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Abstract 

Aspergillus carbonarius is considered the most important ochratoxin A 

(OTA) producing fungi among those causing OTA contamination in grapes and 

grape derived products. CipC is a small protein with unknown function that was 

previously found to be highly up-regulated in an OTA producer strain of A. 

carbonarius in comparison to a non OTA producer strain. In this study, cipC was 

characterized and disrupted via Agrobacterium tumefaciens-mediated 

transformation in an ochratoxigenic A. carbonarius strain in order to study 

whether this gene has a role in OTA production. Sequence analysis indicated 

that the promoter region of cipC contains putative binding sites for transcription 

factors that regulate the utilization of nutrients, the stress response and 

detoxification processes, all factors that can influence mycotoxin biosynthesis. 

Although the ∆cipC mutant grew similarly to the wild type strain, the null mutant 

showed a much higher OTA production. Moreover, when A. carbonarius was 

grown under the oxidative stress conditions imposed by the presence of 

hydrogen peroxide, cipC gene expression was up regulated. These results 

indicate that cipC is not directly involved in OTA biosynthesis, but sequence 

analysis of the A. carbonarius cipC gene promoter and the phenotype of the 

ΔcipC disrupted mutant suggest that CipC could be a stress response protein 

that would be up regulated concomitantly with OTA production. 
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1. Introduction 

 

Ochratoxin A (OTA) is a nephrotoxic, carcinogenic, teratogenic and 

immunotoxic mycotoxin produced by several Penicillium and Aspergillus 

species (Creppy, 1999; Kuiper-Goodman & Scott, 1989; Petzinger & Ziegler, 

2000; Pfohl-Leszkowicz & Manderville, 2007). OTA has been classified by the 

International Agency for Research on Cancer (IARC, 1993) in group 2B 

(possible human carcinogen). This mycotoxin can be found in a wide range of 

food commodities, including cereal-based products, coffee, species, nuts, 

olives, grape-derived products, beans, figs and cocoa (Battilani, Magan, & 

Logrieco, 2006; Perrone et al., 2007). Grapes and wines are among the 

commodities with the greatest toxin content, second only to cereals (Bau, 

Bragulat, Abarca, Minguez, & Cabañes, 2005; Belli et al., 2004). Aspergillus 

carbonarius is considered the main OTA-producing fungus in grapes and grape 

derived products (Battilani et al., 2006; Perrone et al., 2007).  

Little information is available about the biosynthetic pathway of OTA in 

any fungal species and only a few genes have been reported. O’Callaghan et 

al. (2003), Karoleiwez and Geisen (2005), Bachaet al. (2009) and Gallo et al. 

(2009) have described PKS genes involved in OTA biosynthesis in Aspergillus 

ochraceus, Penicillium nordicum, Aspergillus westerdijkiae and A. carbonarius, 

respectively. Additionally, other putative OTA biosynthetic genes have been 

reported, including two P450 monoxygenase genes in A. ochraceus (John 

O'Callaghan, Stapleton, & Dobson, 2006), a nonribosomal peptide synthetase, 

a halogenase, a phenylalanine t-RNA synthetase, a methylase and a fragment 

with homology to ABC transporter genes in P. nordicum (Färber & Geisen, 
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2004). Recently, the implication of a nonribosomal peptide synthetase on OTA 

biosynthesis in A. carbonarius has also been indicated by Gallo et al.(2012).  

Different techniques such as Differential Display Reverse Transcriptase-

PCR (DDRT-PCR) (Färber & Geisen, 2004), cDNA-AFLP (Botton et al., 2008) 

and Suppression Subtractive Hybridization (SSH) (Crespo-Sempere, González-

Candelas, & Martínez-Culebras, 2010) have been used to identify genes 

putatively involved in OTA biosynthesis in several fungal species. Recently, we 

performed a proteomic analysis using two-dimensional electrophoresis (2-DE) 

combined with MALDI-TOF mass spectrometry to detect changes in the 

abundance of a large number of proteins in two closely related strains of A. 

carbonarius that differ in their OTA-producing potential (Crespo-Sempere, Gil, & 

Martínez-Culebras, 2011). Among the differentially expressed proteins identified 

in that study, a homologue of CipC, a small conserved protein with unknown 

function, stood out. The name CipC derives from concanamycin-induced protein 

because it was up-regulated in Aspergillus nidulans in response to the antibiotic 

concanamycin A (Melin, Schnürer, & Wagner, 2002). CipC exhibited the 

greatest up-regulation in the OTA-producing strain (126.5 fold). RT-qPCR 

analysis also revealed overexpression of the cipC gene (184.5 fold), confirming 

that overproduction of this protein with unknown function is regulated at the 

transcriptional level.  

In the present study we have examined whether cipC has a role in OTA 

production. For that purpose we have cloned and characterized the cipC gene 

from A. carbonarius. Additionally, we have deleted the cipC gene in the 

ochratoxigenic A. carbonarius W04-40 strain by targeted gene replacement 

using A. tumefaciens-mediated transformation (ATMT). Finally, after the 
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phenotypic characterization of the cipC null mutant (ΔcipC), we discuss a 

possible relationship between cipC and OTA production. 

 

2. Materials and methods 

 

2.1. Fungal strains, media, and culture conditions 

The OTA-producing A. carbonarius strain W04-40 was isolated from a 

Spanish vineyard by Martínez-Culebras and Ramon (2007) and deposited in the 

Institute of Agrochemistry and Food Technology ofthe Spanish National 

Research Council (IATA-CSIC). The Agrobacterium tumefaciens AGL-1 strain 

was kindly provided by L. Peña (Instituto Valenciano de Investigaciones 

Agrarias, Valencia, Spain). 

A. carbonarius was grown on Petri dishes containing Malt Extract Agar 

(MEA) medium (2 % (w/v) malt extract, 0.1 % (w/v) peptone, 2 % (w/v) glucose 

and 1.5 % (w/v) agar) in the dark at 28 °C for 6 days to achieve conidia 

production. Conidia were collected with a sterile solution of 0.005% (v/v) Tween 

80 (J.T. Baker, Holland) and were adjusted to 106 conidia/mL using a 

haemocytometer. One hundred microliters of the conidial suspension was 

homogeneously spread on Petri dishes containing Czapeck Yeast Extract Agar 

(CYA) medium (0.5 % (w/v) yeast extract, 0.3 % (w/v) NaCO3, 3 % (w/v) 

sucrose, 0.13 % (w/v) K2HPO4·3H2O, 0.05 % (w/v) MgSO4·7H2O, 0.05 % (w/v) 

KCl, 0.001 % (w/v) FeSO4·7H2O, 0.001 % (w/v) CuSO4·5H2O, 0.001 % (w/v) 

ZnSO4·7H2O, and 1.5 % (w/v) agar) and sub-cultured in the dark at 28 °C. To 

study the expression of cipC under oxidative stress, A. carbonarius was grown 
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in the presence of different concentrations of hydrogen peroxide (Sigma-Aldrich, 

UK), added to the CYA medium after sterilization.  

 

2.2. Genomic DNA extraction 

The rapid DNA extraction protocol described by Cenis (1992) was 

followed with minor modifications. Cultures were grown for 1 day at 28ºC in 500 

µl of Czapeck’s Yeast medium. Mycelium was recovered after 10 min of 

centrifugation at 17500 Xg and 300 µl of extraction buffer (200 mM Tris-HCl, pH 

8.5, 250 mM NaCl, 25 mM EDTA, 0.5% SDS) was added. The mycelium 

suspension was disrupted with five 2.8 mm stainless steel beads (Precellys, 

Bertin Technologies) for 2 minutes in a cell disruptor (Mini BeadBeater-8, 

Biospec). After centrifugation at 17500 Xg for 10 min, 150 μL of 3 M sodium 

acetate (pH 5.2) was added to the supernatant. The supernatant was incubated 

at -20ºC for 10 minutes and centrifuged (17500 Xg, 10 min). The DNA-

containing supernatant was transferred to a new tube and nucleic acids were 

precipitated by adding 1 volume of isopropyl alcohol. After 5 minutes of 

incubation at room temperature, the DNA suspension was centrifuged (17500 

Xg, 10 min). The DNA pellet was washed with 70% ethanol to remove residual 

salts. Finally, the pellet was air-dried and the DNA was resuspended in 50 µl of 

TE buffer (10 mM Tris-HCl pH 8, 1 mM EDTA).  

 

2.3. Characterization of the cipC gene 

We had previously obtained a partial sequence of the cipC gene using 

degenerated oligonucleotides (Crespo-Sempere, Gil, et al., 2011). The 
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complete DNA sequence of cipC, together with its promoter and terminator 

sequences, was cloned using the Universal Genome Walker kit (Clontech, Palo 

Alto, CA) according to the manufacturer’s instructions. PCR products were 

purified with the UltraClean PCR Clean-up DNA Purification kit (MoBio, USA) 

and directly sequenced using the BigDye Terminator v3.1 Cycle Sequencing Kit 

(Applied Biosystems, UK) in an Applied Biosystems automatic DNA sequencer 

model 373A. The gene-specific primers used for PCR amplification and 

sequencing are given in Table 1 (from CIPC.G to CIPC.S and AP1-AP2). 

A computational structural search was carried out for the ORF using the 

Pfam database (Finn et al., 2008) (http://pfam.sanger.ac.uk/). Protein 

sequences of the CipC family were aligned using ClustalW. The genetic 

distances were calculated using the Poisson correction model and the 

phylogenetic inference was obtained by the neighbor-joining (NJ) method 

(Saitou & Nei, 1987). The NJ tree and the statistical confidence of a particular 

group of sequences, evaluated by bootstrap test (1000 pseudoreplicates), were 

performed using the program MEGA 4.0 (Tamura, Dudley, Nei, & Kumar, 2007). 

The search for putative binding sites of transcription factors was done with 

Transcription Element Search System (TESS) version 2.0 (Schug, 2008) using 

TRANSFAC database version 6.0, JASPAR 20060301, IMD v1.1 and 

CBIL/GibbsMatv1.1 (http://www.cbil.upenn.edu/cgi-bin/tess/tess). 

 

2.4. Construction of the cipC gene replacement plasmid 

Amplified fragments around 1500 bp from the promoter and terminator 

regions were cloned into the plasmid vector pRF-HU2 (Frandsen, Andersson, 

http://pfam.sanger.ac.uk/
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Kristensen, & Giese, 2008), a binary vector designed to be used with the USER 

friendly cloning technique (New England Biolabs), as described previously 

(Crespo-Sempere, López-Pérez, Martínez-Culebras, & González-Candelas, 

2011). The specific primers for the promoter and terminator regions included 9 

bp long 2- deoxyuridine containing overhangs, CIPC-PF (5’-

GGTCTTAAUGCGTACCCAGCCCGATAGAC-3’), CIPC-PR (5’-

GGCATTAAUTTTGTGGATGAGGGAGAAGAAGG-3’), CIPC-TF (5’-

GGACTTAAUACATTGTTTCTTTGGTCGTAGGTG-3’) and CIPC-TR (5’-

GGGTTTAAUTCATGAAGGACCACATGATGAG-3’), which ensured 

directionality in the cloning reaction (Fig.1B). The promoter and terminator 

regions were amplified with EcoTaq DNA Polymerase (Ecogen, Spain). Cycling 

conditions consisted of an initial denaturation step at 94 °C for 3 min, 35 cycles 

of 94 °C for 1 min, 56 °C for 1 min and 72 °C for 2 min and a final elongation 

step at 72 °C for 10 min. Both DNA inserts and the treated vector were mixed 

together and incubated with the USER (uracil-specific excision reagent) enzyme 

(New England Biolabs, USA) to obtain plasmid pRFHU2-CIPC (Fig.1A). An 

aliquot of the mixture was used to transform chemical competent E. coli DH5α 

cells. Kanamycin resistant transformants were screened by PCR. Proper fusion 

was confirmed by DNA sequencing. Then, plasmid pRFHU2-CIPC was 

introduced into electrocompetent A. tumefaciens AGL-1 cells. 

 

2.5. Fungal transformation 

Transformation of A. carbonarius was done as described previously 

(Crespo-Sempere, López-Pérez, et al., 2011) using A. tumefaciens AGL-1 cells 

carrying the plasmid pRFHU2-CIPC. Equal volumes of IMAS-induced bacterial 
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culture (de Groot, Bundock, Hooykaas, & Beijersbergen, 1998) and conidial 

suspension of A. carbonarius (106 conidia/mL) were mixed and spread onto 

nitrocellulose membrane filters, which were placed on agar plates containing 

the co-cultivation medium (same as IMAS, but containing 5 mM instead of 10 

mM of glucose). After co-cultivation at 26 °C for 40 h, the membranes were 

transferred to CYA plates containing Hyg B (100 µg/ml) as the selection agent 

for fungal transformants, and cefotaxime (200 μg/mL) to inhibit growth of A. 

tumefaciens cells. Hygromcycin resistant colonies appeared after 3 to 4 days of 

incubation at 28 °C. 

 

2.6. Confirmation of cipC deletion 

Disruption of cipC in transformants was confirmed by PCR analyses. 

Primer binding sites are detailed in Fig.1B. The insertion of the selection marker 

was checked with the primer pair Hmbr1 (5’-CTGATAGAGTTGGTCAAGACC-

3’) and Hmbf1 (5’-CTGTCGAGAAGTTTCTGATCG-3’). Deletion of cipC was 

confirmed with a primer pair designed within the sequence of the gene CIPC.A2 

(5’-AGGAGCACAAGGCTAAGTTCACC-3’) and CIPC.B2 (5’-

GCTCACGGTCGACGAAGTC-3’). Real-time genomic PCR analysis was 

carried out in order to determinate the number of T-DNA molecules that have 

been integrated in the genome of transformants following basically the 

procedure established by Solomon et al. (2008). The primers used for 

quantitative real time PCR (qPCR) were designed close to the selection marker 

within the promoter region of cipC gene using the OLIGO Primer Analysis 

Software V.5 (Fig.1B). The primer sequences were CIPC-GT (5’-

GAGGAGCTCAGCCTTCCATG-3’) and CIPC-HT (5’-
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GAGCTTCCTCACCCTGTGGTC-3’). qPCR reactions were performed in a 

LightCycler 480 System (Roche, USA) using SYBR Green to monitor DNA 

amplification. qPCR efficiency (E) for each pair of primers was calculated from 

the slopes of the standard curve using the LightCycler software (Rasmussen, 

2001). The number of T-DNA that have been integrated in the genome was 

calculated based on E and the Crossing point (Cp) value of transformant versus 

the wild type strain, and normalized in comparison to a reference gene that is 

present with the same copy number in both wild type and transformant. This 

can be whatever gene except cipC. We chose the pyruvate carboxylase (pyc) 

gene (GenBank accession Nº GW328015) using primers pyc-F (5’-

GCAGGCCAAGAAGTGTGGTG-3’) and pyc-R (5’-

TGCTGGGGTTCAGCATGTC-3’). The number of T-DNA copies that have been 

integrated in the genome of the transformant was calculated according to the 

following equation based on Pfaffl (2001) and Rasmussen (2001):  

 

 

Three technical replicates were done for each knockout mutant 

candidate, and PCR reaction quality was checked by analyzing the dissociation 

and amplification curves. 

 

2.7. RNA isolation and cDNA synthesis 

Mycelia were collected from cultures, frozen in liquid nitrogen and stored 

at −80°C before nucleic acid extraction. RNA was isolated from 1 g of mycelium 

copy number =  
(E        )  cipC 

ΔcipC (wild type – transformant) 

(E       ) pyc 
Δpyc (wild type – transformant) 
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previously grounded to a fine powder with a mortar and pestle with liquid 

nitrogen. Pulverized mycelium was added to a pre-heated mixture of 10 mL of 

extraction buffer: 100 mM Tris–HCl, pH 8.0, 100 mM LiCl, 10 mM EDTA, 1% 

(w/v) Sodium dodecyl sulfate (SDS), 1% (w/v) polyvinyl-pyrrolidone 40, 1% β-

mercaptoethanol and 5 mL of Tris-equilibrated phenol. After homogenization 

with a Polytron PT 45/80 (Kinematica AG; Switzerland) for 1 min, the extract 

was incubated at 65 °C for 15 min and cooled before adding 5 mL of 

chloroform:isoamyl alcohol (24:1, v/v). The homogenate was centrifuged at 

3900 Xg for 20 min at 4 °C and the aqueous phase was re-extracted with 10 mL 

of phenol:chloroform:isoamyl alcohol (25:24:1, v/v/v). Nucleic acids were 

precipitated by adding 2 volumes of cold ethanol and centrifuged immediately at 

27,200 Xg for 15 min. The resulting pellet was dissolved in 900 μL of TES (10 

mM Tris–HCl, 5 mM EDTA, 0.1% SDS, pH 7.5) and RNA was precipitated 

overnight at − 20 °C by adding 300 μL of 12 M LiCl. After centrifugation at 

27,200 Xg for 60 min, the precipitated was re-extracted with 250 μL of 3 M 

sodium acetate (pH 6.0) to remove residual polysaccharides and, finally, 

dissolved in 200 μL of water. RNA concentration was measured 

spectrophotometrically and verified by ethidium-bromide staining of an agarose 

gel. Total RNA was treated with DNase (TURBO DNase, Ambion, USA) to 

remove contaminating genomic DNA. Single-strand cDNA was synthesized 

from 10 μg of total RNA using SuperScript III reverse transcription kit and an 

oligo(dT), according to the manufacturer's instruction (Invitrogen, USA). 

 

2.8. Quantification of relative gene expression by real-time RT-PCR 
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Partial gene sequences from a superoxide dismutase (sod) and a 

peroxiredoxin (prx) genes from A. carbonarius were obtained from previous 

work (Crespo-Sempere et al., 2010), which correspond to GenBank accession 

numbers GW327919 and GW327996, respectively. Gene-specific primer sets 

were designed for gene expression analysis (SODf/SODr for sod, PRXf/PRXr 

for prx and CIPC.A2/CIPC.B2 for cipC) with OLIGO Primer Analysis Software 

V.5 to amplify PCR fragments of 67 (prx), 182 (cipC) and 183 (sod) bp in length 

(Table 1). Real-time RT-PCR reactions were performed in a LightCycler 480 

System (Roche) using SYBR Green to monitor cDNA amplification. The 

ribosomal 18S RNA gene was used as a reference gene. To calculate the 

normalized relative gene expression levels (fold induction), data were analyzed 

using the Relative Expression Software Tool (REST) and the mathematical 

model based on mean threshold cycle differences between the sample and the 

control group (Michael W. Pfaffl, Horgan, & Dempfle, 2002). REST was also 

used for a randomization test with a pair-wise reallocation to assess the 

statistical significance of the differences in expression between the control and 

treated samples (significance at p ≤ 0.05). 

 

2.9. Determination of vegetative growth 

For growth assessment, CYA plates were inoculated centrally with 5 μl of 

conidia suspensions (106 conidia/mL) from the wild-type strain of A. carbonarius 

and the ΔcipC knockout transformant. Two perpendicular diameters of the 

growing colonies were measured daily over four days until the colony reached 

the edge of the Petri dish. The assay was performed in triplicate. 
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2.10. Extraction and detection of OTA from culture 

OTA was extracted using a variation of a simple method described 

previously (Bragulat, Abarca, & Cabanes, 2001). The isolates were grown on 

CYA and incubated at 28 °C (Pitt & Hocking, 1997). Separation, detection and 

quantification of OTA were performed by injecting 20 μl of extract from each vial 

into an HPLC system consisting of a Dionex model P680A pump (Sunnyvale, 

USA) connected to a Dionex model RF-2000 programmable fluorescence 

detector and to a DionexPDA-100 photodiode array detector. For determination 

of OTA, a C18 reversed-phase column (150×4.6 mm i.d., 5 μm particle size 

Kromasil C18 (Análisis Vínicos S.L., Spain), connected to a precolumn Kromasil 

C18 (10×4.6 mm i.d., 5 μm particle sizes, Análisis Vínicos S.L.) were used. For 

chromatographic separation of OTA, the mobile phase was acetonitrile: water: 

acetic acid, (57:41:2 v/v/v) under isocratic elution during 10 min, at a flow rate of 

1 mL/min. OTA was determined by fluorescence detection at an excitation 

wavelength of 330 nm and an emission wavelength of 460 nm. The ochratoxin 

standard was obtained from A. ochraceus (Sigma-Aldrich, USA). 

 

2.11. Statistical analyses 

All comparisons were analyzed by One way ANOVA followed by the Tukey's 

honestly significant different test (HSD), using Statgraphics Centurion Version 

XVI. Significance was defined as p<0.05. 

3. Results and Discussion 

CipC is a protein with unknown function, which has been previously 

related with different stress processes in fungi such as pathogenesis, nitrogen 
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starvation and mycotoxin production. However, its biological function remains to 

be elucidated. Recently, the proteomes of a highly (W0-40) and a weakly (W0-

46) OTA-producing A. carbonarius strains were compared to identify proteins 

that may be involved in OTA production (Crespo-Sempere, Gil, et al., 2011). 

This proteomic study highlighted CipC as the protein with the highest induction 

in strain W04-40. The cipC gene also showed a higher transcriptional level in 

the OTA-producing strain, suggesting a possible role in OTA production.  

3.1. Sequence analysis and characterization 

 We sequenced a 3,646 bpDNA fragment that contained the cipC gene 

together with 1,550 bp and 1,631bp upstream and downstream regions, 

respectively (GenBank accession No. KC348440). cipC contained a 465 bp 

ORF interrupted by two introns of 77 and 55 bp that encode a protein of 110 

amino acids. The introns were verified by comparison with cDNA sequences 

having characteristic 5’ (GT) and 3’ (AG) intron splicing sites of fungal genes 

(Kupfer et al., 2004).  

A BlastP search indicated that CipC shows homology to CipC of A. niger 

CBS 513.88, with an identity of 81% (XP_001393387.1). Additionally, in order to 

detect functional domains, we searched CipC against the Pfam database. The 

aminoacid sequence presented a significative match with a family of eukaryotic 

proteins with unknown function (DUF3759). Proteins of this family are typically 

between 107 and 132 amino acids in length. According to the Pfam database, 

the DUF3759 protein family presents two possible domain organizations. 

Although most of the protein sequences belonging to this family contain only a 

single domain, DUF3759 (PF12585), the presence of this domain has also been 
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reported linked to glutathione synthetase domains, which catalyze the final step 

of glutathione synthesis, an important antioxidant molecule (Pócsi, Prade, & 

Penninckx, 2004). 

The CipC amino acid sequence of A. carbonarius together with a total of 

84 CipC amino acid sequences from different fungi and yeast obtained from the 

database were subjected to phylogenetic analysis (Fig. 2). The CipC sequence 

from A. carbonarius clustered together with the sequence of A. niger (A2QT35).  

However, another CipC sequence from A niger (A2QMX6) belonging to the 

DUF3759 family clustered separately within the dendrogram. Similarly, several 

proteins belonging to the DUF3759 family were found in other fungi, indicating 

that it is possible to find several CipC proteins in fungal genomes: Aspergillus 

clavatus (2 proteins), Aspergillus flavus (6), Aspergillus fumigatus (3), A. niger 

(2), Aspergillus oryzae (4), Candida albicans (5), Candida dubliniensis (2), 

Candida tropicalis (2), Emericella nidulans (3), Laccaria bicolor (3), Metarhizium 

robertsii (2), Neosartorya fischeri (3), Paxillus involutus (7), Penicillium 

marneffei (2) and Trichophyton equinum (2). The disparity in the number of cipC 

proteins for different fungi is accompanied by a diverse phylogenetic distribution 

of the representatives from each species. Thus, in some instances, the different 

CipC proteins from the same fungus grouped together, as those of A. 

fumigatus, but in other cases they are located in distant branches. 

Unfortunately, the possible roles of the different cipC members are unknown, as 

no deletion mutant has been reported yet.  

Sequence analysis of the promoter region of cipC revealed multiple 

potential binding sites for transcription factors that regulate the utilization of 

different carbon and nitrogen sources as well as macrominerals and trace 
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minerals (CP1, MIG1, PHO4, PUT3, REB1, SEF1, NIT2, GCR1, FACB and 

UAY) (Table 2). Interestingly, Teichert et al. (2004) observed that when the 

glutamine synthetase gene was deleted in Gibberella fujikuroi, another 

important mycotoxin producer fungus, cipC was down regulated. They also 

observed that this deletion had a significant impact on the transcriptional control 

of primary and secondary metabolism. Moreover, Böhmer et al. (2007) 

described an induction of cipC when Ustilago maydis was grown with glucose 

(Glu) and ammonium (NH4
+) and transferred to a medium containing arabinose 

(Ara) and nitrate (NO3
-). These results suggest that cipC might be controlled by 

transcription factors that regulate the utilization of different carbon and nitrogen 

sources. 

A second group of binding sites for transcription factors that regulate the 

stress response and detoxification (AP1, ACE1, HSF, MSN4, SKO1 and GCN4) 

(Table 2) within the promoter of cipC was also identified. Noteworthy is the fact 

that the majority of the transcription factors with binding sites within the 

promoter of cipC, regulate elements with high influence on the biosynthesis of 

mycotoxins such as carbon and nitrogen sources (Abbas, Valez, & Dobson, 

2009; Ferreira & Pitout, 1969; Medina et al., 2008), metals (Steele, Davis, & 

Diener, 1973), oxidative stress (Reverberi, Ricelli, Zjalic, Fabbri, & Fanelli, 

2010), pH (transcription factor PacC) (Esteban, Abarca, Bragulat, & Cabañes, 

2005; John O'Callaghan et al., 2006) and sporulation (transcription factor abaA) 

(Guzmán-de-Peña & Ruiz-Herrera, 1997). 

 

3.2. Disruption of cipC gene  
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ATMT was successfully applied to A. carbonarius using the binary vector 

pRFHU2-CIPC. T-DNA integration was confirmed by PCR analyses based on 

expected genomic patterns using locus specific primers (Fig. 3). Only one out of 

68 monosporic transformants had the PCR pattern corresponding to the 

deletion of the cipC gene. Thus, gene replacement efficiency by homologous 

recombination obtained was 1.5%. Real-time genomic PCR analysis was also 

carried out in order to determinate the number of copies of the T-DNA that had 

been integrated into the genome. A mutant with ectopic insertions was also 

included as a control. Copy number was calculated according to the equation 

detailed above using the Efficiency of cipC and pyc amplification and Crossing 

points for the wild type, the ΔcipC mutant and the mutant with ectopic insertions 

(Table 3). The ΔcipC deletion mutant only harbors a copy (0.945 according to 

the equation) of the T-DNA, which, as shown previously, replaces the original 

cipC gene. However, the mutant with ectopic insertions harbors four copies 

(4.08 as calculated at Table 3). Although Southern-blot analysis had been 

traditionally used to determinate gene copy number, the use of qPCR has 

proven to be a suitable, more accurate and faster technique (Solomon et al., 

2008). As far as we are aware, this is the first time that ATMT is used for gene 

replacement in A. carbonarius. 

 

3.3. Phenotypical analysis of the ΔcipC deletion mutant of A. carbonarius 

No statistical differences in growth and colony morphology were 

observed in the ΔcipC mutant when compared to the wild type strain on non-

selective media (CYA plates). Thus, by day four, the diameter of the ΔcipC 

mutant colony was 67.5 ± 0.8mm and the wild type reached 68.7 ± 1.2 mm. 
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However, the ΔcipC mutant showed a much higher OTA production than the 

wild type strain (Fig. 4) in the same medium. The production of OTA after two 

days of incubation in CYA medium, without hygromycin, was 3.69 fold higher in 

the ΔcipC mutant with respect to the wild type strain. This difference increased 

at days 3 and 4 to 7.86 and 14.66 fold, respectively. Thus, the wild type 

produced 0.21 µg of OTA /g of growth medium at day 4, while the ΔcipC mutant 

produced 3.12 µg/g. The higher OTA production of the ΔcipC mutant clearly 

indicates that CipC is not part of the OTA biosynthetic pathway. However, in a 

previous proteomic study carried out by our research group (Crespo-Sempere, 

Gil, et al., 2011) we observed that CipC exhibited a high up-regulation in a OTA-

producing strain compared to a non OTA-producing strain of A. carbonarius and 

this high induction was also observed at the transcriptional level. Both results 

seem contradictory, as higher OTA production in the OTA producer strain is 

accompanied by a higher level of CipC protein, whereas the null mutant, which 

lacks the cipC gene, shows even a higher OTA production. 

Reviewing published information about cipC we found that this gene is 

up-regulated in pathogenicity processes in V. alboatrum (Mandelc, Radisek, 

Jamnik, & Javornik, 2009), V. dahliae, S. nodorum and S. sclerotiorum (Sexton 

et al., 2006; Tan et al., 2008), during the ectomycorrhizal symbiosis in Paxillus 

(Le Queré et al., 2004), during meningitis infection in the human pathogen C. 

neoformans (Steen et al., 2003), in G. fujikuroi and U. maydis grown under 

nitrogen starvation conditions (Bohmer et al., 2007; Teichert et al., 2004), in A. 

nidulans in the presence of an antibiotic inhibitor of proton pumps (Melin et al., 

2002), or in F. verticilloides and U. maydis when they were grown at acidic pH 

conditions (Pirttilä, McIntyre, Payne, & Woloshuk, 2004; Rodríguez-Kessler et 
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al., 2012). All these instances are adverse situations and hence, stressful for 

the fungus. Results obtained from the sequence analysis of cipC revealed that 

in some organisms the functional domain of CipC is linked to a glutathione 

synthetase domain, which confers an antioxidant function (Bai, Harvey, & 

McNeil, 2003). Interestingly, we also identified in the promoter of cipC multiple 

potential binding sites to transcription factors that regulate responses to stress 

situations, nutrient starvation and ambient pH, all of them being elements that 

affect largely mycotoxins biosynthesis. In fact, there are considerable 

experimental results that suggest that oxidative stress correlates with mycotoxin 

production (Jayashree & Subramanyam, 2000; Reverberi et al., 2010; Reverberi 

et al., 2008). Reverberi et al. (2012) showed that oxidative stressors induced 

significantly OTA biosynthesis in A. ochraceus. Additionally, they found that 

when the stress response transcription factor (Yap1) was deleted from A. 

ochraceus, the disrupted strain showed a higher quantity of ROS and a higher 

amount of OTA compared to wild type strain. This effect was also described in 

A. parasiticus, in which the deletion of Yap1 leads to an increase in aflatoxin 

production (Reverberi et al., 2008). Furthermore, some authors have formulated 

an oxidative stress theory of mycotoxin biosynthesis (Reverberi et al., 2010). 

The potential influence of oxidative stress on cipC expression was 

monitored by growing the OTA-producing A. carbonarius strain in CYA medium 

amended with different concentrations of hydrogen peroxide (50, 500 and 5000 

µM) (Fig. 5). A clear up-regulation of sod and prx was observed when hydrogen 

peroxide was added to the media (Fig. 5). As the hydrogen peroxide 

concentration increased the expresion levels of sod and prx were higher than in 

the control (same medium without hydrogen peroxide), reaching 5 and 24 fold 
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induction, respectively. The expression of cipC showed a constant 2 fold 

induction in comparison with the control, which suggests that cipC might be a 

stress oxidative response gene, but with a different induction pattern. 

If OTA production is induced in response to a stressful situation, as it has 

been shown for in A. ochraceus by Reverberi et al. (2012), it would be logical to 

expect that the same stress would also trigger the expression of cipC, as we 

have observed in a previous work (Crespo-Sempere, Gil, et al., 2011). 

Accordingly, if a stress response gene is deleted, the stress level would 

increase leading to an increase inmycotoxin biosynthesis, as occurs in the 

ΔcipC mutant strain obtained in the present study and also in the case of the A. 

ochraceus ΔAoyap1 disrupted strain.  

 

4. Conclusions 

The higher OTA production by the ΔcipC mutant strain clearly 

demonstrates that CipC is not needed for the synthesis of OTA. Our results 

suggest that CipC is a stress response protein, whose synthesis is induced 

under the oxidative stress imposed by hydrogen peroxide. A deeper knowledge 

of the genes involved in OTA biosynthesis, either directly or indirectly, would 

help us to elucidate the nutritional and environmental clues that lead to OTA 

contamination of food commodities. 
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Figure captions 

Figure 1. A) Physical map of plasmid pRFHU2-CIPC. LB= Left Border, 

HR2 = Homologous flanking region 2, pTrpC = Tryptophan promoter from 

Aspergillus nidulans, HygR = hygromycin phosphotransferase, TtrpC = 

Tryptophan terminator from A. nidulans, HR1 = Homologous flanking region 1, 

RB=Right Border, oriV = origin of replication in E. coli, KanR = kanamycin 

resistance, TrfA = replication initiation gene (broad-host-range). B) Diagram of 

the cipC replacement with the hygR selectable marker from pRFHU2-CIPC by 

homologous recombination to generate the ΔcipC mutant. 

Figure 2. Phylogenetic tree derived from the alignment of 85 proteins that 

contain the PFAM-DUF3759 domain. The tree was constructed using neighbor 

joining. The numbers at the nodes give bootstrap values (%) of 1000 iterations. 

The proteins are designated by their TrEMBL ID number and the species name. 

Down left: scale of the phylogenetic distances. 

Figure 3. PCR amplification of the hygromycin resistant cassette in the 

ΔcipC knockout mutant with primers Hmbr1 and Hmbf1 (lane A) and 

amplification of cipC gene with primers CIPC.A2 and CIPC.B2 in the ΔcipC 

knockout mutant and the wild type strain (lane B and C respectively). 

Figure 4. OTA production in the ΔcipC mutant and wild type strain of A. 

carbonarius (W04-40) inoculated in CYA plates. Error bars indicate standard 

errors. Letters indicate homogeneous groups (ANOVA, p < 0.05).  
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Figure 5. Relative expression of sod, prx and cipC in A. carbonarius 

W04-40 grown in the presence of different concentrations of hydrogen peroxide 

with respect to expression level in the same medium without hydrogen 

peroxide. Error bars indicate standard errors. 

 

Table legends 

Table 1. Gene-specific primers used for PCR amplification and 

sequencing with the Universal Genome Walker kit and primers used for analysis 

of gene expression. 

Table 2. Potential binding sites to regulatory elements predicted by TESS 

(http://www.cbil.upenn.edu/cgi-bin/tess) within the promoter of cipC (1550 bp). 

Table 3. Estimation of the number of T-DNA copies that have been 

integrated in the genome of the mutants. 

 

http://www.cbil.upenn.edu/cgi-bin/tess
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Tables 1 

Table 1. Gene-specific primers used for PCR amplification and sequencing with the 2 

Universal Genome Walker kit and primers used for analysis of gene expression. 3 

Oligo Oligo sequence (5’-3’) T melting (ºC) 
CIPC.G GAGCACCAGGCCAAGAACG 66.6 
CIPC.H TGCCTTCATCGACCGTGAG 65.9 
CIPC.I TCTTGGCCTGGTGCTCCTC 66.3 
CIPC.J ACCGCCGATGAACTCGTG 65.8 
CIPC.L CCCGATCGCAGTTTATAGATCG 64.9 
CIPC.M GGCAGTAGTACTCACCGAACCAAC 65.3 
CIPC.N GGATGAGGGAGAAGAAGGGGATAG 66.4 
CIPC.O GCATCTGTCATTGTGCGAATACTC 65.2 
CIPC.P GGATGTTATGTAAGGTTCTGTGTGAG 62.2 
CIPC.Q GATGTGCATCCTGGAGATACAGC 65.3 
CIPC.R TGACATGGCCTTGGCTCTC 64.9 
CIPC.S CCCGACTATCCTTCGCCTACTG 64.9 
AP1 GTAATACGACTCACTATAGGGC 59 
AP2 ACTATAGGGCACGCGTGGT 71 
SODf CCCGGAACTGACCCTATGC 59.3 
SODr AGGGCTTGAGGGCAATCTG 59.4 
PRXf TCCTTCTTGAGGTTGGTGAAGC 59.6 
PRXr CTCAGAAGAAGTTCGGCGATG 57.8 
CIPC.A2 AGGAGCACAAGGCTAAGTTCACC 61.8 
CIPC.B2 GCTCACGGTCGACGAAGTC 59.6 
S18f GCAAATTACCCAATCCCGACAC 59.1 
S18r GAATTACCGCGGCTGCTG 58.4 

 4 

 5 

 6 

 7 

 8 
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Table 2. Potential binding sites to regulatory elements predicted by TESS 9 

(http://www.cbil.upenn.edu/cgi-bin/tess) within the promoter of cipC (1550 bp). 10 

Factor Beginning Sequence Functional Features 

ABF-2 

54 CAAGTTGA 

Recognizes divergent sequences (Qasba et al., 1992) 
87 AACCCTGA 

375 AAAGTTCA 
455 TACCTGGA 
481 GACGTGGA 

AP-1 

293 TTGGTCA 

Involved in response to oxidative stress/oxygen 
detoxification and metal resistance (Murray et al., 2011) 

753 TGACTCC 
837 GGAGTCA 
959 TGAGACA 

BUF 163 AGTGGCAG Activator or repressor; Involved in replication, ss-DNA-
binding protein (Luche et al., 1993) 

CP1 

125 ATCCCGTG 

Required for optimal chromosome segregation and 
methionine prototrophy (O'Connell et al., 1995) 

286 CCAAT 
1148 CCAAT 
1258 CCAAT 

ACE1 

36 TCATTTGGTC 

Activates copper detoxification and storage genes when 
copper is in excess (Wegner et al., 2011). 

234 TATTTTCCGC 
803 GCTTTCCGTG 
864 TCAGTCCCGG 

HSF 665 GAAGTGTC 

Activator, mediates expression of heat-shock genes, 
whose products maintain protein homeostasis under 
normal physiological conditions, as well as under 
conditions of stress (Sakurai and Enoki, 2010) 

MCBF 
546 ACGCGT Binds to the MluI cell cycle box of DNA replication genes; 

may be involved in cell cycle regulation (Raithatha and 
Stuart, 2005) 1294 CATACCT 

1516 CATTCCA 

MIG1 
247 GTGGGG Homologous to CreA/CRE-1, which encodes a carbon 

catabolite repressor (Ronne, 1995) 256 GTGGGG 

MSN4 92 TGACGT 
Play a major role in the general stress response program 
by transcribing hundreds of genes following exposure to 
diverse stress conditions (Sadeh et al., 2011) 

NBF 517 ATGGGAA Regulates phospholipids biosynthetic genes (Lopes and 
Henry, 1991)   

PHO4 240 CCGCGTGG Controls the induction of the phosphate-responsive gene 
expression program (Oshima, 1997) 

546 ACGCGTGG 

PUT3 

569 GAAGCCGA 

Positive activator of the proline utilization pathway (Des-
Etages et al., 1996) 

1029 AAAGCCAT 
1144 GATACCAA 
1177 AGAGCCAA 

REB1 841 TCACCCT 
Involved in termination of rRNA transcription and regulates 
G1 phase under nitrogen starvation (Rodríguez-Sánchez et 
al., 2011) 

SEF1 285 CCCAATAA Positive regulator of iron acquisition (Homann et al., 2009). 

SKO1 
61 AGGACTTA Represses the yeast-to-hypha transition and regulates the 

oxidative stress response in Candida albicans. (Alonso-
Monge et al., 2010) 752 ATGACTCC 

http://www.cbil.upenn.edu/cgi-bin/tess
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STE12 913 TGAAAC Regulates fungal invasive growth (Rispail and Di Pietro, 
2010)  

USF 

127 CCCGTGC 
Upstream stimulatory factor activates GATA5 gene 
transcription by specially binding to the E-box motif of 
GATA5 promoter (Chen et al., 2012) 

202 CACATCC 
710 CTCATGC 
814 CACCTGC 

ADR1 

188 TGGGGC 

Activator, inactivated by phosphorylation while DNA-
binding is retained; positive regulator of peroxisomal 
protein genes (Simon et al., 1991) 

465 AGGGGT 
836 TGGAGT 
880 GGGAGG 
938 AGGAGG 
1223 TGGAGC 
1322 GGGAGT 
1350 CGGAGG 
1398 CGGAGG 

GCN4 

557 CAGTCA 

Involved in stress and nitrogen starvation response (Ecker 
et al., 2010; Rodrigues-Pousada et al., 2010) 

692 TGACTG 
750 CGATGACTCC 
753 TGACTC 
838 GAGTCA 

MATalpha 1-2 

94 ACGTGTTGAC 

Activates alpha-specific genes and responds to a-mating 
pheromone (Sengupta and Cochran, 1991) 

768 CGATGTGGCT 
827 GCCTGTCAAT 
910 TGATGAAACC 

NIT2 

147 TATCGA 
Activator of nitrogen-regulated genes (Fu and Marzluf, 
1990). NIT2 can partially complement for lack of AREA in 
A. nidulans (Davis and Hynes, 1987) 

682 GAGATA 
1373 TATCAT 
1452 TATCTA 

RAP1 

889 CANCCNNNCA 
Repressor or activator, depending on context; Participates 
in heterochromatin boundary-element formation, chromatin 
opening, meiotic recombination hotspot activity (Morse, 
2000) 

1193 CAGCCACTCA 
1283 CATCCACCCA 
1360 CANCCNNNCA 
1496 CATCCACAAA 

GCR1 1241 AGCTTCCAC 
Coactivator of RAP1; Stimulates cell growth by 
participating in nutrient-responsive gene expression on a 
global level (Barbara et al., 2007) 

abaA 
1509 CCTTCTTCATTCCACACTT Activator; necessary for spore differentiation, binding to 

developmentally regulated genes (Andrianopoulos and 
Timberlake, 1994) 1516 CATTCC 

PacC 1267 CTCCGCCAAGAATCCCC 

Activator and repressor; in response to alkaline ambient 
pH, PacC activates expression of alkaline-expressed 
genes and represses genes required for growth under 
acidic conditions (Tilburn et al., 1995) 

FACB 

239 TCCNNNNNNNNNGGA 

Transcriptional activator; Controls acetate induction of 
enzymes specific for acetate utilization as well as 
glyoxalate bypass enzymes (Todd et al., 1998) 

311 GCANNNNNNNNNNTGC 
733 GCANNNNNNNNNCGC 
757 TCCNNNNNNNNCGA 
868 TCCNNNNNNNNNNGGA 
1015 TCCNNNNNNNNNGGA 
1386 TCCNNNNNNNNNNGGA 
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UAY 564 CGCNNNNNNCCG Transcriptional activator; mediates the induction af a 
number of unlinked genes involved in purine utilization in 
A. nidulans (Suarez et al., 1995).  

1003 CGCNNNNNNCCG 
 11 

Table 3. Estimation of the number of T-DNA copies that have been integrated in 12 

the genome of the mutants. 13 

Efficiency Cp cipC Cp pyC Copy number 

cipC pyC Wild type ΔcipC Ectopic Wild type ΔcipC Ectopic ΔcipC Ectopic 

2.007 2.047 21.51±0.21 21.45±0.15 19.56±0.24 19.55±0.07 19.41±0.16 19.63±0.18 0.945 4.08 

 14 
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Figure 1. A) Physical map of plasmid pRFHU2-CIPC. LB= Left Border, 
HR2 = Homologous flanking region 2, pTrpC = Tryptophan promoter from 
Aspergillus nidulans, HygR = hygromycin phosphotransferase, TtrpC = 
Tryptophan terminator from A. nidulans, HR1 = Homologous flanking region 1, 
RB=Right Border, oriV = origin of replication in E. coli, KanR = kanamycin 
resistance, TrfA = replication initiation gene (broad-host-range). B) Diagram of 
the cipC replacement with the hygR selectable marker from pRFHU2-CIPC by 
homologous recombination to generate the ΔcipC mutant. 



 

 
 
 
Figure 2. Phylogenetic tree derived from the alignment of 85 proteins that 

contain the PFAM-DUF3759 domain. The tree was constructed using neighbor 
joining.  The numbers at the nodes give bootstrap values (%) of 1000 iterations. 
The proteins are designated by their TrEMBL ID number and the species name. 
Down left: scale of the phylogenetic distances. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. PCR amplification of the hygromycin resistant cassette in the 

ΔcipC knockout mutant with primers Hmbr1 and Hmbf1 (lane A) and 
amplification of cipC gene with primers CIPC.A2 and CIPC.B2 in the ΔcipC 
knockout mutant and the wild type strain (lane B and C respectively). 
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Figure 4. OTA production in the ΔcipC mutant and wild type strain of A. 

carbonarius (W04-40) inoculated in CYA plates. Error bars indicate standard 
errors. Letters indicate homogeneous groups (ANOVA, p < 0.05).  



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Relative expression of sod, prx and cipC in A. carbonarius 

W04-40 grown in the presence of different concentrations of hydrogen peroxide 
with respect to expression level in the same medium without hydrogen 
peroxide. Error bars indicate standard errors. 
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