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aAdvanced Control Systems (SAC), Universitat Politècnica de Catalunya (UPC), Edifici TR11, Rambla Sant
Nebridi 10, 08222 Terrassa, Spain.

bInstitut de Robotica i Informatica Industrial (IRI), UPC-CSIC, Carrer de Llorens i Artigas, 4-6, 08028
Barcelona, Spain.

cInstitute of Control and Computation Engineering, University of Zielona Góra, ul. Podgórna 50, 65-246
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Abstract

In the last decades, gain-scheduling control techniques have consolidated as an effi-
cient answer to analysis and synthesis problems for non-linear systems. Among the
approaches proposed in the literature, the linear parameter varying (LPV) and Takagi-
Sugeno (TS) paradigms have proved to be successful in dealing with the different tri-
als that the analyzer, or the designer, of a gain-scheduled control system has to face.
Despite the strong similarities between the two paradigms, research on LPV and TS
systems has been performed in an independent way and some results that could be
useful for both paradigms were obtained only for one of them. However, in recent
works, some clues that there is a very close connection between LPV and TS worlds
have been presented. The present paper openly addresses the presence of strong analo-
gies between LPV and TS models, in an attempt to establish a bridge between these
two worlds, so far considered different. In particular, this paper addresses the modeling
problem, presenting two methods for the automated generation of LPV and TS systems
introducing some measures in order to compare the obtained models. A mathematical
example is used to illustrate the proposed methods.

Keywords: Modeling, Takagi-Sugeno (TS) fuzzy systems, Linear parameter varying
(LPV) systems.

1. Introduction

In the last decades, gain-scheduling control techniques have consolidated as an
efficient answer to analysis and synthesis problems for non-linear systems [1]. The
strength of these techniques consists in the fact that the properties of the non-linear
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systems are expressed by a collection of linear subsystems, which are also used for
designing the controller. This is realized in a divide and conquer fashion so that well
established linear methods can be applied to non-linear problems. Two approaches,
among others, have proved to be successful in dealing with the different trials that the
analyzer, or the designer, of a gain-scheduled control system has to face: the linear
parameter varying (LPV) and the Takagi-Sugeno (TS) paradigms.

LPV systems were introduced by Shamma [2] to distinguish such systems from
linear time invariant (LTI) and linear time varying (LTV) ones [3]. Since then, the
LPV paradigm has become a standard formalism in systems and control, for analysis,
controller synthesis and even system identification. This class of systems is important
because gain-scheduling control of non-linear systems can be performed according to
the LPV paradigm, where the non-linearity is embedded in the varying parameters that
depend on some endogenous signals, e.g. some system states (in this case, the system
is referred to as quasi-LPV, to make a further distinction with respect to pure LPV
systems, where the varying parameters only depend on exogenous signals). Among
the practical applications where the LPV paradigm has been successfully applied, there
are: missiles [4], aircrafts [5, 6], energy production systems [7, 8], robotic systems [9],
active suspension of vehicles [10], engines [11] and fault tolerant control [12].

On the other hand, Takagi-Sugeno systems, introduced in [13], basically provide
an effective way of representing non-linear systems with the aid of fuzzy sets, fuzzy
rules and a set of local linear models. The overall model of the system is obtained by
merging the local models through fuzzy membership functions. The TS paradigm has
been successfully applied in the same fields where the LPV one proved to be success-
ful: missiles [14], aircrafts [15], energy production systems [16], robotic systems [17],
active suspension of vehicles [18], engines [19] and fault tolerant control [20].

Despite the strong similarities of the two paradigms, LPV and TS systems have
nearly always been treated as though as they belonged to two different worlds. In fact,
the research for each of them has been performed in an independent way and such that
cross-references between papers dealing with the LPV theory and those dealing with
the TS theory are quite uncommon. As a consequence, some theoretical results that
could be useful for both types of systems have been applied only to one type, waiting
for the researchers to discover that they could be applied to the other type as well.

However, in some recent works, some clues that there is a close connection be-
tween the LPV and the fuzzy TS paradigms have been presented [21, 22]. In [23],
Rong and Irwin have pointed out that LPV systems can describe Takagi-Sugeno fuzzy
models if the ”scheduling functions” of the former paradigm are treated as membership
functions of the latter one. Bergsten and his co-workers [24] point out that, since it has
been proved that a TS fuzzy system, where the local affine dynamic models are off-
equilibrium local linearizations, leads to an arbitrarily close approximation of an LTV
dynamical system about an arbitrary trajectory [25], the results concerning observers
for TS fuzzy systems are also relevant to LPV systems. In [26], Collins has commented
that, even though the results in [27] seem to be very related to existing results on LPV
control, they are not put in perspective with those existing for LPV systems. He also
claimed that it is apparent that the fuzzy T-S model is a special case of an LPV model.
However, even if from theoretical analysis and design points of view it is difficult to
find clear differences between the two paradigms [28], LPV and TS systems are still
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considered different and their equality is dubious [29].
The present paper openly addresses the presence of strong analogies between LPV

and TS models, in an attempt to establish a bridge between these two worlds, so far
considered to be different. In particular, this paper considers the modeling problem,
with the following important contributions:

• The analogies and connections between LPV and TS systems are clearly stated;

• it is shown that the method for the automated generation of LPV models by
non-linear embedding presented in [30] can be easily extended to solve the cor-
responding problem for TS models;

• it is shown that the method for the generation of a TS model for a given non-
linear multivariable function based on the sector non-linearity concept [31], can
be extended to the problem of generating a polytopic LPV model for a given
non-linear dynamical system;

• two measures are proposed in order to compare the obtained models and choose
which one can be considered the best one. The first measure is based on the
notion of overboundedness. The second measure is based on region of attrac-
tion estimates and quadratic D-stabilizability in linear matrix inequality (LMI)
regions;

• using a mathematical example, an application of the proposed methodologies is
performed;

Notice that the resulting method for automated generation of TS models by non-
linear embedding has been already used by the fuzzy community in an intuitive way.
For example, one can verify that the TS models obtained by Tanaka and Wang in [27],
are contained within the set of TS models obtained through the method proposed in this
paper. In the present work, the method used in [27] is automated adapting a technique
developed by the LPV community that had never been used for TS systems until now.

The paper has the following structure: in Section 2, LPV and TS systems are pre-
sented and their analogies are highlighted. In Section 3, two measures to compare mod-
els are introduced. In Section 4, the method for automated generation of TS models
by non-linear embedding is presented. The same is done in Section 5, for the auto-
mated generation of polytopic LPV models via sector non-linearity concept. Section 6
presents the mathematical example for the application of the two techniques. Finally,
in Section 7, some conclusions are outlined.

2. LPV and TS systems definitions

2.1. LPV systems
Following the notation used by [32], σ stands for the Laplace variable s in the

continuous-time case and for the Z-transform variable z in the discrete-time case. Sim-
ilarly, τ will stand for the time t ∈ R+ in the continuous-time case and k ∈ Z+ for
the time samples in the discrete-time case. The notation σ.x(τ) stands for ẋ(t) for
continuous-time systems and for x(k + 1) for discrete-time systems.
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Then, an LPV system is defined as a linear system whose coefficients depend on
some varying parameter θ(τ) ∈ Rnθ , assumed to be unknown a priori, but measured or
estimated in real-time [33]:

σ.x(τ) = A (θ(τ)) x(τ) + B (θ(τ)) u(τ) (1)

y(τ) = C (θ(τ)) x(τ) + D (θ(τ)) u(τ) (2)

where x ∈ Rnx , u ∈ Rnu and y ∈ Rny are the state, the input and the output vector,
respectively, and A, B, C and D are varying matrices of appropriate dimensions.

An LPV system is called polytopic when it can be represented by state-space ma-
trices A (θ(τ)), B (θ(τ)), C (θ(τ)) and D (θ(τ)), where the parameter vector θ(τ) ranges
over a fixed polytope Θ, and the dependence of A (θ(τ)), B (θ(τ)), C (θ(τ)) and D (θ(τ))
on θ is affine [32], resulting in the following:

σ.x(τ) =

N∑
i=1

πi (θ(τ)) (Aix(τ) + Biu(τ)) (3)

y(τ) =

N∑
i=1

πi (θ(τ)) (Cix(τ) + Diu(τ)) (4)

where the quadruple (Ai, Bi,Ci,Di) defines the so-called vertex system and πi are the
non-negative coefficients of the polytopic decomposition such that:

N∑
i=1

πi (θ(τ)) = 1 , πi (θ(τ)) ≥ 0 ∀i = 1, . . . ,N, ∀θ ∈ Θ (5)

2.2. TS systems

TS systems, as proposed by Takagi and Sugeno [13], are described by local models
merged together using fuzzy IF-THEN rules [27], as follows:

IF ϑ1(τ) is Mi1 AND . . . AND ϑp(τ) is Mip

T HEN
{
σ.xi(τ) = Aix(τ) + Biu(τ)
yi(τ) = Cix(τ) + Diu(τ) i = 1, . . . ,N (6)

where ϑ1(τ), . . . , ϑp(τ) are premise variables that can be functions of the state variables,
external disturbances and/or time. Each linear consequent equation represented by
Aix(τ) + Biu(τ) is called a subsystem.

Given a pair (x(τ), u(τ)), the state and output of the TS system can easily be in-
ferred:

σ.x(τ) =
N∑

i=1
wi (ϑ(τ)) (Aix(τ) + Biu(τ))

/
N∑

i=1
wi (ϑ(τ))

=
N∑

i=1
ρi (ϑ(τ)) (Aix(τ) + Biu(τ))

(7)
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y(τ) =
N∑

i=1
wi (ϑ(τ)) (Cix(τ) + Diu(τ))

/
N∑

i=1
wi (ϑ(τ))

=
N∑

i=1
ρi (ϑ(τ)) (Cix(τ) + Diu(τ))

(8)

where ϑ(τ) =
[
ϑ1(τ), . . . , ϑp(τ)

]
is the vector containing the premise variables, and

wi (ϑ(τ)) and ρi (ϑ(τ)) are defined as follows:

wi (ϑ(τ)) =

p∏
j=1

Mi j

(
ϑ j(τ)

)
(9)

ρi (ϑ(τ)) =
wi (ϑ(τ))

N∑
i=1

wi (ϑ(τ))
(10)

where Mi j

(
ϑ j(τ)

)
is the grade of membership of ϑ j(τ) in Mi j and ρi (ϑ(τ)) is such that:

N∑
i=1
ρi (ϑ(τ)) = 1

ρi (ϑ(τ)) ≥ 0, i = 1, . . . ,N
(11)

2.3. Analogies between polytopic LPV and TS systems

There are strong analogies between polytopic LPV and TS systems. In fact, the
only remarkable difference between the two frameworks is the set of mathematical
tools that are used for obtaining the system description. In the LPV case, these tools
belong to the standard mathematics; on the other hand, in the TS case, they belong to
the fuzzy theory. In particular, the correspondences between polytopic LPV and TS
systems are between:

• the scheduling parameters θ of LPV systems and the premise variable ϑ of TS
systems;

• the coefficients of the polytopic decomposition πi and the coefficients ρi that
describe the level of activation of each local model;

• the vertex systems in the polytopic LPV case and the subsystems in the TS case.

These analogies can be strongly exploited for extending techniques and results that
have been developed or found for polytopic LPV systems to the TS case, and vice-
versa.

3. Measures for comparison between LPV and TS models

3.1. Overboundedness-based measure

Given a non-linear system:

σ.x = f (x, u,w) (12)
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y = g(x, u,w) (13)

where w ∈ Rnw is some exogenous signal and y ∈ Rny is the output, the approaches for
automated generation of polytopic LPV and TS models proposed in this paper (see Sec-
tions 4 and 5) provide a systematic methodology for building a whole set of LPV/TS
models representing the non-linear system (12)-(13). Hence, it is interesting to com-
pare the obtained models in order to choose which one is the best. This is especially
important from the point of view of the fault tolerant control for nonlinear systems
[34], for which the model quality is of paramount importance.

Hereafter, a measure based on the notion of overboundedness is proposed, similar
to the one proposed in [30]. The idea is to calculate the volume of the (hyper)region
contained between the vertices/subsystems (hyper)planes: the smaller is this volume,
the better is the approximation offered by the polytopic LPV/TS model. To obtain
the measure, subsets S 1, . . . , S nx of {X,U,W,F1} , . . . ,

{
X,U,W,Fnx

}
must be chosen,

where X, U,W and Fi are the state space, the input space, the exogenous signal space
and the i-th state variable derivative space, respectively. Then, if V (S )

1 , . . . ,V (S )
nx are

the volumes of the subsets S 1, . . . , S nx , and V1, . . . ,Vnx are the volumes of the (hy-
per)regions contained between the vertices/subsystems (hyper)planes in S 1, . . . , S nx , a
measure of the goodness of the polytopic LPV/TS model is given by:

M =
V1V2 · · ·Vnx

V (S )
1 V (S )

2 · · ·V
(S )
nx

(14)

where the smaller is this measure, the better is the model1.
Notice that in some situations, calculating the volumes V1, . . . ,Vnx can be a hard

task. Then, an approximate measure can be used as follows:

M̃ =
Ṽ1Ṽ2 · · · Ṽnx

V (S )
1 V (S )

2 · · ·V
(S )
nx

(15)

where Ṽi is an approximation of Vi. In particular, in this paper, each factor Ṽi/V
(S )
i is

obtained generating randomly a certain number N of points inside the subset S i, and
then calculating the ratio between the points that can be described by a polytopic com-
bination through the model taken into consideration, and the total number of points.
Obviously, M̃ approaches M in the limit as N → ∞. However, it is impossible to set
N = ∞. Thus, the problem becomes the one of selecting N in such a way that M̃,
i.e. the estimation of M, has some desired properties. In order to do this, notice that
the process of generating points in the subset S i and checking whether or not they can
be described by the model taken into consideration is a Bernoulli process [35] with a
limited number N of Bernoulli trials. Hence, the estimator M̃ can be analyzed using

1The measure M usually decreases when the number of vertex systems/subsystems used in the con-
sidered polytopic LPV/TS model increases. In some cases, e.g. controller synthesis, this could lead to an
increase in the computational effort that is not taken into account by the proposed measure M. If it is desired
to include such an effect in the evaluation of the goodness of the model, a slight modification of M should
be done.
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the results coming from the theory of statistics and probability [36].

3.2. Region of attraction estimates-based measure

Stability analysis and controller synthesis for LPV and TS systems have been an
important topic of research in the last decades. One of the most used tools to deal
with the problem of analyzing the stability or designing a stabilizing controller for
these systems is the quadratic stabilizability condition [37], thanks to which a common
Lyapunov matrix can be obtained such that the controller stabilizes the closed-loop
system using LMIs. This condition is appealing due to its numerical simplicity, and has
often been preferred to other conditions involving more complex Lyapunov functions,
e.g. parameter-dependent [38].

It is often believed that a closed loop quasi-LPV/TS system, obtained from a nonlin-
ear system using an exact transformation procedure as the one presented in this paper,
that satisfies stability (or some other goal) for all parameters varying in a convex re-
gion, e.g. a bounding box, implies that stability is satisfied for the underlying nonlinear
system. This is not always true, as shown in [39], where a Van der Pol equation with
reversed vector field example was used to demonstrate that the LPV/TS analysis of
the nonlinear system does not guarantee local asymptotic stability. However, [39] also
shows that the LPV/TS analysis can be used to estimate the region of attraction for the
underlying nonlinear system. In fact, even though finding the exact region of attraction
analytically might be difficult or even impossible [40], the Lyapunov functions can be
used to estimate the region of attraction.

Assume that:
σ.x(τ) = A (θ (x(τ))) x(τ) (16)

satisfies some stability and performance conditions [41, 37, 42] for θ ∈ Θ in the sense
of decreasing the Lyapunov function V (x(τ)) = x(τ)T Xx(τ) with X > 0.

Moreover, let us define the following sets:

X = {x ∈ D|θ(x) ∈ Θ} (17)

Γβ = {x ∈ D|V(x) ≤ β} (18)

and, for the nonlinear system:
σ.x(τ) = f (x(τ)) (19)

with the origin as an equilibrium point, let us define the region of attraction as the set:

RA =

{
x(0)| lim

τ→∞
φ (τ; x(0)) = 0

}
(20)

where φ (τ; x(0)) denotes the solution that starts at initial state x(0) at time t = 0.
Then, the following theorem holds:

Theorem 1. Consider the nonlinear system (19), with the exact quasi-LPV represen-
tation (16). If Γβ ⊆ X then Γβ ⊆ RA, where RA is the region of attraction.

Proof: See [39].
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A consequence of this theorem is that a region of attraction approximation is given
by the (hyper)ellipsoid provided by the positive definite matrix X of the Lyapunov
function. In this paper, a measure based on the region of attraction approximation
is proposed in order to compare quasi-LPV and TS models obtained from the same
nonlinear system. This measure is defined as follows:

Mβ =
Vβ

VΘ

(21)

where Vβ is the volume of Γβ, and VΘ is the volume of the polytopic region X within
which the parameter vector θ (or the premise variables ϑ in the case of TS representa-
tion) can take values.

Additionally, the LMI pole placement conditions introduced by [42] will be used
to define the goal to be achieved by the control system. It should be pointed out that
other criteria can be introduced and easily incorporated within the general framework
provided in the subsequent part of this paper, e.g. H∞ norm [43].

A subsetD of the complex plane is called an LMI region if there exist a symmetric
matrix α = [αkl]1≤k,l≤m ∈ R

m×m and a matrix β =
[
βkl

]
1≤k,l≤m ∈ R

m×m such that:

D = {z ∈ C : fD(z) < 0} (22)

with:
fD(z) = α + zβ + z̄βT =

[
αkl + βklz + βlk z̄

]
1≤k,l≤m (23)

Then, an LTI system is said to beD-stable if it is stable and if all its poles lie inD
[42, 44].

Following [45] and with a little abuse of language, the poles of an LPV system are
defined as the set of all the poles of the LTI systems obtained by freezing θ to all its
possible values in Θ. In [46], the quadraticD-stability of LPV systems was defined as
follows (a similar definition holds in case of TS systems):

Definition 1. An LPV system σ.x(τ) = A (θ(τ)) x(τ) is quadratically D-stable, with
D an LMI region defined as in (22)-(23), if there exists a symmetric positive definite
matrix X > 0 such that ∀θ ∈ Θ:

A (θ) X + XAT (θ) < 0 i f σ = t(
−X A (θ) X

XAT (θ) −X

)
< 0 i f σ = k[

αklX + βklA (θ) X + βlkXAT (θ)
]
1≤k,l≤m

< 0

(24)

Hence, given the polytopic LPV system (3) (or the TS system (6)), it is possible
to design a Parallel Distributed Compensation (PDC) controller [47], which is a very
popular approach for both LPV/TS systems:

u(τ) = K (θ(τ)) x(τ) =

N∑
i=1

πi (θ(τ))Kix(τ) (25)
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or a TS controller:

IF ϑ1(τ) is Mi1 AND . . . AND ϑp(τ) is Mip

T HEN u(τ) = Kix(τ) i = 1, . . . ,N (26)

using the following theorem:

Theorem 2. LetD be an LMI region with characteristic function (23), and assume that
there exists a single Lyapunov matrix X > 0 and N matrices Γi such that the following
set of LMIs is feasible (i = 1, . . . ,N, j = 1, . . . ,N):

Ui j (X,Γi) + Ui j (X,Γi)T < 0 i f σ = t(
−X Ui j (X,Γi)

Ui j (X,Γi)T −X

)
< 0 i f σ = k[

αklX + βklUi j (X,Γi) + βlkUi j (X,Γi)T
]
1≤k,l≤m

< 0

(27)

with:
Ui j (X,Γi) = AiX + B jΓi (28)

Then, the LPV system (3) (or the TS system (6)) with the state-feedback controller
(25) (or (26)), whose vertex gains are calculated as Ki = ΓiX−1, is quadratically D-
stable.

Proof: The proof is similar to the one of the Theorem presented in [42], and makes
extensive use of the basic property of matrices [48] that any linear combination of pos-
itive (negative) definite matrices with non-negative coefficients, whose sum is positive,
is positive (negative) definite.

4. Generation of TS models via non-linear embedding

A method for the automated generation of LPV models, when affine or polytopic
models are desired, has been presented in [30]. These models are generated from a
general non-linear model by hiding the non-linearities in the scheduling parameters. In
this section, it is shown that this method can be used for generating a Takagi-Sugeno
model from a given non-linear model.

Consider the non-linear state2 equation (12). The automated generation of TS mod-
els via non-linear embedding consists of the following five steps:

• In the first step, (12) is rewritten in a standard form, that is, each of its rows is
expanded into its summands fi j:

σ.xi =

Ti∑
j=1

fi j(x, u,w), i = 1, . . . , nx (29)

2The method can be applied to the output equation (13) without significant differences.
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where Ti is the total number of summands of that row. Then, each summand is
decomposed into its numerator αi j, denominator βi j and constant factor κi j:

σ.xi =

Ti∑
j=1

κi j
αi j(x, u,w)
βi j(x, u,w)

, i = 1, . . . , nx (30)

Finally, the numerator is factored as the product of non-factorisable terms hi j and
integer powers of the states xq, q = 1, . . . , nx and the inputs ur, r = 1, . . . , nu:

αi j =

nx∏
q=1

nu∏
r=1

hi j(x, u,w)xµi jq
q uνi jr

r (31)

• In the second step, two classes of summands are distinguished: (a) constant or
non-factorisable numerator, K0, when neither a power of the state xi nor of an
input ui is a factor of the numerator; and (b) arbitrary positive power of factor,
KP, when the summand has a numerator with positive integer powers of a state
variable xi or input ui;

• In the third step, according to the classification of each summand, components
ϑa

i jk and ϑb
i jk that link the summand to the entries of the state and input matrices A

and B are chosen. If the summand fi j belongs to K0, one can obtain nx possible
assignments to the state matrix A and nu possible assignments to the input matrix
B, with ϑa

i jk and ϑb
i jk defined as follows:

ϑa
i jk = κi j

αi j(x, u,w)
βi j(x, u,w)xk

, k = 1, . . . , nx (32)

ϑb
i jk = κi j

αi j(x, u,w)
βi j(x, u,w)uk

, k = 1, . . . , nu (33)

Otherwise, if the summand fi j belongs to Kp, one can choose to assign the sum-
mand to an element of the state or input matrix, as long as the element is a factor
of the numerator, i.e. if there exists a k for which µi jk , 0 or νi jk , 0;

• In the fourth step, the premise variables ϑ are derived from ϑa
i jk and ϑb

i jk. This can
be done either by direct assignment or by superposition. In the direct assignment
case, the premise variables are directly chosen as ϑa

i jk and ϑb
i jk, such that:

aik =

ζa∑
j=1

ϑa
i jk bik =

ζb∑
j=1

ϑb
i jk (34)

where ζa and ζb are the number of components of the same equation σ.xi that are
assigned to the same state xk or input uk, respectively, but have been obtained
from different summands. In the superposition case, the premise variables, de-
noted by ϑa

ik and ϑb
ik, are obtained through a sum of all the contributions of a
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summand to the same element of A or B:

ϑa
ik =

ζa∑
j=1

ϑa
i jk ϑb

ik =

ζb∑
j=1

ϑb
i jk (35)

such that the premise variables correspond to the elements of the state space
matrices:

aik = ϑa
ik bik = ϑb

ik (36)

In both cases, the premise variables need to be renumbered in order to be coher-
ent with the numbering presented in (6).

• In the final step, an adaptation of the technique used in [49] for obtaining poly-
topic LPV models, often referred to as bounding box method, is used to com-
plete the generation of the TS model. The minimum and maximum values of
each premise variable ϑi over the possible values of x, u and w, are obtained as
follows:

ϑi = min
x,u,w

ϑi ϑi = max
x,u,w

ϑi (37)

From the maximum and minimum values, ϑi can be represented as:

ϑi = M1i(ϑi)ϑi + M2i(ϑi)ϑi (38)

with the additional constraint:

M1i(ϑi) + M2i(ϑi) = 1 (39)

such that the membership functions are calculated as:

M1i(ϑi) =
ϑi − ϑi

ϑi − ϑi

and M2i(ϑi) =
ϑi − ϑi

ϑi − ϑi

(40)

Finally, the subsystems are obtained by considering each possible combination
of membership functions in the IF clauses of the TS model.

An example of the application of the proposed technique is given in Section 6.1.

5. Generation of polytopic LPV models via sector non-linearity concept

The idea of using sector non-linearity in TS model construction first appeared in
[50], where the single variable system case was considered, and extended to the multi-
variable case in [31]. In this section, it is shown that this method can also be used for
generating a polytopic LPV model from a given non-linear model.

Consider the non-linear state equation (12), under the hypothesis that the function
f (x, u,w) is differentiable everywhere (as in the previous method, the application to the
output equation (13) can be performed without significant differences). The automated
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generation of polytopic LPV models via sector non-linearity concept consists of the
following steps:

• In the first step, the space {X,U,W} is partitioned into its 2nx+nu+nw quadrants.
Each quadrant is denoted by:

R
(
s(x)

1 , . . . , s(x)
nx
, s(u)

1 , . . . , s(u)
nu
, s(w)

1 , . . . , s(w)
nw

)
(41)

where:  s(x)
j = 1⇔ x j ≥ 0

s(x)
j = 0⇔ x j ≤ 0

(42)

 s(u)
j = 1⇔ u j ≥ 0

s(u)
j = 0⇔ u j ≤ 0

(43)

 s(w)
j = 1⇔ w j ≥ 0

s(w)
j = 0⇔ w j ≤ 0

(44)

Then, each quadrant R is associated to its symmetric quadrant R∗ to obtain Q =

2nx+nu+nw−1 regions:

Rq

(
s(x)

1 , . . . , s(u)
j , . . . , s

(w)
nw

)
∪ R∗q

(
¬s(x)

1 , . . . ,¬s(u)
j , . . . ,¬s(w)

nw

)
(45)

where ¬ denotes the negation operator and q = 1, . . . ,Q.

• In the second step, for each of the regions Rq ∪ R∗q, q = 1, . . . ,Q defined in (45),
after partially differentiating each row fi of (12) with respect to x1, . . . , xnx ,

u1, . . . , unu , the minimum and maximum values in the region Rq ∪ R∗q are found:

a(q)
i j = max

x,u,w∈Rq∪R∗q

∂ fi(x, u,w)
∂x j

i = 1, . . . , nx

j = 1, . . . , nx
(46)

a(q)
i j = min

x,u,w∈Rq∪R∗q

∂ fi(x, u,w)
∂x j

i = 1, . . . , nx

j = 1, . . . , nx
(47)

b
(q)
i j = max

x,u,w∈Rq∪R∗q

∂ fi(x, u,w)
∂u j

i = 1, . . . , nx

j = 1, . . . , nu
(48)

b(q)
i j = min

x,u,w∈Rq∪R∗q

∂ fi(x, u,w)
∂u j

i = 1, . . . , nx

j = 1, . . . , nu
(49)

• In the third step, the vertex matrices
(
A(q)

j , B
(q)
j

)
are obtained by taking into

consideration all the possible combinations of the row vectors
[
_a

(q)
i ,

_

b
(q)

i

]
and[

^a
(q)
i ,

^

b
(q)

i

]
, as follows:
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A(q)
j

(
t( j)
1 , . . . , t( j)

i , . . . , t( j)
nx

)
=



ã(q)
1
...

ã(q)
i
...

ã(q)
nx


(50)

B(q)
j

(
t( j)
1 , . . . , t( j)

i , . . . , t( j)
nx

)
=



b̃(q)
1
...

b̃(q)
i
...

b̃(q)
nx


(51)

where:

ã(q)
i =


_a

(q)
i =

[
_a

(q)
i1

_a
(q)
i2 . . .

_a
(q)
inx

]
i f t( j)

i = 1
^a

(q)
i =

[
^a

(q)
i1

^a
(q)
i2 . . .

^a
(q)
inx

]
i f t( j)

i = 0
(52)

b̃(q)
i =


_

b
(q)

i =

[
_

b
(q)

i1
_

b
(q)

i2 . . .
_

b
(q)

inx

]
i f t( j)

i = 1
^

b
(q)

i =

[
^

b
(q)

i1
^

b
(q)

i2 . . .
^

b
(q)

inx

]
i f t( j)

i = 0
(53)

and:
_a

(q)
i j =

 a(q)
i j i f s(x)

j (q) = 1
a(q)

i j i f s(x)
j (q) = 0

(54)

^a
(q)
i j =

 a(q)
i j i f s(x)

j (q) = 1
a(q)

i j i f s(x)
j (q) = 0

(55)

_

b
(q)

i j =

 b
(q)
i j i f s(u)

j (q) = 1
b(q)

i j i f s(u)
j (q) = 0

(56)

^

b
(q)

i j =

 b(q)
i j i f s(u)

j (q) = 1

b
(q)
i j i f s(u)

j (q) = 0
(57)

Then, (12) can be reconstructed from
(
A(q)

j , B
(q)
j

)
as follows:

σ.x = f (x, u,w) =

Q∑
q=1

2nx∑
j=1

α
(q)
j (x, u,w)

(
A(q)

j x + B(q)
j u

)
(58)

where:

α
(q)
j (x, u,w) =

nx∏
i=1

[
t( j)
i

_
α

(q)
i (x, u,w) +

(
1 − t( j)

i

)
^
α

(q)
i (x, u,w)

]
(59)
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with:

_
α

(q)
i (x, u,w) =

fi(x, u,w) − ^a
(q)
i x −

^

b
(q)

i u
_a

(q)
i x +

_

b
(q)

i u − ^a
(q)
i x −

^

b
(q)

i u
R∈q(x, u,w) (60)

^
α

(q)
i (x, u,w) =

_a
(q)
i x +

_

b
(q)

i u − fi(x, u,w)
_a

(q)
i x +

_

b
(q)

i u − ^a
(q)
i x −

^

b
(q)

i u
R∈q(x, u,w) (61)

where R∈q(x, u,w) is an operator that returns 1 if (x, u,w) belongs to the region
Rq ∪ R∗q and 0 otherwise.

Remark 1: Notice that the polytopic system (58) is equivalent to the following
quasi-LPV system:

σ.x = A(x, u,w)x + B(x, u,w)u (62)

with:

A(x, u,w) =

Q∑
q=1

2nx∑
j=1

α
(q)
j (x, u,w)A(q)

j (63)

B(x, u,w) =

Q∑
q=1

2nx∑
j=1

α
(q)
j (x, u,w)B(q)

j (64)

Remark 2: The obtained polytopic system exhibits discontinuities in the polytopic
decomposition coefficients α(q)

j (x, u,w) at the region boundaries, i.e. along the axes
that define the quadrants. In order to avoid this phenomenon, [31] suggests to add
some compatibility conditions. In particular, this is obtained by replacing a(q)

i j , a(q)
i j , b

(q)
i j

and b(q)
i j in (54)-(57) with ai j, ai j, bi j, bi j, defined as follows:

ai j = max
q=1,...,Q

ā(q)
i j

i = 1, . . . , nx

j = 1, . . . , nx
(65)

ai j = min
q=1,...,Q

a(q)
i j

i = 1, . . . , nx

j = 1, . . . , nx
(66)

bi j = max
q=1,...,Q

b
(q)
i j

i = 1, . . . , nx

j = 1, . . . , nu
(67)

bi j = min
q=1,...,Q

b(q)
i j

i = 1, . . . , nx

j = 1, . . . , nu
(68)

An example of the application of the proposed technique is illustrated in Section
6.2.

6. Application example

Consider the following non-linear system:
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ẋ1 = x1 + 3 sin x1 + x2 − 2 sin x2 + u1

ẋ2 = x2
1

√
1 + x2

2 + x1x2 + u2

ẋ3 = x1 + x2 − x3

(69)

with:
x1, x2, x3 ∈ P = [−π, π] × [−π, π] × [−π, π]

The aim of this section is to obtain a TS and a quasi-LPV representation of (69)
using the methods described in Sections 4 and 5.

6.1. Generation of TS models via non-linear embedding
The TS representations are obtained applying the non-linear embedding method

described in Section 4, where the final step is done by superposition, such that eight
different TS models are generated. The general form for each TS model is the follow-
ing:

IF ϑ
( j)
11 is M( j)

i11 AND ϑ
( j)
12 is M( j)

i12 AND ϑ
( j)
21 is M( j)

i21 AND ϑ
( j)
22 is M( j)

i22

T HEN ẋ(t) = A( j)
i x(t) +

 1 0
0 1
0 0

 u(t)
i = 1, . . . ,N j

j = 1, . . . , 8
(70)

where for the jth TS model, the N j ∈ {4, 8, 16} linear models are obtained taking
into consideration all possible combinations of minimum and maximum values of the
premise variables ϑ( j)

11 , ϑ( j)
12 , ϑ( j)

21 and ϑ( j)
22 .

In particular, the premise variables are defined as follows3:

ϑ(1)
11 (x1, x2) = ϑ(2)

11 (x1, x2) = 1 + 3
sin x1

x1
− 2

sin x2

x1
(71)

ϑ(3)
11 (x1) = ϑ(4)

11 (x1) = 1 + 3
sin x1

x1
(72)

ϑ(5)
11 (x1, x2) = ϑ(6)

11 (x1, x2) = 1 − 2
sin x2

x1
(73)

ϑ(3)
12 (x2) = ϑ(4)

12 (x2) = 1 − 2
sin x2

x2
(74)

ϑ(5)
12 (x1, x2) = ϑ(6)

12 (x1, x2) = 1 + 3
sin x1

x2
(75)

ϑ(7)
12 (x1, x2) = ϑ(8)

12 (x1, x2) = 1 + 3
sin x1

x2
− 2

sin x2

x2
(76)

ϑ(1)
21 (x1, x2) = ϑ(3)

21 (x1, x2) = ϑ(5)
21 (x1, x2) = ϑ(7)

21 (x1, x2) = x1

√
1 + x2

2 + x2 (77)

3Notice that the real premise variables can be a subset of those listed in (70), when some of them are
constants, i.e. ϑ(1)

12 = ϑ(2)
12 = ϑ(7)

11 = ϑ(8)
11 = 1, ϑ(1)

22 = ϑ(3)
22 = ϑ(5)

22 = ϑ(7)
22 = 0.
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ϑ(2)
21 (x1, x2) = ϑ(4)

21 (x1, x2) = ϑ(6)
21 (x1, x2) = ϑ(8)

21 (x1, x2) = x1

√
1 + x2

2 (78)

ϑ(2)
22 (x1) = ϑ(4)

22 (x1) = ϑ(6)
22 (x1) = ϑ(8)

22 (x1) = x1 (79)

Among the obtained models, the ones that are considered to be more suitable
for representing the original non-linear system (69) are those given by j = 3 and
j = 4. This is motivated by the fact that in the remaining six TS models, i.e. j ∈
{1, 2, 5, 6, 7, 8}, terms of the type sin x1/x2 or sin x2/x1 appear, which are not defined in
some subsets of the region P.

For the models obtained with j = 3 and j = 4, the subsystems in (70) are defined
by the following state matrices (see Fig. 1 for a graphical example of how a non-linear
system equation is described by the subsystems):

A(3)
1 =

 4 1 0
kπ 0 0
1 1 −1

 A(3)
2 =

 4 −1 0
kπ 0 0
1 1 −1

 A(3)
3 =

 4 1 0
−kπ 0 0
1 1 −1


A(3)

4 =

 4 −1 0
−kπ 0 0
1 1 −1

 A(3)
5 =

 1 1 0
kπ 0 0
1 1 −1

 A(3)
6 =

 1 −1 0
kπ 0 0
1 1 −1


A(3)

7 =

 1 1 0
−kπ 0 0
1 1 −1

 A(3)
8 =

 1 −1 0
−kπ 0 0
1 1 −1

 A(4)
1 =

 4 1 0
qπ π 0
1 1 −1


A(4)

2 =

 4 1 0
qπ −π 0
1 1 −1

 A(4)
3 =

 4 1 0
−qπ π 0

1 1 −1

 A(4)
4 =

 4 1 0
−qπ −π 0

1 1 −1


A(4)

5 =

 4 −1 0
qπ π 0
1 1 −1

 A(4)
6 =

 4 −1 0
qπ −π 0
1 1 −1

 A(4)
7 =

 4 −1 0
−qπ π 0

1 1 −1


A(4)

8 =

 4 −1 0
−qπ −π 0

1 1 −1

 A(4)
9 =

 1 1 0
qπ π 0
1 1 −1

 A(4)
10 =

 1 1 0
qπ −π 0
1 1 −1


A(4)

11 =

 1 1 0
−qπ π 0

1 1 −1

 A(4)
12 =

 1 1 0
−qπ −π 0

1 1 −1

 A(4)
13 =

 1 −1 0
qπ π 0
1 1 −1


A(4)

14 =

 1 −1 0
qπ −π 0
1 1 −1

 A(4)
15 =

 1 −1 0
−qπ π 0

1 1 −1

 A(4)
16 =

 1 −1 0
−qπ −π 0

1 1 −1


where kπ and qπ are constants defined as:

kπ = π
√

1 + π2 + π qπ = π
√

1 + π2
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The membership functions M(3)
i11, M(3)

i12, M(3)
i21, M(4)

i11, M(4)
i12, M(4)

i21, M(4)
i22 are defined

using (40):

M(3)
i11

(
ϑ(3)

11 (x1)
)

=

{
sin x1/x1 i = 1, 2, 3, 4
1 − sin x1/x1 i = 5, 6, 7, 8 (80)

M(3)
i12

(
ϑ(3)

12 (x2)
)

=

{
1 − sin x2/x2 i = 1, 3, 5, 7
sin x2/x2 i = 2, 4, 6, 8 (81)

M(3)
i21

(
ϑ(3)

21 (x1, x2)
)

=


x1

√
1+x2

2+x2+kπ
2kπ

i = 1, 2, 5, 6
kπ−x1

√
1+x2

2−x2

2kπ
i = 3, 4, 7, 8

(82)

M(4)
i11

(
ϑ(4)

11 (x1)
)

=

{
sin x1/x1 i = 1, 2, 3, 4, 5, 6, 7, 8
1 − sin x1/x1 i = 9, 10, 11, 12, 13, 14, 15, 16 (83)

M(4)
i12

(
ϑ(4)

12 (x2)
)

=

{
1 − sin x2/x2 i = 1, 2, 3, 4, 9, 10, 11, 12
sin x2/x2 i = 5, 6, 7, 8, 13, 14, 15, 16 (84)

M(4)
i21

(
ϑ(4)

21 (x1, x2)
)

=


x1

√
1+x2

2+qπ
2qπ

i = 1, 2, 5, 6, 9, 10, 13, 14
qπ−x1

√
1+x2

2
2qπ

i = 3, 4, 7, 8, 11, 12, 15, 16
(85)

M(4)
i22

(
ϑ(4)

22 (x1)
)

=

{ x1+π
2π i = 1, 3, 5, 7, 9, 11, 13, 15
π−x1

2π i = 2, 4, 6, 8, 10, 12, 14, 16 (86)

Finally, the coefficients that describe the level of activation of each local model are
obtained using (10) as:

ρ(3)
i (x1, x2) =

M(3)
i11M(3)

i12M(3)
i21

8∑
i=1

M(3)
i11M(3)

i12M(3)
i21

(87)

ρ(4)
i (x1, x2) =

M(4)
i11M(4)

i12M(4)
i21M(4)

i22
16∑
i=1

M(4)
i11M(4)

i12M(4)
i21M(4)

i22

(88)

Remark 3: Notice that the obtained TS models can be interpreted as if they were LPV
systems as follows:  ẋ1

ẋ2
ẋ3

 = A3 (x1, x2)

 x1
x2
x3

 +

 1 0
0 1
0 0


(

u1
u2

)
(89)

 ẋ1
ẋ2
ẋ3

 = A4 (x1, x2)

 x1
x2
x3

 +

 1 0
0 1
0 0


(

u1
u2

)
(90)
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where:

A3 (x1, x2) =

 ϑ(3)
11 (x1) ϑ(3)

12 (x2) 0
ϑ(3)

21 (x1, x2) 0 0
1 1 −1

 =

8∑
i=1

ρ(3)
i (x1, x2)A(3)

i (91)

A4 (x1, x2) =

 ϑ(4)
11 (x1) ϑ(4)

12 (x2) 0
ϑ(4)

21 (x1, x2) ϑ(4)
22 (x1) 0

1 1 −1

 =

16∑
i=1

ρ(4)
i (x1, x2)A(4)

i (92)

where ρ(3)
i (x1, x2) and ρ(4)

i (x1, x2) can be interpreted as coefficients of a polytopic de-
composition.

−4
−2

0
2

4 −4
−2

0
2

4−20

−15

−10

−5

0

5

10

15

20

x
2x

1

dx
1/d

t(
x 1,x

2)

Figure 1: Representation of the non-linear equation ẋ1 = x1+3 sin x1+x2−2 sin x2 inP and its approximation
using the subsystems described by A(3)

i or A(4)
i .

6.2. Generation of polytopic LPV models via sector non-linearity concept
Hereafter, a polytopic representation for (69) is obtained applying the method de-

scribed in Section 5.
The space {X1,X2} is partitioned into 4 quadrants, that give rise to the following 2

regions as described by (45):

R1 : [−π, 0] × [−π, 0] ∪ [0, π] × [0, π]
R2 : [−π, 0] × [0, π] ∪ [0, π] × [−π, 0] (93)

Then, the partial derivatives of (69) are calculated:

∂ f1
∂x1

= 1 + 3 cos x1
∂ f1
∂x2

= 1 − 2 cos x2
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∂ f2
∂x1

= 2x1

√
1 + x2

2 + x2
∂ f2
∂x2

=
x2

1 x2√
1+x2

2

+ x1

and their minimum and maximum values in R1 and R2 are found:

a(1)
11 = max

R1

∂ f1
∂x1

= 4 a(1)
11 = min

R1

∂ f1
∂x1

= −2

a(2)
11 = max

R2

∂ f1
∂x1

= 4 a(2)
11 = min

R2

∂ f1
∂x1

= −2

a(1)
12 = max

R1

∂ f1
∂x2

= 3 a(1)
12 = min

R1

∂ f1
∂x2

= −1

a(2)
12 = max

R2

∂ f1
∂x2

= 3 a(2)
12 = min

R2

∂ f1
∂x2

= −1

a(1)
21 = max

R1

∂ f2
∂x1

= rπ + π a(1)
21 = min

R1

∂ f2
∂x1

= − (rπ + π)

a(2)
21 = max

R2

∂ f2
∂x1

= rπ − π a(2)
21 = min

R2

∂ f2
∂x1

= −rπ + π

a(1)
22 = max

R1

∂ f2
∂x2

= wπ + π a(1)
22 = min

R1

∂ f2
∂x2

= − (wπ + π)

a(2)
22 = max

R2

∂ f2
∂x2

= wπ − π a(2)
22 = min

R2

∂ f2
∂x2

= −wπ + π

where:
rπ = 2π

√
1 + π2 wπ = π3

√
1+π2

Afterwards, using (50)-(57), the state matrices of the vertex systems are calculated,
resulting in the following eight matrices (see Fig. 2 for a graphical representation
example):

A(1)
1 =

 −2 −1 0
− (rπ + π) − (wπ + π) 0

1 1 −1

 A(1)
2 =

 −2 −1 0
rπ + π wπ + π 0

1 1 −1


A(1)

3 =

 4 3 0
− (rπ + π) − (wπ + π) 0

1 1 −1

 A(1)
4 =

 4 3 0
rπ + π wπ + π 0

1 1 −1


A(2)

1 =

 −2 −1 0
−rπ + π wπ − π 0

1 1 −1

 A(2)
2 =

 −2 −1 0
rπ − π −wπ + π 0

1 1 −1


A(2)

3 =

 4 3 0
−rπ + π wπ − π 0

1 1 −1

 A(2)
4 =

 4 3 0
rπ − π −wπ + π 0

1 1 −1
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such that (69) results expressed in the following polytopic LPV form: ẋ1
ẋ2
ẋ3

 =

4∑
j=1

α(1)
j (x1, x2)A(1)

j

 x1
x2
x3

 +

4∑
j=1

α(2)
j (x1, x2)A(2)

j

 x1
x2
x3

 +

 1 0
0 1
0 0


(

u1
u2

)
(94)

where the coefficients of the polytopic decomposition are obtained using (59)-(61), as
follows:

α(1)
1 (x1, x2) =

_
α

(1)
1 (x1, x2)_α

(1)
2 (x1, x2)R∈1(x1, x2)

α(1)
2 (x1, x2) =

_
α

(1)
1 (x1, x2)^α

(1)
2 (x1, x2)R∈1(x1, x2)

α(1)
3 (x1, x2) =

^
α

(1)
1 (x1, x2)_α

(1)
2 (x1, x2)R∈1(x1, x2)

α(1)
4 (x1, x2) =

^
α

(1)
1 (x1, x2)^α

(1)
2 (x1, x2)R∈1(x1, x2)

α(2)
1 (x1, x2) =

_
α

(2)
1 (x1, x2)_α

(2)
2 (x1, x2)R∈2(x1, x2)

α(2)
2 (x1, x2) =

_
α

(2)
1 (x1, x2)^α

(2)
2 (x1, x2)R∈2(x1, x2)

α(2)
3 (x1, x2) =

^
α

(2)
1 (x1, x2)_α

(2)
2 (x1, x2)R∈2(x1, x2)

α(2)
4 (x1, x2) =

^
α

(2)
1 (x1, x2)^α

(2)
2 (x1, x2)R∈2(x1, x2)

with:
_
α

(1)
1 (x1, x2) =

3x1 + 2x2 − 3 sin x1 + 2 sin x2

6x1 + 4x2

^
α

(1)
1 (x1, x2) =

3x1 + 2x2 + 3 sin x1 − 2 sin x2

6x1 + 4x2

_
α

(2)
1 (x1, x2) =

3x1 − 2x2 − 3 sin x1 + 2 sin x2

6x1 − 4x2

^
α

(2)
1 (x1, x2) =

3x1 − 2x2 + 3 sin x1 − 2 sin x2

6x1 − 4x2

_
α

(1)
2 (x1, x2) =

(rπ + π) x1 + (wπ + π) x2 − x2
1

√
1 + x2

2 − x1x2

2 [(rπ + π) x1 + (wπ + π) x2]

^
α

(1)
2 (x1, x2) =

(rπ + π) x1 + (wπ + π) x2 + x2
1

√
1 + x2

2 + x1x2

2 [(rπ + π) x1 + (wπ + π) x2]

_
α

(2)
2 (x1, x2) =

(rπ − π)x1 + (π − wπ)x2 − x2
1

√
1 + x2

2 − x1x2

2 [(rπ − π)x1 + (π − wπ)x2]

^
α

(2)
2 (x1, x2) =

(rπ − π)x1 + (π − wπ)x2 + x2
1

√
1 + x2

2 + x1x2

2 [(rπ − π)x1 + (π − wπ)x2]
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R∈1(x1, x2) = max (0, sgn(x1)sgn(x2))

R∈2(x1, x2) = max (0,−sgn(x1)sgn(x2))

where sgn denotes the sign function.
Remark 4: Notice that the quasi-LPV representation of (69) obtained using this

method has the following structure: ẋ1
ẋ2
ẋ3

 =

 a11(x1, x2) a12(x1, x2) 0
a21(x1, x2) a22(x1, x2) 0

1 1 −1


 x1

x2
x3

 +

 1 0
0 1
0 0


(

u1
u2

)
(95)

Remark 5: The obtained quasi-LPV system can be interpreted as a Takagi-Sugeno
model, if a11(x1, x2), a12(x1, x2), a21(x1, x2), a22(x1, x2) in (95) and sgn(x1)sgn(x2) are
considered to be the premise variables, and _

α
(1)
1 , ^

α
(1)
1 , _

α
(2)
1 , ^

α
(2)
1 , _

α
(1)
2 , ^

α
(1)
2 , _

α
(2)
2 , ^

α
(2)
2 , R∈1 ,

R∈2 the membership functions.
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Figure 2: Representation of the non-linear equation ẋ1 = x1+3 sin x1+x2−2 sin x2 inP and its approximation
using the vertex systems of (94).

Remark 6: If the conditions (65)-(68) are used in order to avoid the discontinuity
phenomenon, as described in Section 5, the matrices A(2)

1 , A(2)
2 , A(2)

3 and A(2)
4 change as

follows:

A(2)
1 =

 −2 −1 0
−(rπ + π) wπ + π 0

1 1 −1

 A(2)
2 =

 −2 −1 0
rπ + π −(wπ + π) 0

1 1 −1
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A(2)
3 =

 4 3 0
−(rπ + π) wπ + π 0

1 1 −1

 A(2)
4 =

 4 3 0
rπ + π −(wπ + π) 0

1 1 −1


6.3. Comparison

Hereafter, the comparison criteria between models described in Section 3 are ap-
plied to the proposed example.

The subsets S 1 ⊂ X1 × X2 × Ẋ1 and S 2 ⊂ X1 × X2 × Ẋ2 are chosen as follows:

S 1 = [−π, π] × [−π, π] × [−7π, 7π] (96)

S 2 = [−π, π] × [−π, π] × [−hπ, hπ] (97)

with:

hπ = π2
(
2 + 2

√
1 + π2 +

π2

√
1 + π2

)
so that:

V (S )
1 = 56π3 V (S )

2 = 8π2hπ

The volumes Ṽi have been calculated using (15) on the basis of N = 16588 points4,
generated randomly using a uniform distribution:

Model generated via non-linear embedding A(3)
i :

Ṽ1

V (S )
1

=
5856 + 3.3179
16588 + 6.6358

= 0.35
Ṽ2

V (S )
2

=
6178 + 3.3179

16588 + 6.6358
= 0.37 M̃ =

Ṽ1Ṽ2

V (S )
1 V (S )

2

= 0.13

Model generated via non-linear embedding A(4)
i :

Ṽ1

V (S )
1

=
5856 + 3.3179
16588 + 6.6358

= 0.35
Ṽ2

V (S )
2

=
4866 + 3.3179

16588 + 6.6358
= 0.29 M̃ =

Ṽ1Ṽ2

V (S )
1 V (S )

2

= 0.10

Model generated via sector non-linearity concept:

Ṽ1

V (S )
1

=
7546 + 3.3179
16588 + 6.6358

= 0.45
Ṽ2

V (S )
2

=
9844 + 3.3179

16588 + 6.6358
= 0.59 M̃ =

Ṽ1Ṽ2

V (S )
1 V (S )

2

= 0.27

Model generated via sector non-linearity concept (conservative):

Ṽ1

V (S )
1

=
7546 + 3.3179
16588 + 6.6358

= 0.45
Ṽ2

V (S )
2

=
11197 + 3.3179
16588 + 6.6358

= 0.67 M̃ =
Ṽ1Ṽ2

V (S )
1 V (S )

2

= 0.30

4This particular value of N is chosen using statistical reasoning, in order to guarantee that the semi-
length of the 99% Agresti-Coull confidence interval will be less than 0.01 [51].
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Hence, according to the measure of overboundedness (15), the best model is the
one generated via non-linear embedding and described by the matrices A(4)

i . In general,
models obtained via non-linear embedding tend to be less conservative than the ones
obtained via sector non-linearity concept. This is probably due to the fact that the non-
linear embedding method tries to find the maximum and minimum value of f (x)/xi,
whereas the other method finds the maximum and minimum value of ∂ f (x)/∂xi. Then,
according to the mean-value theorem, f (x)/xi is bounded by ∂ f (x)/∂xi, so that the
extreme values of the former are smaller than those of the latter.

To conclude the comparison between the models, let us consider the measure based
on the region of attraction as introduced in Section 3.2, with controllers designed ap-
plying Theorem 2 to the following LMI region:

D = {z ∈ C : Re(z) < −1} (98)

Figs. 3 and 4 show the phase-space (red arrows), the trajectories (blue lines) ob-
tained starting from a grid of possible initial conditions (blue circles) and the region of
attraction estimated using Theorem 1 (black dots) for the models generated via non-
linear embedding with matrices A(3)

i and the models generated via sector non-linearity
concept (non-conservative). It can be seen that in all the cases, the trajectories converge
towards the hyperellipsoid and eventually go to the origin.

The measure Mβ defined in (21) has been calculated for each model, giving the
following results:

Model generated via non-linear embedding A(3)
i :

Mβ =
Vβ

VΘ

=
122.7323
248.0502

= 0.4948

Model generated via non-linear embedding A(4)
i :

Mβ =
Vβ

VΘ

=
122.8700
248.0502

= 0.4953

Model generated via sector non-linearity concept:

Mβ =
Vβ

VΘ

=
122.7605
248.0502

= 0.4949

Model generated via sector non-linearity concept (conservative):

Mβ =
Vβ

VΘ

=
122.6771
248.0502

= 0.4946

It can be seen that, also in this case, the model generated via non-linear embedding
with matrices A(4)

i performs slightly better than the others, thus confirming to be the
best obtained model.
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Figure 3: Phase-space, trajectories and estimated region of attraction for the closed-loop system obtained
using the model generated via non-linear embedding with matrices A(3)
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Figure 4: Phase-space, trajectories and estimated region of attraction for the closed-loop system obtained
using the model generated via sector non-linearity concept.
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7. Conclusions

In this paper, the presence of strong analogies between polytopic LPV and TS
systems and the automated generation of polytopic LPV and TS models have been
addressed. In particular, it has been shown that the method for the automated gen-
eration of LPV models by non-linear embedding can be easily extended to generate
automatically TS models from a given non-linear system. Analogously, a method al-
ready used in the TS framework for finding a model that describes in a fuzzy way a
given non-linear function has been extended to the case of polytopic LPV description
of non-linear systems.

Results obtained with a mathematical example have been presented and it has been
shown, using an overboundedness measure, that the automatic generation via non-
linear embedding provides less conservative models than the automated generation via
sector non-linearity concept. Also, a measure based on the region of attraction esti-
mates has been introduced for comparing the closed-loop performances of the different
models.

The overboundedness measure has shown to be an objective criterion that can be
used to select which model can be considered the best. However, in the general case,
which model is the best also depends on the context in which the model is used,
i.e. whether it is used for stabilization or observation, and which structure of con-
troller/observer is used for achieving the desired goal. Some information in this sense
has been provided by the measure based on the region of attraction estimates, that al-
lows comparing the closed-loop performances obtained with the different models when
considering a quadraticD-stabilizing state-feedback controller in the design step. The
proposed measure could be easily extended to other controller structures, e.g. output-
feedback controllers, and to the observation case. However, it has the limit of providing
an indication of which model is the best only a posteriori. It seems clear that an im-
portant path for future research is the development of a procedure that automatically
selects the best model during the design step, taking into account what the model is
used for and the used controller/observer structure.
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