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Abstract. This paper first explores the generalization of Euler angles to the case in

which the rotation axes are not necessarily members of an orthonormal triad, and presents
a concise solution to their computation that relies on the calculation of standard Euler
angles. Then, this generalization is taken one step further by introducing translations,
that is, by defining generalized Euler angles about screw axes using a variation of the

principle of transference that avoids the use of dual numbers. As an example, the obtained
formulation is applied to solve the inverse kinematics of a 3C manipulator.
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1 Introduction

Decomposing a rotation into three partial rotations about prescribed axes
is considered an important problem in the parametrization of the three-
dimensional rotation group [1] with applications to motion planning and in-
verse kinematics. For example, the inverse kinematics of a wrist-partitioned
manipulator requires the decomposition of a given finite rotation of the end-
effector into three successive finite rotations about prescribed joint axes.
When these three axes are selected from an orthogonal basis, the rotation
angles are the well-known Euler angles. The case in which the three axes
are not necessarily orthogonal was first treated by Davenport in 1973 [2]. He
considered the case in which the first and the third axes were orthogonal to
the second, but the angle between the first and third was arbitrary. In 1978,
Dimentberg took the problem in all its generality and reduced it to three
quadratic equations each relating the tangent of the half input angle with the
tangents of the half rotations angles [3]. In 1992, Wohlhart obtained a similar
expression for the first rotation angle and two linear equations relating the
tangents of the first angle and each of the other two angles, thus improving
Dimentberg’s formulation [4]. The main problem of these two formulations
is their discontinuity at ±π. In 2003, Wittenburg and Lilov [5], and Shus-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/45444638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Aleix Rull and Federico Thomas

ter and Markley [6], independently gave a successful solution to the problem
that avoids this formulation singularity. More recently, in 2011, Mladenova
and Mladenov solved the problem using a vector-like parametrization of the
rotation group [7], and in 2012 Piovan a Bullo presented a solution based on
a coordinate-free formulation [8].

Another generalization of Euler angles consists in introducing translations,
that is, in defining Euler angles about screw axes [9]. This leads to the concept
of dual Euler angles which has successfully been used in several biomechanical
applications [10, 11]. A dual angle, say φ̂, is defined as a dual number of the
form φ + ǫd, with ǫ2 = 0, so that φ is the rotation about and d the slide
along a given axis. Dual numbers were introduced in the 19th century by
Clifford, and their application to rigid body kinematics was subsequently
generalized by Kotelnikov and Study in their principle of transference. This
principle essentially states that, if dual angles replace real ones, then all
equations obtained for spherical problems are also valid for spatial ones [12].
Therefore, general coordinate transformations can be expressed as a sequence
of rotations through three dual Euler angles.

This papers deals with the problem of computing dual Euler angles for
the case in which the three rotation axes are not mutually orthogonal, thus
giving a unified treatment of the two generalizations of Euler angles available
in the kinematics literature. It is interesting to observe that this problem
was implicitly solved by Pennock and Vierstra in 1990 when calculating the
inverse kinematics of the general 3C manipulator [15]. Curiously enough, this
connection remained unnoticed in all subsequent works dealing with general-
izations of Euler angles. One of the purposes of this paper is to highlight this
connection and to provide a more concise and readable formulation to that
given in [15].

The rest of this paper is organized as follows. In Section 2, by relying on the
computation of standard Euler angles, a concise way to compute generalized
Euler angles is presented. Next, in Section 3, this result is extended to dual
angles using an alternative formulation of the principle of transference that
makes no explicit use of dual numbers. The derived equations are then used,
in Section 4, to solve the inverse kinematics of a 3C manipulator. Finally,
conclusions are drawn in Section 5.

2 Computing sets of generalized Euler angles

The problem of decomposing a rotation about an axis n by an angle φ into
three successive rotations about three axes n1, n2, and n3 by angles α1, α2,
and α3, respectively, can be algebraically expressed as:

Rn(φ) = Rn1
(α1)Rn2

(α2)Rn3
(α3). (1)
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Fig. 1 Spherical triangle associated with matrix equation (2).

Expressing the rotations about n1, n2, and n3 in terms of rotations about
the z axis, we have:

C1Rz(α1)C
T
1
C2Rz(α2)C

T
2
C3Rz(α3)C

T
3
= Rn(φ).

Rearranging terms, this can be rewritten as:

C
T
3
R

T
n
(φ)C1Rz(α1)C

T
1
C2Rz(α2)C

T
2
C3Rz(α3) = I.

Then, computing the products of all constant matrices, we obtain:

A1Rz(α1)A2Rz(α2)A3Rz(α3) = I.

Now, after computing a set of valid ZXZ Euler angles for Ai, i = 1, 2, 3, we
have:

Rz(β1)Rx(γ1)Rz(δ1)Rz(α1)Rz(β2)Rx(γ2)Rz(δ2)Rz(α2)

Rz(β3)Rx(γ3)Rz(δ3)Rz(α3) = I.

Hence,
Rx(γ1)Rz(θ1)Rx(γ2)Rz(θ2)Rx(γ3)Rz(θ3) = I, (2)

where θ1 = δ1 + α1 + β2, θ2 = δ2 + α2 + β3, θ3 = δ3 + α3 + β1.
Observe that equation (2) can be seen as the closure condition of the

spherical triangle depicted in Fig. 1 [13]. Then, the analogues of the law of
cosines for the angles θ1, θ2 and θ3 of this spherical triangle allow us to write:

g1(γ1,γ2, γ3, θ1) = cos γ1 cos γ2 − cos γ3 − sin γ1 sin γ2 cos θ1 = 0, (3)

g2(γ1,γ2, γ3, θ2) = cos γ3 cos γ2 − cos γ1 − sin γ3 sin γ2 cos θ2 = 0, (4)

g3(γ1,γ2, γ3, θ3) = cos γ3 cos γ1 − cos γ2 − sin γ3 sin γ1 cos θ3 = 0. (5)

Finally,
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θ1 = ± arccos

(

cos γ1 cos γ2 − cos γ3
sin γ1 sin γ2

)

,

θ2 = ± arccos

(

cos γ3 cos γ2 − cos γ1
sin γ3 sin γ2

)

,

θ3 = ± arccos

(

cos γ3 cos γ1 − cos γ2
sin γ3 sin γ1

)

.

If we take one solution for any of these three angles, the solution for the
other two becomes unique. Thus, we have two sets of solutions. To avoid
checking the eight combinations of signs to obtain the two right combinations,
we can express, for example, θ2 and θ3 in terms of θ1. To this end, applying
the law of sines to the spherical triangle in Fig. 1, we have:

sin θ2 =
sin γ1
sin γ3

sin θ1,

sin θ3 =
sin γ2
sin γ3

sin θ1.

Therefore,

θ2 = atan2

(

sin γ1
sin γ3

sin θ1,
cos γ3 cos γ2 − cos γ1

sin γ3 sin γ2

)

,

θ3 = atan2

(

sin γ2
sin γ3

sin θ1,
cos γ3 cos γ1 − cos γ2

sin γ3 sin γ1

)

.

As an example, consider the problem solved in [4] and [7] (note that the lat-
ter reference contains several typos in the provided numerical values). In this
particular case, n1 = (cos 80◦ cos 45◦, cos 80◦ sin 45◦, sin 80◦), n2 = (sin 60◦,
cos 60◦, 0), n3 = (1, 0, 0), n = (cos 50◦ cos 25◦, cos 50◦ sin 25◦, sin 50◦), and
φ = 60◦. Using the procedure given above, we obtain

δ1 =90◦,

δ2 = − 27.39◦,

δ3 =132.01◦,

β2 =143.03◦,

β3 = − 60◦,

β1 =29.78◦,

θ1 = ± 93.24◦,

θ2 = ± 91.88◦,

θ3 = ± 149.58◦.

The resulting two sets of solutions are {α1 = 33.73◦, α2 = −4.50◦, α3 =
48.63◦} and {α1 = −139.79◦, α2 = 179.27◦, α3 = −12.21◦}, which coincide
with those given in [4] and [7].
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3 Applying the principle of transference

All the presentations of the principle of transference invariably resort to the
algebraic structure of dual numbers, but for our purposes it is better to
avoid it to derive a more easily implementable formulation. To this end, let
us suppose that a loop closure conditions in a spherical mechanism can be
expressed as:

g1(ξ1, . . . , ξn) = 0, . . . , gm(ξ1, . . . , ξn) = 0,

where ξi, i = 1, . . . , n represent rotations about the axes n1,n2, . . . ,nn, re-
spectively. Then, if we do not only rotate but, at the same time, we also trans-
late along the directions defined by these axes the quantities d1, d2, . . . , dn,
respectively, these translations cannot be assigned independently, they must
satisfy the following n relationships:

n
∑

i=1

di
∂g1

∂ξi
= 0, . . . ,

n
∑

i=1

di
∂gm

∂ξi
= 0,

where the sign of di is imposed by the sign of ξi according to the right hand
rule (see [14] for details).

Now, if we apply the principle of transference, as stated above, to (3), (4),
and (5), we obtain:

(

a1 a2 a3

)





dγ1

dγ2

dγ3



+
(

b1 b2 d3

)





dθ1
dθ2
dθ3



 = 0, (6)

where dγ1
, dγ2

, dγ3
, dθ1 , dθ2 , and dθ3 correspond to translations along the axes

associated with the rotation angles γ1, γ2, γ3, θ1, θ2, and θ3, respectively, and

a1=





− sin γ1 cos γ2 − cos γ1 sin γ2 cos θ1
sin γ1

− cos γ3 sin γ1 − sin γ3 cos γ1 cos θ3



 , b1=





sin γ1 sin γ2 sin θ1
0
0



 ,

a2=





− cos γ1 sin γ2 − sin γ1 cos γ2 cos θ1
− cos γ3 sin γ2 − sin γ3 cos γ2 cos θ2

sin γ2



 , b2=





0
sin γ3 sin γ2 sin θ2

0



 ,

a3=





sin γ3
− sin γ3 cos γ2 − cos γ3 sin γ2 cos θ2
− sin γ3 cos γ2 − cos γ3 sin γ1 cos θ3



 , b3=





0
0

sin γ3 sin γ1 sin θ1



 .

In the next section, these formulas are used to solve the inverse kinematics
of a 3C manipulator.
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4 Example: Inverse kinematics of the 3C manipulator

30

35

5
0

30
°

70°

x y

z

θ1

d1

θ2

d2

θ3

d3

i θi di ai αi

1 0 d1 0 0
2 θ1 0 35 −30◦

3 0 d2 0 0

4 θ2 0 0 70◦

5 0 d3 0 0
6 θ3 50 30 0

Fig. 2 A 3C manipulator and its DH-parameters.

Clearly, calculating the inverse kinematics of an oblique spherical wrist1

is equivalent to solving (1) for α1, α2, and α3. As a generalization, it can be
observed that calculating the inverse kinematics of serial manipulator with
three cylindrical joints can be reduced to solve the same set of equations to
obtain the revolute joint angles, and the system of equations in (6) to obtain
the prismatic joint displacements.

The inverse kinematics of a general 3C manipulator was solved for the first
time in [15]. Since then, this has remained the standard reference for this
kind of robot. To exemplify the equivalence between calculating the inverse
kinematics of 3C manipulators and calculating generalized dual Euler angles,
let us considered the 3C manipulator shown in Fig. 2. Solving its inverse
kinematics reduces to solve the matrix equation

Tz(d1)Rz(θ1)Rx(−30◦)Tx(35)Tz(d2)Rz(θ2)Rx(70
◦)

Tz(d3)Rz(θ3)Tz(50)Tx(30) = E, (7)

where E represents the location of its end-effector. If we set

1 A spherical wrist is said to be simple if n1⊥n2 and n2⊥n3 or oblique, otherwise.
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Fig. 3 The two inverse kinematics solutions of the analyzed manipulator for a particular
location of its end-effector (see text for details).

E =









0 0 −1 −115
0 1 0 25
1 0 0 85
0 0 0 1









, (8)

and calculate the ZXZ dual Euler angles of ETx(−30)Tz(−50), (7) can be
rewritten as:

Tz(d1)Rz(θ1)Rx(−30◦)Tx(35)Tz(d2)Rz(θ2)Rx(70
◦)Tz(d3)Rz(θ3)

= Rz(−90◦)Tz(55)Rx(90
◦)Tx(−25)Rz(90

◦)Tz(65). (9)

After rearranging terms, we finally obtain:

Rx(−90◦)Tx(25)Rz(θ1+90◦)Tz(d1−55)Rx(−30◦)Tx(35)

Rz(θ2)Tz(d2)Rx(70
◦)Rz(θ3−90◦)Tz(d3−65) = I. (10)

After dropping translations and proceeding as explained in Section 2,
the following two sets of revolute joint angles are obtained: {θ1=43.16◦,
θ2=−129.08◦, θ3=67.16◦}, and {θ1=−223.16◦, θ2=129.08◦, θ3=112.84◦}.
Then, substituting these results in (6), and solving the resulting linear system
in d1, d2 and d3, we obtain the following sets of translations for the prismatic
joints: {d1=52.49, d2=2.9, d3=89.54}, and {d1=57.51, d2=−2.9, d3=40.46},
respectively. In Fig. 3, the robot is represented in both configurations.
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5 Conclusions

We have presented an alternative simple procedure to calculate sets of gener-
alized Euler angles. Next, this procedure has been extended from spherical to
spatial kinematics using a variation of the principle of transference that does
not rely on the use of dual angles. The arising equations have been shown
to be equivalent to those resulting from solving the inverse kinematics of the
general 3C robot, a problem already solved using dual orthogonal matrices by
Pennock and Vierstra in 1990. Probably due to the fact that, in the example
presented by these authors, the axes of the cylindrical joints are orthogonal,
their work has been overlooked in recent papers dealing with generalizations
of Euler angles.
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