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Abstract— Based on a simplified control-oriented hybrid
linear delayed model, model predictive control (MPC) of a
sewer network designed to reduce pollution during heavy rain
events is presented. The lack of measurements at many parts
of the system to update the initial conditions of the optimal
control problems (OCPs) leads to the need for estimation
techniques. A simple modification of the OCP used in the MPC
iterations allows to formulate a state estimation problem (SEP)
to reconstruct the full system state from a few measurements.
Results comparing the system performance under the MPC
controller using full-state measurements and a moving horizon
estimation (MHE) strategy solving a finite horizon SEP at
each time instant are presented. Closed-loop simulations are
performed by using a detailed physically-based model of the
network as virtual reality.

I. INTRODUCTION

Combined sewer networks carry both wastewater and
storm-water together. During normal operation all the water
is delivered to wastewater treatment plants (WWTP), where it
is treated before being released to the receiving environment.
However, during heavy rain events the network may become
overloaded. In this situation, to prevent infrastructure dam-
ages, untreated water is released to the natural environment.
To avoid these events, known as combined sewer overflows
(CSO), the efficient management of the network infrastruc-
ture is of capital importance.

Real-time control (RTC) strategies taking advantage of
rainfall forecasts and network measurements are regarded as
the best option to compute control actions for the network
regulation [1]. However, the physically-based model of open-
channel flow describing the network dynamics involves the
solution of a set of partial differential equations (the Saint-
Venant equations, [2]) leading to prohibitive computational
times in the case of mid- to large-scale networks. Simplified
control-oriented models developed in the last few years allow
for the computation of control actions in the available times
while still providing sufficient accuracy [3], [4], [5], [6]. The
use of these models in an MPC strategy allows also to take
into account the system physical limits and to use rainfall
forecasts to anticipate the future evolution of the system.

The main difference among the previously mentioned
studies lies in the control model, since the MPC strategies
are always based on minimization of the flows leading
to pollution in the surrounding environment. Therefore, a
comparative study of the performance these approaches is
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out of the scope of this work since it would require to
implement different models of the considered network. The
MPC controller used in this work was already described in
[15], [16] and shown to outperform the current static control
approach. Here, the focus is on whether the lack of full
state measurements affects the performance of the closed-
loop system.

On the other hand, MPC requires full knowledge of
the system variables to update the initial conditions of the
optimal control problems (OCPs) solved at every time step.
Due to the large-scale nature of sewer networks, full mea-
surement is usually not available. To overcome this problem,
observation/estimation techniques can be used to reconstruct
the full network state from a few measurements.

Being the natural counterpart of MPC, the moving horizon
estimation (MHE) strategy is based on solving a finite
horizon state estimation problem (SEP) at each time in-
stant, consisting of an optimization problem to minimize
the difference between the measured outputs and those
generated by the model. The ideas of MHE date back to
the 90s, and its theoretical properties were developed in
the years to follow for linear [7], nonlinear [8], [9] and
hybrid systems [10], [11]. Unlike other classical observer and
estimation techniques (e.g., Luenberger, Kalman filter) the
MHE strategy can naturally handle system constraints and
be applied to linear, nonlinear and hybrid systems. However,
very few applications to water systems have been reported,
with [12], [13] being the only ones known to the authors. In
[13], the MHE strategy is used to estimate flows in a river
system, much like in the present document, but based on
a model leading to mid-scale smooth nonlinear optimization
problems. Notice also that in the flow estimation problem the
plant model is a set of partial differential equations, which
prevents the use of error-based output MPC techniques [14].

In this work, a variation of the deadbeat observer presented
in [10] based on 1-norm minimization is described and used
as a SEP in a MHE strategy. The observed system state
is then used as initial condition for an OCP to regulate
a sewer network. Since the system model is a constrained
linear hybrid model, both the SEP and the OCP result in
mixed integer linear programming (MILP) problems. The
main contribution of this paper is to couple both the MHE
and MPC techniques in an output-feedback control strategy
for a large-scale constrained mixed-integer problem: sewer
network regulation. The performance of the overall control
strategy is assessed by iteratively simulate the network using
a detailed nonlinear physically-based model simulator, solve
the SEP problem and solve the OCP. Results comparing this
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strategy with full-state measurement are also provided, and
show no significant performance loss.

The remainder of the paper is organized as follows: in
Section II an overview of the sewer network model is
presented, together with the general hybrid linear delayed
system expression. The OCP and SEP problems based on the
model are formulated in Sections III and IV. In Section V,
the closed-loop simulation algorithm for the MPC/MHE
strategy is presented together with results for a real case
study. Finally, conclusions are presented in Section VI to-
gether with some future work research lines.

II. HYBRID LINEAR DELAYED
SEWER NETWORK MODEL

A hybrid linear delayed model has been chosen as the
modeling framework for the sewer network description since
it efficiently deals with three main aspects of the problem.
Firstly, the presence of delays in the model is a common
element in any water transportation model. Secondly, the
hybrid approach allows to model the presence of overflows in
the network, which only occur when a given flow is above a
threshold value, thus according to a logical condition. Finally,
the linear framework is specially suited for computational
reasons since sewer networks are usually large-scale systems
with a high number of variables.

The sewer network model used in this work consists of
the following elements: flow model (including mass balance
equations and flow equations), reservoir model, collector
model, weir model, overflow and flood runoff model and
rainfall-runoff model. The corresponding system variables
are listed in Table I.

TABLE I
SYSTEM VARIABLE NOTATION

Description Symbol Units Indexing
Flow entering sewers qini (t) m3/s i = 1 . . . nq

Flow leaving sewers qouti (t) m3/s i = 1 . . . nq

Volume in tanks vi(t) m3 i = 1 . . . nv

Flow under gates gi(t) m3/s i = 1 . . . ng

Flow over weirs wi(t) m3/s i = 1 . . . nw

Overflows fi(t) m3/s i = 1 . . . nf

Flood runoff flow qti (t) m3/s i = 1 . . . nf

Overflow volume vti (t) m3/s i = 1 . . . nf

Rain inflow ci(t) m3/s i = 1 . . . nc

The main system equations are the flow equations, relating
the in- and outflow at each network sewer, which take into
account the transport delay and flow attenuation. The flow
downstream of each sewer is computed by means of a convex
combination of the upstream flows at two previous time
steps. Hence, for each sewer i = 1 . . . nq

qouti (t) = ai q
in
i (t− ti) + (1− ai) qini (t− ti − 1), (1)

where t ∈ Z is the discrete time variable, ai ∈ (0, 1] are
the coefficients of the convex combination and ti the sewer
delay [16].

Reservoirs are modeled with the usual discrete-time mass
balance equations. The collector model describes sewers of

big dimensions which can be used for in-line water retention.
They are modeled as a series of reservoirs each one adding
a one time step delay to the flow through the collector. The
last reservoir outflow is regulated with a sluice gate.

Weir flows are described by means of maximum functions:

w(t) = max{0, aw(zw(t)− qmaxw )}, (2)

where w(t) is the flow over the weir, zw(t) is the inflow
to the junction where the weir is attached, qmaxw is the
maximum inflow before water starts flowing through the
spillway and aw is a parameter introduced for calibration
purposes. Overflows and flood runoff flows are also described
in a similar way using piecewise linear functions. These
functions are reformulated into linear inequalities by means
of the mixed logical dynamic (MLD) systems approach [17].
To this end, binary variables need to be defined, turning
the system into a hybrid system. Please, refer to [16] for
a complete description of the model with calibration and
validation results.

An important feature of the control model and the plant
model equations is that they are all mass-conservative. There-
fore, since the amount of water entering the network in a
rain event is finite, stability of the closed-loop system can
be guaranteed.

Putting all the equations and MLD inequalities together,
the system can be written in the following compact form,
that will be useful for the OCP and SEP formulation:

T∑
i=0

MiX(t− i) = m(t),

T∑
i=0

NiX(t− i) ≤ n(t),

(3)

where

X(t− i) = (x1(t− i), . . . , xn(t− i))>, i = 0, . . . , T, (4)

with xj(t − i) ∈ R for a subset of indices j ∈ C ⊂
{1, . . . , n} and xj(t − i) ∈ {0, 1} for a subset of indices
j ∈ B ⊂ {1, . . . , n}. Index sets C and B are such that
C ∩ B = ∅ and C ∪ B = {1, . . . , n}. Mi, i = 0, . . . , T , and
Ni, i = 0, . . . , T , where T is the maximum system delay,
are matrices of appropriate dimensions. Binary variables can
have a direct physical meaning but more commonly arise in
the MLD reformulation of the model equations.

In system (3), the set of equalities contains the network
junction mass balance equations, the delayed transport equa-
tions and the tank volume equations. The set of inequalities
corresponds to constraints arising from the MLD description
of the piecewise equations describing both the weir flow and
overflow variables (see [18] for details).

Vectors X(t − i), i = 0, . . . , T, include all system
variables, making no distinction whether they are either state,
input or output variables. The influence of the rain inflows
(disturbances) at any time instant is included in vectors m(t)
and n(t).



III. OPTIMAL CONTROL PROBLEM

The formulation of the OCP associated with model (3)
was already described in [15]. It is based on imposing
equations and inequalities (3) from time steps t+1 to t+H ,
where H is called the prediction horizon, as constraints of
an optimization problem aiming to minimize a performance
index. The general form of the OCP is as follows:

min
X (t)

J(X (t)) = c>X (t),

s.t. M1 X (t) =M2 X0(t) +M3(t),

N1 X (t) ≤ N2 X0(t) +N3(t),

Aeq X (t) = beq(t),

Aineq X (t) ≤ bineq(t),

OCP(t)

whereMi and Ni are block matrices build from the matrices
of system (3) (see [15] for the precise block structure) and

X (t) = (X(t+H)>, . . . , X(t+ 1)>)>, (5)

X0(t) = (X̃(t)>, . . . , X̃(t− T + 1)>)>, (6)

contain, respectively, the problem unknowns along the pre-
diction horizon and the values of the system variables at the
current and previous time instants. The latter can either be
measured in the case of full-state measurement or provided
by means of some estimation technique as described in the
next section.

The choice of vector c in the OCP objective function
depends on the control objectives. In this work the objective
is to minimize pollution, thus c is defined as c = 10 ·
cCOF +cOF +cCSO−10−1 ·cWWTP , where cCOF , cOF , cCSO,
and cWWTP , are 0-1 vectors selecting the collector overflow
variables (COF), the overflow variables (OF), the flows to the
receiving environment (CSO) and the flows to the WWTP
(with negative wight to be maximized), respectively. The
choice of the weight values is discussed in [16].

Notice, also, the addition of further equalities Aeq X (t) =
beq(t), and inequalities Aineq X (t) ≤ bineq(t). These are
any other additional constraints to be added to the system
to improve its behavior. Typical ones include bounds on the
controlled variables due to physical limits and bounds on its
variation rates, to ensure smooth control actions.

The only physical constraints in the model are the tank
volumes which, are always regulated by gates, thus avoid-
ing infeasibilities in the associated optimization problem.
Bounds on all the other variables are added to speed up the
optimization. Lower bounds are all set to zero and values
for upper bounds are obtained from the rain inflow val-
ues (disturbances) corresponding to several real-rain events.
Since the model equations are all mass balances and transport
equations, the feasibility of the problems is guaranteed unless
some upper bound is violated, which is never the case, since
the considered upper bound values have all been increased to
be above the ones resulting form the heaviest rain episodes.
The same reasoning applies to the SEP described in the next
section.

IV. STATE ESTIMATION PROBLEM
State estimation problems aim to reconstruct the full

system state out of a few output measurements. To this end,
the difference between the system measurements and the
outputs generated by the estimator model is minimized along
a finite past horizon by means of an optimization problem.
Due to plant-model mismatch, generally, no sequence of
model generated outputs can meet exactly the measured
values. To take into account this fact two formulations of
the SEP are usually applied: in the first one involves adding
slack/noise variables to each system dynamic and output
equation and minimizing these variables while forcing the
model outputs to be equal to the measured ones [7], [10],
[11]. The second formulation is a direct minimization of
the norm of the difference between the model generated
outputs and the measured ones [8], [12], [13]. The former
appears to be more appealing for theoretical purposes since it
explicitly deals with the slack/noise variables. For simplicity
of the implementation latter formulation will be used in the
following.

The state estimation problem is analogous to the OCP
one but the system dynamics and inequality constraints are
enforced for the past states rather than for the future ones:

T∑
i=0

MiXO(t− i+ k) = m(t+ k),

T∑
i=0

NiXO(t− i+ k) ≤ n(t+ k),

(7)

k = −HO + T + 1, . . . , 0,

where HO is the number of past instant measured variables
that will be used in the problem. The state estimation
problem variable is then defined as:

XO(t) = (XO(t)>, . . . , XO(t−HO + 1)>)>, (8)

Vectors XO(t) are defined in the same way as X(t), but a
different notation is used to distinguish the variables of the
SEP and OCP in the closed-loop algorithm.

To express the constraints in matrix form, the following
matrices are defined:

MO
1 =

(
M0 M1 ... MT−1 MT

. . .
. . .

. . .
. . .

M0 M1 ... MT−1 MT

)}
HO−T

blocks , (9)

MO
2 (t) = (m(t)>, . . . ,m(t−HO + 1)>)>, (10)

with analogous expressions forNO1 andNO2 . Hence, the state
estimation problem can be written as:

min
{XO(t), εY , εU}

1>εY + 1>εU ,

s.t. MO
1 (t)XO(t) =MO

2 (t),

NO1 (t)XO(t) ≤ NO2 (t),

−εY ≤ ΠY XO(t)− Ỹ ≤ εY
−εU ≤ ΠU XO(t)− Ũ ≤ εU

AOeq XO(t) = bOeq(t),

AOineq XO(t) ≤ bOineq(t),

SEP(t)



where

Ỹ(t) = (Ỹ (t)>, . . . , Ỹ (t−HO + 1)>)>, (11)

Ũ(t) = (Ũ(t)>, . . . , Ũ(t−HO + 1)>)>, (12)

are the measured outputs and inputs at previous time steps.
Notice that, with the present formulation, the output vector
Y and the input vector U (resp. Y and U ) are subsets of
vector XO (resp. XO), therefore they can be expressed by
means of 0-1 projection vectors ΠY and ΠU such that

ΠYXO(t) = (Y (t)>, . . . , Y (t−HO + 1>)>, (13)

ΠUXO(t) = (U(t)>, . . . , U(t−HO + 1)>)>, (14)

Variables εY and εU are auxiliary variables used to reformu-
late the minimization of the 1-norms ‖ΠY XO(t)− Ỹ‖1 and
‖ΠU XO(t)−Ũ‖1 as a MILP [19]. The inequalities involving
εY and εU already imply that these variables should take
positive values (−ε ≤ ε⇒ ε ≥ 0).

As in the OCP, further equalities AOeq X (t) = bOeq(t),
and inequalities AOineq X (t) ≤ bOineq(t), are added to take
into account additional constraints other than the system
dynamics.

Notice that, in (7), the system equations are only enforced
for the last HO−T time instants: XO(t) to XO(t−HO+T+
1). Therefore, HO ≥ 2T is assumed in order that the system
equations are enforced for the variables needed to be used
as initial conditions for the OCP. The rest of variables at the
first T time instants t−HO+T, . . . , t−HO+1, are left free.
In this way the estimated inputs and outputs at these times,
will take exactly the same values as the measured ones as
a result of the optimization contributing, through the delays
in the equations, to a better estimation of the rest of the
variables at later time instants.

V. OUTPUT-FEEDBACK CLOSED-LOOP
ALGORITHM AND RESULTS

The MPC technique consists of solving a finite horizon
OCP at each time step and then applying to the system
the part of the solution corresponding to the first time step
before measuring the system state again and repeating the
procedure. The initial value for the model in each OCP is
obtained from the last measurements of the system, thus
providing the state feedback. Similarly, the MHE strategy
consists of solving a finite horizon SEP at each time step to
estimate the system state. Again, the last measurements of
the system are used as the reference for the SEP, to which
the estimator states would ideally converge. When using both
techniques together, the state variables estimated by the SEP
are used as initial conditions for the OCP.

To test the output-feedback MPC/MHE controller the
physically-based model simulator MOUSE [20] has been
used as a virtual reality. MOUSE solves the complete Saint-
Venant equations and also simulates local PID controllers
for gate flow regulation. The modeling and output-feedback
control strategy have been applied to the real case study
of a part of the Barcelona sewer network, whose simplified
connection scheme is shown in Figure 1. The implementation
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Fig. 1. Diagram of the simplified case-study network.

of the network model in MOUSE together with all the needed
parameters have been provided by CLABSA (CLavegueram
de Barcelona S.A.), the company responsible of the network
management.

The control model for the studied network consists of
nv = 2 tanks, nq = 145 sewers, nw = 3 weirs, nf = 11
overflows, ng = 10 gates, nc = 1 collector and nw = 68 rain
inflows. The sampling time has been chosen of ∆t = 1 min
with a maximum delay in sewers of T = 6 min. For the
estimation problem, flows at 20 sewers (Y (t)) are measured
together with those at the ng = 10 regulated gates (U(t)).
The location of the flow measurements, shown in Figure 1,
is based on real data also provided by CLABSA.

In this work, the model predictive controller is used as
an upper level controller that computes optimal gate flow
values. These values are then used as set-points for local
PID controllers that regulate the gate positions to achieve the
desired flows. Once the set-points for the local controllers at
the network gates are updated, some time is needed for the
gates to move and reach the desired flow values. Therefore,
the SEP and OCP are solved every five time steps (that is, five
minutes) instead of every time step and the PID set-points
are kept constant during this time. In a real application, this
time would also include the time needed for data acquisition
from a SCADA system and the time needed to solve the
SEP and the OCP. The fact that the PID set-points can only
change every five minutes is taken into account in the OCP
by means of additional constraints forcing the gate flows to
remain constant during intervals of five time steps.

Also as a consequence of the predictive controller acting
as an upper level controller delivering set-points to local
controllers, the manipulated variables U(t) may not achieve
exactly the set-point values and therefore measures of these
variables are used in the SEP to estimate the system state.

The SEP and OCP are integrated in the output-feedback
MPC/MHE closed-loop algorithm as follows. At time step t:



• Measure system outputs and inputs: Ỹ(t), Ũ(t)
• Solve SEP(t) to compute X ∗O(t)
• Set OCP(t) initial conditions as

X0(t) := (X∗O(t)>, . . . , X∗O(t− T + 1)>)>

• Solve OCP(t) to compute X ∗(t)
• Set physically-based model simulator PID set-points to

UPID = U∗(t)

• Run five minutes simulation of the physically-based model
• Set t := t+ 5

Here, variables with a star upper index indicate that they
are the solution of the corresponding optimization problem.
Figure 2 shows a diagram of the process.
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Physically-based
model

(Mouse)
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Receding Horizon
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Control
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X0 UPID = U∗(t)

Fig. 2. Block diagram of the RHC strategy in closed-loop simulation.

The OCPs are solved with a prediction horizon of H = 40
time steps, which is the network’s concentration time, that
is, the time needed for water to travel from the uppermost
part of the network to its downstream end. For the SEPs an
horizon of HO = 15 time steps has been chosen.

Table II shows the results of the closed-loop output-
feedback simulations for four real-rain events. As mentioned
before, the control objectives for this simulations are to
minimize urban flooding (overflows), minimize CSOs and
maximize WWTP usage. It can be noticed that no relevant
performance loss is obtained when using the MHE strategy
compared with the full-state measurement (FSM) case. In
some cases there is even a reduction of the CSO objective.
This is due to the fact that MPC, although based on solving
optimal control problems, is not optimal along the whole
simulation time. This, together with the fact that the solution
of the OCP is not unique, causes the overall solution to be
affected by the decisions made at each time step leading in
some cases to some performance loss.

It can also be noticed that the overflow volume is identical
in three of the scenarios. This is because in these scenar-
ios overflows downstream of the flow regulation elements
are completely avoided. Then, overflows upstream of those
regulation elements take the same values no matter which
control or estimation strategy is used.

To asses the SEP accuracy at estimating the system states,
the following error index for the flow variables has been

TABLE II
RECEDING HORIZON RESULTS

Episode Measurements
Overflow

[× 103m3]
CSO

[× 103m3]
WWTP

[× 103m3]

17-09-2002 MHE 0.1488 3.8412 74.7820
FSM 0.1578 8.9983 75.0095

09-10-2002 MHE 1.0833 340.7905 88.8712
FSM 1.0075 341.6726 88.5412

15-08-2006 MHE 0.2501 4.8475 53.0944
FSM 0.2501 4.5822 53.1046

30-07-2011 MHE 0.7470 40.3150 51.9380
FSM 0.7470 39.0140 51.7179
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Fig. 3. Histogram of the maximum errors in the nl = 145 sewers for rain
event 09-10-2002.

used:

ei(t) = max
τ=5 t−T+1,...,5 t

|qOi (τ)− q̃i(τ)|, i = 1, . . . , nl. (15)

That is, for each SEP, the maximum deviation between the
observed flow qOi and the real one q̃i (as given by MOUSE)
along the T time steps used to initialize the OCP. Figure 3
shows the distribution of the maximum error

max
t=1,...,ts

ei(t), i = 1, . . . , nl, (16)

where ts is the number of SEPs solved for rain event 09-
10-2002. Convergence of the estimated values towards the
measured ones is shown in Figure 4.

Real-time control requirements regarding computation
times are also met. Table III shows the mean and maximum
computation times for both the OCP and SEP for each
of the simulated rain scenarios and Table IV shows the
corresponding number or variables and constraints. The 60
seconds maximum times for scenarios 1 and 2 are due to a
maximum time limit enforced in the optimizer settings. The
time limit is reached three times for scenarios 1 and 2. In all
the cases, the solver already reached a feasible sub-optimal
solution with an objective value deviation from the optimal
one of at most 1.11% (see MIP relative gap, [21]), which
could be used to continue with the RTC iterations.

All optimization problems were solved using CPLEX
v12.5 [21] MILP solver with standard settings, available
through the IBM Academic Initiative, on a machine with
an Intel Core 2 Duo CPU with 3.33 GHz and 8 GB RAM.
Warm starting of each problem using the part of solution of
the previous one corresponding to the overlapping time steps
has been used to speed-up the computations.



TABLE III
COMPUTATIONAL TIMES FOR THE OCP AND SEP

Episode Mean OCP
Time [s]

Max OCP
Time [s]

Mean SEP
Time [s]

Max SEP
Time [s]

17-09-2002 0.52 1.84 4.77 60.01
09-10-2002 0.62 3.23 4.44 60.03
15-08-2006 0.49 3.33 2.81 36.47
30-07-2011 0.45 2.20 3.03 51.25

TABLE IV
NUMBER OF VARIABLES AND CONSTRAINTS FOR THE OCP AND SEP.

Continuous
Variables

Binary
Variables

Equality
Constraints

Inequality
Constraints

OCP 8520 1040 7440 7240
SEP 3645 390 1780 2510
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The shaded area corresponds to the T time steps used for the OCP initial
conditions and for the error calculation.

VI. CONCLUSIONS AND FUTURE WORK

Based on a general hybrid linear delayed model of a sewer
network, simple matrix-based procedures to formulate finite
horizon optimal control problems (OCP) and state estimation
problems (SEP) have been presented. Both problems are
integrated into an output-feedback receding horizon control
strategy to minimize pollution in the sewer network in
presence of heavy rain events. Model predictive control
(MPC) is used to compute optimal flows at each time step.
To provide the initial conditions for the OCP solved in each
MPC iteration, moving horizon estimation (MHE) is used to
estimate the network flows using the latest system measure-
ments. Closed-loop results using a detailed physically-based
model simulator show that no significant performance loss
is obtained using the MHE strategy compared with full-state
measurement. The real-time control requirements regarding
computation times, accuracy and performance are met.

Future research regarding estimation in sewer networks

should be focussed in developing flow-level relations to
be able to use limnimeter measurements (i.e. water level
measurements) in the estate estimation problem, aside from
the flow-meter measurements used in this work.
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