein ubiquitination was observed by these 575 

authors after ABA treatment. Interestingly, this was the only biological process down-576 

regulated by exogenous ABA in ’Pinalate’, which suggests the involvement of protein 577 

degradation in the ABA-signalling network in citrus fruits. In this context, it is also 578 

noteworthy to mention different reports associating this biological process with ABA-579 

signalling/responses in the model plant Arabidopsis (López-Molina et al., 2003; Zhang 580 

et al., 2005; Luo et al., 2006; Ryu et al., 2010). The six Citrus genes grouped into 581 

‘protein ubiquitination’ biological process encoded plant U-box (PUB) domain-582 

containing proteins with E3-ubiquitin ligase activity. Three of them (PUB9, PUB17, 583 

PUB43) have been related to ABA (Samuel et al., 2008; Raab et al., 2009; Ni et al., 584 

2010) and the others (PUB21, PUB24 and PUB29) to cell death signalling and plant 585 

defence responses to biotic stress (Libault et al., 2007). In concordance with that, it was 586 

found that rots developed earlier (3 weeks) and with higher incidence during storage in 587 

ABA-treated mutant fruits respect to non-treated mutant or parental fruits (Fig. S2). 588 

Real-time expression analysis of CsPUB9 and CsPUB21 genes further revealed an 589 

enhanced repression of transcript levels in ABA-treated ‘Pinalate’ fruit, which further 590 

confirm that the protein ubiquitination process may be negatively regulated by ABA 591 

treatment in mutant fruit. Therefore, these results suggest a crosslink between ABA and 592 
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the modulation of defence responses in citrus fruit through proteins involved in the 593 

ubiquitin-proteasome system machinery. 594 

In conclusion, the comparative transcriptional analysis between ‘Navelate’ and its 595 

mutant ‘Pinalate’ fruits highlights the ability of parental fruit to develop responses to 596 

reduce water loss and other detrimental consequences caused by this stress. These 597 

responses involve the ‘water deprivation’ and the ‘di-, tri-valent inorganic cation 598 

transport’ biological processes, which include both ABA-dependent and independent 599 

genes. The alteration of these responses in the mutant fruit suggests their relevance for 600 

the prevention of peel damage in citrus fruit. Likewise, repression of the ‘carbohydrate 601 

biosynthesis’ process occurred specifically in ‘Pinalate’ fruits, which showed higher 602 

susceptibility to NCPP. Overall, results suggest that the sensitivity/response to ABA 603 

may be impaired in the ABA-deficient mutant fruit and reveals molecular mechanisms 604 

triggering the response to water stress in citrus fruit.  605 

 606 

607 
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SUPPLEMENTARY MATERIAL 608 

 609 
Table S1. Representative ABA-regulated genes impaired in ‘Pinalate’ mutant fruit after 610 

ABA treatment. 611 

 612 

Figure S1. Non-chilling peel pitting index and percentage of fruit weight loss of 613 

‘Navelate’ fruits treated with ABA. 614 

 615 

Figure S2. Percentage of decay in ‘Navelate’ and ‘Pinalate’ fruits along storage. 616 

 617 

 618 

619 
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TABLES 

 

Table 1. Selected genes and primers used for quantitative RT-PCR analysis and 

comparison between Citrus 20K microarray and qRT-PCR gene expression data. 

Multiple linear regression analysis (r2) was performed for each reported gene including 

samples from all comparisons and storage periods. 

Gene
Citrus unigene         

(CFGP DB)
Most similar protein

Homolog in 
A. thaliana

Forward / 
Reverse

Sequence 5' → 3' r 2

F GGGGGCCGACCTGAAGAAC

R CGCACTAGCCGCTAGAAAAG

F GGAGGACAGGCGCGTCCG

R GCCGAGAATTTCCCGACGAC

F GCGGCATGGCTGGTTCTGC

R GCCTCGTGCTCCCCTTTCTT

F GGACACAGTGCAACAAGCCA

R CCCATCCTCCAAACACAATG

F GCCTGAGTCCGGGGAGATAT

R CCCTCTCGAAGTAGGAGATC

F CCACGATGATAGCTCATCCG

R CCACTTGCTGGTCAGGCACC

F GCCACTGGGCAGCCCCAG

R CAGCTTGTCTTATCGGGCAC

F GGCTCTGAGCTTCTTATTGGC

R GGACACGGCCTTTCTTACTG

F AGCAAGAGCTGTGCGTGATG

R GCGAAGCATGCAAGAAACTCC

F AAGATCCGGTGACGACGACT

R GCACCCAACTTGATCCTGTGT

F GCACGACCGTAGGTTCACTAT

R GTCCGGCGGAACTCGGCC

F GCCCTGAGAGCAACACTTGC

R GGGATAGTCATGTGGGCAGC

0.98

CsNCED1 aCL1933Contig1
N-cis-epoxycarotenoid 

dioxigenase 1
AT3G14440 0.93

T1M15_50 protein AT5G20650

CsCOPT2 aCL7045Contig1
Copper transporter protein 

homolog
AT3G46900

0.90

CsHVA22E aC31106H02EF_c
Abscisic acid-induced-like 

protein
AT5G50720 0.91

CsCOPT5 aCL1547Contig2

CsIPS aC31301D12EF_c
Inositol-3-phosphate 

synthase
AT2G22240

CsMYC aC04028A10SK_c MYC transciption factor AT1G32640

Metal transporter Nramp1 AT1G80830

0.95

0.92

0.93

CsNRAMP3 aCL3476Contig1 Metal transporter Nramp3 AT2G23150 0.93

CsNRAMP1 aIC0AAA15AB01RM1_c

CsPUB9 aCL8840Contig1 F21O3.7 protein AT3G07360

CsPUB21 aC31304F06EF_c
Immediate-early fungal 
elicitor protein CMPG1

AT5G37490

Cysteine proteinase AT4G39090

0.97

0.90

0.93

CsRD21 aCL23Contig3 Cysteine protease CP1 AT1G47128 0.90

CsRD19 aCL96Contig1

 



 38

Table 2. Functional categorization of differentially expressed genes in the flavedo of 

‘Navelate’, ‘Pinalate’ and ABA-treated ‘Pinalate’ fruits stored at 12 ºC and 70-75% RH 

for 1 and 3 weeks respect to freshly harvested fruits. Arrows indicate enriched 

biological processes (FatiGO+, p < 0.05) in sets of significantly (SAM analysis, FDR < 

0.01) induced (↑) or repressed (↓) genes into each condition. 

 

1 week
GO 

Level
GO Code Biological Process Navelate Pinalate

Pinalate 
+ ABA

4 0043283 Biopolymer metabolic process ↓

4 0044249 Cellular biosynthetic process ↓

4 0006091 Generation of precursor metabolites and energy ↓ ↓

4 0046483 Heterocycle metabolic process ↓

4 0006800 Oxygen and reactive oxygen species metabolic process ↓ ↓

4 0048583 Regulation of response to stimulus ↓ ↓

4 0009753 Response to jasmonic acid stimulus ↓ ↓

4 0051707 Response to other organism ↓ ↓

4 0009314 Response to radiation ↓ ↓

4 0009266 Response to temperature stimulus ↓ ↓

4 0009415 Response to water ↑

4 0009611 Response to wounding ↓ ↓

5 0015980 Energy derivation by oxidation of organic compounds ↓ ↓

5 0009416 Response to light stimulus ↓ ↓

5 0009414 Response to water deprivation ↑

5 0016070 RNA metabolic process ↓

7 0016051 Carbohydrate biosynthetic process ↓ ↓

7 0015674 Di-, tri-valent inorganic cation transport ↑

9 0016567 Protein ubiquitination ↓

3 weeks
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Table 3. Genes differentially expressed in the indicated comparisons and belonging to 
the most specific and relevant biological processes. N1W > FHN, genes induced in 
‘Navelate’ fruits stored for 1 week respect to freshly harvested fruits; P3W < FHP, 
genes repressed in ‘Pinalate’ fruits stored for 3 weeks respect to freshly harvested fruits; 
P3W+ABA < FHP, genes repressed in ABA-treated ‘Pinalate’ fruits stored for 3 weeks 
respect to freshly harvested fruits. Asterisks refer to genes chosen for multiple linear 
regression and qRT-PCR analysis. 

 

Citrus unigene           
(CFGP DB) Most similar protein

Homolog in 
A. thaliana

N1W > FHN
aCL474Contig1 ABF4 ; Putative ripening-related bZIP protein AT3G19290
aC18012D10Rv_c ADH ; Aldehyde dehydrogenase - putative AT1G44170
aCL8452Contig1 AVP1 ; Vacuolar H+-pyrophosphatase AT1G15690
aCL5941Contig1 HB7 ; Homeobox-leucine zipper protein AT2G46680
aCL5217Contig1 HK3 ; Histidine kinase AT1G27320

* aC31106H02EF_c HVA22E ; Abscisic acid-induced-like protein AT5G50720
aCL9Contig16 LEA5 ; Late embryogenesis abundant protein AT4G02380
aCL35Contig5 NAC4 ; NAC domain protein AT4G27410

* aCL1933Contig1 NCED1 ; 9-cis-epoxycarotenoid dioxygenase 1 AT3G14440
aCL3500Contig1 PIP1B ; Plasma membrane aquaporin AT2G45960
aC31502B11EF_c PIP1E ; Aquaporin AT4G00430
aCL143Contig2 PP2C ; Protein phosphatase 2C AT3G11410

* aCL96Contig1 RD19 ; Cysteine proteinase AT4G39090
* aCL23Contig3 RD21 ; Cysteine protease CP1 AT1G47128

aCL1551Contig1 ZEP ; Zeaxanthin epoxidase AT5G67030

N1W > FHN
aC18018E02Rv_c CNGC1 ; Cyclic nucleotide-gated calmodulin-binding ion channel AT5G53130
aC01009A02SK_c COPT1 ; Copper transporter 1 AT5G59030

* aCL7045Contig1 COPT2 ; Copper transporter protein homolog AT3G46900
* aCL1547Contig2 COPT5 ; T1M15_50 protein AT5G20650

aC04013B01SK_c ECA3 ; Calcium-transporting ATPase3-endoplasmic reticulum-type AT1G10130
aKN0AAQ10YG21RM1_c FER4 ; Ferritin AT2G40300
aC34108F04EF_c IRT1 ; Root iron transporter protein AT4G19690

* aIC0AAA15AB01RM1_c NRAMP1 ; Metal transporter Nramp1 AT1G80830
* aCL3476Contig1 NRAMP3 ; Metal transporter Nramp3 AT2G23150

aCL5880Contig1 SAG14 ; NtEIG-A1 protein AT5G20230

P3W < FHP 
P3W+A < FHP
aC31305H08EF_c ADG1 ; ADP-glucose pyrophosphorylase small subunit AT5G48300
aCL5827Contig1 ADG1 ; Glucose-1-phosphate adenylyltransferase AT5G48300
aCL6121Contig1 CALS1 ; Putative callose synthase 1 catalytic subunit AT1G05570
aCL4673Contig1 CESA1 ; Cellulose synthase AT4G32410
aC03001C04Rv_c CESA2 ; Cellulose synthase AT4G39350
aCL1466Contig1 CTL1 ; T20M3.12 protein AT1G05850
aCL18Contig7 CYP79A2 ; Cytochrome P450 79A2 AT5G05260
aCL60Contig1 F9L11.8 ; Granule-bound starch synthase 1 AT1G32900
aCL281Contig3 GAPB ; Glyceraldehyde-3-phosphate dehydrogenase B AT1G42970
aCL3226Contig1 GATL10 ; Glycosyl transferase-like protein AT3G28340
aCL1394Contig1 GMD2 ; GDP-mannose 4 -6 dehydratase 1 AT3G51160
aCL381Contig1 GOLS2 ; Galactinol synthase AT1G56600

* aC31301D12EF_c IPS2 ; Inositol-3-phosphate synthase AT2G22240
aC08005B05SK_c KAM1 ; Xyloglucan galactosyltransferase KATAMARI 1 AT2G20370

* aC04028A10SK_c MYC2 ; MYC transcription factor AT1G32640
aCL4197Contig1 QUA2 ; Putative early-responsive to dehydration stress protein AT1G78240
aCL2181Contig1 SIP1 ; Raffinose synthase AT5G40390

P3W+A < FHP
* aCL8840Contig1 PUB9 ; F21O3.7 protein AT3G07360

aC34202B10EF_c PUB17 ; Avr9/Cf-9 rapidly elicited protein 276 AT1G29340
* aC31304F06EF_c PUB21 ; Immediate-early fungal elicitor protein CMPG1 AT5G37490

aC31801H08EF_c PUB24 ; F26K24.13 protein AT3G11840
aCL270Contig1 PUB29 ; Photoperiod responsive protein AT3G18710
aC05134D01SK_c PUB43 ; Armadillo repeat-containing protein AT1G76390

Response to water deprivation (GO level 5)

Di-, tri-valent inorganic cation transport (GO level 7)

Carbohydrate biosynthetic process (GO level 7)

Protein ubiquitination (GO level 9)
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FIGURE LEGENDS 
 

Figure 1. Non-chilling peel pitting index (A), percentage of fruit weight loss per surface 

area (B) and ABA content in the flavedo (C) of ‘Navelate’ (squares) and ‘Pinalate’ 

(circles) fruits treated (white) or not (black) with ABA and stored for up to 6 weeks at 12 

ºC and 70-75% RH. The arrows indicate when ABA was applied. Results are the means 

of three biological replicates of 10 fruits each ± SE. Mean separation was performed by 

applying Tukey’s test. Significant differences (p ≤ 0.05) in NCPP index and ABA 

content between samples for the same storage period are indicated by different letters. 

Significant differences (p ≤ 0.05) in weight loss (panel B) between ‘Navelate’ and 

‘Pinalate’ samples, treated or not with ABA, were found from the first week of storage 

while no statistical differences were found between control and ABA-treated ‘Pinalate’ 

fruits.  

 

Figure 2. Venn diagrams showing differentially expressed genes (SAM analysis, FDR < 

0.01) in the flavedo of ‘Navelate’, ‘Pinalate’ and ABA-treated ‘Pinalate’ fruits stored at 

12 ºC and 70-75% RH for 1 (A) and 3 (B) weeks. Expression levels of up- (bold) and 

down-regulated (italics) genes in these fruits were compared to those of freshly 

harvested fruits from each variety. Numbers in brackets are the sum of all induced 

(bold) or repressed (italics) genes in each particular condition. The sizes of the circles 

are consistent with the total number of differentially expressed genes for each condition. 

 

Figure 3. (A) Principal Component (PCA) and (B) Hierarchical Cluster Analysis 

(HCA) of flavedo large-scale transcriptional profiles of ‘Navelate’ (N), ‘Pinalate’ (P) 

and ABA-treated ‘Pinalate’ (P+ABA) fruits stored for one (1W) and three weeks (3W) 

at 12 ºC and 70-75% RH respect to freshly harvested (FH) fruits. Colours in PCA for 
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each condition are consistent with those in HCA. The three axes in PCA account 62.8% 

of the total variance among varieties and storage periods. Three biological replicates 

from each condition were used for both analyses. 

 

Figure 4. Real time qRT-PCR expression analysis for candidate genes selected from 

microarrays analysis. Relative transcript abundance for selected genes belonging to 

‘Water deprivation’ (A), ‘Di-, tri-valent inorganic cation transport’ (B), ‘Carbohydrate 

biosynthesis’ (C) and ‘Protein ubiquitination’ (D) biological processes differentially 

regulated in ‘Navelate’ (squares) and ‘Pinalate’ (circles) fruits treated (white) or not 

(black) with ABA and stored for up to 6 weeks at 12 ºC and 70-75% RH. Transcript 

levels for all conditions were referred to freshly harvested ‘Navelate’ fruits and 

expressed as relative values. Data are the mean values of three biological replicates ± 

SE.  
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Figure 2 
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Figure 3 
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Figure 4 
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