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Abstract

Independent systems of high and low affinity effect glucose uptake in the filamentous fungus Aspergillus nidulans. Low-
affinity uptake is known to be mediated by the product of the mstE gene. In the current work two genes, mstA and mstC,
have been identified that encode high-affinity glucose transporter proteins. These proteins’ primary structures share over
90% similarity, indicating that the corresponding genes share a common origin. Whilst the function of the paralogous
proteins is little changed, they differ notably in their patterns of expression. The mstC gene is expressed during the early
phases of germination and is subject to CreA-mediated carbon catabolite repression whereas mstA is expressed as a culture
tends toward carbon starvation. In addition, various pieces of genetic evidence strongly support allelism of mstC and the
previously described locus sorA. Overall, our data define MstC/SorA as a high-affinity glucose transporter expressed in
germinating conidia, and MstA as a high-affinity glucose transporter that operates in vegetative hyphae under conditions of
carbon limitation.
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Introduction

Although filamentous fungi pursue largely cryptic lifestyles in

the natural environment, these organisms are ubiquitous in

terrestrial ecosystems where they play important roles in recycling

organic compounds. Along with the capacity to produce an ample

spectrum of secondary metabolites [1] and tolerate diverse

environmental conditions, their ability as heterotrophs to utilise

a wide range of polymeric materials as substrates for growth attests

to their metabolic versatility. Since cellular assimilation of the

nutrients released from polymers by enzymatic digestion requires

their transport across the plasma membrane, the diversity of

substrates that filamentous fungi can grow on could reflect the

existence of a corresponding variety of uptake mechanisms.

Sugars are the building blocks of plant cell wall polymers and

constitute the principal recoverable source of carbon and energy

available to fungal saprophytes. The majority of characterised and

hypothetical (i.e. deduced from genomic sequencing efforts) sugar

transporters, be they of prokaryotic or eukaryotic origin, belong to

the Sugar Porter (SP) family, one of a large number of protein

families defined within the Major Facilitator Superfamily of

membrane proteins [2] (http://www.tcdb.org/; TC codes 2.A.1.1

and 2.A.1, respectively). The biochemistry and genetics of sugar

uptake in fungi have been most extensively characterised in

laboratory strains of Saccharomyces cerevisiae. The SP complement of

this yeast comprises 34 proteins of which only seven (Hxt1–4,

Hxt6, Hxt7 and Gal2) are physiologically relevant transporters of

hexoses (Hxt) – their substrates being glucose, fructose, galactose

and mannose to varying extents. HXT gene expression is subject to

control by a regulatory circuit triggered by the sensor proteins

Snf3 and Rgt2 (nutrient transceptors) that detect the extracellular

concentration of glucose and are themselves closely structurally

related to the Hxt proteins [3,4] (and references therein).

Since the sequencing and annotation of the first Aspergillus species

(A. clavatus, A. flavus, A. fumigatus, A. nidulans, A. niger, A. oryzae, A.

terreus, Neosartorya fischeri - http://www.broadinstitute.org/science/

data#), genome data for more than 200 filamentous ascomycetes

have been acquired (http://www.ncbi.nlm.nih.gov/genome/

browse/ and http://genome.jgi.doe.gov/programs/fungi/index.

jsf). Bioinformatic identification and assignment of putative sugar

permease function (sugar (and other) transporter - PF00083) to
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genetic loci reveal that the number of such loci per filamentous

fungal genome is notably greater than the average of 26 loci

observed in an analysis of the SP families of 8 hemiascomycetous

yeasts including S. cerevisiae [5]. Indeed, more than 100 loci have

been assigned to the PF00083 family of A. nidulans [6].

Few clues to the identity, function and abundance of sugar

transporter genes emerged from classical genetic analyses in A.

nidulans: four loci (lacA, lacB, lacE and lacF) were indicated to be

involved in the transport of lactose [7,8], and mutation at a locus

denominated sorA was shown to affect the uptake of L-sorbose [9].

Early work measuring the uptake of glucose, galactose and fructose

in mycelia [10] provided evidence for the existence of three sugar

transport systems, two that were able to transport glucose and

galactose but with differing affinities, and a third which was

exclusively dedicated to fructose. Similar studies undertaken in

Neurospora crassa also detected a number of sugar uptake activities

including two of high (system II) and low (system I) affinities for

glucose as well as a fructose specific system [11–14] (and refs

therein). Since then [15] two kinetically distinct glucose uptake

systems have been identified in wild type germinating A. nidulans

conidia: a high-affinity system that is expressed in the absence of

glucose but repressed in its abundance, and a low-affinity system

that is glucose-induced. With regard to the former, high-affinity

glucose uptake kinetics were observed to be perturbed in a strain

carrying a mutation at the sorA locus [15], and this concords with

the earlier studies [9] which showed that although mutations at

this locus clearly affected the uptake of L-sorbose they also had a

minor influence on D-glucose uptake.

Until very recently, the only A. nidulans monosaccharide uptake

system to have been characterised biochemically, physiologically

and genetically was that of the low-affinity glucose transporter

encoded by mstE - genomic locus AN5860 [16]. Yeast-based

functional analysis had been attempted on another putative

transporter (HxtA) originally identified in a screen for genes

related to sexual development but no sugar transport capability

was observed in heterologous expression [17]. In the current

report we present an ‘in situ’ functional characterisation of two

differentially expressed high-affinity glucose transporters (MstA

and MstC) after identifying the genes that encode them. One of

these corresponds to the glucose repressible glucose uptake system

found in germinating A. nidulans conidia [15] and is encoded by the

gene resident at the classically defined sorA locus [9].

Materials and Methods

Fungal strains, genetic techniques and culture conditions
The strains used in this work are listed in Table 1. Genetic

techniques, culture media and the obtention of conidia for

inoculating cultures either for the isolation of RNA or glucose

uptake experiments were as described previously [15,16,18].

Carbon sources were added to cooled autoclaved media to a final

concentration of 1% from filter-sterilised stocks unless stated

otherwise. Auxotrophic supplements were added to media where

appropriate.

Transformations of A. nidulans were carried out as detailed

previously [19].

Toxic sugar resistance phenotypes were assayed on plates using

a medium modified from that originally described by Elorza and

Arst [9]. Ethanol (1% v/v) was used as the carbon source rather

than glycerol, and 2-deoxyglucose (2-DOG) (50 mg/ml) was the

toxic sugar (rather than L-sorbose) since this formulation was

observed to give a clearer distinction between sorA mutants and

wild type: growth of a sorA+ (wild type) strain was completely

inhibited whereas that of the sorA2 mutants was unaffected. Where

conducted, L-sorbose resistance was tested as detailed by Elorza

and Arst [9].

General molecular techniques
Standard molecular techniques were as described previously

[16]. PCR reactions were performed using the Expand High

Fidelity PCR System (Roche Applied Science) or DyNAzyme

polymerase II (Finnzymes; Espoo, Finland), according to the

manufacturers’ instructions. Southern blot analysis was carried out

using Hybond-N+ membranes (Amersham Biosciences); northern

blot analysis was performed as detailed [20] using Hybond-N

membranes (Amersham Biosciences). Oligonucleotides used in this

study are detailed in Table 2.

Probes
The probe specific for the mstA coding sequence identified from

EST overlaps was generated by PCR off an A. nidulans wild type

genomic DNA (gDNA) template using oligonucleotide primers

M8A and M8S. This was used to screen a lZAP-based A. nidulans

BamHI genomic library (partial) kindly provided by Prof. Claudio

Scazzocchio.

Probes specific for the mstA and mstC transcripts were prepared

by PCR and correspond to the 39 untranslated regions immedi-

ately following the stop codons of each coding sequence - the level

of nucleotide sequence identity shared between these regions is

similar to that observed for unrelated sequences. The mstA probe

was primed off oligonucleotides B1 and spMstAIII39 and yielded a

,200 bp fragment; the mstC probe was primed off oligonucleo-

tides spMstAI and mstA(LI)39-2 yielding a ,150 bp fragment.

A 4.7 kb DNA fragment corresponding to the genomic locus of

the mstC gene which was used to cotransform A. nidulans strain

V082 was amplified off an A. nidulans wild type gDNA template

using oligonucleotides mstA(I)p59 and mstA(I)t39. The resulting

product was sequenced and no mutations were detected.

Cotransformation of V082 was done using 3 mg of the mstC

fragment together with 2 mg of plasmid pPL5 [21] that carries the

A. nidulans riboB gene and complements the riboB2 mutant allele.

The presence of the wild type (transforming) mstC gene was

detected by conducting PCR on gDNA isolated from riboflavin

prototrophic transformants using the oligonucleotide primers

mstCwt and mstA(LI)39-2. mstCwt was specifically designed to

amplify only the wild type mstC gene and not the point-mutated

allele present in the sorA3 genetic background. When used in

conjunction with mstA(LI)39-2 and a PCR annealing temperature

of 67uC a 550 bp fragment is produced in the presence of the wild

type mstC gene. No product is yielded by the mstC mutant allele

under these conditions.

Gene deletion
The mstA gene: plasmid pPTmstApyr4 was engineered to

contain a deletion cassette comprising the N. crassa pyr4 gene [22]

(a 3.25 kb BglII fragment) flanked by ,1 kb of PCR-generated

sequences corresponding to the upstream (oligonucleotides A1Eco

and A2) and downstream (oligonucleotides B1 and B2) regions of

the A. nidulans mstA gene. The cassette (,5.25 kb) was excised by

EcoRI digestion and used to transform A. nidulans strain V048.

gDNA was isolated from clonally purified uridine prototrophic

transformants and used as template in PCRs with the oligonucle-

otides mstAc59 and mstAc39 that amplify a 1.9 kb mstA-specific

fragment. The absence of this product was taken to be indicative of

the deletion of mstA. Confirmation of mstA deletion was done by

probing Southern blots of BamHI- or HindIII-digested gDNAs

with a PCR-generated probe (oligonucleotide primers mstA8 and

M8A) corresponding to the central structural sequence of mstA.

High-Affinity Glucose Transport in A. nidulans
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The 2.4 kb BamHI fragment present in the non-transformed strain

(control) was absent in the deletion mutants.

The mstC gene: double-joint PCR [23] was employed to

construct a linear DNA fragment comprising the A. nidulans riboB

gene [21] (oligonucleotides R5 and R3) flanked by the mstC

upstream (oligonucleotides LK1A1 and A18) and downstream

(oligonucleotides A14 and LK1B2) genomic sequences (,3.5 kb of

each). This linear construct was used to transform A. nidulans strain

V088 and selection was done on appropriately supplemented

medium (lacking riboflavin) containing D-sorbitol as both carbon

source and osmotic stabilizer. Transformants (,300) were

subsequently clonally purified on plates containing glycerol as

the carbon source. All were assessed for their resistance to 2-DOG

and L-sorbose by plate testing resulting in the identification of nine

2-DOG-resistant transformants. gDNA samples isolated from each

of these resistant clones as well as a randomly chosen transformant

that remained sensitive to 2-DOG were used as templates in PCRs

with primers (chekF and chekR2) designed to yield a product

(,840 bp) only in the case of replacement of the mstC gene by

riboB. All gDNAs derived from 2-DOG-resistant transformants

yielded the 840 bp PCR fragment whereas that from the 2-DOG-

sensitive transformant failed to do so. Southern analyses carried

out on several BamHI-digested gDNAs using probes specific for the

riboB and mstC genes also confirmed the elimination of mstC and its

substitution by riboB in 2-DOG-resistant transformants.

Construction of a strain expressing mstA during
germination

An A. nidulans strain (V136) carrying the uaZ11 [24] mutation

and deleted for both the mstA and mstC genes was obtained from a

sexual cross between strains V108 and V109. Strain V136 was

subsequently transformed with a uaZ11-complementing plasmid

(‘puaZ-petit’ - carries the 2 kb ClaI/XhoI fragment essential for site-

directed integration in the uaZ11 mutant allele; kindly provided by

Dr. Béatrice Felenbok) into which had been inserted a transla-

tional fusion (made by overlap extension PCR) between PCR-

generated fragments corresponding to the mstA structural gene

(2.4 kb) and the 1.9 kb of sequence immediately upstream of the

mstC translational initiation codon. The mstA coding sequence and

the mstC promoter fragments used for this were generated off the

oligonucleotide primer pairs mstA(I)p-mstA(III)59 and

mstA(III)t39, and mstA(I)p59 and mstA(III)-mstA(I)p-39, respec-

tively. The fusion product was ultimately recovered by PCR using

the nested oligos H3N-mstA(III)p59 and H3N-mstA(III)t39, and

inserted into puaZ-petit using HindIII. DNA sequencing confirmed

the absence of mutations in the fragments used to make the

construct and in the final construct itself. The strong bias for the

selection of single copy integration of the transforming DNA at the

A. nidulans uaZ locus conferred by the restored ability to grow on

uric acid (100 mg/ml) as sole nitrogen source resulted in the

identification of a transformant (V152) in which the presence of

the mstCp-mstA fusion was confirmed by the specific amplification

of a 645 bp PCR fragment off a genomic DNA template using the

primers LKIA3 (located on the sense strand of mstCp) and mstA11

(located on the antisense strand of mstA). The genomically

integrated fusion construct was also sequenced in its entirety

revealing the absence of mutations.

Glucose uptake experiments
Glucose uptake experiments were performed as described

previously [16]. All sugars used were in the ‘D’ configuration

unless stated otherwise. Glucose uptake rates in substrate

competition experiments were calculated from measurements of

the amount of glucose taken up in 5, 30, 60 and 90 seconds (done

in quadruplicate); competing compounds were present at 200 fold

molar excess (i.e. 3.2 mM and 18 mM for V004 and V152,

respectively) and the 14C-glucose concentration for each was fixed

at 16 mM and 90 mM respectively.

To assess energy requirements, glucose uptake by glycerol-

germinated conidia was measured at 30, 60 and 90 seconds (each

time point was done in triplicate) in the presence and absence of

30 mM carbonyl cyanide m-chlorophenylhydrazone (CCCP) at

glucose concentrations of 16 mM for V004 and 90 mM for V152.

Uptake rates were derived from the slopes of the plots obtained.

All data were processed using SigmaPlot 12.

Table 1. Fungal strains and genotypes.

Strain Genotype Origin

Wild type (V004) biA1 CECT2544

G186 biA1 sorA2 [9]; Dr. John Clutterbuck

V045 pabaA1 sorA3; fwA1 Prof. H.N. Arst Jr

V048 pyrG89 pabaA1 yA2 Dr. Teresa Suárez

V058 pyrG89 pabaA1 yA2; DmstA-pyr4 This work

LV42 pyrG89 pabaA1 yA2; DmstA-pyr4 This work

V082 pabaA1 sorA3; riboB2 This work

V088 uaZ11 pabaA1; panB100; riboB2 This work

V108 sorA3 yA2; DmstA-pyr4; riboB2 This work

V109 as V088; DmstC-riboB This work

V110 as V088; DmstC-riboB This work

V111 as V088; ,riboB This work

V136 as V088; DmstC-riboB; DmstA-pyr4 This work

V152 as V136; mstCp-mstA uaZ+ This work

Markers not separated by semi-colons are located on the same linkage group.
The , symbol indicates the presence of the allele in the genome at an unknown location and/or copy number.
doi:10.1371/journal.pone.0094662.t001
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Informatic analysis
Transporter protein primary structures were aligned with

MUSCLE [25,26] and the best amino acid substitution model

(LG+I+G) was determined using Prottest3 [27,28]. The unrooted

maximum likelihood phylogeny tree was generated using PhyML

[29] and drawn using MEGA5 [30]. The data set used is available

on request.

Results

Identification of the A. nidulans mstA and mstC genes
encoding putative sugar transporters

A set of overlapping EST sequences corresponding to a

candidate sugar transporter gene (designated mstA) were originally

identified in the Oklahoma University A. nidulans EST database

(http://www.genome.ou.edu/fungal.html). A PCR-generated

probe based on this data was used to clone the corresponding

genomic sequence from an A. nidulans lZAP BamHI genome

library and a hypothetical gene comprising six exons encoding a

putative twelve transmembranal (TM) domain protein of 527

amino acids (MstA) was deduced (Figure 1; GenBank AJ251561).

Once available, the high coverage (613) A. nidulans genome

sequence [32] was screened (TBLASTN) using the primary

structure of MstA revealing the existence of a closely related

putative translation product of 534 amino acids (84% identity,

91% similarity). The potential coding sequence deduced (desig-

nated mstC; GenBank AJ879992) comprises four exons (Figure 1)

and is identical to that determined by the A. nidulans genome

sequencing project [32]. Low stringency Southern analysis (not

shown) confirmed cross-hybridisation between the mstC gene and a

probe corresponding to the whole mstA structural gene, and vice

versa. BLAST searches of the PRINTS and PFAM databases using

the primary structures of MstA and MstC support their

designation as members of the sugar transporter family

(PR00171; PFAM: PF00083), and TBLASTN searches of the

sequence databases (NCBI, The Broad Institute and the Joint

Genome Institute) identified a number of similar Eurotiomycete

proteins. A phylogeny tree of these is presented in Figure 2. Two

major clades emerge which correspond to the homologues present

Table 2. Oligonucleotides used in this work.

Oligo name Nucleotide sequence

M8A 59-TTCCATTTGGCAGATGTGC-39

M8S 59-CGTGGTTGAACTGCTTCC-39

spMstAIII39 59-GTGTGATAATTCCAAAG-39

mstA8 59-GTGTCGGTTTTGTCTCTGCG-39

M8A 59-CGAATTCCATTTGGCAGATGTGC-39

spMstAI 59-GCGTAAATGTACATTTTTGG-39

mstA(LI)39-2 59-CAATCCAACGACATGAAGC-39

LK1A1 59-CCCAAGCTTGAATTCGCCATCCGTAAC-39

LK1B2 59-GGAATTCGCTGTCTTGTTCAATC-39

AI4 59-GGAAGTGCTTAAGCAGTGGATTCTCTCTTTCCTGCGGTTTCACTTCGGTATCGCATTTG-39

AI8 59-GCAAGGACCACATTATCTTGCCCACCCCTCCGTATTGGCGTGAACAAAATTGCCTCTAGTCCTTGG-39

R3 59-CAAATGCGATATCCGAAGTGAAACCGCAGGAAAGAGAGAATCCACTGCTTAAGCACTTCC-39

R5 59-GGACTAGAGGCAATTTTGTTCACGCCAATACGGAGGGGTGGGCAAGATAATGTGGTCCTTGC-39

mstA(I)p59 59-CCCAAGCTTCGGACGTAAACAGAATGGCGTGTTTGACAGG-39

mstA(III)-mstA(I)p39 59-CACGCGCTGACCAGCAATCACCGCGTCTGCCATGGGCGAGGGGGCGTGAAGGTGACGCGGTAGG-39

mstA(I)p-mstA(III)59 59-CCTACCGCGTCACCTTCACGCCCCTCGCCATGGCAGACGCGGTGATTGCTGGTCAGCGCGTG-39

mstA(III)t39 59-CTACCAAGCTTAGAGAAGCTAGCTCCCGGCAACAATGACC-39

H3N-mstA(I)p59 59-CCCCCCAAGCTTGTTTGACAGGTAAGAG-39

H3N-mstA(III)t39 59-CCCCCCAAGCTTCACACTCTATGCATGC-39

mstA(I)t39 59-CCCAAGCTTCAATCACAAAGGACAACACAGTGTGTACG-39

mstCwt 59-CTGGGGTCCCGGTGCCT-39

A1Eco 59-CCCAAGCTTGAATTCGCCAATGTTTGG-39

A2 59-CGGGATCCTACATGGAGGAGAACG-39

B1 59-CGGGATCCGAATACAGCAAGGATG-39

B2 59-GGAATTCTGCGTATCTGAGTGC-39

mstAc59 59-TCGAATTCTGATCTCGCGCTCACTGAG-39

mstAc39 59-CCGCTCGAGGACATCCTTGCTGTATTCC-39

chekF 59-GATGTTTGCGGCACGTTATTGGCAGG-39

chekR2 59-TGATAGCACCACCTAGTAGTCATGGCAG-39

LKIA3 59-GTGCAAGACCAAGCGAG-39

mstA11 59-TGATAAGGGATTTATTCGAC-39

doi:10.1371/journal.pone.0094662.t002
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in the orders Eurotiales (pink) and Onygenales (yellow). Whilst a

few of these species and some members of the order Chaetothyr-

iales (blue) have one or more distant paralogues, A. nidulans is

unique in possessing two paralogues that are so closely related.

The assembly of the A. nidulans genome made it possible to

correlate the resulting physical maps of the chromosomes with the

linkage maps established from decades of classical genetic analysis

[34]. The mstA gene was thus assigned to chromosome III but it

was of considerably greater interest to find that the mstC gene

resides in a region of chromosome I (contig 1.110) to which

mutant sorA alleles have been genetically mapped, since the

corresponding mutants had previously been found to manifest an

altered sugar transport phenotype [9]. With regard to the latter,

more recent studies have confirmed a role for the sorA locus in

high-affinity glucose uptake in germinating conidia [15]. In view of

this, the mstC gene was sequenced in two different sorA mutants

and also in several sorA+ strains available in our laboratory. Whilst

the latter yielded mstC sequences identical to that found by the

genome sequencing project, the sorA mutants yielded discrepan-

cies. In one strain (V045) carrying the mutant allele sorA3

(GenBank AJ879993) a missense mutation was found that would

result in a W412R replacement in TM domain 10 (Figure 1); in

the sorA2 mutant (strain G186) [9] an 11 base pair sequence

duplication (GenBank EU366284) located between TM domains

10 and 11 would result in a shortened translation product (482

amino acids compared to 534) in which the C-terminal 58 amino

acids are derived from a different reading frame and hence are

unrelated to the wild type sequence of MstC (Figure 1). The

coincidence of the genetic locations of sorA and mstC in conjunction

with the observation that two independent sorA mutant strains also

carry non-identical mutations in the mstC gene is indicative of

allelism between sorA and mstC.

mstC encodes a high-affinity glucose transporter
expressed in germinating conidia

i) Marker rescue of sorA3 by mstC. Since mutant sorA

alleles confer resistance to toxic sugars such as L-sorbose and 2-

deoxyglucose (2-DOG) [9], successful phenotypic rescue of a sorA

mutation should result in restored sensitivity to these compounds.

To test the possibility that mstC could rescue mutation at the sorA

locus, the 2-DOG resistant sorA3 strain V082 (also auxotrophic for

riboflavin) was cotransformed with plasmid pPL5 [21] (provides

the riboB selectable marker) and a 4.7 kb PCR-generated linear

DNA fragment comprising the entire mstC structural gene

including the upstream (1.9 kb) and downstream (0.95 kb) flanking

sequences. Almost half (seventeen) of the riboflavin prototrophic

transformants obtained (forty) were found to have gained

sensitivity to the presence of 2-DOG (Figure 3A - top and middle

panels), whereas a control transformation using pPL5 alone

yielded none. PCR analyses were subsequently carried out on a

number of randomly chosen cotransformants using an oligonu-

cleotide primer pair designed to amplify only the wild type mstC

gene but not the mutated allele found in the sorA3 mutant (see

Materials and Methods). The predicted amplification product was

present uniquely in those transformants that exhibited restored

sensitivity to 2-DOG (Figure 3A - lower panel). Neither the

untransformed strain (V082) nor the randomly chosen transfor-

mants that maintained resistance to 2-DOG yielded it. Thus the

mstC gene is able to effect marker rescue, restoring a sorA mutant

strain to 2-DOG sensitivity.

ii) mstC gene deletion and phenotype. The evidence for

allelism of sorA and mstC raises the possibility of the involvement of

the latter in high-affinity glucose uptake. A gene replacement

strategy was therefore employed to delete mstC, substituting it with

the riboB gene [21] in a riboflavin auxotrophic strain (V088) -

details are given in Materials and Methods. Two phenotypic

characteristics were examined in the DmstC transformants

generated, namely their resistance/sensitivity to toxic sugars and

the kinetics of glucose uptake by their germinating conidia.

a) Toxic sugar resistance: Since the enhancement/absence of high-

affinity glucose uptake has been seen to correlate with greater

sensitivity/resistance (respectively) to toxic sugars [9,15], all

V088-derived transformants (riboflavin prototrophs) were

plate assayed for their sensitivity/resistance to 2-DOG

Figure 1. Structural organisation of the mstA and mstC genes and their translation products. The upper bars are schematic
representations of gene structure with introns (A to E) in white and exons in black. cDNAs generated by RT/PCR from transcripts (dark grey bars) of
each gene were sequenced and compared with the genomic sequences, thus confirming the intron/exon structures deduced for each gene. Proteins
are shown as white bars within which the numbered grey-shaded boxes correspond to the TM domains predicted by TMHMM [31]. The locations of
the mutations and the corresponding changes in the 1u structure of MstC found in the sorA2 (#) and sorA3 (*) mutants are also shown (see text for
details). The sorA2 mutation causes a change in reading frame resulting in a shorter and novel COOH-terminal sequence (shown in bold) within which
resides a putative TM domain (marked with a circle). The annotation of the A. nidulans genome assigned the locus identities AN8737 and AN6669 to
mstA and mstC, respectively.
doi:10.1371/journal.pone.0094662.g001
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(50 mg/ml). Of more than 300 prototrophic transformants

obtained, nine exhibited enhanced resistance to this com-

pound and were phenotypically indistinguishable from the

sorA3 control. The members of this subset were also found to

be resistant to L-sorbose, and PCR analysis demonstrated the

absence of the mstC gene in all of them. Southern blot analysis

carried out on four randomly chosen 2-DOG resistant

transformants confirmed that the deletion of the mstC gene

was the result of a single reciprocal integration of the riboB

gene at the mstC locus (data not shown). Riboflavin

prototrophic transformants in which the mstC gene was

unaltered (i.e. the transforming DNA had integrated else-

where in the genome) failed to show enhanced resistance to

the toxic sugars. As regards their growth and morphology

either on plates or in liquid culture in which glucose was

present as sole carbon source, the mstC-deleted transformants

did not present a visible phenotype distinguishable from that

of non-deleted strains.

b) Glucose uptake: Using culture conditions that have been shown

to result in high-affinity glucose transport in germinating (4 h)

wild type conidia (i.e. glycerol as carbon source) [15], 14C-

glucose uptake was measured in two DmstC transformants

(V109 and V110) as well as in a transformant (V111)

complemented for the riboB2 allele but in which the mstC gene

had not been deleted (see above) and hence acts as a suitable

control. Visual monitoring by light microscopy failed to

detect any differences in the germination process between the

gene-deleted and the non-deleted strains. Whereas Eadie-

Hofstee representation and non-linear regression analysis of

the Michaelis-Menten plot of the control strain (V111)

revealed high-affinity glucose uptake kinetics (Km

,30 mM), both DmstC transformants showed considerably

reduced uptake affinity, yielding Km values (,300 mM)

similar to that previously reported for the sorA3 mutant [15]

(Figure 3B). The loss of high-affinity glucose transport in the

DmstC strains is thus indicative of a role for mstC in this uptake

system.

Glucose uptake in a sorA2 mutant
That the kinetics of glucose uptake by DmstC (i.e. total loss of

MstC function) strains are essentially the same as those of the sorA3

mutant strongly indicates that the mstC point mutation present in

the latter results in total loss of MstC function. It is therefore

reasonable to expect that the frameshift mutation found in the

sorA2 mutant (see above) that results in a much greater

modification of MstC primary structure (20% of the protein is

altered at the C-terminus) compared to sorA3 would also result in

total loss of function.14C-glucose uptake was measured and

compared between sorA2 (V140) and sorA3 (V045) conidia

germinating in parallel cultures under identical conditions that

induce the high-affinity glucose uptake system (1% glycerol). The

Michaelis-Menten kinetics of glucose uptake for both strains were

practically indistinguishable (Figure 3C), and the Eadie-Hofstee

representations of each are consistent with the same monophasic

behaviour. These data imply similar consequences of the two sorA

mutations on the high-affinity glucose transport function and

provide further evidence for allelism of sorA and mstC.

MstC substrate assay
In order to assess the potential substrate range of the high-

affinity glucose uptake system, substrate competition experiments

were conducted using glycerol-germinated wild type conidia. 14C-

glucose uptake rates were measured in the presence of a 200-fold

molar excess of individual compounds under test and compared to

that of a control assay performed in the absence of a competing

substrate. The data obtained are summarised in Figure 3D.

Glucose (non-radiolabelled) was found to be the most effective

competitor, along with the glucose analogues 2-DOG and 3-O-

methyl glucose. Mannose also demonstrated competition resulting

in a reduction of uptake by 80%. Far less competition was

exercised by galactose, xylose and fructose suggesting that these

sugars could be only very minor substrates. A number of other

compounds were tested none of which demonstrated effective

competition. These data thus show that of the range of compounds

tested, glucose is the principal substrate of the uptake system that is

expressed in glycerol-germinating wild type conidia.

mstA encodes a high-affinity glucose transporter
Given the evidence accumulated supporting a direct relation-

ship between the sorA locus, the mstC gene and high-affinity glucose

uptake, attention was turned to identifying a function for the

closely related gene mstA. A gene deletion protocol was used to

substitute mstA with the N. crassa pyr4 gene in the uridine

auxotrophic strain V048, and the kinetics of glucose uptake were

subsequently determined for the conidia of two independently

obtained mstA-deleted transformants (V058 and LV42; mstA

deletion was confirmed by PCR and by Southern blotting)

germinating in appropriately supplemented minimal medium

containing either glucose or glycerol as sole carbon sources.

Glucose uptake kinetics by the DmstA strains were found to be the

same as those observed for wild type conidia: low-affinity kinetics

upon germination on glucose, and high-affinity uptake kinetics

when germinating on glycerol (Figure 4A). This is in notable

contrast to the glucose uptake phenotype of the mstC deletion

strains (see above) and indicates that the mstA gene does not play a

significant role in glucose uptake during conidial germination.

The absence of function of MstA in germinating conidia and the

considerable similarity shared between the primary structures of

MstC and MstA (91% - see above) could be indicative of a glucose

transport function for MstA that is unrelated to the germination

process. To examine this possibility an A. nidulans transformant

(strain V152) was generated in which a single copy of the mstA

structural gene under the control of the mstC gene promoter (mstCp)

was placed at the uaZ locus in a genetic background deleted for

both the mstC and mstA loci (strain V136) - details are given in

Experimental Procedures.

Prior to undertaking glucose uptake measurements, an indica-

tion of the functional competence of the mstA gene product under

the control of mstCp was revealed by plate-testing the 2-DOG

Figure 2. Unrooted phylogenetic tree of primary structures of Eurotiomycete proteins related to MstA (AN8737) and MstC
(AN6669). The evolutionary history was inferred using the Maximum Likelihood method, and the percentages of replicate trees in which the
associated sequences clustered together in the bootstrap test (50 replicates) are shown next to the branches (values below 80% are not included).
Branch lengths correspond to the mean number of substitutions per site. Where known, genome locus identities are given; ‘Corr’ indicates that the
gene model was corrected; unannotated sequences are given as ‘mstA-like’. The homologues in A. flavus and A. oryzae were found to be encoded by
identical genomic DNA sequences (only A. flavus is shown), as expected for organisms that are believed to be variants of the same species [33]. A.
nidulans is the only organism represented that possesses two very closely related proteins. MstA (AN8737) and MstC (AN6669) are shown in bold.
doi:10.1371/journal.pone.0094662.g002
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sensitivity of V152 (DmstA DmstC mstCp-mstA) compared to that of

controls comprising a wild type strain (mstA+ mstC+), the double

mutant V136 (DmstA DmstC) and the sorA3 mutant V045 (mstC2).

Unlike V045 and V136, strain V152 displayed wild type sensitivity

to 2-DOG indicating that acquisition of the mstA expression

construct resulted in restored sensitivity to 2-DOG, presumably by

virtue of restoration of a glucose uptake function (data not shown).

Figure 3. Characterisation of MstC. A Marker rescue of a sorA mutant by mstC. Top panel: sorA mutant strains (V045 and G186) are able to grow
in the presence of 50 mg/ml 2-DOG and 1% EtOH compared to wild type. Middle panel: A typical minimal medium plate lacking riboflavin but
supplemented with 2-DOG used for identifying 2-DOG sensitive transformants (those that do not grow); V082 fails to grow as it is auxotrophic for
riboflavin. Lower panel: typical PCR products specific to the wild type mstC allele amplified off gDNA templates. R = resistant to 2-DOG, S = sensitive to
2-DOG. T = transformant. T22 and T29 are asterisked to help their identification on the plate in the middle panel. T33 is a control transformed with
pPL5 alone. B Typical Michaelis-Menten plots of glucose uptake rate versus glucose concentration for conidia of the two DmstC strains V109 (%) and
V110 (m), and the mstC+ strain V111 (N) germinating for 4 h in appropriately supplemented minimal medium containing 1% glycerol as carbon
source; non-linear regressions are shown as dashed, dotted and solid lines, respectively. Insert: Eadie-Hofstee plots. The plots for V109 and V110 are
monophasic. Their displacement towards the y axis relative to the plot of V111 is indicative of the loss of high-affinity uptake. C Typical Michaelis-
Menten plots of glucose uptake rate versus glucose concentration for conidia of strains V140 (sorA2) (%) and V045 (sorA3); non-linear regressions are
shown as solid and dashed lines, respectively. (N) germinating for 4 h in appropriately supplemented minimal medium containing 1% glycerol as
carbon source. The insert shows Eadie-Hofstee plots of the uptake data for both strains. D Relative 14C-glucose uptake rates in the presence of a 200-
fold molar excess of competing compounds are expressed as a percentage of the non-competed (control) rate.
doi:10.1371/journal.pone.0094662.g003
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To assess a possible glucose transport function for MstA, 14C-

glucose uptake was measured across a range of glucose concen-

trations (Figure 4B) in conidia of strains V136 (DmstA DmstC) and

V152 (DmstA DmstC mstCp-mstA) germinating for 4 h in glycerol

medium - conditions that induce high-affinity uptake. Using non-

linear regression, the Km of glucose uptake by the doubly-deleted

mutant (V136) was found to be ,350 mM, a value corresponding

to that previously observed for the DmstC strains (V109 and V110)

and the sorA mutants (V045 and V140). V152 in contrast yielded a

Km of ,90 mM. The uptake data for both strains were also

plotted using the Eadie-Hofstee representation. Whilst the

distribution of data points observed for V136 ( ) is indicative of

single component behaviour (i.e. compatible with a straight line),

the non-linear nature of the plot for V152 (%) is consistent with

the presence of an additional component of higher glucose affinity

(indicated by the dashed line in the insert). Whilst bearing in mind

the known limitations of the approximation [35,36], the gradient

modulus of the line defined by the four data points of lowest Vu
values yields an orientative Km of around 30 mM for this element,

a value very similar to that calculated for MstC-mediated glucose

transport (see above). These data thus support a glucose uptake

function for MstA and indicate that MstC and MstA share

comparable glucose affinities.

In the same way as undertaken for MstC (see above), the

substrate range of MstA was also assessed using glycerol-

germinated conidia of strain V152. The data obtained are shown

in Figure 4C. Whilst some influence of the minor low-affinity

component of uptake by V152 cannot be excluded, this analysis

indicates that mannose is the most effective substrate of those

studied in competing against glucose uptake, and that xylose and

galactose may also be minor physiological sugar substrates for this

transporter.

Figure 4. Characterisation of MstA. A Typical Michaelis-Menten plots of glucose uptake rate versus glucose concentration for DmstA conidia
germinating for 4 h in appropriately supplemented minimal medium containing either 1% glycerol (%, dashed line) or 1% glucose (N, solid line) as
carbon source. B Typical Michaelis-Menten plots of glucose uptake rate versus glucose concentration for conidia of strains V136 (N) and V152 (%)
germinating in appropriately supplemented medium containing 1% glycerol as carbon source. The respective solid and dashed lines correspond to
the non-linear regressions from which the Km values were obtained. The insert shows Eadie-Hofstee plots of the uptake data for both strains. The
dashed line corresponds to the higher affinity uptake component present in strain V152, the slope of which yields an approximation to the Km of this
component (,30 mM). C Relative 14C-glucose uptake rates in the presence of a 200-fold molar excess of competing compounds is expressed as a
percentage of the non-competed (control) rate.
doi:10.1371/journal.pone.0094662.g004
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Energetics of high-affinity glucose uptake
It has been shown previously [15] that glucose uptake by both

high- and low-affinity systems in A. nidulans are energy-requiring

processes. Carbonyl cyanide m-chlorophenylhydrazone (CCCP) is

a powerful uncoupling agent that leads to rapid loss of membrane

potential [37]. The effect of CCCP on glucose uptake was

therefore assessed in conidia expressing MstC (glycerol-germinated

V004) and those expressing MstA (glycerol-germinated V152).

Uptake rates for both were dramatically reduced in the presence of

CCCP (Figure 5) thus strongly suggesting MstC and MstA to be

secondary active transporters.

mstA and mstC expression
Increased resistance to toxic sugars and the loss of high-affinity

glucose transport have both been seen to be phenotypic

consequences of mstC deletion. Whilst no such phenotypes were

forthcoming upon deletion of mstA, expression of the mstA

structural gene off the mstC gene promoter in a DmstA DmstC

genetic background did result in the reciprocal phenotypes (i.e.

sensitivity to toxic sugars and the presence of high affinity glucose

uptake - see previous section). Given that earlier observations have

demonstrated that the nature of the glucose uptake system

expressed in germinating conidia is regulated in response to the

carbon source available [15,16], the apparent lack of a DmstA

phenotype could be due to differences in the expression profiles of

the mstC and mstA genes.

In order to investigate the possible influence of carbon source,

expression of mstA and mstC was assessed by northern blot analysis.

Total RNA was isolated from wild type A. nidulans mycelia

obtained after various periods of growth from conidia inoculated

into liquid growth medium containing carbon sources of diverse

metabolic properties (ethanol, glucose or glycerol). The latter

refers to whether on the one hand the carbon source is considered

to be a relatively good or a relatively poor substrate for the growth

of the micro-organism, and on the other whether it is classified as

being repressing or derepressing as determined by its impact on

the utilisation of L-proline and acetamide as nitrogen sources in

areAr mutants [38]. Given the high level of similarity between the

mstA and mstC transcripts (84% identity), probes corresponding to

the sequences immediately downstream of the stop codons were

employed to unequivocally distinguish them (see Materials and

Methods for details). As can be seen in Figure 6A, irrespective of

the carbon source present the mstA transcript is not apparent

during the early phases of growth but progressively accumulates -

to a greater or lesser extent - as a culture ages. By comparison, and

with the exception of growth in the presence of glucose, mstC

mRNA is transiently present during early cultivation (4–8 h) when

the carbon source remains available at over 70% its original

concentration. The level of this transcript subsequently declines.

Figure 5. Energetics of glucose uptake. Relative glucose uptake
rates for glycerol-germinated conidia expressing MstC (dark grey -
V004) and MstA (light grey - V152) transporters assayed in the absence
(2) and presence (+) of CCCP.
doi:10.1371/journal.pone.0094662.g005

Figure 6. Northern analyses of gene expression. A Total RNA was
isolated from shake flask biomass grown in the presence of the
following carbon sources (initial concentration): ethanol (0.5% v/v) a
poor, derepressing source; glucose (0.5% w/v) a good, repressing
source; and glycerol (0.5% w/v) a good, derepressing source. All sources
were exhausted by 20 h. Biomass was harvested at the times indicated
after inoculation of conidia. B mstC mRNA accumulation during conidial
germination in media containing glucose or lactose (each present at an
initial concentration of 0.5% w/v). Total RNA was isolated from biomass
harvested from shake-flask cultures at the times indicated after
inoculation of conidia. C mstC mRNA accumulation in two CCR mutants
(creAd) compared to wild type (wt). The two CCR mutants and the wild
type strain were grown in the presence of glucose (glc) or galactose
(gal), each initially present at 0.5% (w/v). Total RNA was isolated from
biomass harvested from shake-flask cultures at the times indicated after
inoculation of conidia. In all cases cultures were grown from conidia for
the times indicated, and rRNA was visualised by methylene blue
staining [39].
doi:10.1371/journal.pone.0094662.g006
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Some expression of mstC is also noted at very late culture times

when the carbon source is exhausted.

The expression profile observed for the mstC transcript - present

during the early phases of growth on glycerol and ethanol but

absent upon growth on glucose - coincides with the previously

reported behaviour of the glucose-repressible high-affinity glucose

uptake activity in glycerol-germinating A. nidulans conidia [15].

mstC expression was therefore examined during the process of

germination of two cultures of wild type conidia, one growing on

glucose (a repressing carbon source) and the other growing on

lactose (a derepressing carbon source) (Figure 6B). Dormant

conidia (0 h) can be seen to contain mstC mRNA that accumulates

during the first 4 h of culture in the strongly derepressing growth

condition (lactose). By contrast, this basal level is rapidly depleted

within 1 h when conidia are inoculated into glucose-containing

medium (i.e. during the activation phase of conidial germination)

[40], supporting the contention that the product of the mstC gene is

the high-affinity glucose transporter detected in glycerol-germi-

nating conidia.

mstC is subject to CreA-mediated carbon catabolite
repression (CCR)

Glucose repression of the high-affinity glucose uptake system

has been shown to be mediated by the carbon catabolite repressor

CreA [15]. mstC expression was thus compared between the wild

type strain and two carbon catabolite derepressing mutants

(creAd30 and creAd1) growing in the presence of either glucose (a

repressing carbon source) or galactose (a monosaccharidic

derepressing carbon source). Whilst mstC transcription occurs in

all three strains on galactose medium, this is repressed in the wild

type in the presence of abundant glucose (Figure 6C). However, in

the two creA mutants the mstC transcript is present on glucose.

Indeed, its abundance appears to be notably enhanced, achieving

levels well in excess of those seen on galactose. The mstC gene is

thus subject to CreA-mediated repression, a characteristic also

observed for the high-affinity glucose uptake system in germinating

conidia.

Discussion

In the current study two closely related genes, mstA and mstC,

have been found that encode sugar permeases involved in

mediating glucose transport in A. nidulans. Of the two, mstC has

been shown to encode the high-affinity glucose uptake system

found in wild type conidia and noted previously to be associated

with the sorA locus [9,15]. Indeed, compelling evidence for allelism

of mstC and sorA is afforded by various data: i) the coincidence of

their physical and genetic locations; ii) the occurrence of mutations

in mstC in independent sorA mutant strains; iii) the manifestation of

the sorA mutant phenotype upon deletion of the mstC gene; and iv)

the ability of the mstC gene to rescue the sorA mutant phenotype

and restore wild type sensitivity to L-sorbose.

The A. nidulans sorA locus was originally defined from classical

genetic analysis of spontaneous mutations conferring resistance to

the inhibitory effects of the paramorphogen L-sorbose on colony

growth [9,41]. The mechanism of this resistance was attributed to

defects in L-sorbose transport since uptake of this sugar was noted

to be dramatically reduced in sorA mutants whilst the utilization of

a wide range of other sugars remained unaffected; the uptake of D-

glucose was seen to be only slightly reduced [9]. Similar

observations were also made in N. crassa mutants [42] (and refs

therein). Further insight into the relationship between the sorA

locus and sugar uptake has since been provided by a more recent

analysis of glucose uptake kinetics [15]: of the two glucose uptake

systems detected in germinating wild type A. nidulans conidia (i.e. of

high and low affinities) only the high-affinity component is

perturbed in a sorA mutant; in addition, carbon catabolite

derepressed (creAd) mutant strains were found not only to

constitutively express the high-affinity system but also to manifest

hypersensitivity to L-sorbose. These findings are consistent with

cellular entry of L-sorbose via the high-affinity glucose transporter

and are in accord with previous studies in N. crassa reporting L-

sorbose uptake to be mediated by a high-affinity glucose

transporter expressed under derepressing culture conditions

[43,44]. That the adverse morphological effect of L-sorbose on

colony growth of both A. nidulans and N. crassa can be reversed by

glucose [9,43] also supports this contention. Hence the function

encoded by sorA (mstC) would be that of a high-affinity D-glucose

transporter that also has a low affinity for L-sorbose.

Parallels observed between gene expression profiles (this work)

and data from glucose uptake experiments [15] are also consistent

with sorA/mstC encoding the high-affinity glucose transport system

detected in germinating A. nidulans conidia. Both mstC expression

and high-affinity glucose uptake occur in the presence of de-

repressing carbon sources, and both are subject to glucose

repression mediated by CreA. With regard to the latter it is

noteworthy that CreA dysfunction results in mstC gene expression

in the presence of glucose at a level substantially greater than that

under derepressing conditions (Figure 6C). This ‘superinduction’

of mstC may be indicative of an inducing effect of glucose on its

expression, a phenomenon already observed for genes in certain

other metabolic pathways in CCR mutants [20].

In silico analysis (not shown) revealed the presence of three

consensus CreA binding sites [45] within 100 bp upstream of the

start codon and spanning a region of just 36 bp in length.

However, their proximities and relative orientations (all are in the

same orientation) do not correspond to the dispositions found for

functional pairs of binding sites such as those regulating the genes

prnB, alcA and alcR [45,46,47]. Thus, CreA repression of mstC may

instead be effected by individual binding sites as was found for the

A. nidulans xlnA gene [48]. The mstA gene, which is not subject to

regulation by CreA, nevertheless has three CreA consensus

binding sites present at positions 233, 2302 and 2316. Thus,

in silico inspection alone of the sequences upstream of mstC and

mstA is not sufficient to enable conclusions to be drawn about the

regulation of these genes by CreA.

Wild type A. nidulans conidia germinating in the presence of

glycerol exhibit high-affinity glucose uptake kinetics whilst in sorA3

mutant strains this system is substituted by one of intermediate

affinity (Km,400 mM). This observation led to the suggestion that

the sorA3 mutation may cause a reduction in the glucose affinity of

the high-affinity transporter [15]. In the current study however,

deletion of the mstC gene has been shown to result in identical

manifestation of both known aspects of the sorA3 mutant

phenotype, namely resistance to the toxicities of L-sorbose and

2-DOG, and substitution of high-affinity glucose uptake by a

system of intermediate affinity. In the sorA3 mutant the mstC gene

has suffered a T to A transversion resulting in a Trp412Arg

replacement in the tenth putative transmembranal domain of

MstC (Figure 1). This Trp residue is described to play a role in

determining substrate specificity in yeast transporters and trans-

port capacity in the human glucose transporter GLUT1 [49].

Another sorA mutant, sorA2 [9], has been found to have suffered a

frameshift mutation leading to a major perturbation in MstC

primary structure, yet its phenotype is the same as that observed

for the sorA3 point mutant and the mstC deletion mutant. These

data are consistent with complete loss of the encoded uptake
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function in the two non-deleted sorA mutants rather than partial

function or modification of function.

Both the primary structures and transport activities of A. nidulans

MstA and MstC have been found to be very similar; both are

strongly inhibited by CCCP and hence fall into the category of

secondary active transporters, utilising membrane potential as an

energy source. However, the expression profiles of the genes that

encode them are quite different. The mstC transcript is present in

dormant conidia and, with the exception of growth on glucose, its

expression occurs mainly during the early phases of liquid culture.

By contrast the mstA gene is only expressed late in mycelial culture

when the carbon source is becoming exhausted. MstC and MstA

may thus have derived from a common origin to play distinct

physiological roles, MstC providing a high-affinity glucose uptake

function during germination and the very earliest phases of

mycelial growth, whereas MstA seems to provide a glucose

scavenging function as a culture tends toward carbon source

starvation. Regarding the latter, the analysis of substrate ranges

reveals that whilst the principal substrate of both transporters is

glucose, the sugars mannose, xylose and galactose could be minor

substrates. In addition, it appears that the alternative substrates

compete glucose uptake by MstA to a slightly greater extent than

the glucose uptake effected by MstC, suggesting that MstA may act

as a ‘scavenger’ of carbon sources.

Heterologous expression in yeast of four putative A. nidulans

sugar transporter genes (hxtB, hxtC, hxtD and hxtE) under the

control of the S. cerevisiae HXT7 promoter and terminator

sequences has very recently been reported [50]. Two of these,

hxtB and hxtD correspond to the genes mstC and mstA, respectively,

studied in the current manuscript. With the exception of hxtD, the

other three genes were found to complement a yeast strain deleted

for hexose transporters, restoring growth not only on glucose but

also on fructose, mannose and galactose. Substrate competition

experiments on the yeast transformants confirmed that the latter

could be minor substrates, and our analysis (for mstC) conducted

with germinating conidia is also in accord. Homologous expression

of MstA (HxtD) was successful and has enabled us to gain some

insight into its properties. The observation of differences in

substrate specificity profiles between the heterologously expressed

transporters is also reflected in our comparison between MstA and

MstC. Both studies have generated A. nidulans deletion mutants in

the transporter genes investigated and, although approached in

different ways, both coincide that locus AN6669 (hxtB/mstC)

encodes a high-affinity glucose transporter that confers suscepti-

bility to toxic analogues of D-glucose. Direct measurement of

sugar affinities made in the case of the heterologously expressed A.

niger orthologue MstA [51] also yielded a Km value for glucose

very similar to that found for MstC and in addition showed that

certain other sugars could be minor substrates. Interestingly, the

sugar transporter gene deletions carried out to date in A. nidulans

(this work) [16,50] and A. niger [51] failed to yield clear

morphological phenotypes thus indicating functional redundancy

and hence the existence of a number of transporters capable of

transporting glucose.

The analysis reported in this study along with that of dos Reis et

al [50] and the work on the low-affinity transporter encoded by

mstE [6], bring to five the number of A. nidulans glucose uptake

systems for which functional characterisation has been achieved. A

phylogenetic analysis of Eurotial homologues corresponding to

these transporters (as well as the hypothetical transporter HxtA) is

presented in Figure S1. Whilst the MstE, MstA/MstC and HxtE

groups are represented in many species, only a limited number of

species appear to have MstD (GenBank AM168452) - HxtC in

[50] - or HxtA group members. Conversely, two sequenced

Aspergillus species (A. glaucus and Eurotium rubrum) lack members in

all groups except MstE. Given the evidence that MstA/C and

HxtE are high-affinity glucose transporters [50] (and the current

work) this suggests that other high-affinity glucose transporter

genes have yet to be identified. In this regard the question remains

as to the identity of the gene that encodes the system of

intermediate affinity observed in sorA mutants [15]. Both the

expression patterns and glucose affinities of MstA and MstE [16]

exclude these as possible candidates for substituting MstC. Indeed,

a sorA3 DmstE double mutant germinating on glucose shows sorA3

single mutant uptake kinetics [16], and the same is true for a DmstA

DmstC double mutant germinating on glycerol (this work).

Although the genetic basis of this transporter is unknown, its

expression may be negatively correlated with the activity of the

high-affinity system and only operative in its absence. Further

studies are required to identify other glucose transporters,

specifically that responsible for intermediate-affinity glucose

uptake.

Supporting Information

Figure S1 Unrooted phylogenetic tree of sequenced
Eurotial genome orthologues of the six sugar transport-
ers studied to date (encoded by A. nidulans loci: AN1797,
AN5860, AN6669, AN6923, AN8737, AN10891). Evolution-

ary history was inferred using the Maximum Likelihood method,

and the numbers of replicate trees in which the associated

sequences clustered together in the bootstrap test (50 replicates)

are shown next to the branches. Branch lengths correspond to the

mean number of substitutions per site. The proteins used to define

each group are highlighted in yellow. Where known, genome locus

identities are given; ‘Corr’ indicates that the gene model was

corrected; the correct gene models for MstD (AN10891) and HxtA

(AN6923) were used and are found in their GenBank accession

data, numbers AM168452 and AJ535663, respectively.

(TIF)
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