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Highlights: 11 

 The effect of jet milling settings on wheat flour characteristics was evaluated. 12 

 Large aggregates were reduced in size separating starch granules and proteins. 13 

 Jet milled flours showed lower viscosity and faster enzymatic starch hydrolysis.  14 

 Controlling jet milling settings allow obtaining flours with diverse functionality.  15 

 16 

Abstract 17 

The interest for producing wheat flour with health promoting effect and improved 18 

functionality has led to investigate new milling techniques that can provide finer flours. 19 

In this study, jet milling treatment was used to understand the effect of ultrafine size 20 

reduction onto microstructure and physicochemical properties of wheat flour. Three 21 

different conditions of jet milling, regarding air pressure (4 or 8 bars) feed rate and 22 

recirculation, were applied to obtain wheat flours with different particle size (control, 23 

F1, F2 and F3 with d50 127.45µm, 62.30 µm, 22.94 µm and 11.4 µm, respectively). 24 

Large aggregates were gradually reduced in size, depending on the intensity of the 25 

process, and starch granules were separated from the protein matrix. Damaged starch 26 

increased while moisture content decreased because of milling intensity. Notable 27 

changes were observed in starch hydrolysis kinetics, which shifted to higher values with 28 

milling. Viscosity of all micronized samples was reduced and gelatinization 29 

temperatures (To, Tp, Tc) for F2 and F3 flours increased. Controlling jet milling 30 

conditions allow obtaining flours with different functionality, with greater changes at 31 

higher treatment severity that induces large particle reduction.  32 

 33 

Keywords: jet milling; wheat flour; starch hydrolysis; pasting properties; thermal 34 

parameters.  35 
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Introduction 36 

Nowadays, alternative milling procedures and micronizing technologies are tested in 37 

order to produce flours with enhanced functional properties, which are suitable for 38 

making new edible products or for improving the properties of the current ones. Milling 39 

technologies focused on producing finer flours with improved properties are getting 40 

increased attention (de la Hera et al. 2013; Protonotariou et al. 2014; Sakhare et al. 41 

2015). Jet milling is a new technological development that aims at the production of 42 

super fine flours by accelerating the particles in a high-velocity air stream, the size 43 

reduction being the result of inter-particle collisions or impacts against solid surface 44 

(Létang et al. 2002; Protonotariou et al. 2014, 2015). The particles impact at high 45 

velocities produces superfine powders and reduces the size of all aggregates (Létang et 46 

al. 2002). It is a fluid energy impact-milling technique, commonly used to produce 47 

particle sizes lower than 40 μm (Chamayou and Dodds 2007), which are greatly 48 

appreciated in the chemical, pharmaceutical and mineral industry (Midoux et al. 1999). 49 

In food applications, smaller particle size results in faster starch digestion (de la Hera et 50 

al. 2014). Small particles have high surface-to-volume ratio increasing the access of 51 

enzymes to the interior of the particle taking advantage of the absence of intact cell 52 

walls (Heaton et al. 1988). An increased surface area of food materials could increase 53 

the rate of water absorption of materials, improving solubility of dry products, and 54 

increase site accessibility for chemical reactions (e.g., oxidation, digestion, flavor 55 

release, catalyst, and enzyme activity) (Augustin and Sanguansri 2009). Jet milling 56 

combined with air classification has been successfully used to separate starch from 57 

protein in order to produce starch-rich fine flours (Graveland and Henderson 1991). 58 

Furthermore, differential scanning calorimetry showed lower gelatinization enthalpy 59 

values for the doughs (flour:water, 60:40) of fine flours than their coarse flour 60 
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counterparts (6.76-7.09 and 9.92-10.12 mJ/mg respectively) (Vouris et al. 2013). 61 

Overall, particle size of wheat flour seems to have an impact on dough mechanical and 62 

starch gelatinization properties. Therefore, there is a consensus that particle size 63 

reduction promotes changes in the majority of physicochemical properties due to the 64 

increase of a particle’s surface area (Tóth et al. 2006), although it must be assessed if 65 

there is a critical point that leads to an increase of damaged starch (Protonotariou et al. 66 

2014). The higher the specific surface area per weight unit, the higher the rate of 67 

hydration and water absorption is (Manley et al. 2011). Generally, starch granules 68 

become physically injured with milling’s shearing and scrapping, i.e., starch damage 69 

occurs (Oladunmoye et al. 2010), which could also increase water holding capacity. 70 

Moreover the production of ultrafine powders from cereals flours may present benefits 71 

to human health. Sanguansri and Augustin (2006) suggested that jet milling may be 72 

useful for modifying or improving functionality and availability of bioactive 73 

compounds. 74 

Therefore, the objective of the present study was to determine the impact of jet milling 75 

conditions on the wheat flour characteristics compared to conventional wheat flour. 76 

Specifically, this study evaluate the enzymatic starch hydrolysis, chemical composition, 77 

thermal and pasting features of different mill fractions of wheat flour obtained from jet 78 

milling varied in the severity of the process.  79 

2. Materials and Methods 80 

2.1. Flour 81 

Commercial soft wheat flour (T70) donated by the Company Loulis Mills S.A was 82 

pulverized in a jet mill (Model 0101S Jet-O-Mizer Milling, Fluid Energy Processing 83 

and Equipment Company, Telford, Pennsylvania, USA) using three different conditions 84 

regarding air pressure, feed rate, vibration rate of the feeder and feedback (Table 1). 85 



5 
 

2.2. Particle size distribution 86 

Particle size distributions were determined by laser technology with a Malvern 87 

Mastersizer 2000 diffraction laser particle sizer (Malvern Instruments, Worcestershire, 88 

UK), equipped with a Scirocco dry powder unit (Malvern Instruments, Worcestershire, 89 

UK). Median diameter (d50) is the value of the particle size, which divides the 90 

population exactly into two equal halves i.e. there is 50% of the distribution above this 91 

value and 50% below. The particles were assumed to have a refractive index of 1.53. 92 

2.3. Scanning Electronic Microscopy (SEM) 93 

Wheat flours were mounted on metal stubs with double-sided stick tape and sputter-94 

coated with a 100–200 Å thick layer of gold and palladium by ion sputter (Bio-Rad SC-95 

500, Aname, Madrid, Spain). Analysis of the specimens was performed at 10 kV 96 

accelerating voltage with a SEM (S-4800, Hitachi, Ibaraki, Japan) equipped with a field 97 

emission gun, a backscattered detector of RX Bruker, transmission detector, the 98 

QUANTAX 400 programmed for microanalysis and the five motorized axes Scanning 99 

electron microscope with a spotlight of field emission (FEG) and a resolution of 1.4nm 100 

at 1KV. The microstructure analysis was carried out in the Central Service for 101 

Experimental Research of the Universidad de Valencia.  102 

2.4. Flours composition 103 

Moisture and protein content were determined in all the samples. Moisture content was 104 

determined by ICC Standard Method (ICC 2011) and protein content was determined 105 

according to AACC method (AACCI 2012) with a Foss 2300 Kjeltec Analyzer Unit 106 

(Foss, Hillerød, Denmark). Starch damage (iodine absorption) was measured with a 107 

SDmatic (Chopin, Villeneuve-la-Garenne, France) according to AACC (AACCI 2012). 108 

These measurements were carried out in Loulis Mills S.A company. All determinations 109 

were carried out in triplicate. 110 
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2.5. Pasting properties 111 

The pasting properties were determined with rapid visco analyser (RVA) (model 4-SA, 112 

Perten, Instruments, Hägersten, Sweden) by following the AACC Method (AACCI 113 

2012), with minor modifications. Distilled water (25 mL) was added to 3.5 g of flour 114 

placed into the aluminum RVA canister. RVA settings during assessment were: heating 115 

from 50 to 95 ºC in 282 s, holding at 95 ºC for 150 s and then cooling to 50 ºC. Each 116 

cycle was initiated by a 10 s at 960 rpm paddle speed for getting an even suspension 117 

followed by 160 rpm paddle speed for the rest of the assay. Viscosity was recorded 118 

during a heating–cooling cycle using Thermocline software for Windows (Newport 119 

Scientific Pvt. Limited, Warriewood, Australia). Peak onset, peak viscosity, holding 120 

through, breakdown, final viscosity and setback (difference between final viscosity and 121 

peak viscosity) were evaluated. 122 

2.6. Thermal parameters 123 

Thermal behavior from wheat flour samples were determined using a differential 124 

scanning calorimeter (DSC) from Perkin–Elmer (DSC 7, Perkin–Elmer Instruments, 125 

Norwalk, CT), equipped with a thermal analysis data station (Pyris software, Perkin–126 

Elmer Instruments, Norwalk, CT). For the study, flour samples were accurately weighed 127 

into aluminum DSC pans, and de-ionized water was added by micropipette to achieve a 128 

water-sample ratio of 3:1 (9 mg : 3 mg). The sample pans were sealed and equilibrated 129 

at room temperature for one hour before analysis. Nitrogen was used to purge analyses 130 

cells. Instruments were calibrated with indium, using an empty pan as reference. 131 

Thermal analysis consisted on heating from 30 to 120 ºC at a rate of 5 ºC/min. The onset 132 

temperature To, peak temperature Tp, and conclusion temperature Tc were determined 133 

from the heating DSC curves. Gelatinization enthalpy (ΔH) was evaluated based on the 134 
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area of the main endothermic peak, and peak height index (PHI) was calculated as PHI 135 

= ΔH/(Tp – To). All DSC experiments were run three times. 136 

2.7. Starch hydrolysis kinetics 137 

Starch hydrolysis was measured following the method described by Gularte and Rosell 138 

(2011) with minor modifications. Briefly, for free sugars removal, flour samples (0.1 g) 139 

suspended in 2 mL of 80% ethanol was kept in a shaking water bath at 85 ºC for 5 min, 140 

and then centrifuged for 10 min at 1000×g. Supernatant was separated to measured free 141 

sugar (FS) released. 142 

The remaining pellet was incubated with porcine pancreatic –α-amylase (0.24 U/mg 143 

sample) (Type VI-B, ≥10 units/mg solid, Sigma Chemical, St. Louis, USA) in 4 mL of 144 

0.1 M sodium maleate buffer (pH 6.9) in a shaking water bath at 37 ºC. Aliquots of 200 145 

μL were withdrawn during the incubation period (0.25–16 h) and mixed with 200 μL of 146 

ethanol (96%, w/w) to stop the enzymatic reaction and the sample was centrifuged at 147 

10,000 ×g for 5 min at 4 ºC. The precipitate was washed twice with 50% ethanol (200 148 

μL) and the supernatants were pooled together and kept at 4 ºC for further glucose 149 

enzymatic release. Supernatant (100 μL) was diluted with 850 μL of 0.1 M sodium 150 

acetate buffer (pH 4.5) and incubated with 50 μL amyloglucosidase (AMG 1100 BG, 151 

1100 AGU/g, Novozyme A/S, Bagsvaerd, Denmark) at 50 ºC for 30 min in a shaking 152 

water bath. For resistant starch (RS) determination after 16h of hydrolysis the sediment 153 

was solubilized with 2 mL of 2 M KOH using a Polytron ultraturrax homogenizer IKA-154 

T18 (IKA works, Wilmington, NC, USA) during 1 min at speed 3. The homogenate was 155 

diluted with 8 mL 1.2 M sodium acetate (pH 3.8) and incubated with 100 μL 156 

amyloglucosidase (33 U/mL) at 50 ºC for 30 min in a shaking water bath. After 157 

centrifuging at 2,000 ×g for 10 min, supernatant was kept for glucose determination. 158 

Digestible starch (DS) was determined in the supernatant after 16 h of incubation. The 159 
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glucose content was measured using a glucose oxidase–peroxidase (GOPOD) kit 160 

(Megazyme, Dublin, Ireland). The absorbance was measured using an Epoch microplate 161 

reader (Biotek Instruments, Winooski, USA) at 510 nm. Starch was calculated as 162 

glucose (mg)× 0.9. Replicates (n = 4) were carried out for each determination.  163 

Experimental data were fitted to a first-order equation (Goni et al. 1997):  164 

    ∞	 1     (1) 165 

Where Ct is the concentration of product at time t, C∞ is the concentration at the end 166 

point, and k is the pseudo-first order rate constant. The plot of ln [(C∞ - Ct)/ C∞ ]= –kt 167 

against t was used to estimate the slope that corresponded to –k. 168 

2.8 Statistical analysis 169 

Experimental data were statistically analyzed using Statgraphics V.7.1 program 170 

(Bitstream, Cambridge, MN) to determine significant differences among them. ANOVA 171 

test was applied in order to compare the mean values of studied properties at 95% level 172 

of confidence. A correlation analysis was also carried out to determine possible 173 

relationships among parameters. 174 

3. Results and Discussion 175 

3.1. Microstructure and particle size of samples 176 

Jet milling process resulted in a significant reduction of median particle size that 177 

depended on the process conditions (Table 1). As the intensity of milling conditions 178 

increased (feedback or increase of pressure), the size of particles decreased gradually. 179 

Milling at 4 bar pressure (F1) decreased the median diameter (d50) from 127.45 μm to 180 

62.3 μm, while at 8 bar pressure, particle size decreased to 22.94 (F2) or 11.44 μm (F3) 181 

depending on the feeding rate 4.08 kg/h or 1.93 kg/h, respectively. A relationship 182 

between pressure applied and the particle size of the samples obtained by jet mill was 183 

found (r=-0.9915, P<0.01). 184 
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To find out any changes in terms of flour structure with intense milling SEM pictures 185 

are presented (Fig.1). According to SEM micrographs, a gradual flour components’ 186 

disaggregation was observed according to the severity of jet mill treatment. Control 187 

flour (Fig.1.A) showed large aggregates (200 μm length) of protein matrix embedding 188 

starch granules. These aggregates displayed smaller size and they were largely 189 

fragmented and more separated from the protein matrix as the process became more 190 

intense (Fig. 1, B-D). F1 sample showed larger particles than F2 and F3, whereas slight 191 

differences between F2 and F3 microstructure were detected. Some starch granules (10-192 

35 μm)  appeared deformed, separated from matrix, with rounder shape, disengaged 193 

from the protein that was eroded and appeared in smaller aggregates or completely shed 194 

having a polygonal shape, as a consequence of milling. The starch granules released 195 

from the protein matrix agrees with previous studies confirming that this technology 196 

might be an efficient process for the separation of starch and proteins (Sanguansri et al. 197 

2006).  198 

3.2. Chemical composition  199 

As a consequence of jet milling, physicochemical properties of wheat flour changed 200 

(Table 2). Moisture content of jet milled flours was reduced gradually, depending on the 201 

severity of the process and it was significantly correlated with d50 (r=0.9925, P<0.01). 202 

Treated flours at 8 bars pressure, presented the higher loss of moisture (51% in F3 203 

sample) indicating that pressure affected significantly the moisture content (r=-0.9803, 204 

P<0.05). Moisture content decreased as the particle size diminished, because higher 205 

surface area was available to interact. Moreover, jet milling reduces moisture content of 206 

flours due to their exposure to dry air of high flow rate as has been already observed 207 

(Protonotariou et al. 2015). 208 



10 
 

Concerning damaged starch, it increased owing to milling (Table 2). A positive 209 

significant correlation was found between damaged starch and air pressure (r=0.9967, 210 

P<0.01). However, there was no significant difference between the samples F2 and F3. 211 

Feedback did not increase further the amount of damaged starch, as was observed in F3, 212 

indicating that the intensity of the process induced an increase in damaged starch up to 213 

certain limit. Thus, it was confirmed that one of the advantages of jet mill is the reduced 214 

damaged starch promoted in comparison to other milling processes. Hossen et al. 215 

(2011a) reported that jet milled white rice flour with d50 45 µm had less starch damage 216 

than rice flour processed by a hammer mill, with d50 53 µm, in spite of similar mean 217 

size.  218 

Protein amount ranged from 9.69 to 10.28%. Differences in the protein content were 219 

statistically significant for F1 and F2 (Table 2), but, there was no general trend 220 

considering treatment conditions. It has been reported that finer fractions had lower ash 221 

and higher dry gluten than coarser fractions when wheat flour was fractioned by sieving 222 

(Sakhare et al. 2014). Nevertheless, Protonotariou et al. (2015) do not observed any 223 

trend when studying the impact of jet milling intensity on the protein and ash content of 224 

whole wheat flour.   225 

3.3. Pasting properties 226 

Figure 2 illustrates RVA pasting curves for control flour and jet milled flours. Viscosity 227 

of all micronized samples decreased because of milling and changes in the pasting 228 

curves were readily evident during heating and cooling stages. The diverse damaged 229 

starch content, changes in the particle size of the flour or differences in starch 230 

accessibility might explain the different pasting performance. Barrera et al. (2013) 231 

mentioned that damaged starch granules facilitated hydration and swelling, increasing 232 

the viscosity of unheated starches. In the present study, in spite of the damaged starch 233 
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content of the samples was significant different, pasting plots did not reveal differences 234 

on the shoulder exhibited during heat, which has been related to the amount of damaged 235 

starch (Figure 2). In addition, it has been reported that particle size distribution affects 236 

pasting properties of rice flour (Hossen et al. 2011a), but it seems that pasting properties 237 

become independent on the particle size with fine flours (<132 µm) (Martínez et al. 238 

2014). Nevertheless, in the present study particle size was much lower than 132 µm and 239 

viscosity plots revealed great impact of particle size on the pasting properties of wheat 240 

flour.  241 

Calculated pasting parameters from RVA curves can be seen in Table 3. Peak viscosity, 242 

which had a negative correlation with feedback (r=-0.9596, P<0.05), was significantly 243 

reduced (control>F1>F2>F3), likewise breakdown viscosity and total setback. It has 244 

been reported that peak viscosity was affected linearly by percentage of damaged starch 245 

(Hasjim et al. 2013; Hossen et al. 2011b), which agrees with results of the present study, 246 

although a non-significant negative correlation was found between peak viscosity and 247 

damaged starch content (r=-0.9132, P>0.05). Hossen et al. (2011a) reported that peak 248 

viscosity was almost constant for dry jet milled rice flour with d50>50 µm but 249 

decreased gradually at lower mean size, and dramatically at d50<10 µm. Therefore, 250 

reduced peak viscosities of the processed flours indicated that smaller particles are more 251 

resistant to swelling or required longer periods and RVA measurements are affected at 252 

those levels of particle size. Hossen et al. (2011b) suggested that after pulverization, 253 

peak and final viscosities of all flours (rice, wheat, corn maize, potato, sweet potato, 254 

cassava) decreased. Final viscosity and setback were progressively reduced according to 255 

the intensity of the jet milling treatment. Final viscosity and holding strength differed 256 

significantly for samples F2 and F3. This reduction might be attributed to either the 257 

breakage of amylose chains with lower ability to retrograde during cooling as has been 258 
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reported for extrusion (Martínez et al. 2014), or differences in the amylose chains 259 

leakage during gelatinization associated to particle size that consequently affected 260 

amylose retrogradation. In fact, larger flour particles have greater physical barrier for 261 

both heat transfer and water diffusion (Hasjim et al. 2013).  262 

3.4. Thermal parameters 263 

Thermal properties of jet milled samples were investigated to assess the possible impact 264 

of this treatment at molecular level (Table 4). In the range of temperature tested (30 to 265 

110 ºC), flours exhibited one endothermic peak corresponding to amylopectin 266 

gelatinization.  Specific differences among the treated samples were observed, which 267 

grouped the samples in control and F1, and on the other hand F2 and F3. The change in 268 

the size of the granules influenced the gelatinization temperatures (To, Tp, Tc) and 269 

samples F2 and F3 (the lowest particle size), showed significantly higher values 270 

comparing to control and F1 samples. Therefore, gelatinization temperatures were 271 

progressively shifted to higher values when flours were treated at high milling intensity 272 

(8 bar and/or feedback), but the temperature range was not affected significantly. 273 

Martínez et al. (2014) stated that gelatinization temperatures were dependent on the 274 

particle size, but the present study shows that when applying jet milling no direct 275 

correlation was detected between particle size and To, Tp, Tc. Gelatinization enthalpy 276 

(ΔH) differed significantly only between F2 and F3 but no trend was observed with the 277 

intensity of the treatment. Emami et al. (2010) observed that micronization in barley 278 

slightly increased To, Tp, Tc and reduced ΔH. Moreover, Münzing (1991) referred that 279 

gelatinization peak temperature (Tp) increased slightly by milling because of damaged 280 

starch. In the present study damaged starch correlated positively with To, Tp, Tc, but no 281 

significantly.  282 

3.5. Hydrolysis of starch 283 
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The potential impact of the jet milling on the integrity of the starch granules was 284 

assessed by evaluating the starch susceptibility to enzymatic hydrolysis. The digestion 285 

curves of the processed samples were slightly higher than those of the control (Figure 286 

3). Jet milled samples presented faster starch hydrolysis compared to control. The finer 287 

flours the wider surface area of granules. High surface area of flour particles increases 288 

the water diffusion and enzyme accessibility according to de la Hera et al. (2013). The 289 

disaggregation of wheat flour constituents favored the alfa amylase accessibility, 290 

increasing the starch susceptibility to be hydrolyzed. Detached starch granules from 291 

protein matrix could also lead to rapid hydrolysis of starch. F3 sample showed the 292 

higher values of hydrolyzed starch (Figure 3) and this can be ascribed to the intensity of 293 

the process, since F3 was re-milled. The kinetics parameters, confirmed that jet milled 294 

samples showed augmented rate of hydrolysis with significant differences on the 295 

hydrolysis constant (k) (Table 5). C∞ was positively correlated with d50 (r=0.9738, 296 

P<0.05) and moisture (r=0.9927, P<0.01) and negatively with damaged starch (r=-297 

0.9671, P<0.05). Results suggested that by decreasing particle size (d50), which 298 

simultaneously increases damaged starch, lower hydrolysis plateau would be reached. 299 

Presumably smaller particles favor the rapid accessibility to the amorphous part of the 300 

starch granules, reaching earlier the more resistant crystalline structure of the granules, 301 

which would explain the lower plateaus. Starch granules were faster and in lesser extent 302 

hydrolyzed at sample F3. Surface components of starch granule, such as proteins, can 303 

create a surface membrane that acts as a physical barrier to digestion, proteins layers 304 

should be significantly degraded before starch digestion takes place (Svihus et al. 2005). 305 

Resistant starch was also measured to determine the potential impact of the jet mill on 306 

the structural level of starch (Table 5). RS increased in jet milled samples but 307 

differences were not significant. During jet milling, flours were not exposed to thermal 308 
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stress that may affect the RS amount, which explained the absence of differences. The 309 

amount of free sugars was low, but as the intensity of the process increased the amount 310 

of FS also augmented. F3 differed significantly from the other samples and presented 311 

the higher percentage of free sugars, indicating a high correlation between FS and 312 

feedback (r=0.9856, P<0.05).  313 

Conclusions  314 

Jet milling is an alternative method to produce ultra-fine flour. Milling conditions 315 

determine the final particle size and the thereafter flour properties. In the present study, 316 

particle size was reduced up to ten times (mean diameter 11.44 μm in F3). Decrease in 317 

particle size led to starch granules detached from protein matrix and a significant 318 

breakage of aggregates took place. Damaged starch increased but not to a dramatic 319 

extent. As long as the treatment was mild (F1), similarities to the control samples were 320 

shown in terms of pasting properties. When the process became more intense, small 321 

particles presented a retardation to gelatinize and pastes were less viscous either in 322 

gelatinization or in the gel forming process. Moreover, starch hydrolysis increased in 323 

terms of particle size reduction as higher surface area led to higher starch susceptibility. 324 

Therefore, a treatment of 8 bar pressure without feedback (F2) could be used to achieve 325 

high particle size reduction. More intense milling treatment, as in F3 with feedback, 326 

would not lead additional changes in flour functionality, likely due to reaching the limit 327 

of particle sizes. Thermal parameters, hydration and pasting properties of flours are 328 

crucial for the developing food products. Therefore, the incorporation of jet milled 329 

flours in food process would be of great interest. 330 
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Tables 416 

Table1. Samples codes describing the jet mill settings for the samples treatment. 417 

Flour code Air pressure 

(bar) 

Feed Rate 

(kg/h) 

Vibration Rate 

of Feeder (%) 
Feedback 

Particle size 
d50 (μm) 

Control - - - - 127.45 

F1 4 2.71 100 No 62.30 

F2 8 4.08 100 No 22.94 

F3 8 1.93 100 Yes 11.44 

 418 

419 
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Table 2. Chemical composition of wheat flour and jet milled wheat flours F1, F2 and 420 

F3, expressed as percentage of dry basis (d.b.). 421 

Name Moisture (%) Damaged starch 
(%, db) 

 Protein content 
(%, db) 

 

Control 15.56 ± 1.17 c 2.37 ± 0.33 a 9.80 ± 0.03 a 

F1 10.17 ± 0.17 b 4.61 ± 0.30 b 10.28 ± 0.02 c 

F2 7.83 ± 0.34 a 6.26 ± 0.08 c 10.05 ± 0.09 b 

F3 7.62 ± 0.22 a 6.51 ± 0.13 c 9.69 ± 0.02 a 

Values followed by different letters in each column indicate significant differences (P ≤ 0.05). 422 

 423 
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 424 

Table 3. RVA pasting properties of wheat flour and jet milled wheat flours F1, F2 and F3. 425 

Sample Pasting onset (ºC)  Peak viscosity 
(cP) 

 Holding strength(cP) Breakdown (cP) Final viscosity(cP) Total Setback (cP) 

Control 64.5 ± 1.17  3412 ± 16.97 d 1923 ± 33.23 c 1490 ± 16.26 c 3599 ± 43.84 c 1677 ± 10.61 d 

F1 65.8 ± 0.64  3121 ± 16.97 c 1901 ± 26.87 c 1220 ± 43.84 b 3545 ± 17.68 c 1644 ± 9.19 c 

F2 63.2 ± 3.04  2846 ± 6.36 b 1653 ± 20.51 b 1193 ± 14.14 b 3187 ± 24.75 b 1534 ± 4.24 b 

F3 65.3 ± 1.31  2407 ± 25.46 a 1520 ± 5.66 a 887 ± 19.80 a 2973 ± 9.90 a 1453 ± 4.24 a 
Values followed by different letters in each column indicate significant differences (P ≤ 0.05). 426 

 427 
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Table 4.Thermal parameters of wheat flour (control) and jet milled wheat flours F1, F2, F3 determined by DSC. 

Sample To (ºC) Tp (ºC) Tc(ºC) Tp-To(ºC) ΔH (J/g)  PHI= ΔH/To-Tp 
Control 57.14 ± 0.79 a 61.34 ± 0.75 a 66.12 ± 0.92 a 4.20 ± 0.39  3.02 ± 0.44 ab 0.72 ± 0.05 ab
F1 56.79 ± 0.25 a 61.21 ± 0.17 a 67.24 ± 0.38 a 4.42 ± 0.24  2.77 ± 0.49 ab 0.62 ± 0.08 ab
F2 59.25 ± 0.73 b 63.87 ± 0.65 b 70.20 ± 1.05 b 4.62 ± 0.26  3.34 ± 0.35 a 0.76 ± 0.10 b 
F3 60.36 ± 0.04 b 64.63 ± 0.34 b 69.20 ± 0.67 b 4.27 ± 0.13  2.43 ± 0.37 b 0.57 ± 0.10 a 
Values followed by different letters in each column indicate significant differences (P ≤ 0.05). 
To, gelatinization onset; Tp, peak temperature; Tc, conclusion temperature, Tp-To, gelatinization range, ΔH, enthalpy and PHI, peak high index 
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Table 5. Kinetic parameters of the starch hydrolysis of wheat flour samples (control) and jet milled flours (F1, F2, F3).  

Sample 

Free sugars 
(mg/100mg, 

db) 

 Resistant Starch 
(mg/100 mg, db) 
  

 Digestible starch 
(mg/100 mg, db) 

 C∞ 

   

 k 

   

Control 0.54 ± 0.01 a 6.85 ± 3.42  58.94 ± 5.86  321.51 ± 24.74 a  0.0002 ± 0.0000 a 
F1 0.82 ± 0.00 b 9.58 ± 2.88  58.78 ± 2.14  85.79 ± 1.40 b  0.0014 ± 0.0000 a 
F2 0.94 ± 0.00 b 9.75 ± 2.88  57.85 ± 0.39  33.97 ± 5.66 c  0.0046 ± 0.0011 b 
F3 1.25 ± 0.01 c 11.64 ± 0.79  57.84 ± 4.43  21.59 ± 1.41 c  0.0135 ± 0.0004 c 

Values followed by different letters in each column indicate significant differences (P ≤ 0.05
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Figures Captions 

Fig. 1. Scanning electron micrograph of a) control sample of wheat flour and jet milled 

samples grinded under different milling conditions; b) F1, c) F2 and d) F3. Magnification 

200x. 

Fig 2. RVA profiles of control sample of wheat flour (▲) and jet milled flours, F1 (●), F2 (♦) 

and F3 (■) with ( ) Temperature. 

Fig 3. Effect of different jet milling conditions in the enzymatic starch hydrolysis kinetics of 

wheat flour; control (▲), F1 (●), F2 (♦) and F3 (■). 
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Fig 3.   
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