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A Fault-Hiding Approach for the Switching
Quasi-LPV Fault Tolerant Control of a Four

Wheeled Omnidirectional Mobile Robot
Damiano Rotondo, Student Member, IEEE, Vicenç Puig, Fatiha Nejjari, and Juli Romera

Abstract—This paper proposes a reference model approach for
the trajectory tracking of a four wheeled omnidirectional mobile
robot. In particular, the error model is brought to a quasi-Linear
Parameter Varying (LPV) form suitable for designing an error-
feedback controller. It is shown that, if polytopic techniques are
used to reduce the number of constraints from infinite to finite, a
solution within the standard LPV framework could not exist due
to a singularity that appears in the possible values of the input
matrix. Adding a switching component to the controller allows to
solve this problem. Moreover, a switching LPV virtual actuator
is added to the control loop in order to obtain fault tolerance
within the fault-hiding paradigm, keeping the stability and some
desired performances under the effect of actuator faults without
the need of retuning the nominal controller. The effectiveness of
the proposed approach is shown and proved through simulation
and experimental results.

Index Terms—Mobile robots, linear parameter varying (LPV)
systems, fault tolerant control (FTC), virtual actuators, model
reference, switched systems, tracking, identification

I. INTRODUCTION

OMNIDIRECTIONAL mobile robots are gaining popu-
larity due to their enhanced mobility with respect to

traditional robots [1, 2, 3]. In order to achieve a good control
and enhance the tracking performance of omnidirectional mo-
bile robots, precise dynamical modeling is needed [4]. Hence,
in recent years, there have been some efforts in developing
a dynamic model [5], [6] and techniques for estimating the
unknown model parameters [7], [8] for this type of robots.

Different techniques have been applied to solve the control
problem for omnidirectional mobile robots, e.g. [9], [10].
However, when the mobile robots are intended to be used
in hazardous environments or for long-time operations, it is
needed to increase their robustness against possible failures
[11]. In particular, four wheeled omnidirectional mobile robots
have the relevant characteristic that they can still operate
with three wheels in case some malfunctioning in one wheel
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has been detected [12]. This makes them good setups for
testing techniques that provide fault tolerance against actuator
faults. The objective of a Fault Tolerant Control (FTC) system
[13, 14, 15, 16] is to maintain current performances close to
desirable ones and preserve stability conditions in the presence
of faults. The existing design techniques mainly include the
passive and the active approach [17], [18]. The passive FTC
techniques take into account the fault as a system perturbation,
such that the control law is designed to have inherent fault
tolerance capabilities. On the other hand, the active FTC
techniques try to satisfy the control objectives with minimum
performance degradation either by selecting a precalculated
control law or by synthesizing online a new control strategy.
Examples of successful FTC strategies can be multiple-model-
based [19], learning-based [20] and adaptive backstepping-
based [21].

In recent years, the fault-hiding paradigm has been proposed
as an active strategy to obtain fault tolerance [22]. In this
paradigm, the faulty plant is reconfigured instead of the
controller/observer by inserting a reconfiguration block when
a fault occurs. The reconfiguration block is chosen so as to
hide the fault from the controller point of view, allowing it to
see the same plant as before the fault. In case of actuator
faults, the reconfiguration block is named virtual actuator.
This active FTC strategy has been extended successfully to
many classes of systems, e.g. Linear Particular Varying (LPV)
[23], Takagi-Sugeno [24] and piecewise affine [25]. An input-
output formulation has been proposed recently in [26].

In the last decades, the Linear Parameter Varying (LPV)
paradigm has become a standard formalism in systems and
control, for analysis, controller synthesis and system identifica-
tion [27, 28, 29]. This class of systems is important because, by
embedding the system nonlinearities in the varying parameters,
gain scheduling control of nonlinear systems can be performed
using an extension of linear techniques. When there are both
continuous valued and discrete valued varying parameters, the
resulting system is referred to as switching LPV [30].

In this paper, a solution for the trajectory tracking problem
in the inertial fixed coordinate system is proposed for a four
wheeled omnidirectional robot. This solution relies on the use
of a reference model that describes the desired trajectory, an
idea that is well-established in the LTI framework [31], and
has recently been extended to cope with the control of LPV
systems [32]. The resulting nonlinear error model is brought
to a quasi-LPV form suitable for designing an LPV controller
solving a system of Linear Matrix Inequalities (LMIs), a
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problem for which efficient solvers are available [33], [34].
In particular, it is shown that, if polytopic techniques are
used to reduce the number of LMI constraints from infinite
to finite, there could not exist a solution within the standard
LPV framework. Hence, the switching LPV framework is
considered. The values of the parameters in the model must
be known in order to compute the controller gains, and this
leads to the necessity of performing system identification.
The procedure used to this end resembles the one used in
[35]. Finally, the virtual actuators technique is extended to
switching LPV systems subject to actuator faults in such a
way that, once the controller has been designed, fault tolerance
can be added to the control loop without need of redesigning
the obtained controller. The effectiveness of the proposed
approach is shown through experimental results obtained with
a real testbed.

The paper is structured as follows: Section II describes
the four wheeled omnidirectional robot. Section III introduces
the dynamic model of the four wheeled omnidirectional robot
and the identification approach used to estimate the unknown
parameters. The error-feedback controller design using switch-
ing LPV techniques is presented in Section IV. Section V
presents the proposed FTC strategy using virtual actuators in
the context of switching LPV systems. Some further details
about the application of the theory presented in the paper to the
four wheeled omnidirectional robot are presented in Section
VI. The simulation and experimental results are shown and
commented in Section VII. Finally, the main conclusions are
stated in Section VIII.

II. SYSTEM DESCRIPTION

The robotic platform case study used in this paper is a four
wheeled omnidirectional robot developed by ST Microelec-
tronics under the i-Sense European project1 (see Fig. 1). This
platform is a holonomic robot presenting a great manoeuvra-
bility and effectiveness. The omnidirectional feature is reached
thanks to the characteristics of the wheels which roll forward
like normal wheels but can slide sideways at the same time,
allowing almost independent tangential, normal and angular
velocities (holonomic property). The robot is composed of
several parts: a netbook PC for control, electronic boards
(1 STM32F4Discovery board, 2 motor driver boards and 1
DC-DC converter), sensors (4 encoders: one for each wheel,
8 ultra-sonic rangers and the iNemo Sensor Platform that
includes a giroscope, accelerometers and a magnetometer),
4 DC motors, 4 omnidirectional wheels plus the mechanical
items.

The STM32F4 microcontroller, a Cortex-M4 with CPU
working at 168MHz (210 DMIPS) with 192KB of RAM, is in
charge of the low-level control of the robot. It takes care of all
the low-level tasks such as ultrasound sensors acquisition and
motor control. Moreover, it offers a high-level API to control
the robot from the network via an USB port.

The high-level robot control algorithm is running in Mat-
lab under Linux in the netbook fixed on top of the robot.
The communications between the low-level hardware of the

1http://www.i-sense.org/

Fig. 1. i-Sense robotic platform

Fig. 2. Four wheeled omnidirectional mobile robot.

robot netbook is through the USB port connected to the
STM32F4Discovery board. The control algorithm reads the
sensor data (encoders), computes the control actions as a PWM
duty cycle, and sends them back to the motors at 25Hz.

The i-Sense robotic platform has been released as an open
source project on the SourceForge website2. The goal of this
platform in the i-Sense project was to allow testing advanced
FTC strategies by directly implementing them in MATLAB.

III. FOUR WHEELED OMNIDIRECTIONAL MOBILE ROBOT
MODELING AND IDENTIFICATION

A. Nonlinear Dynamic Model

The dynamic model of the four wheeled omnidirectional
robot (see Fig. 2) relates the wheel inputs and robot velocities
with the corresponding accelerations, taking into account the
traction, viscous friction and Coulomb friction forces. It is
given by the following set of differential equations, obtained
from the ones presented in [1] by considering the linear
velocities on the static axis instead of the ones on the robot’s
axis:

ẋ = vx (1)

v̇x =
(
A11c2

θ
+A22s2

θ

)
vx +((A11−A22)sθ cθ −ω)vy

+K11cθ sign(vxcθ + vysθ )−B21sθ u0 +B12cθ u1
−K22sθ sign(−vxsθ + vycθ )−B23sθ u2 +B14cθ u3

(2)

2https://sourceforge.net/projects/isenseroboticplatform/
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ẏ = vy (3)

v̇y = ((A11−A22)sθ cθ +ω)vx +
(
A11s2

θ
+A22c2

θ

)
vy

+K11sθ sign(vxcθ + vysθ )+B21cθ u0 +B12sθ u1
+K22cθ sign(−vxsθ + vycθ )+B23cθ u2 +B14sθ u3

(4)

θ̇ = ω (5)

ω̇ = A33ω +B31u0+B32u1+B33u2+B34u3+K33sign(ω) (6)

where (x,y) is the robot position, θ is the angle with respect
to the defined front of robot (sθ , sinθ and cθ , cosθ ), vx,
vy and ω are the corresponding linear/angular velocities, and
u0, u1, u2 and u3 the motor voltage applied to the wheel 1, 2,
3 and 4, respectively. The coefficients Aii, Bi j, Kii, i = 1,2,3,
j = 1,2,3,4, are defined as follows:

A11 =
2K2

t l2

r2RM
− Bv

M
A22 =

2K2
t l2

r2RM
− Bvn

M
A33 =−

4d2K2
t l2

r2RJ
− Bω

J

B12 = B23 =−
lKt

rRM
B14 = B21 =

lKt

rRM
B31 = B32 = B33 = B34 =

lKt d
rRJ

K11 =−
Cv

M
K22 =−

Cvn

M
K33 =−

Cω

J

where Kt is the motor torque constant, l the gearbox reduction,
r the wheel radius, R the motor resistor, M the mass, d the
distance between the wheels and the robot center, J the inertia
moment, Bv the front viscous friction coefficient, Bvn the
orthogonal viscous friction coefficient, Bω the angular viscous
friction coefficient, Cv the front Coulomb friction coefficient,
Cvn the orthogonal Coulomb friction coefficient and Cω the
angular Coulomb friction coefficient.

The values of the parameters appearing in the equations
(1)-(6) must be known in order to design a controller, and this
leads to the necessity of performing system identification. At
first, the unknown parameters of the angular subsystem (5)-(6)
are identified. Later, those affecting the linear subsystem (1)-
(4) are estimated. The spirit of the method is to compare, at
each time step, the data obtained from the real setup with
the data obtained by simulating part of the four wheeled
omnidirectional robot continuous-time nonlinear model. This
is included in an optimization problem to find the parameter
values that give simulation results that better approximate the
real system.

B. Angular Subsystem Identification

The goal of this step is to identify the unknown parameters
A33, B3 , B31 = B32 = B33 = B34 and K33. Due to the Coulomb
friction force, represented by K33, the angular subsystem will
exhibit a dead-zone nonlinearity with respect to the sum of
the inputs. In other words, applying an increasing sequence
of input values u0, u1, u2, u3, the robot will not rotate until
some critical value u∗0 + u∗1 + u∗2 + u∗3 is reached. This value,
taking into account (6), leads to the following condition that
can be used for further reducing the number of parameters to
be identified through optimization:

−B3 (u∗0 +u∗1 +u∗2 +u∗3) = K33 (7)

Hence, the optimization procedure should identify some val-
ues for the unknown parameters A33, B3 in such a manner that
the nonlinear model behavior resembles the real behavior of
the angular subsystem. It is assumed to have at disposal Nθ sets

of data
{

ui
0(k),u

i
1(k),u

i
2(k),u

i
3(k),θi(k)

}
, where i = 1, . . . ,Nθ

and k = 1, . . . ,Ki
θ

with Ki
θ

being the number of samples of the
ith set of data.

The identification procedure finds the minimum of the
following objective function over the unknown parameters:

min
A33,B3,K33

Jθ =
Nθ

∑
i=1

Ki
θ

∑
k=1

(
θi(k)− θ̂i(k)

)2
(8)

subject to (7), where θ̂i(k) denotes the simulation provided by
Eqs. (5)-(6).

However, as shown later in Section VII, by applying the
proposed identification procedure to the available data sets,
a dependence of the parameter A33 on ω has been observed.
This fact has not been considered by [1]. Hence, the nonlinear
model used for control purposes is made up by (1)-(5) and by
the following equation, obtained as a slight modification of
(6):

ω̇ = A33(ω)ω +B31u0 +B32u1 +B33u2 +B34u3 +K33sign(ω) (9)

C. Linear Subsystem Identification

In this step, the unknown parameters A11, A22, Bl , B21 =
−B12 =−B23 = B14, K11 and K22 should be identified. Due to
the system symmetry, it is reasonable to assume also that A11 =
A22 ,Al and K11 =K22 ,Kl (this assumption, that is confirmed
by the experimental data, is equivalent to assume that Bv =Bvn
and Cv =Cvn). A reasoning about the Coulomb friction force
similar to the one made for the angular subsystem leads to the
following condition:

Kl =−Bl (u∗0−u∗2) (10)

Hence, the identification procedure should identify some
values for the unknown parameters Al , Bl in such a way
that the nonlinear model behavior resembles the real behavior
of the linear subsystem. It is assumed to have at disposal
Nl sets of data

{
ui

0(k),u
i
1(k),u

i
2(k),u

i
3(k),xi(k),yi(k)

}
, where

i = 1, . . . ,Nl and k = 1, . . . ,Ki
l with Ki

l being the number of
samples of the ith set of data. The identification procedure
finds the minimum of the following objective function over
the unknown parameters:

min
Al ,Bl ,Kl

Jl =
Nl

∑
i=1

Ki
l

∑
k=1

[
(xi(k)− x̂i(k))

2 +(yi(k)− ŷi(k))
2
]

(11)

subject to (10), where x̂i(k) and ŷi(k) denote the simulation
provided by Eqs. (1)-(4).

D. Reference Model and Quasi-LPV Representation

Taking into account the fact that B3 ,B31 =B32 =B33 =B34,
Al , A11 = A22, Bl , B21 =−B12 =−B23 = B14 and Kl ,K11 =
K22, let us introduce the following reference model, that will
provide the state trajectory and the feedforward inputs:

ẋr = vr
x (12)
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v̇r
x = Alvr

x−ωvr
y +Bl [cθ (ur

3−ur
1)− sθ (ur

0−ur
2)]+

Kl [cθ sign(vxcθ + vysθ )− sθ sign(−vxsθ + vycθ )]
(13)

ẏr = vr
y (14)

v̇r
y = ωvr

x +Alvr
y +Bl [cθ (ur

0−ur
2)+ sθ (ur

3−ur
1)]+

Kl [sθ sign(vxcθ + vysθ )+ cθ sign(−vxsθ + vycθ )]
(15)

θ̇r = ωr (16)

ω̇r = A33(ω)ωr +B3 (ur
0 +ur

1 +ur
2 +ur

3)+K33sign(ω) (17)

where (xr,yr) is the reference vehicle position, θr is its angle,
vr

x, vr
y and ωr are the corresponding linear/angular velocities,

and ur
0, ur

1, ur
2, ur

3 are the reference inputs (feedforward
actions). Then, by defining the tracking errors e1 , xr − x,
e2 , vr

x−vx, e3 , yr−y, e4 , vr
y−vy, e5 , θr−θ , e6 , ωr−ω ,

and the new inputs ∆ui , ur
i −ui, i = 0,1,2,3, and by using an

Euler approximation with a sampling time Ts to allow a digital
implementation of the controller, the error model for the four-
wheeled omnidirectional mobile robot can be obtained from
(1)-(5), (9) and (12)-(17).

By defining the vector of varying parameters as:

ϑd (θ(k),ω(k)) =


ϑ d

1 (ω(k))
ϑ d

2 (ω(k))
ϑ d

3 (θ(k))
ϑ d

4 (θ(k))

=


ω(k)Ts

1+A33 (ω(k))Ts
sin(θ(k))Ts
cos(θ(k))Ts


the error model can be reshaped into the following quasi-LPV
representation:

e1(k+1)
e2(k+1)
e3(k+1)
e4(k+1)
e5(k+1)
e6(k+1)

=


1 Ts 0 0 0 0
0 Ad

l 0 −ϑ d
1 0 0

0 0 1 Ts 0 0
0 ϑ d

1 0 Ad
l 0 0

0 0 0 0 1 Ts
0 0 0 0 0 ϑ d

2




e1(k)
e2(k)
e3(k)
e4(k)
e5(k)
e6(k)



+


0 0 0 0

−Blϑ
d
3 −Blϑ

d
4 Blϑ

d
3 Blϑ

d
4

0 0 0 0
Blϑ

d
4 −Blϑ

d
3 −Blϑ

d
4 Blϑ

d
3

0 0 0 0
B3Ts B3Ts B3Ts B3Ts


 ∆u0(k)

∆u1(k)
∆u2(k)
∆u3(k)


(18)

where Ad
l = 1+AlTs.

IV. ERROR-FEEDBACK CONTROLLER DESIGN USING
SWITCHING LPV TECHNIQUES

A. Controller Design for (quasi-)LPV Systems
Consider the following (quasi-)LPV error system:

e(k+1) = A(ϑ(k))e(k)+B(ϑ(k))∆u(k) (19)

where e ∈ Rne is the error vector, ∆u ∈ Rnu is the input vector,
A(ϑ(k)), B(ϑ(k)) are varying matrices of appropriate dimen-
sions and ϑ ∈ Θ ⊂ Rnϑ is the vector of varying parameters.
The system is controlled through an error-feedback control
law:

∆u(k) = K (ϑ(k))e(k) (20)

and it is wished to solve the design problem of finding an
error-feedback gain matrix K (ϑ(k)) such that the resulting
closed-loop error system is stable with poles placed in some
desired region of the complex plane.

In this paper, both stability and pole clustering are analyzed
within the quadratic Lyapunov framework, where the specifi-
cations are assured by the use of a single quadratic Lyapunov
function. Despite the introduction of conservativeness with
respect to other existing approaches, where the Lyapunov
function is allowed to be parameter varying, the quadratic
approach has undeniable advantages in terms of computational
complexity.

In particular, the (quasi-)LPV error system (19) with the
error-feedback control law (20) is quadratically stable if and
only if there exist Xs = XT

s > 0 and K (ϑ(k)) such that:(
−Xs (A(ϑ)+B(ϑ)K (ϑ))Xs

Xs (A(ϑ)+B(ϑ)K (ϑ))T −Xs

)
< 0

(21)
∀ϑ ∈ Θ. On the other hand, pole clustering is based on the
results obtained by [36], where subsets D of the complex
plane, referred to as LMI regions, are defined as:

D = {z ∈ C : fD (z)< 0} (22)

where fD is the characteristic function, defined as:

fD (z) = α + zβ + z̄β
T = [αkl +βklz+βlk z̄]1≤k,l≤m (23)

with α = αT ∈Rm×m and β ∈Rm×m. Hence, the (quasi-) LPV
error system (19) with error-feedback control law (20) has
poles3 in D if there exist XD = XT

D > 0 and K (ϑ(k)) such
that:[

αklXD +βkl (A(ϑ)+B(ϑ)K(ϑ))XD +βlkXD (A(ϑ)+B(ϑ)K(ϑ))T
]

< 0
1≤k,l≤m

(24)
∀ϑ ∈ Θ. The main difficulty with using (21) and (24) is

that they impose an infinite number of constraints. In order
to reduce this number to finite, a polytopic approximation of
(19)-(20) is considered, as follows:

A(ϑ(k)) =
N

∑
i=1

γi (ϑ(k))Ai γi (ϑ)≥ 0,
N

∑
i=1

γi (ϑ) = 1 ∀ϑ ∈Θ

(25)

B(ϑ(k)) =
W

∑
w=1

δw (ϑ(k))Bw δw (ϑ)≥ 0,
W

∑
w=1

δw (ϑ) = 1 ∀ϑ ∈Θ

(26)

K (ϑ(k)) =
N

∑
i=1

γi (ϑ(k))Ki (27)

where each combination (Ai,Bw), i = 1, . . . ,N, w = 1, . . . ,W
is called vertex system and is controlled through the vertex
controller Ki. Then, quadratic stability and pole clustering can
be assessed through the following Linear Matrix Inequalities
(LMIs), obtained from (21)-(24) using a common Lyapunov
matrix X = Xs = XD > 0 and the change of variables Γi ,KiX :(

−X AiX +BwΓi
XAT

i +ΓT
i BT

w −X

)
< 0 (28)

3According to [37], and with a little abuse of language, the poles of an
LPV system are defined as the set of all the poles of the LTI systems obtained
by freezing ϑ(k) to all its possible values ϑ ∗ ∈Θ. It has been reported that the
idea of poles, as introduced, has a connection with the dynamical behavior
of the system, justifying, from the engineering point of view, the abuse of
language.
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[
αklX +βkl (AiX +BwΓi)+βlk (AiX +BwΓi)

T
]

< 0
1≤k,l≤m

(29)

with i = 1, . . . ,N and w = 1, . . . ,W , that can be solved using
available software, e.g. the YALMIP toolbox [33] with Se-
DuMi solver [34].

B. The Switching (quasi-)LPV Controller Design

For some particular systems, due to the convexity of the
polytopic approximation of A(ϑ(k)) and B(ϑ(k)), some val-
ues that do not correspond to possible operating conditions,
and for which the controllability is lost, could be considered.
This fact causes the infeasibility of (28)-(29), that could be
avoided by searching the solution to the design problem
within the switching LPV framework, where the overall system
behavior is given by an interaction between different LPV
systems through discrete switching events, which can depend
on states or time. Similarly, the overall controller is obtained
from different LPV controllers that are switched when discrete
switching events occur.

More specifically, it is assumed that the (quasi-)LPV error
system (19)-(20) is modified including a switching part, as
follows:

e(k+1) = Aσ (ϑ(k))e(k)+Bσ (ϑ(k))∆u(k) (30)

∆u(k) = Kσ (ϑ(k))e(k) (31)

with:

Aσ (ϑ(k)) =



N1
∑

i=1
γ
(1)
i (ϑ(k))A(1)

i , γ
(1)
i (ϑ)≥ 0,

N1
∑

i=1
γ
(1)
i (ϑ) = 1 ∀ϑ ∈Θ1

...
Nζ

∑
i=1

γ
(ζ )
i (ϑ(k))A(ζ )

i , γ
(ζ )
i (ϑ)≥ 0,

Nζ

∑
i=1

γ
(ζ )
i (ϑ) = 1 ∀ϑ ∈Θζ

...
NZ
∑

i=1
γ
(Z)
i (ϑ(k))A(Z)

i , γ
(Z)
i (ϑ)≥ 0,

NZ
∑

i=1
γ
(Z)
i (ϑ) = 1 ∀ϑ ∈ΘZ

(32)

Bσ (ϑ(k))=



W1
∑

w=1
δ
(1)
w (ϑ(k))B(1)

w , δ
(1)
w (ϑ)≥ 0,

W1
∑

w=1
δ
(1)
w (ϑ) = 1 ∀ϑ ∈Θ1

...
Wζ

∑
w=1

δ
(ζ )
w (ϑ(k))B(ζ )

w , δ
(ζ )
w (ϑ)≥ 0,

Wζ

∑
w=1

δ
(ζ )
w (ϑ) = 1 ∀ϑ ∈Θζ

...
WZ
∑

w=1
δ
(Z)
w (ϑ(k))B(Z)

w , δ
(Z)
w (ϑ)≥ 0,

WZ
∑

w=1
δ
(Z)
w (ϑ) = 1 ∀ϑ ∈ΘZ

(33)

Kσ (ϑ(k)) =



N1

∑
i=1

γ
(1)
i (ϑ(k))K(1)

i , ∀ϑ ∈Θ1

...
Nζ

∑
i=1

γ
(ζ )
i (ϑ(k))K(ζ )

i , ∀ϑ ∈Θζ

...
NZ

∑
i=1

γ
(Z)
i (ϑ(k))K(Z)

i , ∀ϑ ∈ΘZ

(34)

where Θ1, . . . ,ΘZ are subsets of the varying parameter space
Θ, such that Θ = Θ1 ∪ . . . ∪Θζ ∪ . . . ∪ΘZ . In each subset
Θζ , ζ = 1, . . . ,Z, the system is described by a polytopic
combination of vertex systems. The controller (31) with gain

(34) assures that the error system (30) with state and input
matrix as in (32) and (33), respectively, is quadratically stable
and has poles in D if there exist X =XT > 0 and Γ

(ζ )
i ,K(ζ )

i X ,
i = 1, . . . ,NZ , ζ = 1, . . . ,Z, such that: −X A(ζ )

i X +B(ζ )
w Γ

(ζ )
i(

A(ζ )
i X +B(ζ )

w Γ
(ζ )
i

)T
−X

< 0 (35)

[
αklX +βkl

(
A(ζ )

i X +B(ζ )
w Γ

(ζ )
i

)
+βlk

(
A(ζ )

i X +B(ζ )
w Γ

(ζ )
i

)T
]

< 0
1≤k,l≤m

(36)
with w = 1, . . . ,WZ .

Remark 1: This result is a particular case of the one
obtained in [30], where a common parameter-dependent Lya-
punov function has been used for control design of switched
LPV systems. In this paper, a common fixed Lyapunov func-
tion is used instead, since it has proved to be enough for
stabilizing the four wheeled omnidirectional mobile robot and
placing its poles in the desired LMI region D .

Remark 2: In the case of (switching) quasi-LPV systems
obtained from a nonlinear system, the closed-loop system
could be unstable for some operating conditions despite the
feasibility of the design conditions. A rigorous analysis of the
stability should also take into account the region of attraction
estimates as in [38].

V. FAULT TOLERANT CONTROL USING SWITCHING LPV
VIRTUAL ACTUATORS

A. Fault Definition

Let us consider the switching (quasi-)LPV error system
obtained from (30) including actuator faults as follows:

e(k+1) = Aσ (ϑ(k))e(k)+Bσ , f (ϑ(k),φ(k))∆u(k) (37)

where the multiplicative actuator faults are embedded in the
matrix Bσ , f (ϑ(k),φ(k)), as follows:

Bσ , f (ϑ(k),φ(k)) = Bσ (ϑ(k))diag(φ1(k), . . . ,φnu(k)) (38)

where Bσ (ϑ(k)) denotes the faultless input matrix, and φi(k)
represents the effectiveness of the ith actuator, such that the
extreme values φi = 0 and φi = 1 represent a total failure of
the ith actuator and the healthy ith actuator, respectively.

B. The Switching LPV Virtual Actuator

In this paper, the concept of virtual actuator introduced
in [22] is extended to switching LPV systems. The virtual
actuator can be either a static or a dynamic block, depending
on the satisfaction of the following rank condition:

rank
(
Bσ , f (ϑ(k),φ(k))

)
= rank (Bσ (ϑ(k))) (39)

If (39) holds, e.g. in the case of multiplicative actuator
faults, the reconfiguration structure is static and can be ex-
pressed as:

∆u(k) = Nσ ,v (ϑ(k),φ(k))∆uc(k) (40)

where ∆uc(k) is the controller output and:

Nσ ,v (ϑ(k),φ(k)) = B†
σ , f (ϑ(k),φ(k))Bσ (ϑ(k)) (41)
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Cases where (39) is not satisfied should be described
through values of the matrix B∗σ (ϑ(k)) such that the following
condition holds4:

B∗σ (ϑ(k)) = Bσ , f (ϑ(k),φ(k))Nσ ,v (ϑ(k),φ(k)) (42)

In such cases, the reconfiguration structure is expressed by:

∆u(k) = Nσ ,v (ϑ(k),φ(k))(∆uc(k)−Mσ ,v (ϑ(k))xv(k)) (43)

where Mσ ,v (ϑ(k)) is the gain of the switching LPV virtual
actuator, while the virtual actuator state xv(k) is calculated as:

xv(k+1) = (Aσ (ϑ(k))+B∗σ (ϑ(k))Mσ ,v (ϑ(k)))xv(k)
+(Bσ (ϑ(k))−B∗σ (ϑ(k)))∆uc(k)

(44)
with xv(0) = 0. When the actuator faults appear, the switching
LPV virtual actuator reconstructs the vector ∆u(k) from the
output of the nominal controller ∆uc(k), taking into account
the fault occurrence. The faulty plant and the switching LPV
virtual actuator are called the reconfigured switching LPV
plant, which is connected to the nominal switching LPV
controller. If the reconfigured switching LPV plant behaves
like the nominal plant, the loop consisting of the reconfigured
plant and the switching LPV controller behaves like the
nominal closed-loop system.

When there is no fault, ∆u(k) = ∆uc(k) and the switching
LPV system is directly controlled by the switching LPV error-
feedback controller (31). On the other hand, under faulty
conditions, the signal entering into the controller is slightly
modified, such that the output of the controller (31) becomes
as follows:

∆uc(k) = Kσ (ϑ(k))(e(k)+ xv(k)) (45)

C. Reconfiguration Analysis

In the following, it is shown that thanks to this modification
and to the introduction of the virtual actuator block, the
augmented system can be brought to a block triangular form.

Theorem 1: Consider the augmented system made up by
the faulty system (37), the virtual actuator (43)-(44) and the
control law (45)5:(

e(k+1)
xv(k+1)

)
=

(
Aσ +B∗σ Kσ B∗σ (Kσ −Mσ ,v)
(Bσ −B∗σ )Kσ Aσ +B∗σ Mσ ,v +(Bσ −B∗σ )Kσ

)(
e(k)
xv(k)

)
(46)

Then, there exists a similarity transformation such that the
state matrix of the augmented system in the new state variables
is block triangular, as follows:

Aaug (ϑ(k)) =
(

Aσ +Bσ Kσ 0
(Bσ −B∗σ )Kσ Aσ +B∗σ Mσ ,v

)
(47)

4Notice that the matrix B∗σ (ϑ(k)) does not depend on φ(k) because the
matrix Nσ ,v (ϑ(k),φ(k)) eliminates the effects of actuator partial faults. A
mathematical proof of this fact relies on the properties of the pseudo-inverse
[39].

5The dependence of the matrices Aσ , Bσ , B∗σ , Kσ and Mσ ,v on the varying
parameter vector ϑ(k) has been omitted for lack of space.

Proof: The proof is straightforward, and comes from in-
troducing the new state variable x1(k) , e(k) + xv(k) and
considering the state

(
x1(k) xv(k)

)T . �
Looking at (47), it can be seen that the state

x1(k) is affected by Kσ (ϑ(k)) through the matrix
Aσ (ϑ(k)) + Bσ (ϑ(k))Kσ (ϑ(k)), while the state
xv(k) is affected by Mσ ,v (ϑ(k)) through the matrix
Aσ (ϑ(k)) + B∗σ (ϑ(k))Mσ ,v (ϑ(k)). Hence, the switching
LPV controller and the switching LPV virtual actuator can
be designed independently.

The design conditions presented in Section IV can be
applied to the case of virtual actuator design by making the
changes Bσ (ϑ(t))→ B∗σ (ϑ(t)) and Kσ (ϑ(t))→Mσ ,v (ϑ(t))
and considering a polytopic approximation of B∗σ (ϑ(t)) and
Mσ ,v (ϑ(t)) similar to (33)-(34).

VI. APPLICATION TO THE ROBOT

A. Reference Inputs Calculation for Trajectory Tracking

To make the robot track a desired trajectory, proper values
of ur

0, ur
1, ur

2, ur
3 should be fed to the reference model, such that

its state equals the one corresponding to the desired trajectory.
In this paper, a circular trajectory is chosen and defined as
follows:

xr(t) = ρ cos(θr(t)) (48)

yr(t) = ρ sin(θr(t)) (49)

θr(t) =
2πt
T

(50)

where ρ is the circle radius and T is the desired revolution
period around the circle center. Taking the derivatives and
second derivatives of (48)-(50), taking into account (12),
(14) and (16), and replacing into (12)-(17), the following is
obtained:

Are f (t)


ur

0(t)
ur

1(t)
ur

2(t)
ur

3(t)

= Bre f (t) (51)

with:

Are f (t) =

 −Blsθ −Blcθ Blsθ Blcθ

Blcθ −Blsθ −Blcθ Blsθ

B3 B3 B3 B3

 (52)

Bre f (t) =
(

βre f 1(t) βre f 2(t) βre f 3(t)
)T (53)

βre f 1(t) = ρ
2π

T

(
Al sin 2πt

T + cos 2πt
T

(
ω(t)− 2π

T

))
−Kl [cθ sign(vxcθ + vysθ )− sθ sign(vycθ − vxsθ )]

βre f 2(t) = ρ
2π

T

(
sin 2πt

T

(
ω(t)− 2π

T

)
−Al cos 2πt

T

)
−Kl [sθ sign(vxcθ + vysθ )+ cθ sign(vycθ − vxsθ )]

βre f 3(t) =−A33 (ω(t))
2π

T
−K33sign(ω(t))

Finally, the reference model inputs ure f
i (t), i = 0,1,2,3, are

obtained as: 
ur

0(t)
ur

1(t)
ur

2(t)
ur

3(t)

= A†
re f (t)Bre f (t) (54)
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where A†
re f (t) is the pseudoinverse of Are f (t).

Remark 3: The obtained values ur
i (t), i = 0,1,2,3 depend

on the specifications, defined by the radius ρ and revolution
period T of the desired circular trajectory (48)-(50). Special
care should be taken in choosing ρ and T , such that the
resulting reference inputs do not cause the motors to work
near/in their saturation region.

Remark 4: The reference input calculation presented in this
section can be applied to obtain the tracking of a wider class
of trajectories. In particular, if xr(t), yr(t), θr(t)∈C 2 in some
time interval t ∈ [t0, t f ], then βre f 1(t), βre f 2(t) and βre f 3(t) in
(53) take the following form for t ∈ [t0, t f ]:

βre f 1(t) = ẍr(t)−Al ẋr(t)+ω ẏr(t)
−Kl [cθ sign(vxcθ + vysθ )− sθ sign(−vxsθ + vycθ )]

βre f 2(t) = ÿr(t)−Al ẏr(t)−ω ẋr(t)
−Kl [sθ sign(vxcθ + vysθ )+ cθ sign(−vxsθ + vycθ )]

βre f 3(t) = θ̈r(t)−A33 (ω(t)) θ̇r(t)−K33sign(ω(t))

In this way, most of the trajectories that are of interest in
mobile robot applications can be obtained, e.g. polynomials,
conic and polygonal trajectories.

B. Faulty Error Model of the Four Wheeled Robot

By including faults that cause a change of effectiveness
in the actuators, the dynamic model of the four-wheeled
omnidirectional robot is slightly changed. In particular, in Eqs.
(2), (4) and (9), u0, u1, u2 and u3 are replaced with φ0u0, φ1u1,
φ2u2 and φ3u3, respectively, where φi, i = 0,1,2,3 denotes the
multiplicative fault in the ith wheel.

By modifying Eqs. (13), (15) and (17), replacing ur
0, ur

1, ur
2

and ur
3 with φ̂0ur

0, φ̂1ur
1, φ̂2ur

2 and φ̂3ur
3, where φ̂i, i= 0,1,2,3 is

the multiplicative fault estimation, then, under the assumption
that φ̂i ≈ φi, i = 0,1,2,3, the discrete-time quasi-LPV repre-
sentation of the faulty four wheeled omnidirectional mobile
robot error model is the following:

e1(k+1)
e2(k+1)
e3(k+1)
e4(k+1)
e5(k+1)
e6(k+1)

=


1 Ts 0 0 0 0
0 Ad

l 0 −ϑ d
1 0 0

0 0 1 Ts 0 0
0 ϑ d

1 0 Ad
l 0 0

0 0 0 0 1 Ts
0 0 0 0 0 ϑ d

2




e1(k)
e2(k)
e3(k)
e4(k)
e5(k)
e6(k)



+


0 0 0 0

−Blϑ
d
3 −Blϑ

d
4 Blϑ

d
3 Blϑ

d
4

0 0 0 0
Blϑ

d
4 −Blϑ

d
3 −Blϑ

d
4 Blϑ

d
3

0 0 0 0
B3Ts B3Ts B3Ts B3Ts

 · · ·

· · ·

 φ0 0 0 0
0 φ1 0 0
0 0 φ2 0
0 0 0 φ3


 ∆u0(k)

∆u1(k)
∆u2(k)
∆u3(k)


(55)

that is in the form (37)-(38). Hence, the virtual actuator
technique can be applied to the faulty error model (55).

Adapting the reference input calculation presented in Sec-
tion VI-A to the faulty case, the matrix Are f (t) becomes:

Are f (t) =

 −Blsθ φ̂0 −Blcθ φ̂1 Blsθ φ̂2 Blcθ φ̂3
Blcθ φ̂0 −Blsθ φ̂1 −Blcθ φ̂2 Blsθ φ̂3
B3φ̂0 B3φ̂1 B3φ̂2 B3φ̂3

 (56)

C. Fault Estimation for the Four Wheeled Robot

In order to apply the proposed strategy, a fault estimation
is needed. Hereafter, the fault estimation is formulated as
a parameter estimation problem in such a way that any
parameter estimation algorithm, such as least squares, could be
used. In general, least squares algorithms can be formulated
either in block or in recursive online form [40]. Once the
equation is put in regressor form, the recursive formulation
[41] and the block formulation [42] are interchangeable.

In order to obtain the regressors for estimating the mul-
tiplicative faults φ̂0, φ̂1, φ̂2 and φ̂3, the discrete-time faulty
versions of (13), (15) and (17), where u0, u1, u2, u3 are
replaced with φ0u0, φ1u1, φ2u2, φ3u3 are considered. Then,
using basic algebraic manipulations, it is possible to obtain:

zx(k) = µ
T
x (k)φ(k) (57)

zy(k) = µ
T
y (k)φ(k) (58)

zθ (k) = µ
T
θ (k)φ(k) (59)

where:

φ(k) =
[

φ0(k−1) φ1(k−1) φ2(k−1) φ3(k−1)
]T (60)

zx(k) = vx(k)− vx(k−1)−
(
A11c2

θ
+A22s2

θ

)
Tsvx(k−1)

−((A11−A22)sθ cθ −ω(k−1))Tsvy(k−1)
−K11cθ Tssign

(
vx(k−1)cθ + vy(k−1)sθ

)
+K22sθ Tssign

(
vy(k−1)cθ − vx(k−1)sθ

) (61)

µT
x (k) =

[
−B21sθ Tsu0(k−1) B12cθ Tsu1(k−1) · · ·
· · · −B23sθ Tsu2(k−1) B14cθ Tsu3(k−1)

] (62)

zy(k) = vy(k)− vy(k−1)−
(
A11s2

θ
+A22c2

θ

)
Tsvy(k−1)

−((A11−A22)sθ cθ +ω(k−1))Tsvx(k−1)
−K11sθ Tssign

(
vx(k−1)cθ + vy(k−1)sθ

)
−K22cθ Tssign

(
vy(k−1)cθ − vx(k−1)sθ

) (63)

µT
y (k) =

[
B21cθ Tsu0(k−1) B12sθ Tsu1(k−1) · · ·
· · · B23cθ Tsu2(k−1) B14sθ Tsu3(k−1)

] (64)

zθ (k) = ω(k)−ω(k−1)−K33Tssign(ω(k−1))
−A33 (ω(k−1))Tsω(k−1) (65)

µT
θ
(k) =

[
B31Tsu0(k−1) B32Tsu1(k−1) · · ·
· · · B33Tsu2(k−1) B34Tsu3(k−1)

] (66)

with cθ = cosθ(k−1) and sθ = sinθ(k−1). Then, if a block
formulation with time window NLS is used, the least squares
fault estimation is obtained as:

φ̂(k) = M(k)†
ξ (k) (67)

ξ (k) =



zx(k)
zy(k)
zθ (k)
...

zx(k−NLS +1)
zy(k−NLS +1)
zθ (k−NLS +1)


M(k) =



µT
x (k)

µT
y (k)

µT
θ
(k)
...

µT
x (k−NLS +1)

µT
y (k−NLS +1)

µT
θ
(k−NLS +1)


(68)

with M(k)† denoting the pseudoinverse of M(k).
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Fig. 3. Polytopic LPV and polytopic switching LPV approximations of the
scheduling variables ϑ d

3 (k) and ϑ d
4 (k).

D. Switching LPV Polytopic Model of the Four Wheeled Robot

When the polytopic LPV conditions (28)-(29) are applied
to some polytopic approximation of the four wheeled om-
nidirectional mobile robot quasi-LPV model (18), a solution
could not exist due to the loss of controllability occurring for
ϑ d

3 = ϑ d
4 = 0, values for which the input matrix becomes:

B
ϑ d

3 =ϑ d
4 =0 =

(
05×1 05×1 05×1 05×1
B3 B3 B3 B3

)
(69)

Due to the fact that the set described by the polytopic
approximation (26) is convex, it is straightforward that any
polytopic approximation of the admissible values for ϑ d

3 (k) =
sin(θ(k))Ts and ϑ d

4 (k) = cos(θ(k))Ts will contain the origin,
that is, the singularity (69) of the input matrix (see the dash-
dotted black line in Fig. 3).

However, this problem can be avoided using a switching
LPV controller, as described in Section IV-B, by splitting the
subset of the parameter space generated by ϑ d

3 and ϑ d
4 in

more regions, such that in each region the resulting polytopic
approximation does not include the origin. In particular, in
this work, the quadrants have been considered as regions, with
θ = kπ/2, k ∈ Z being the switching condition (see Fig. 3),
such that:

σ =


1 i f cosθ ≥ 0 AND sinθ ≥ 0
2 i f cosθ ≥ 0 AND sinθ < 0
3 i f cosθ < 0 AND sinθ < 0
4 i f cosθ < 0 AND sinθ ≥ 0

A triangular approximation has been used, in each region,
for the pair

{
ϑ d

3 ,ϑ
d
4
}

, with the following structure:(
ϑ d

3
ϑ d

4

)
∈Co

{(
±Ts

0

)
,

(
0
±Ts

)
,

(
±Ts
±Ts

)}
where Co denotes the convex set, and whether ± is + or
− depends, for each varying parameter, on the region that is
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Fig. 4. Angular subsystem identification.

being considered. In particular, the polytopic approximations
for σ = 1, σ = 2, σ = 3 and σ = 4 are given by the red, the
cyan, the magenta and the green triangle in Fig. 3, respectively.

VII. RESULTS

A. Identification

At first, the identification procedure has been applied to sets
of data that have been obtained as the angular response of the
robot to input voltages of the same value (u0 = u1 = u2 = u3).
In these experiments, the inputs caused a rotation of the robot
that was clockwise for positive values and anticlockwise for
negative values. The critical value u∗ such that (7) with u∗0 =
u∗1 = u∗2 = u∗3 holds has been identified as u∗ = 30. Hence,
using Nθ = 20 sets of data which contained the results of
experiments that lasted 5 s, with input values ranging from
−250 to 250, the objective function (8) subject to (7) has
been minimized, obtaining A33 =−2.009 and B3 = 0.05, that
corresponds to K33 = −6. However, the simulations obtained
with these parameters did not fit well the data, as shown in Fig.
4, when comparing the real data (blue lines) and the simulated
data (red lines).

As already remarked in Section III-B, by applying the
identification procedure to each set of data separately, a
dependence of A33 on ω has been observed that could be
explained by a second-order polynomial, as follows:

A33(ω) =−0.0062ω
2 +0.0028ω−0.4406 (70)

The improvement brought by considering A33 as a function
of ω is visible in Fig. 4 when the green line, representing the
simulations obtained with the identified A33(ω), is compared
to the blue and red ones, representing the real data and the
simulations obtained with a constant A33, respectively.

Later, the identification procedure has been applied to sets
of data that have been obtained as the linear response of the
robot to input voltages that were pairwise of the same value
(u0 = u2 and u1 = u3). By minimizing the objective function
(11) subject to (10) with u∗ = u∗0 = u∗2 = 30, Al =−1.4904 and
Bl = 0.0089, that correspond to Kl =−0.5340, were obtained.
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The comparison between the real data (blue lines) and the
simulated data (green lines) in Fig. 5 shows that the model
fits well the real behavior of the robot.

B. Design

The polytopic approximation (32)-(33) of the four-
wheeled omnidirectional mobile robot error model (18)
has been obtained by considering Ts = 0.04 s and ω ∈
[−2.5rad/s,2.5rad/s].

The controller and the virtual actuators (one for each wheel)
have been designed using (35)-(36), to assure stability and pole
clustering in:

D =
{

z ∈ C : Re(z)> 0.40,Re(z)2 + Im(z)2 < 0.99972}
(71)

The 48 vertex controller and virtual actuator matrices (12
for each region) are stored in the Matlab workspace. When the
robot is operating, at each time sample, the active region ζ is
selected taking into account the value of θ . Then, the value of
the vector of varying parameters ϑd (θ(k),ω(k)) is calculated
and used for obtaining the 12 coefficients γ

(ζ )
i of the polytopic

decomposition (32). Finally, the controller gain, and the virtual
actuator gain when the system is faulty, are obtained as a linear
combination of the vertex controller/virtual actuator matrices
using the coefficients γ

(ζ )
i , and the feedback input ∆u(k) can

be computed. It is worth highlighting that only a small fraction
of the overall computational cost of the proposed strategy is
performed online (calculating the coefficients γ

(ζ )
i , performing

a linear combination of vertex matrices, and calculating the
reference inputs), since solving the LMIs is a task performed
offline.

Three control experiments have been considered, where the
robot started from different initial states:

• Experiment 1

(x(0),vx(0),y(0),vy(0),θ(0),ω(0))T =
(

1.5 01×5
)T

TABLE I
MEAN SQUARED ERRORS WITHOUT AND WITH FTC (SIMULATION)

e2
1 e2

2 e2
3 e2

4 e2
5 e2

6
Sim.1 without FTC 0.024 0.004 0.022 0.003 1.438 0.025

Sim.1 with FTC 0.007 0.001 0.002 0.001 0.297 0.016
Sim.2 without FTC 0.018 0.003 0.022 0.003 1.440 0.029

Sim.2 with FTC 0.001 0.000 0.001 0.001 0.291 0.020
Sim.3 without FTC 0.037 0.007 0.020 0.003 1.440 0.027

Sim.3 with FTC 0.021 0.004 0.002 0.001 0.295 0.023

• Experiment 2

(x(0),vx(0),y(0),vy(0),θ(0),ω(0))T =
(

1 01×5
)T

• Experiment 3

(x(0),vx(0),y(0),vy(0),θ(0),ω(0))T = 06×1

and tracked the desired trajectory, a circle centered in the
origin of the (x−y) plane with a radius of 1 m and a revolution
period of 20 s, generated from the initial reference state:(

xr(0),vr
x(0),yr(0),vr

y(0),θr(0),ωr(0)
)>

= (1,0,0,π/10,0,π/10)T

The reference input calculation described in Section VI-A has
been applied before the fault appears and in the experiment
without FTC after the fault appears. On the other hand, the
trajectory is generated using the reference inputs as calculated
in Section VI-B in the experiment with FTC after the fault
appears.

The fault scenario considered in this paper is a total loss of
the first wheel motor starting from time t = 20s:

φ0(t) =
{

1 i f t < 20s
0 i f t ≥ 20s (72)

C. Simulation Results

In the following, simulation results are shown for Experi-
ment 1, while Table I resumes the mean squared errors for
the trajectory tracking in all the three considered experiments.
The improvement brought by the proposed FTC strategy on the
tracking performance can be seen clearly in all the considered
experiments.

Fig. 6 shows the tracking of the desired circular trajectory
in the (x−y) plane. It can be seen that, in the case where the
proposed FTC technique is not applied, the robot trajectory
(red line) deviates from the reference trajectory (black dots)
after the fault appears. On the other hand, adding the virtual
actuator to the control loop increases the tracking performance
of the robot (blue line).

Fig. 7 shows the fault estimation obtained with the approach
described in Section VI-C and NLS = 50. It can be seen that,
after a short transient, the fault is correctly estimated. Also,
the results demonstrate an intrinsic robustness of the proposed
FTC strategy against errors in the fault estimation.

D. Experimental Results

In the following, experimental results are shown for Experi-
ment 1, while Table II resumes the mean squared errors for the
trajectory tracking in all the three considered experiments. It
must be remarked that the odometry of omnidirectional mobile
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Fig. 6. Tracking of the desired circular trajectory: (x− y) plane (Sim. 1).
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Fig. 7. Fault estimation with NLS = 50 (Sim. 1).

robots puts a real challenge in estimating the faults appearing
in the motors using data coming from the available sensors.
Also, another problem arises from the fact that in the real
robot, under a change of effectiveness in a motor due to a fault,
the corresponding wheel will keep rotating not only according
to the motor torque, but also according to the robot movement
due to the remaining wheels. These effects made the proposed
fault estimation approach described in Section VI-C not as
good as in simulation when applied to the real robot. However,
the results presented hereafter, obtained under the assumption
of perfect fault estimation, i.e. φ̂i = φi, i= 0,1,2,3 demonstrate
that the omnidirectional mobile robot is able to operate under
a severe fault occurrence, e.g. the total loss of one motor, if
an appropriate fault-hiding strategy is implemented.

Fig. 8 and Fig. 9 show the tracking of the desired circular
trajectory in the (x− y) plane and a comparison between the
system states and the reference ones. When the proposed FTC
strategy is applied, all the system states go to the reference
ones, i.e. the tracking errors go to zero, except for a steady-

TABLE II
MEAN SQUARED ERRORS WITHOUT AND WITH FTC (EXPERIMENTAL)

e2
1 e2

2 e2
3 e2

4 e2
5 e2

6
Exp.1 without FTC 0.110 0.017 0.081 0.016 7.284 0.259

Exp.1 with FTC 0.009 0.001 0.002 0.001 2.023 0.014
Exp.2 without FTC 0.048 0.006 0.038 0.010 1.814 0.158

Exp.2 with FTC 0.006 0.001 0.004 0.002 3.630 0.024
Exp.3 without FTC 0.085 0.015 0.051 0.012 1.757 0.153

Exp.3 with FTC 0.024 0.004 0.003 0.002 3.417 0.026
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Fig. 8. Tracking of the desired circular trajectory: (x− y) plane (Exp. 1).

state error in the angle θ . The addition of an integral action
could eliminate such error, even though at the expense of a
probable decrease in the system performance, as well as the
appearance of the need to introduce anti-windup mechanisms
to avoid undesired effects due to the motor saturation nonlin-
earities. Finally, in Fig. 10, the control inputs are presented. It
can be seen that the control inputs are such that all the motors
are working in their linear region. Moreover, under fault effect,
the effect of the first wheel on the system is redistributed over
the remaining wheels to achieve fault tolerance.

VIII. CONCLUSIONS

This paper has presented the modeling, identification and
control of a four wheeled omnidirectional robot including
some fault-hiding mechanisms to achieve fault tolerance. The
unknown parameters of the four wheeled robot nonlinear
model have been identified by means of nonlinear least squares
identification using data collected from the real robot. The
problem of controlling the robot such that it tracks a desired
trajectory has been solved. The proposed solution relies on the
use of a reference model that describes the desired trajectory.
The resulting nonlinear error model is brought to a quasi-LPV
form that is used for designing a switching LPV controller
using LMI-based techniques. A switching LPV virtual actuator
that adapts the faulty plant to the nominal switching LPV
controller instead of adapting the switching LPV controller
to the faulty plant has also been added. In this way, the faulty
plant together with the switching LPV virtual actuator block
allows the switching LPV controller to see the same plant
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Fig. 10. Tracking of the desired circular trajectory: inputs (Experiment 1).

as before the fault. The addition of the virtual actuator block
keeps the stability and some desired performances under fault
occurrence. The overall loop consists of the nominal switching
LPV controller and the switching LPV virtual actuators. Both
are designed using polytopic techniques within the quadratic
Lyapunov framework, solving a system of LMIs to achieve
stability and pole clustering in a desired region through the
use of a single quadratic Lyapunov function.

The simulation and experimental results have shown the
potential and performances of the proposed approach using a
scenario where the first wheel motor was subject to an actuator
fault, i.e. a total loss of the motor. The proposed FTC strategy
was able to recover the tracking of the desired trajectory
despite the fault. However, the proposed least-squares-based
fault estimation approach did not provide satisfactory enough
results when applied to the real robot, due to the poor odom-
etry and the presence of couplings between wheels, which
effects were not taken into account by the model. Hence, some
important issues for future research are the improvement of

the modeling of omnidirectional robots, and the increasing of
the FTC strategy robustness against the different sources of
uncertainty that affect the control system.

REFERENCES
[1] H. P. Oliveira, A. J. Sousa, A. P. Moreira, and P. J. Costa, “Modeling

and assessing of omni-directional robots with three and four wheels,”
in Contemporary robotics - challenges and solutions, A. D. Rodić, Ed.
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