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ABSTRACT
In the present paper, we propose a highly accurate and ro-
bust people detector, which works well under highly variant
and uncertain conditions, such as occlusions, false positives
and false detections. These adverse conditions, which ini-
tially motivated this research, occur when a robotic platform
navigates in an urban environment, and although the scope
is originally within the robotics field, the authors believe
that our contributions can be extended to other fields. To
this end, we propose a multimodal information fusion con-
sisting of laser and monocular camera information. Laser
information is modelled using a set of weak classifiers (Ad-
aboost) to detect people. Camera information is processed
by using HOG descriptors to classify person/non person
based on a linear SVM. A multi-hypothesis tracker trails the
position and velocity of each of the targets, providing tempo-
ral information to the fusion, allowing recovery of detections
even when the laser segmentation fails. Experimental results
show that our feedback-based system outperforms previous
state-of-the-art methods in performance and accuracy, and
that near real-time detection performance can be achieved.

Keywords
1. INTRODUCTION
Human beings are so accustomed to navigating in crowded
environments, such as busy streets or shopping malls, that
they do not even realize the extreme difficulty that execut-
ing such tasks entails. Under the scope of robotics, we aim
to obtain a successful perception system that permits us
to enhance the current mobile robotic navigation paradigm,

and to this end, a robust and fast human detector system is
mandatory.

Given a robotic platform like a two-wheeled robot ([12] and
[15]), the challenge is being capable of building a system
that perceives and predicts human behaviour during navi-
gation tasks. However, the basis for the high-level interpre-
tation of observed patterns of human motion requires de-
tecting where the human being is. Given the nature of the
project, where a highly uncertain environment is constantly
sensed and the response of the system depends on human be-
haviour, we propose a feedback-based system that integrates
a laser rangefinder, monocular camera and temporal infor-
mation to detect human beings. As we will demonstrate
later, the fusion of these sensors provides a tremendously
robust performance, even under occlusion conditions due to
the temporal information, while achieving a high level of
accuracy.

Although fusion systems have been thoroughly investigated,
it is still a wide and open problem, many of the works on
robot navigation do not obtain the accuracy required for a
safe navigation at human-standard velocities, resulting in
inaccurate and extremely slow systems.

Our feedback-based approach outperforms state of the art
methods, since it is able to detect people even when laser
or image detections are not possible, thanks to the fusion of
laser, camera and temporal information given by the feed-
back from the multi-hypothesis tracker. Moreover, it is able
to work in nearly real-time due to the nature of each selected
detector. All the modules work under the Robot Operating
System (ROS) [11], which facilitates the implementation and
the re-usability of the code enormously. The approach has
also been widely tested in real urban scenarios.

The remainder of the paper is organised as follows. The
state of the art in the field of fusion detection will be dis-
cussed in section 2. In section 3, the algorithm for laser and
image people detection, along with their fusion, the tracking
process and the temporal information are outlined. Finally,
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Figure 1: Overview of the method

we present experimental results in section 4 and concluding
remarks in section 5.

2. STATE OF THE ART
The fusion of range and vision sensors has been addressed
classically in two ways:

1. A laser scanner segmentation method is used to find
the most likely ROIs; later these ROIs are projected
into the image, and finally classified by an image clas-
sifying system.

2. Considering laser and vision independently and merg-
ing both in a classifier or at feature level.

Accordingly, Szarvas et al. [14] used a laser sensor to obtain
the ROIs, which are projected into the image and classi-
fied by a convolutional neural network (CNN). Broggi et
al. [3] proposed a method to determine the ROIs using a
laser sensor, this information is used later in a Haar-like fea-
ture/adaboost classifier to name it. Mählisch et al. [8] and
Doullard et al. [5] proposed a spatio-temporal alignment
to integrate laser and camera sensors. They use the fea-
tures from both sensors to feed a Bayesian classifier and a
conditional random field (CRF) respectively to detect cars.
Spinello et al. [13] propose a cooperative fusion of indepen-
dent sensor detections. The fusion is done by data associ-
ation of a tracking system in each sensor space, after hav-
ing used Adaboost and CRF in the laser space and implicit
shape model (ISM) in the image space. Another approach
that fuses independently laser and camera sensors is pre-
sented by Oliviera et al. [9] which consists of a semantic
fusion framework, which uses the contextual information to
integrate both sensors. However, the approach is far from
being capable of working in real time. Due to the constraints
of our method to work on a robot, we need to achieve a
trade-off between speed and accuracy. Our approach uses
laser and vision independently, and merges both at a clas-
sifier level using image and depth information at the same
time.

3. METHODOLOGY

In the present paper we propose a people detector system
which scheme is depicted in Fig. 1. The system firstly con-
sists of: a laser detection module which uses a boosting
technique for detection; an image detection module, mainly
based on HOGs descriptors and a linear SVM for classi-
fying person/non-person; a Fusion module where spatial,
depth and temporal information from image and laser de-
tections is fused taking advantage of the three cues at the
same time. Later, a tracking module is implemented using
a multi-hypothesis particle filter approach. Finally, by es-
tablishing a feedback connection, as depicted in Fig. 1, we
allow our fusion module to work with Laser-Image-Tracking
(temporal) information, thereby allowing our approach to
be able to recover detections even when there are partial
occlusions or the laser segmentation fails.

3.1 Laser people detector
Our implementation of the laser detector is fundamentally
based on the approach of Arras et al. [2] with little varia-
tion. The objective is to detect people making use of two
dimensional range scans with a supervised learning classifier
based on simple features extracted from groups of neighbor-
ing beams. Range measurements that correspond to humans
have certain geometrical properties such as size, circularity
or convexity, so the idea is to determine a set of meaning-
ful scalar features that quantify these properties and use
them in a supervised learning technique (boosting) to se-
lect the best features and thresholds for the classifier. How-
ever, achieving an accurate detection is very difficult because
problems such as physical variation of people’s appearance,
viewpoint changes, background clutter or occlusions prevent
the laser from gathering enough information.

The laser observation consists of a set of beams represented
in polar coordinates (angle, length) projected to Cartesian
coordinates (x,y) by the method proposed in [17]. These
sets of points (x,y) are grouped in segments based on a
jump distance condition, which evaluates the distance to
adjacent points. For each of these segments, fourteen geo-
metric features are determined: number of points, standard
deviation, mean, average deviation from median, minimum
and maximum distance between the distance to previous
segment and distance to next segment, linearity, circularity,



Figure 2: Laser detections. White lines are the laser
scans, and red squares are the laser detections.

radius, boundary length, boundary regularity, mean curva-
ture, mean angular difference and width of pair with nearest
segment. Segments with less than three points will be dis-
carded.

The employed boosting algorithm is AdaBoost. Each exam-
ple in the training data is a segment with a label associated,
+1 or −1. In the training phase a strong clasifier is created
by combining a set of weak classifiers. The weak classifiers
are decision trees of one level depth (stumps) that depend on
single-valued features and use a threshold and sign. On each
iteration weights are normalized, a weak classifier is used to
classify the examples for each feature, and a classification
error is calculated. Weights are updated increasing the ones
corresponding to the examples that were incorrectly classi-
fied by the last weak classifier. The final strong classifier is
a weighted majority vote of the best weak classifiers.

As a result the laser detection procedure gives a vector with
all the detections Ld = [x, y, z, s], where x, y, z are the cen-
tral position of the laser detection in Cartesian coordinates,
and s is the quality (score) of the laser detection. As we
have commented before, one of the major drawbacks of laser
detections is their failure when there is a lack of informa-
tion about the object to detect. One direct consequence of
this problem is the high number of false positive detections.
However, the image detector could complement this lack of
data. Therefore, the fusion between the laser and image
detection (section 3.3) will decide which are the correct de-
tections. Fig. 2 shows an image with laser detections, where
white lines are the laser scans, and the red squares are the
people laser detections centered at laser segments.

3.2 Image People Detection
The object detector selected for the image classification is
based on Dalal et al. [4] approach, which use Histogram
of Oriented Gradient (HOG) features with Support Vector
Machines (SVM).

HOG have been largely used as robust visual descriptors in
many computer vision applications related to object detec-
tion and recognition, due to their expressiveness, fast com-
putation, compactness, and invariance to misalignment and
monotonic illumination changes. The features are built by
partitioning an input image or region into connected cells,
counting occurrences of gradient edge orientations within

Figure 3: Image detector. The score of the detec-
tions are represented by their bounding box color:
green represents very high score, black medium
score, and red very low score.

each cell into a histogram with evenly spread channels, and
concatenating the cell histograms in a single array. Depend-
ing on whether the sign of the gradient is taken into account,
gradient orientations are sampled from the [0;π] or [−π;π]
domain. The energy of each cell histogram is typically nor-
malized in order to compensate for illumination variations.
Once Histogram of Oriented Gradient feature vectors are ex-
tracted, they are fed to a linear SVM for object/non-object
classification. The detection window is scanned across the
image at all positions and scales to detect object instances
in the output pyramid.

Usually, the object detector is able to detect almost all the
objects in the scene, however sometimes the detections have
such a low score that are not considered correct. If we want
to detect these false negative detections, then we will detect
a lot of false positives. The idea is that instead of setting
a threshold to determine if a detection is correct or not, we
make use of the spatial, depth and temporal information to
make this decision. Therefore, non-maximum suppression
such as grouping or deleting based on lower scores, relative
position, or based on mean shift is not employed in our ap-
proach, to make sure that partially occluded detections are
not deleted just because they are close to other detections.

Fig. 3 shows image people detections, where the score of
the detections are represented by their bounding box color.
Green bounding boxes represent positive score detections,
black bounding boxes show score detections around 0, and
red bounding boxes represent negative score detections. Usu-
ally, the object detector only takes into consideration the de-
tections which are positives, whereas we will consider all the
detections in the fusion stage. As a result the image detec-
tion gives a vector with all the detections Id = [x, y, w, h, s],
where [x, y] and [w, h] are the upper-left corner coordinates
and the size of the bounding box detection respectively, and
s is the score provided by the image detector.

Other descriptors might have been used as well, such as rec-
tified Haar wavelets used by Papageorgiou et al. [10], or
directly using edge images, similarly to Gavrila et al. [6].
Also, instead of using a SVM classifier, another object de-
tector can be used such as Adaboost employed by Viola et



Figure 4: Fusion laser and image detector. Blue
lines are laser scans, numbers are input detections
(laser and tracking inputs), and green bounding
boxes are image detections.

al. [16].

3.3 Fusion Laser and Image Detection
The data provided by the camera are the perfect comple-
ment to the laser scanner detector due to its different sensing
nature. While detections by the camera usually fail under
certain environmental conditions, they contain more infor-
mation about people than detections made by the laser scan-
ner. In contrast, the detections made by the laser, which are
independent of environmental conditions, usually produce
more false positives because of the limited data used in the
process.

In order to measure the accuracy of the detections, we pro-
ceed as follows. Firstly, image detections are filtered based
on the bounding box size Id,w,h and laser depth Ld,z of the
detections, thereby taking into consideration the 3D geom-
etry of the scene. Secondly, the 2D-spatial relationship be-
tween the image detections (Id) and the input detections
(Nd) are taken into account. The accuracy of each input
detection is measured with respect to the image detections.
The input detections (Nd) in the first iteration are only the
laser detections (Ld): these detections also include those
with a very low score. In this way, all the segments found
as possible detections are tested. In the next iterations the
input detections (Nd) also contain the temporal information
provided by the tracker (Td), thereby allowing the approach
to be robust against laser detection failures.

The probability for each of the input detections is calcu-
lated based on the image detections score and the spatial
relationship between the input detection and the bounding
box image detection. Accordingly, we calculate the distance
between the bounding box detection and the input detection
normalized by the distance between the corner of the bound-
ing box with the possible position of the input detection in
the image:

dist(Id, Nd) =

√

(Iposx −Nd,y)2 + (Iposy −Nd,y)2
√

(Iposx − Id,y)2 + (Iposy − Id,y)2
(1)

where Iposx,y is the predicted input detection position in

Figure 5: Tracker detections. White lines are laser
scans, and cyan arrows are tracker outputs.

the image detection Id calculated as follows:

Iposx = Id,x + Id,w ∗ Lposx
Iposy = Id,y + Id,h ∗ Lposy

(2)

Lpos is the relative position of the laser detection with re-
spect to the bounding box detections. Lpos is learned in the
training process or is the position between the laser device
respect to the ground plane of the image. Therefore, Ipos is
the position of the Lpos in the current image detection Id.

Finally, the detection score is calculated as follows:

S(d) =





∑

Id∈Nd

I
′

d,s ∗ (1− dist (Id, Nd))



 ∗
|Id ∈ Nd|

|Nd|
(3)

where I ′d,s is the unity-based normalized score of the image
detection:

I
′

d,s =
Id,s −mId

mId − nId
(4)

Id,s corresponds to the score for each image detection, and
nId and mId are the min and max score for all the image
detections, respectively. |Id ∈ Nd| denotes the number of
image detections for the input detection, and |Nd| the num-
ber of input detections.

An example of fusion between image and laser detections can
be seen in Fig. 4, where blue lines are laser scans, numbers
are the input detections (could be laser or tracker data),
and green bounding boxes correspond to image detections.
In Fig. 4, input detection number 3 (localized at the upper-
left of bounding box 1) is discarded by the image detector.

3.4 People tracking
The people tracking follows a straightforward implementa-
tion of the work done at the Freiburg University by Luber
[7] and Arras [1]. That is a multi-hypotheses tracker, using
linear propagation that can handle occlusions, crossings and
loss of targets, at a relative low error. However, instead of
using a Kalman filter, we use a particle filter, whose parti-
cles consist of position and velocity for each of the targets
in four dimensions (Td = [x, y, z, v]). In Fig. 5 a snapshot
of the tracker output is depicted, plotted as cyan arrows.

3.5 Fusion of laser and image detection with
temporal information



Figure 6: Example of detection using fusion with
temporal information. Left Image, image without
the temporal information used as feedback. Right
image, image with the temporal information used
as feedback. The right image shows that the person
has been correctly detected.

Temporal information provided by the tracking Td feeds
back the vision system in order to avoid losing true positive
detections, otherwise not detected by the laser detector, by
adding temporal consistency to the approach. Therefore,
the inputs to the fusion detection module (sec. 3.3) are the
image detections Id, the laser information Ld, and the tem-
poral information provided by the tracking detections Td as
depicted in Fig. 1.

Temporal consistency is important for improving the detec-
tion because the detections where the laser fails or where
the laser beams are occluded can be recovered. Further-
more, image detections can correct the problem of incorrect
tracking detections. Fig. 6 shows an example where a person
is detected thanks to the feedback from the temporal infor-
mation. The left image is without the temporal information
used as feedback whereas the right image is with our fusion
approach with the temporal information.

4. EXPERIMENTAL RESULTS
All the modules described so far have been implemented1 us-
ing the Robot Operational System (ROS) and were designed
to work with our robot [15] for more details). However, we
have used the ISR-UC-imglidar-sync datasets2 published by
Oliveira et al. [9], in order to validate the system perfor-
mance. The laser scanner was mounted at a height of 0.9
m to detect pedestrians at waist level. The system sensing
ranges from 2 up to 20 m. The laser scanner was set with
an aperture of 100◦ and angular resolution of 0.25◦, while
the camera forms a field of view of 45◦. For a description of
the dataset please refer to [9] paper.

As shown in table 1, our feedback approach obtains a better
detection rate than [9]. Our feedback-based approach gets
84.13% HR (hit rate) at FAPF=0.5 (false alarm per frame)
while [9] gets 80.8% HR (obtained from [9]). Moreover, as
was expected, our approach using feedback information ob-
tains better performance than without using feedback.

The approach has been widely tested in real conditions as it
has been implemented and currently works online in a two-

1All code implemented is available at
http://www.ros.org/wiki/iri-ros-pkg
2http://www.visionandbrain.com/datasets.html

Figure 7: People detection modules output. Green
cylinders and big green bounding boxes are the peo-
ple detections results by our fusion approach.

Approach Hit rate

Semantic Fusion [9] 80.8
Our approach (no tracker feedback) 79.2
Our approach with tracker feedback 84.1

Table 1: Hit rate for pedestrian detection at
FAPF=0.5 (False alarm per frame)

wheeled robot. The entire method works nearly in real time
at 7 fps with a Intel Core i7 3930K, 3,2Ghz hexa core.

An image of the results is depicted in Fig. 7. Where the out-
put of laser detections (red little cylinders), the fusion detec-
tions (green cylinders), and the detections not confirmed by
the image detector because they are outside the image (yel-
low cylinders) can be seen. In addition the tracking output is
reported with cyan arrows, and the white and blue lines rep-
resent the laser scans. All of them are plotted in a 3D space
(bottom image) with their corresponding projection into the
image plane (upper left corner). The fusion detections with
their bounding boxes are in the upper right corner in the
image. Fig. 8 shows significant frames using our feedback-
fusion approach from the ISR-UC-imglidar-sync dataset.

5. CONCLUSION
A novel approach has been presented in this paper, which
is able to detect and track people from a mobile robot plat-
form. The presented feedback-fusion method combines laser,
image and temporal information, taking advantage of the
three cues at the same time. The tracking information feeds
back the image detection, fusing this information with laser
detections, thereby allowing the recovery of detections even
when the laser and image segmentation fail. The proposed
architecture represents a step forward over state-of-the-art
methods, as has been shown in the experimental results.
Furthermore, the method has been tested in real situations,
is implemented in ROS and currently works in a two-wheeled
robot performing nearly in real-time. Future works should
deal with image detection because it is the bottleneck which
prevents system faster performance. Moreover, the tracking
should be improved to work in crowded environments.



Figure 8: People detection modules output using our feedback-fusion approach from ISR-UC-imglidar-sync
database. Green cylinders and big green bounding boxes are the people detections results by our fusion
approach, respectively. See text for details.
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