
 1 

 1 
Response of seagrass indicators to shifts in environmental 2 

stressors: a global review and management synthesis 3 

 4 
G. Roca1,2, T. Alcoverro2,7, D. Krause-Jensen3, T.J.S. Balsby3, M.M. van 5 

Katwijk4, N. Marbà5, R. Santos6, R. Arthur2,7, O. Mascaró2, Y. Fernández-6 

Torquemada8, M. Pérez1, C.M. Duarte5,9, J. Romero1 7 

 8 

1. Dept. Ecología. Universitat de Barcelona. Spain 9 

2. Centre d’Estudis Avançats de Blanes (CSIC). Carretera d’accés a la cala sant Francesc 14 10 

Spain 11 

3. Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark 12 

4. Dept. Environmental Science, Institute for Water and Wetland Research, Radboud University 13 

Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen.The Netherlands 14 

5. Department of Global Change Research, IMEDEA (UIB-CSIC), Institut Mediterrani 15 

d’Estudis Avançats, Miquel Marquès 21, 07190 Esporles, Spain 16 

6. Marine Plant Ecology Research Group, Center of Marine Sciences Universidade do Algarve, 17 

Gambelas 8005-139 Faro, Portugal  18 

7. Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, Mysore, India 19 

8. Department of Marine Sciences and Applied Biology, University of Alicante P.O. Box 99, 20 

03080 Alicante, Spain 21 

9. King Abdullah University of Science and Technology (KAUST), Red Sea Research Center 22 

(RSRC), Thuwal, 23955-6900, Saudi Arabia 23 

 24 

* Corresponding author: Guillem Roca E-mail: groca@ceab.csic.es 

 25 

 26 



 2 

Keywords: Seagrass recovery, ecosystem degradation, coastal assessment, physiological and 27 

indicators, early warning indicators  28 



 3 

Abstract  29 

Although seagrass-based indicators are widely used to assess coastal ecosystem status, 30 

there is little universality in their application. Matching the plethora of available 31 

indicators to specific management objectives requires a detailed knowledge of their 32 

species-specific sensitivities and their response time to environmental stressors. We 33 

conducted an extensive survey of experimental studies to determine the sensitivity and 34 

response time of seagrass indicators to ecosystem degradation and recovery. We 35 

identified seagrass size and indicator type (i.e. level of biological organization of the 36 

measure) as the main factors affecting indicator sensitivity and response time to 37 

degradation and recovery. While structural and demographic parameters (e.g. shoot 38 

density, biomass) show a high and unspecific sensitivity, biochemical/physiological 39 

indicators present more stressor-specific responses and are the most sensitive detecting 40 

early phases of environmental improvement. Based on these results we present a simple 41 

decision tree to assist ecosystem managers to match adequate and reliable indicators to 42 

specific management goals. 43 

  44 



 4 

1. Introduction  45 

The global decline of critical ecosystems to human pressures makes it increasingly 46 

urgent to effectively track ecosystem status, in order to detect, halt, and, where possible, 47 

reverse these losses (Millennium Ecosystem Assessment, 2005). Seagrass meadows are 48 

among the most threatened ecosystems, declining at an estimated 7% per year globally 49 

(Waycott et al., 2009). This is being driven by a range of anthropogenic disturbances 50 

related to eutrophication (e.g. organic matter and nutrient increases), shading, siltation 51 

from deforestation, shoreline modification, and physical removal by trawling and 52 

anchoring (Duarte, 2002). Because many seagrass species are also particularly sensitive 53 

to disturbance, they are ideal systems to assess environmental change (Marbà et al., 54 

2012). Tracking changes to environmental quality and the ecosystem itself have become 55 

increasingly important mandates for ecosystem managers and scientists (Montefalcone, 56 

2009). As a result, there has been a recent burgeoning of monitoring programmes based 57 

either directly or indirectly on seagrass responses to environmental change (Martínez-58 

Crego et al., 2008).  59 

 60 

In general, monitoring programs have evolved in response to three principal 61 

management goals: tracking general trends in ecosystem status, assessing environmental 62 

quality, and evaluating impacts of development projects or effectiveness of management 63 

actions. Monitoring of ecosystem status is typically linked to habitat management (for 64 

instance within Marine Protected Areas), where it primarily serves as an early-warning 65 

of change in response to a wide variety of potential stressors. In contrast, monitoring 66 

environmental quality (e.g. the European Water Framework Directive) aims at detecting 67 

if changes – degradation or amelioration – in water quality are reflected in ecosystem 68 

status. Impact assessment focuses instead on detecting if a set of specific, known 69 
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pressures, associated with a particular action (a coastal development or a management 70 

intervention for instance), are affecting the ecosystem. Each of these management 71 

objectives places a very different set of requirements in terms of the specificity and 72 

expected response time of the indicators used. It is unlikely that a universal set of 73 

indicators can be developed to suit all needs, and a more bespoke solution will require a 74 

careful matching of management goals with the characteristics of available indicators. 75 

These can vary strongly between target seagrass species, the time scale of disturbance 76 

and post-disturbance processes, and the sensitivity of the chosen indicators to the 77 

stressors of interest. One approach has been to develop multi-metric indices which 78 

provide a synthetic measure of environmental or ecological quality based on a 79 

combination of parameters (García-Marín et al., 2013; Gobert et al., 2009; Lopez y 80 

Royo et al., 2010; Romero et al., 2007). While certainly powerful, there are currently 81 

insufficient data to test these composite indices perform in terms of response or 82 

recovery time when exposed to known events of environmental disturbance or recovery. 83 

As a result, we have explicitly excluded multi-metric indices from this review. 84 

 85 

In this review, we adopt the relatively broad definition of indicators proposed by Heink 86 

and Kowarik (2010). By their definition, an indicator in ecology and environmental 87 

planning is something used to depict or evaluate environmental conditions or changes or 88 

to set environmental goals, where this something can be either a component or a 89 

measure of environmentally relevant phenomena. This definition is useful since it 90 

reflects the wide diversity of contexts within which indicators have been used. A large 91 

number of indicators have been developed, based on different seagrass species, and 92 

encompassing a broad spectrum of biochemical, physiological, organismal, population 93 

and community level traits (Marbà et al., 2012; Martínez-Crego et al., 2008; Rees et al., 94 
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2008). Choosing adequate sets of indicators from this plethora to meet management 95 

objectives can be challenging. Indicators are not universally sensitive to changes in 96 

ecosystem status or environmental conditions, and there are few objective means to 97 

evaluate their appropriateness to specific mandates. Understanding how sensitivity and 98 

response time vary between seagrass indicators is essential to rationalising the choice of 99 

indicators and to designing monitoring and impact assessment programmes. 100 

 101 

Response time is the time an indicator takes to register changes (degradation or 102 

recovery) in ecosystem (or coastal) health (Contamin and Ellison, 2009), and helps 103 

determine its potential either as an early warning indicator (sensitive to degradation) or 104 

an improvement indicator (sensitive to recovery). Response times and sensitivity to 105 

stressors of environmental change may vary with the type of indicator (biochemical, 106 

physiological, growth, morphological, structural, community, etc), and intrinsic species 107 

traits that constrain organism and population dynamics (e.g. size or growth and 108 

demographic dynamics) (Collier et al., 2009). In fact McMahon et al. (2013) in a recent 109 

review found important differences in the response time of indicators between those 110 

responding to light stress. Moreover, response times may also differ during degradation 111 

and recovery since ecosystem responses often display hysteresis, tracking very different 112 

trajectories during decline and recovery phases (Andersen et al., 2009; Duarte et al., 113 

2013; Heide et al., 2007).  114 

 115 

The relative sensitivity of indicators to specific stressors is also critical in the 116 

assessment of seagrass indicators. Non-specific seagrass indicators that integrate 117 

ecosystem health such as shoot density or cover, may be best suited to detect 118 

unanticipated environmental or ecosystem changes not linked to a specific impact (e.g. 119 
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monitoring climate change or general environmental quality). More stressor-specific 120 

indicators may be more appropriate when a clearly identified stressor, such as light 121 

availability, excess of organic matter or nitrogen, is being monitored (McMahon et al., 122 

2013; Pérez et al., 2008; van Lent et al., 1995). Stress-specific indicators are best suited 123 

to evaluating the effectiveness of mitigatory management actions (Roca et al., 2015). As 124 

a rule of thumb, indicator specificity tends to decrease with the level of biological 125 

organisation (sensu, Whitham et al., 2006), from more integrative, structural metrics to 126 

specific physiological and molecular indicators (Adams and Greeley, 2000). How this 127 

general rule holds between seagrass species is completely unknown. 128 

 129 

We evaluate the utility of the most common seagrass-based indicators to objective-130 

specific management. We identify a wide set of indicators currently employed in 131 

seagrass monitoring programs and, where possible, assess their sensitivity (percent of 132 

response) to increased/decreased stressors and their response time to degradation and 133 

recovery. We test how universal these responses are between species, level of biological 134 

organisation and type of stressors. We do this by conducting a comprehensive survey of 135 

published and unpublished experimental studies that report the time-response of 136 

seagrass parameters currently being used as indicators to a variety of stressors. We use 137 

this to develop a simple decision tree to help managers choose a set of seagrass 138 

indicators best suited to their specific mandate, be it monitoring general trends in 139 

ecosystem health, assessing environmental quality or evaluating the consequences of a 140 

known impact or mitigation measure. 141 

  142 
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2. Materials and Methods 143 

2.1. Identifying and selecting relevant studies 144 

We compiled an extensive database on the likelihood of response to increased or 145 

reduced stressors and the response time to degradation and recovery of different 146 

seagrass indicators from experimental, mesocosm or field studies (Table 1). Our 147 

approach in compiling this database was to focus on a suite of parameters that have 148 

been employed by indicator studies across the world, starting with a list initial reviewed 149 

by Marbà et al. (2012) and extending it based on more updated reviews (see Table 2). 150 

For this shortlist of parameters, we looked for studies that specifically tested their 151 

responses to gradients (or levels) of stressors, regardless of whether these studies were 152 

specifically designed to test the efficacy of these parameters as indicators. For the 153 

purposes of this review, we refer to these chosen parameters as indicators. The data was 154 

extracted from scientific reports of experiments from the laboratory, mesocosms or the 155 

field. The database was compiled by conducting an exhaustive literature survey on 156 

seagrass experiments published before March 2013 using the “Scopus” search engine. 157 

We used the search terms (“seagrassses” OR “eelgrass” OR “Posidonia” OR “Zostera” 158 

OR …(i.e. all seagrass genera)) AND (“response” OR “recovery”) AND ( “light” OR 159 

“shade” OR “shading” OR “dredge” OR “dredging” OR “sediment” OR “burial” OR 160 

“organic matter” OR “salinity” OR “hypersalinity” OR “brine” OR “nutrients” OR “N” 161 

OR “P” OR “eutrophy” OR “mechanical removal” OR “anchoring”). In addition, to 162 

account for older references that may not have been available through “Scopus”, the 163 

reference lists of each article was also scanned and the bibliographic sources checked 164 

for relevant additions to the database. We also updated the dataset with our own 165 

unpublished data from recent experiments. Decisions to include or exclude particular 166 

studies can have a large impact on the results of meta-analyses, particularly if the 167 
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number of studies is small (Englund et al., 1999; Gates, 2002; Hughes et al., 2004). To 168 

avoid bias in the selection of studies we attempted to be as consistent as possible, only 169 

extracting information from those experiments in which indicator responses were 170 

estimated under clearly defined possible stressors (organic matter, nutrients, shading, 171 

mechanical removal, burial, hypersalinity). For instance, we avoided all studies that 172 

examined the effect of multiple stressors acting together since we would be unable to 173 

attribute responses to a single stressor. In addition, we separated between three principal 174 

factors associated with eutrophication (light, nutrient and organic matter) as they do not 175 

always co-occur (Erftemeijer and Robin Lewis III, 2006; Roca et al., 2014). A study 176 

was defined as every individual publication or experiment. A case was defined as every 177 

single measurement of responses to increased/decreased stressors or response time to 178 

degradation/recovery of a particular indicator taken from each study, carried out in a 179 

particular site, for a single species under a certain stressor recorded and measured 180 

indicator. Seagrass response to increased/decreased level of stressors as well as the 181 

response time to degradation/recovery was recorded for each case.  182 

 183 

The response time of each indicator to increased stress (henceforth, “indicator response 184 

time to degradation”) was identified as the time taken for the indicator to register a 185 

statistically significant change when exposed to a specific stressor (e.g. increased 186 

nutrient level, increased shading). Similarly, the response time of the indicator to the 187 

removal of the stress (henceforth, “indicator response time to recovery”) was identified 188 

as the time before a statistically significant change was detected after the removal of the 189 

stressor. Therefore, “degradation” and “recovery” refer to environmental quality and do 190 

not necessarily imply seagrass degradation or recovery. This estimate is conservative 191 

since significant effects could perhaps have been registered over a shorter time span and 192 
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we did not take into account variations in the responses of indicators to different 193 

stressor intensities; there is no consistent way to compare stressor intensities between 194 

studies and experiments, which are often also conducted in different seasons. In both 195 

cases, if no significant change was registered, we recorded this as “no degradation/no 196 

recovery”. The time intervals between sampling events can strongly influence the 197 

precision of the estimates of indicator responses. We, therefore, discarded studies using 198 

long sampling intervals, established as at least 1.5 times longer than the minimum 199 

response time observed for the same indicator, stress and species in all the data sets, to 200 

avoid biasing our estimates of indicator response time. 201 

 202 

Indicators were classified into three broad types based on the level of biological 203 

organization they addressed: physiological and biochemical, growth and morphological, 204 

and structural and demographic (Fig. 1, Table 2). Physiological and biochemical 205 

indicators included metabolic processes and chemical constituents of the plant. Growth 206 

and morphological indicators included descriptors related to shoot/leaf morphometry or 207 

production. Finally, structural and demographic indicators included parameters that 208 

characterise the configuration of meadows such as cover, as well as population 209 

parameters such as shoot density. We ignored indicators that employed meadow 210 

community composition from the analysis because these indicators ranged widely in the 211 

level of biological organisation or the species on which they relied. We additionally 212 

classified indicators according to the environmental stressor their response was tested 213 

against (shading, nutrients, burial, organic matter and hypersalinity). Finally, we also 214 

classified seagrass species based on their rhizome diameter, considered one of the best 215 

proxies of seagrass size (Duarte, 1991). We grouped seagrasses into small (rhizome 216 
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diameter ≤ 3.5mm) and large (rhizome diameter >3.5mm) species (Marbà and Duarte, 217 

1998). 218 

 219 

2.2. Data analysis  220 

Indicator response to increased stressor levels 221 

We used generalized linear mixed effect models (glmm) to examine the relationship 222 

between the two principal dependent variables, Indicator response time to degradation 223 

(in weeks) or Indicator response to increased stressor (yes/no) observed and the type of 224 

stressor, the plant size and level of biological organisation of the indicator. In the two 225 

models, seagrass size (rhizome diameter), level of organisation (structural/demographic, 226 

growth/morphological, physiological/biochemical) and stressor type (organic matter, 227 

nutrients, shading, burial, hypersalinity) were treated as fixed factors. The interaction 228 

between “study” and “species” was treated as a random factor to account for the 229 

influence of data from different indicators belonging to the same study (sample 230 

dependence). The variable Response to increased stressor was analysed using a 231 

binomial distribution due to the dichotomic nature of the data (response yes or no, i.e. a 232 

statistically significant change vs. no response in the absence of such changes). We used 233 

a Poisson distribution to model the variable Indicator response time to degradation. In 234 

addition, we used the same Indicator response time to degradation model with 235 

indicators instead of level of biological organisation to check the variance due to 236 

differences in response time among individual indicators. All models were performed 237 

using the Lme4 package in the statistical software, R (Bates, 2008, 2005; R core Team, 238 

2013). To avoid the influence of stressors that cause immediate responses, the pressure 239 

‘mechanical removal’ was extracted from the analysis because this stress involves, by 240 

definition, plant removal, and the response of structural indicators is self-evident. We 241 
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used Tukey’s HSD post-hoc comparisons to check for differences between indicator 242 

types and stressors in both models using the MULTCOMP R package. In addition, we 243 

examined correlations of the variable Indicator response time to degradation with log-244 

rhizome diameter for each level of biological organisation.  245 

 246 

An indicator was considered robust when it showed a clear response (statistically 247 

significant change) to the stressor in question in at least 66% of independent cases. For 248 

most stressors, we evaluated robustness only for those indicators that had 5 or more 249 

independent assessments of response. For indicators with fewer than 5 independent 250 

assessments, we considered it to be potentially robust when it showed a consistent 251 

response in more than 75% of reported studies, highlighting that further assessments are 252 

needed to confirm its utility. We determined the specificity/generality of each indicator 253 

to an increased stressor level by assessing the proportion of studies that showed 254 

responses. Indicators were classified as general indicators when they responded to three 255 

or more stressors while specific indicators were those that responded to one independent 256 

stressor or two related stressors. 257 

 258 

Indicator response to decreased stressor levels 259 

 260 

Indicator response to decreased stressor levels (yes/no) and Indicator response time to 261 

recovery were tested using models similar to those described above. The dataset to test 262 

responses to decreased stressor levels (24 studies) was much smaller and less balanced 263 

than for responses to increased stressor levels (74 studies). In order to avoid potential 264 

biases due to this reduced sample, analyses of Indicator response to decreased stressor 265 

levels and Indicator response time to recovery were simplified to focus on three 266 
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separate, more balanced models. To test the variable Indicator response to decreased 267 

stressor levels (yes/no) we first ran an analysis with the whole dataset to test for effects 268 

of the level of biological organisation and species size (fixed factors). As the factor 269 

“size” appeared to introduce some potentially confounding variability, we ran two 270 

separate analyses for large seagrass species (12 studies, 42 cases) and small species (10 271 

studies, 57 cases) to identify size-dependent differences among indicator types. All 272 

three models were fitted to a binomial distribution. To test the variable Indicator 273 

response time to recovery we included the effects of level of biological organisation and 274 

species size (as fixed factors). The number of studies was relatively small for this model 275 

(19 studies). Due to the lack of significant random effects, we ran response and time 276 

response to decreased stressor levels models without random effects using the glm 277 

function in the R stats package (R core Team, 2013). 278 

  279 
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3. Results  280 

The compiled dataset included 25 of the 60 existing species of seagrasses (Green and 281 

Short, 2003), with Zostera marina, Posidonia oceanica, Cymodocea nodosa and 282 

Thalassia testudinum accounting for the highest records (Table 1). Most studies used 283 

indicators to assess responses to environmental degradation (n=74) with far fewer 284 

studies assessing recovery after the cessation of stress (n=24, Table 1). The studies 285 

covered a wide geographic extent, including coastal areas in Australasia (Australia 10), 286 

Asia (Korea 1, Philippines 1, India 1, Malaysia 1, Indonesia 1), Europe (Denmark 4, 287 

Italy 1, Netherlands 5, Germany 1, Portugal 2, Spain 23, France 1, Italy 1), North 288 

America (USA 16), Central America (Puerto Rico 1), South America (Brazil 1). In total 289 

we identified 85 distinct indicators (Table 2). The vast majority were physiological and 290 

biochemical indicators (61 unique measures), while growth/morphological and 291 

structural/demographic indicators were much less common (13 and 10 respectively).  292 

 293 

Response to increased and decreased stressor levels 294 

The likelihood of responses to increased levels of stressors (n=668) differed 295 

significantly between physiological/biochemical indicators (58%) and the other two 296 

groups belonging to higher levels of biological organisation (Fig. 1 and Table 3). 297 

Structural and demographic indicators showed the highest percentage of significant 298 

responses (75%) followed by growth and morphological indicators (70%).While most 299 

indicators recorded a high percentage of response to increased stressor levels (see Table 300 

4), a few showed no significant response (C content in epiphytes, δ13C in rhizomes, and 301 

δ 34S in leaves). However, the number of cases for these indicators was too low to 302 

adequately evaluate their responses (n=1 or 2). 303 

 304 
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While structural and demographic indicators were very effective in detecting 305 

degradation, they were not as effective in signalling the cessation of stressing agents as 306 

other indicators at experimental time-scales. They showed responses in 60 % of 307 

recorded cases, whereas physiological/biochemical and growth/morphological 308 

indicators detected recovery processes in around 80% of the cases (Fig. 1). The 309 

proportion of responses to decreased stressor levels among indicators belonging to 310 

different biological organisation levels showed a mild difference between small and 311 

large species, although it was not significant (interaction between seagrass size and 312 

level of biological organisation, p = 0.09, Table 5). Indeed, the response of indicators to 313 

decreased stressors differed significantly between level of biological organisation in 314 

large species but not in small ones (Table 5). 315 

 316 

Response time of indicators to degradation and recovery  317 

The response time of seagrass indicators to degradation was dependent on seagrass size 318 

interacting with the level of biological organisation and showed a mild, though non-319 

significant difference between stressors (Table 6). In fact, the response time of 320 

structural/demographic, growth/morphological and physiological/biochemical indicators 321 

to degradation increased with seagrass size (Fig. 2 and 4, Table 4), with 322 

structural/demographic parameters showing significantly longer response times for 323 

seagrasses with larger rhizome diameters (Seagrass size: level of biological organisation, 324 

p= 0.01) (Fig. 2, Table 6).  325 

 326 

In general, indicators took longer to respond to recovery processes than to degradation 327 

conditions for all levels of biological organisation (Fig. 3). This was particularly true for 328 

structural indicators that did not recover within the experimental time frame of the 329 
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studies (Fig. 3). Unfortunately, the data from available studies were insufficient to 330 

explore how recovery response times of indicators differed between stressors. 331 

 332 

General versus specific indicators 333 

Two structural parameters (density and aboveground biomass), one morphological 334 

indicator (leaf growth) and one physiological indicator (sucrose concentration in 335 

rhizomes) were found to be general indicators of a wide range of stressors for both 336 

small and large seagrasses (>60% response, responding to at least 3 stressors) (Table 4). 337 

Nitrogen concentration in leaves responded consistently across species, increasing with 338 

shading and increasing nutrient availability. Likewise, decreased photosynthetic rates 339 

responded to increased loads of organic matter inputs and hypersalinity. The structural 340 

indicators shoot mortality and belowground biomass each showed robust responses to 341 

two types of stressors; shoot density decreased in response to burial and hypersalinity 342 

while below-ground biomass decreased in response to burial and nutrients (Table 4). In 343 

contrast, most indicators were much more specific, responding to a single stressor. 344 

Physiological/biochemical indicators were particularly good in detecting single stressors, 345 

with more than 60% of positive responses. This was true for δ13C in leaves, δ15N in 346 

leaves, and S concentrations in roots and rhizomes, which appeared to be clearly 347 

stressor-specific (Table 4). However, while δ13C decreased with shading, the time-scale 348 

of response was longer than other physiological and biochemical indicators (see Fig. 4). 349 

Nutrient addition in small plants resulted in decreased levels of δ15 N in leaves. An 350 

important caveat, however, is that δ15N response is not unidirectional and depends on 351 

the δ15 N signal of the source. While the S content in roots and rhizomes of large 352 

seagrass species was also a potentially robust indicator – its concentration increased 353 
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with organic matter loading – it requires independent validation from more studies 354 

before it can be fully trusted (Table 4, Fig. 4).  355 

Although chlorophyll content, tissue C/N ratios, necrosis in leaf tissues and dark 356 

respiration rates showed higher percentages of response (>60%) for one stressor, they 357 

cannot be considered stressor-specific since they also responded to other stressors with 358 

lower percentages of positive responses (Table 4). Thus, chlorophyll content and tissue 359 

C/N ratios while mainly decreasing with nutrient additions also responded to changes in 360 

shading. Similarly, necrosis and dark respiration showed potential as indicators of 361 

hypersalinity, increasing and decreasing with high salinity, respectively. However, 362 

necrosis also increased with nutrient additions, whereas for dark respiration, there were 363 

far too few cases available to assess its specificity (Table 4, Fig. 4). 364 

  365 
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4. Discussion 366 

As developmental pressures increase in the coastal ocean, the need to keep track of this 367 

change is becoming increasingly acute (Agardy et al., 2005; Carpenter et al., 2009; 368 

Erftemeijer and Robin Lewis III, 2006; Martínez-Crego et al., 2008). Our review 369 

reflects this growing urgency to document decline, with the vast majority of seagrass 370 

indicators developed to measure ecosystem and environmental degradation rather than 371 

improving conditions. This bias is perhaps also due to the difficulty of tracking seagrass 372 

recovery after the removal of stresses, since recovery responses may take place over 373 

considerably longer time scales than most studies allow (e.g. Heide et al. 2007; Duarte 374 

et al. 2009, 2013, this study). Nonetheless, we were able to assess the performance of 375 

34 indicators in relation to six of the most common and important drivers of seagrass 376 

decline (shading, increased nutrient and organic inputs, burial and hypersaline effluents, 377 

see Waycott et al. 2009). These are among the stressors of most concern for seagrass 378 

managers. Indicators ranged from physiological and biochemical parameters to 379 

ecosystem-level measures and included 25 species of seagrass from across the globe. 380 

Indicators clearly varied widely in their sensitivity, specificity and response time while 381 

tracking degradation and recovery.  382 

 383 

Our meta-analysis shows that most indicators clearly differed in their ability to detect 384 

degradation and recovery processes. Thus while more integrative structural and 385 

demographic parameters (like shoot density or biomass) were very responsive to 386 

degradation from multiple stressors, they were not as effective in reflecting 387 

improvements at short management time-scales when these stressors reduced. In 388 

contrast, physiological and biochemical indicators were much more effective in 389 

documenting recovery processes, particularly for large seagrass species. The underlying 390 



 19 

ecological processes of degradation and recovery are likely very different. Seagrasses 391 

respond predictably to a range of stressors, often with noticeable declines in meadow 392 

structure. However, the capacity for seagrasses to recover these structural losses when 393 

conditions improve is driven by species-specific demographic rates, largely dependent 394 

on plant size (Marbà and Duarte, 1998). It is therefore unsurprising that structural 395 

indicators may be ineffective in tracking recovery of environmental conditions 396 

(particularly for larger, slow-growing species), since it may often take several decades 397 

before these changes are reflected at the level of the meadow (Badalamenti et al., 2011; 398 

Meehan and West, 2002) (see later).  399 

 400 

In tracking degradation, physiological/biochemical indicators showed considerable 401 

variability in their response, due, at least in part, to their higher stressor specificity. 402 

Thus, while highly integrative variables like seagrass shoot density and biomass 403 

responded to increased stressor levels across the spectrum of examined stressors, 404 

physiological/biochemical parameters like δ13C, δ15N and S were linked to changes in 405 

few or single stressing agents (shading, nutrients or organic matter inputs respectively) 406 

(Table 4). 407 

 408 

Most parameters in our review were very reliable indicators of generic or specific 409 

stressors. For instance, robust indicators to light disturbances found here were quite 410 

consistent with those previously identified by McMahon et al. (2013), with the 411 

exception of some physiological and morphological measures, which we attribute to 412 

differences in the studies reviewed. However, some measures showed rather limited 413 

response for the stressors we tested here. For example, C content in epiphytes or δ34S in 414 

leaf tissue showed no significant responses to shading, nutrients, burial, organic matter 415 
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or hypersalinity. Though they may not be useful as indicators of these stressors, they 416 

may still respond to stressors not included in our study. For instance, δ34S in leaf tissue 417 

has been shown, experimentally and in the field, to respond to warming (García et al., 418 

2013), and % inorganic carbon in epiphytes may be a useful indicator of ocean 419 

acidification (Campbell and Fourqurean, 2014; Fabricius et al., 2011). As CO2 420 

emissions rise, warming and acidification are likely to increase, making seagrasses and 421 

their epiphytes potentially important sentinels of future climate change (Duarte, 2002; 422 

Koch et al., 2013). 423 

 424 

The time scale of responses differed greatly between indicators, varying with level of 425 

biological organisation and plant size. Physiological/biochemical and 426 

growth/morphological indicators were generally able to detect degradation responses 427 

much faster than structural/demographic indicators, especially for large, slow-growing, 428 

seagrass species. This contrast likely reflects the strong hysteresis that operates in many 429 

coastal ecosystems as the mechanisms controlling the recovery of indicators differ from 430 

those controlling degradation (see Fig. 5- Heide et al. 2007; Duarte et al. 2009, 2013). 431 

This is particularly true for structural and demographic indicators in long-lived seagrass 432 

meadows (e.g., shoot density, above- and belowground biomass). These meadows are 433 

often characterised by positive feedbacks that buffer the structure of the habitat against 434 

even relatively high levels of environmental stress. For instance, larger plants have 435 

greater reserves, making them better able to resist short-term adverse conditions. Once a 436 

particular threshold is breached however, the effects of degradation can accrue very 437 

rapidly as the structural integrity of the meadow unravels. Recovery from this point can 438 

be protracted, with recovery rates often almost four or five times slower than 439 

degradation (Backman and Barilotti, 1976; Collier et al., 2009). As discussed earlier, 440 
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there is an important size-dependence in seagrass growth, tissue turnover and 441 

demographic dynamics (Duarte, 1991) which determines response time of indicators. 442 

The time lags imposed by species-specific intrinsic growth rates are further 443 

compounded by shifts in ecosystem baselines that further impede or slow down natural 444 

recovery (Duarte et al., 2009). In habitats dominated by large, slow-growing species 445 

like Posidonia oceanica, this recovery may require several decades, if not centuries 446 

(Duarte, 2002; González-Correa et al., 2005).  447 

  448 

The natural hysteresis that characterises seagrass ecosystems has important implications 449 

when choosing indicators to monitor ecosystem status. Structural and morphological 450 

indicators, while responsive to a range of stressors, may, especially for large species, 451 

detect impacts much too late for effective action to be taken (van Katwijk et al. 2010, 452 

this study). Physiological and biochemical parameters are less influenced by hysteretic 453 

properties, making them much better early-warning candidates to detect changes (both 454 

decline and recovery) in environmental conditions over time-scales relevant for 455 

management. However, these indicators, since their response is highly stress-specific, 456 

need to be used as part of a set and may not be appropriate to be used on their own.  457 

 458 

Designing Fit-for-Purpose Seagrass Monitoring Programs 459 

From the discussion above, it is clear that no single indicator can satisfy every 460 

management objective. The array of available indicators represents a valuable toolbox 461 

from which to choose a set of indicators to match specific management goals. Given the 462 

number of indicators available and their differences in specificity, sensitivity and 463 

response times, it is unsurprising that selecting the appropriate set of indicators can be 464 

perplexing. We provide a generic decision tree to assist this process, following the 465 
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potential life cycle of a monitoring programme, when there is no change with respect to 466 

reference conditions, and under conditions of change whose source is either known (in 467 

some cases even planned) or unknown (Figure 6). Each condition requires a design that 468 

employs a contingent set of indicators best suited to the task. In general, the scheme is 469 

designed to ensure that the resulting programme (i) provides early warning responses to 470 

degradation (Generic ecosystem monitoring strategy), (ii) can attribute changes in 471 

indicators to specific pressures (Stress screening strategy), and (iii), detect the onset of 472 

ecosystem recovery (Assessment strategy). We suggest sets of potential indicators to 473 

match these monitoring strategies used together as a multi-metric index or separately. 474 

These sets of indicators serve merely as a general heuristic that will require context-475 

specific tailoring based on management goals, environmental conditions and the 476 

seagrass species present. While the objectives of management can vary widely, the 477 

figure indicates how this scheme could be employed for typical management scenarios: 478 

(i) assessing general trends in ecosystem health, (ii) assessing environmental quality and 479 

(iii) assessing impacts or remediation measures. The decision tree allows entry and exit 480 

at any point based on needs and circumstances. 481 

 482 

Generic ecosystem monitoring strategy Tracking ecosystem health under normal 483 

conditions is important to detect unforeseen changes in overall condition and their 484 

causes, so that remedial actions can be taken to stop the decline. This is often an 485 

essential management mandate and chosen indicators need to be both generic, to detect 486 

responses from a wide variety of stresses, and respond rapidly, to serve as an early 487 

warning. Structural and demographic indicators have a large integrative capacity and 488 

are linked most directly to ecosystem structure and function, making them ideal generic 489 

indicators. Indicators such as shoot density, seagrass cover or meadow depth limit are 490 
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widely used in monitoring programmes (Marbà et al., 2012), and have proven excellent 491 

in detecting generalized degradation responses, mostly linked to eutrophication 492 

(Martínez-Crego et al., 2008). However, most of these variables respond very slowly. 493 

With some exceptions, such as mechanical removal (which directly modifies structure 494 

and demographics) changes in structural indicators are the result of changes in the 495 

environment first reflected in plant physiology, which modifies seagrass growth and 496 

morphology, finally triggering changes in meadow structure and demography (Fig. 5) 497 

(Collier et al., 2012), and it can be fairly long before these changes are detectable. As a 498 

result, ecosystem monitoring strategy benefit from incorporating early-warning 499 

indicators together with these structural measures, especially for large species. Some 500 

physiological/biochemical indicators such as sucrose or N respond to a range of 501 

stressors and their inclusion can serve as early warnings of eutrophication processes 502 

such as shading, nutrients, and organic matter. 503 

 504 

Stress screening strategy: Often, when change is registered, for example through a 505 

generic ecosystem monitoring, the drivers/stressors for these changes are difficult to 506 

establish. Screening strategies help in identifying these drivers using stressor-specific 507 

indicators. Many physiological and biochemical parameters are particularly useful here, 508 

since they respond reliably to changes in single or few drivers. For instance, δ13C 509 

responds only to changes in light availability (Serrano et al., 2011), and S content in 510 

roots and rhizomes responds to intrusion of H2S under organic inputs (although this 511 

needs independent confirmation, but see Frederiksen et al., 2008, 2006; Pérez et al., 512 

2007) (Table 4, Fig. 4). While δ15N mostly responds to variations in nitrogen inputs 513 

(Christianen et al., 2012), it may also be influenced by changes in light conditions 514 

(Lavery et al., 2009), and while it is a useful stress screening indicator, it needs to be 515 
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interpreted with caution. In addition, the elemental contents of rhizomes are very 516 

reliable indicators of detecting metal variations (Fe, Cd, Pb, Ni, Cu) in the environment 517 

(Richir et al., 2013; Roca et al., 2014). Because several of these measures respond 518 

predictably to both increasing and decreasing drivers, they are also useful in monitoring 519 

improvements in environmental quality. For instance, specific elemental indicators can 520 

effectively track reductions in inputs of silver or lead into coastal waters, linked to the 521 

advent of digital photography or unleaded fuel, respectively (Tovar-Sánchez et al., 522 

2010). While stressor-specific indicators are generally good at identifying drivers of 523 

change, it is useful to include structural and demographic parameters in the monitoring 524 

program; used together, these indicators can provide a more accurate assessment of 525 

ecosystem function.  526 

In addition, since stress specific indicators can respond to more than one driver (e.g. 527 

δ15N to nutrients and light (Lavery et al., 2009), it is advisable to include more than one 528 

indicator that responds to the same driver in order to increase the reliability of 529 

identifying the relevant stressor. 530 

Assessment strategy: Assessment strategies are employed when the nature of the 531 

stressors is well understood, and the interest of management is to assess impacts or the 532 

efficacy of remedial actions. For instance, managers may want to test if stress-reducing 533 

interventions are actually working (e.g. reducing nutrients from urban sewage), or may 534 

need to evaluate the impact of coastal development projects such as harbour 535 

constructions or beach replenishments. In order to detect these effects as early as 536 

possible (within weeks or months), monitoring needs to be based on 537 

physiological/biochemical indicators that respond rapidly and specifically to the drivers 538 

in question (a subset of the screening set, see Fig. 6). These indicators are thus a 539 

valuable tool in evidence-based management and can also help managers quickly adapt 540 
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their interventions based on measured efficacy. As with all strategies, these assessments 541 

must also include the more integrative structural/demographic drivers to track potential 542 

ecosystem-level effects.  543 

In attempting to address these different needs, researchers have developed a suite of 544 

synthetic and integrative multi-metric indices to measure ecological status or water 545 

quality (García-Marín et al., 2013; Gobert et al., 2009; Lopez y Royo et al., 2010; 546 

Romero et al., 2007). While very useful in summarizing ecosystem status, these multi-547 

metric indices still depend eventually on the behaviour and response of their individual 548 

constituent indicators. Analysed individually, the detection of indicator trends in 549 

environmental or ecological status may be less integrative, but allows for far greater 550 

precision than multi-metric indices. 551 

5. Summary and conclusions  552 

Indicators based on seagrass parameters provide robust measures of change, which 553 

explains their proliferation and use in monitoring programmes in recent decades. The 554 

analyses performed here showed that the 34 indicators we evaluated ranged widely in 555 

their responsiveness, relative specificity and response time, dependent largely on the 556 

size of the plant and the level of biological organisation of the measured indicator. 557 

Taken together, these indicators serve as an invaluable toolbox to address a range of 558 

monitoring needs. Employing purpose-specific indicators to match management goals 559 

enables the detection of change within weeks to months, allows managers to ascertain 560 

the cause of these changes, and provides a means to evaluate recovery after the 561 

particular stressor has been reduced. This review establishes objective criteria by which 562 

the perplexingly large number of available indicators can be critically assessed and used 563 

to monitor and manage globally threatened seagrass ecosystems. 564 

 565 
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Figure and table footnotes. 576 

Fig.1. Percentage of reviewed studies that documented significant responses of 577 

indicators to degradation (increased stressor levels) and recovery (decreased stressor 578 

levels), classified by indicator type (physiological/biochemical, growth/morphological 579 

or structural/demographic). Post-hoc comparisons highlight significantly different 580 

indicator types (a and b).  581 

 582 

Fig.2. The relationship between response time to increased stress and rhizome diameter 583 

for different indicator types (physiological/biochemical, growth/morphological or 584 

structural/demographic). Solid lines represent the fitted log-log regression equations for 585 

structural and demographic indicators (R2 = 0.225, P= 4*10-9), dashed lines represent 586 

growth and morphological indicators (R2 =0.028, P= 0.041) and dotted line represents 587 

physiological and biochemical indicators (R2 =0.142, P= 5*10-7). 588 

 589 

Fig.3. Mean indicator response time to increased stressor levels and recovery (decreased 590 

stressor levels) for each level of biological organization. Error bars represent standard 591 

errors. The asterisk indicates significant differences based on model results. Refer to 592 

Methods and Results for details on datasets employed and model specifications. 593 

 594 

Fig.4. Indicator response times of small and large seagrass species to common stressors. 595 

Dots indicate mean response times and bars represent the minimum and maximum 596 

observed response times reported in the literature. Black dots represent a negative 597 

relationship (an increase in stressor levels results in decreased indicator values), white 598 

dots represent a positive relationship (an increase in stressor levels result in increased 599 

indicator values) and black and white dots represent situations when both positive and 600 
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negative relationships were reported. Rhiz suc = Sucrose in rhizomes, A. biomass = 601 

Aboveground biomass, B. biomass = Belowground biomass, Dark resp = Dark 602 

respiration, Photosyn rate = Photosynthetic rates. 603 

 604 

Fig. 5. Degradation and recovery pathways in response to variations in environmental 605 

stress. (a) Responses of structural and demographic indicators; small seagrass species 606 

(blue dashed line) respond faster to environmental improvements than large species 607 

(blue solid line). (b) Physiological and biochemical indicators are more quick to respond 608 

to degradation and improvement of environmental conditions and show less hysteresis 609 

than structural and demographic indicators.  610 

 611 

Fig. 6. Designing a fit-for-purpose seagrass monitoring program. Above: Decision tree 612 

to help choose monitoring strategies based on three common management objectives. 613 

Below: Sets of suggested indicators corresponding to each management objective in the 614 

decision tree above. A single asterisk (*) represents indicators not tested in our study 615 

but widely used and accepted, a double asterisk (**) represents stressor-specific 616 

indicators that require further testing. A. biomass = Aboveground biomass, B. biomass 617 

= Belowground biomass, EIA: Environmental Impact Assessment. 618 

 619 

Table 1. Number of cases (Nº cases) and sources for indicator response time to 620 

degradation (increased stress levels) and recovery (decreased stress levels) for different 621 

species. See table references. 622 

 623 

Table 2. The 85 indicators compiled in the study classified in three different levels of 624 

biological organization. N: number of cases. APA: Alkaline phosphatase, Ek= Light 625 



 29 

saturation, Etr= Electron Transport Rate, Max and min fluorescence, Above.= 626 

aboveground, Below.= belowground, Fv/Fm: chlorophyll fluorescence measurement, 627 

LAI= leaf area index.  628 

 629 

Table 3. Results of analyses of variance (Type III tests) of percentage of responses (%) 630 

to increased stressor levels of seagrass indicators in relation to seagrass size (as 631 

reflected by rhizome diameter). Biological organisation refers to either structural and 632 

demographic, growth and morphological, or physiological and biochemical indicators. 633 

Seagrass size:level of biological organization = Interaction between rhizome diameter 634 

and level of biological organization. The percent response (%) was fitted to a binomial 635 

distribution. DF (degrees of freedom), DenDF (denominator DF). For further details, 636 

refer to Methods. 637 

 638 

Table 4. List of robust and potentially robust indicators to degradation. Number of 639 

cases, percentage of indicator response to increased stressor levels and associated 640 

indicator response time (weeks) are shown only for the most robust indicators (% 641 

response >60) and potential indicators for each driver. For example, we recorded 5 642 

cases of Leaf N measured in shading experiments, of these 100% (all 5 cases) 643 

responded with changes in Leaf N. In subsequent columns we indicate the minimum 644 

and maximum response time recorded in these experiments for large and small seagrass 645 

species. Level = level of biological organization, Physiological = physiological and 646 

biochemical, Morphological = growth and morphological, Structural = structural and 647 

demographic, A. Biomass = Aboveground biomass, B. Biomass = Belowground 648 

biomass, References = references used in each line (see table1). Indicators marked with 649 

an asterisk (*) are potentially robust indicators, but have limited sample cases. 650 
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 651 

Table 5. Results of analyses of variance (Type III tests) of indicator recovery response 652 

(%) in relation to level of biological organization (structural and demographic, growth 653 

and morphological, physiological and biochemical) for all species together, large 654 

species and small species. All three models are fitted to a binomial distribution. The 655 

analysis of all species also includes the effect of seagrass size (as reflected by rhizome 656 

diameter). DF (degrees of freedom), LR Chi (likelihood ratio Chi squared test). For 657 

further details, refer to Methods. 658 

 659 

Table 6. Results of analyses of variance (Type III tests) on indicator response time (top) 660 

and recovery time (bottom) in relation to seagrass size (as reflected by rhizome 661 

diameter), level of biological organization (structural and demographic, growth and 662 

morphological, physiological and biochemical) and type of environmental stressor. 663 

Seagrass size: level of biological organization = Interaction between rhizome diameter 664 

and level of biological organization. Response time was fitted to a Poisson distribution 665 

and recovery time to a quasi-Poisson distribution with an overdispersion parameter 666 

taken to be 29.3). DF (degrees of freedom), LR Chi (likelihood ratio Chi squared test). 667 

For further details, refer to Methods. 668 

  669 
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Table	
  1.	
  Number	
  of	
  cases	
  (Nº	
  cases)	
  and	
  sources	
  for	
  indicator	
  response	
  time	
  to	
  degradation	
  

(increased	
  stress	
  levels)	
  and	
  recovery	
  (decreased	
  stress	
  levels)	
  for	
  different	
  species.	
  (Size. rhiz. 

diam, cm): size of rhizome diameter in centimetres.	
  See	
  table	
  references.	
  

 

	
    Indicator degradation response Indicator recovery response 

Species Size 
(rhiz. diam, 

cm) 

Nº cases References Nº cases References 

Amphibolis griffithi 2 28 1 31 1 

Cymodocea nodosa 3 92 2, 3, 4, 5, 6, 7, 8 7 6, 5, 2 

Cymodocea rotundata 2.4 3 9 0  

Cymodocea serrulata 2 17 10, 11, 12 0  

Enhalus acoroides 14.1 9 9 0  

Halophila engelmani - 1 13   

Halophila johnsonii - 3 14 0  

Halophila ovalis 1.5 43 12, 15, 16,17 15 15, 16 

Halophila pinnifolia 1.5 6 18 0  

Halophila spinulosa 1 2 10 0  

Halophila tasmanica 1.74 4 19 0  

Halodule uninervis 1.4 39 10, 11, 20, 12 2 16 

Halodule wrightii 1.6 9 21, 22, 23 2 23 

Posidonia australis 7.2 5 24, 25, 26 2 25, 26 

Posidonia oceanica 9.7 133 27, 28, 29, 30, 31, 32, 33, 
34, 35, 36, 37, 38, 39, 40 

16 29, 41, 30, 42, 27, 39 

Posidonia sinuosa 5.5 26 43, 44, 25, 45 12 43, 25, 45 
Ruppia maritima - 7 21, 22 0  

Syringodium isoetifolium 1.7 12 10, 46, 12 1 46 

Thalassia hemprichii 3.6 17 9, 11 0  

Thalassia testudinum 6 53 47, 48, 49, 50, 51, 52-54 4 47 

Zostera capricorni 1.4 10 10, 55 0  

Zostera japonica 1 2 56 2 56 
Zostera marina 3.5 98 57, 58, 41 21, 59, 60, 61, 

62, 63, 64, 65, 66, 67 
6 41, 64, 65 

Zostera muelleri 2 10 11, 68 0  

Zostera noltii 1.6 49 69, 70, 2, 71, 72, 73 3 72, 73 
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Table 2. The 85 indicators compiled in the study classified in three different levels of	
  
biological	
  organization. N: number of cases. APA: Alkaline phosphatase, Ek= Light 
saturation index, Etr= Electron Transport Rate, Max and min fluorescence, Above.= 
aboveground, Below.= belowground, Fv/Fm: chlorophyll fluorescence measurement, 
LAI= leaf area index.   

Physiological and biochemical Morphological and growth Structural and 
demographic 

 N  N  N  N  N 
Amino acid content 2 Dark respiration 4 P roots 1 Internode distance 2 Above. biomass 41 
APA leaf 1 Ek 4 P total 1 LAI 4 Below. biomass 30 
C rhizomes 1 Etr 2 Na 1 Leaf growth 72 Cover 10 
C leaf 14 Fe rhizomes 2 Pb rhizomes 1 Leaf length 18 Depth limit 6 
C/N aboveground 6 Fe leaf 2 Phenolics 1 Leaf necrosis 7 Leaf biomass 17 
C/N belowground 11 Fv/Fm 3 Photosynthesis 

rates 
16 Leaf number 23 Leaf density 78 

C/N_leaf 6 K content 1 Quantum yield 2 Leaf thickness 4 Mortality 13 
Ca 2 Max fluorescence 2 S leaf 2 Leaf width 15 Rhizome biomass 4 
Carotenoids 2 Min fluorescence 2 S rhizomes 4 Mean canopy height  Root biomass 4 
Cd rhizomes 1 Mg rhizomes 1 S roots 4 Plastochrone interval 1 Shoot biomass 14 
Chlorophyla a 18 Mn rhizomes 1 Starch leaf 6 Rhizome elongation 1   
Chloroplast density 1 N leaf 23 Starch rhizomes 11 Root length 1   
Cu rhizomes 1 N rhizomes 18 Starch roots 6 Root/shoot ratio 1   
δ13C leaf 12 N roots  2 Sucrose leaf 6 Shoot size    
δ13C rhizomes 6 N total 1 Sucrose rhizomes 11     
δ13C shoots 6 N/P aboveground 6 Sucrose roots 9     
δ15N leaf 4 N/P belowground 3 Total 

carbohydrates 
2     

δ15N rhizomes 10 Ni rhizomes 1 Zn leaf 2     
δ34S leaf 5 P rhizomes 2 Zn rhizomes 2     
δ34S rhizomes 4 P leaf 13       
δ34S roots 2 P rhizomes 6       
	
  



Table 3. Results of analyses of variance (Type III tests) of percentage of responses (%) to increased 
stressor levels of seagrass indicators in relation to seagrass size (as reflected by rhizome diameter). 
Biological organisation refers to either structural and demographic, growth and morphological, or 
physiological and biochemical indicators. Seagrass size:level of biological organization = Interaction 
between rhizome diameter and level of biological organization. The percent response (%) was fitted to a 
binomial distribution. DF (degrees of freedom), DenDF (denominator DF). For further details, refer to 
Methods. 

 

Response % DF DenDF F.value P.value 
 Level of biological 

organization 2 630 5.29 0.005 ** 
Stressor 4 93 0.79 0.537 

 Seagrass size 1 1 68.2 0.23  
Seagrass size : Level of 
biological organization 2 630 1.20 0.303  
Significance level:  ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

	
  



 

Table 4. List of robust and potentially robust indicators to increased stressor levels. Number of cases, percentage of 

indicator response to degradation and associated indicator response time (weeks) are shown only for the most robust 

indicators (% response >60) and potential indicators for each driver. For example, we recorded 5 cases of Leaf N 

measured in shading experiments, of these 100% (all 5 cases) responded with changes in Leaf N. In subsequent 

     Indicator response time (weeks) References 

     Large species Small species  

Stressor Level Robust indicators N 
% 

Response Min Max Min Max  
Shading Physiological Leaf N 5 100 8 24 2 8 29,44,48,55,63 

 Physiological Rhizome N 7 85 - - 2 12 1,29,45,71 

 Physiological Rhizome sucrose 10 88 3 15 0.5 2 1,15,29,45,71 

 Physiological Leaf δ13C 7 100 28 28 4 11 10,18,32,45,55, 

 Growth Leaf growth 30 76 1 20 1 8 1,11,15,19,26,29,32, 
43,45,48,55, 63,71 

 Structural Density 27 85 4 36 2 11 11,15,18,19,26,29,32,
43,44,45,48,55,58,63,

64 
 Structural A. biomass 17 88 6 29 1 15 1,11,15,45,48,58, 

Nutrients Physiological Leaf N 16 75 4 24 1.4 14 4,9,20,21,37,38,48, 
52,59,60,62 

 Physiological Rhizome N 7 85 32 32 8 20 9,20,21,34 

 Physiological Chlorophyll a 5 80 5 20 20 20 9,61,62 

 Physiological C/N 5 80 3 12 - - 21,48 

 Physiological Rhizome sucrose* 4 100 14 24 - - 21,34 

 Physiological Leaf δ15N * 1 100 - - 8 8 20 

 Growth Leaf growth 18 78 1 20 2 14 4,9,21,33,34,48,49, 
50,59,60 

 Structural Density 15 73 5 12 4 24 4,9, 21,22,48,50, 
61,62 

 Structural A. biomass 12 58 6 48 8 24 9,20,48, 50,52,58 

 Structural B. biomass* 4 100 6 48 8 8 20,48,52,58 

Burial Structural Mortality 10 100 - - 3 4 69,70 

 Structural Density 20 65 1 36 2 5 8,12,27,28,30,69 

 Structural A. biomass 13 85 - - 4 15 4,5 

 Structural B. biomass 13 77 - - 4 4 8,12 

OM Physiological Rhizome sucrose 10 60 2 12 - - 35,57 

 Physiological Photosyntesis* 3 100 1 1 - - 57,66 

 Physiological Roots S* 2 100 12 12 - - 35 

 Physiological Rhizome S* 2 100 12 12 - - 35 

 Growth Leaf growth* 4 75 2 2 - - 50,53,57 

 Structural A. biomass* 3 67 24 24 - - 50 

 Structural Density* 3 67 12 12 - - 35,50 

Hypersalinity Physiological Photosyntesis rate 5 100 7 12 0.14 7 3,7,14,17,39,67 

 Physiological Dark respiration* 3 66 7 7 7 7 7,39 

 Growth Leaf growth 6 100 4 12 1 2 2,3,14,31,39,40, 
54 

 Growth Necrosis* 3 66 7 7 - - 7,39,40,67 

 Structural Mortality 7 71 12 12 1 2 2,3,7,14,39,40,67 

 Structural Density* 2 100 5 8 - - 31,62 



columns we indicate the minimum and maximum response time recorded in these experiments for large and small 

seagrass species. Level = level of biological organization, Physiological = physiological and biochemical, 

Morphological = growth and morphological, Structural = structural and demographic, A. Biomass = Aboveground 

biomass, B. Biomass = Belowground biomass, References = references used in each line (see table1). Indicators 

marked with an asterisk (*) are potentially robust indicators, but have limited sample cases. 

 



	
  

Table 5. Results of analyses of variance (Type III tests) of indicator recovery response (%) in relation to 

level of biological organization (structural and demographic, growth and morphological, physiological 

and biochemical) for all species together, large species and small species. All three models are fitted to a 

binomial distribution. The analysis of all species also includes the effect of seagrass size (as reflected by 

rhizome diameter). DF (degrees of freedom), LR Chi (likelihood ratio Chi squared test). For further 

details, refer to Methods. 

 

Recovery	
  %	
  (all	
  species)	
   LR	
  Chi	
   DF	
   P.value	
  
Level of biological 
organization	
  

0.1738	
   2	
   0.91676	
   	
  

Seagrass	
  size	
   0.5283	
   1	
   0.46733	
   .	
  
Seagrass size: Level of 
biological organization	
   4.6562	
   2	
   0.09748	
  

	
  

    	
    
Recovery % (large species) DF Deviance 

 
P.value  

Level of biological 
organization 2 7.6594 

 
0.021 * 

Residuals   39 47.088    
      
Recovery % (small species) DF Deviance  P.value  
Level of biological 
organization 2 1.98  0.371  
Residuals   54 56.69    

Significance level : ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

	
   	
  



Table 6. Results of analyses of variance (Type III tests) on indicator response time (top) and recovery 

time (bottom) in relation to seagrass size (as reflected by rhizome diameter), level of biological 

organization (structural and demographic, growth and morphological, physiological and biochemical) and 

type of environmental stressor. Seagrass size: level of biological organization = Interaction between 

rhizome diameter and level of biological organization. Response time was fitted to a Poisson distribution 

and recovery time to a quasi-Poisson distribution with an overdispersion parameter taken to be 29.3). DF 

(degrees of freedom), LR Chi (likelihood ratio Chi squared test). For further details, refer to Methods. 

 

Response time DF DenDF F.value P.value 
 Level of biological 

organization 2 346.7 0.09 0.91 
 Stressor 4 80.7 2.36 0.06 . 

Seagrass size 1 56.2 18.91 1.00E-04 *** 
Seagrass size : Level of 
biological organization 2 346.9 4.57 0.01 * 
	
  
Recovery	
  time	
   LR	
  Chisq	
   Df	
   P.value	
  
Level of biological 
organization	
  

16.8057	
   2	
   0.0002242	
  ***	
  

Seagrass	
  size	
   2.2123	
   1	
   0.1369122	
  	
  	
  	
  	
  
Seagrass size: Level of 
biological organization	
   1.8116	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2	
   0.4042195	
  	
  	
  	
  	
  
Significance level:  ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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3
Generic Ecosystem 
Monitoring Stress Screening 

 Generic early-warning indicators:
     -  N or Sucrose

Stressor specific set 

  Structural indicators:
  -  Density, cover, depth limit, 
      A. biomass, B. biomass

- Eutrophication:  
 N, C/ N, Chlorophyll
        δ15N leaf

- Shading:  
 δ13C leaf, Sucrose

- Organic inputs:  
 S rhizomes, δ34S**

- Hypersalination:  
 Photosynthesis rate, 
 Dark respiration

- Burial: 
 Rhizome elongation*

- Metal pollution: 
Pb, Fe, Mn, Cd, Cu, Zn, Ni

2

Structural indicators:  Density, cover, 
A. and B. biomass, depth limit 

+

 Stress related specific indicators from

+

Structural  indicators: 
- Density, cover, depth limit, 
  A. and B. biomass

+

2
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Generic Ecosystem Monitoring Strategy

change no change 

Stress Screening Strategy

 
  

  
 

change agent (stressor)
known or identified

change agent 
(stressor) unknown

intervention

Assessment Strategy

normal conditions
 established

 
  

   
  

 

 
  

 
 

respect to reference conditions

Assessment 1

1

2

3

Management 
Objective: Assess 
general trends in 
ecosystem status

Management 
Objective: Asses 

environmental 
quality

Management 
Objective: Assess 

impacts or evaluate 
management actions 

(eg EIA)
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