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Abstract

This paper reports recent progress on modeling the
grounded co-acquisition of syntax and semantics of
locative spatial language in developmental robots.
We show how a learner robot can learn to produce
and interpret spatial utterances in guided-learning
interactions with a tutor robot (equipped with a sys-
tem for producing English spatial phrases). The
tutor guides the learning process by simplifying
the challenges and complexity of utterances, gives
feedback, and gradually increases the complexity
of the language to be learnt. Our experiments show
promising results towards long-term, incremental
acquisition of natural language in a process of co-
development of syntax and semantics.

1 Introduction
Here is an example of a locative spatial phrase from English.

(1) The block left of the box from your perspec-
tive.

A sentence such as this can be used by a speaker to single out
an object in the environment and draw attention of the listener
to that object. To reach this goal the phrase includes a number
of locative spatial components. There is a locative spatial re-
lation “left”, a landmark “the box” and a perspective “from
your perspective”. The components are put together to sig-
nal to the listener exactly how to identify the referent of the
phrase.

Spatial language is of huge importance for communica-
tion. Despite being so cognitively central and perceptually
determined, spatial language turns out to be largely culture-
specific [Levinson, 2003]. This not only true for the lexicon
and grammatical aspects [Svorou, 1994] but also for the con-
ceptual structures a language affords. Tzeltal, a Mayan lan-
guage impressively demonstrates this through its sole reliance
on absolute spatial relations such as uphill/downhill and its
lack of projective categories such as front/left [Brown and
Levinson, 1993]. To autonomously learn a spatial language,
therefore, requires not only to learn the expression of spatial
relations but also to acquire the underlying conceptual reper-
toire.

This paper is part of a larger effort on understanding the
developmental origins of language by emulating stages in de-
velopment similar to children using cognitive linguistics and
construction grammar, specifically Fluid Construction Gram-
mar as foundations. Its developmental perspective makes it
part of Developmental A.I., which has made huge steps for-
ward the past decade through detailed models of sensorimotor
skill learning [Asada et al., 2009]. However, only a few mod-
els have dealt with the acquisition of spatial language. There
is some work on the learning of grounded spatial relations
[Spranger, 2013; Bailey et al., 1997] in tutor-learner scenar-
ios, but that has only focussed on spatial categories and not on
grammar. There have also been attempts on development of
grammar, e.g. [Saunders et al., 2009], but those approaches
do not go beyond very early stages of grammar development,
and typically neglect the semantic aspects of grammar. A no-
table exception is [Alishahi and Stevenson, 2008] which is a
non-grounded model of learning argument structure construc-
tions.

In the robotics community, spatial language plays an im-
portant role for commanding robots, describing the envi-
ronment and referring to objects in, for example, industrial
task settings. Often then hand-crafted systems [Winograd,
1971] or supervised machine learning techniques [Chen and
Mooney, 2010] are used. More often than not the semantics
of the language is fixed. The language component maps utter-
ances to the given symbolic meaning space, which allows sta-
tistical techniques from machine learning to be applied [Ma-
tuszek et al., 2010]. A notable exception is [Tellex et al.,
2013], which learns a probabilistic graphical model from un-
aligned text, scene pairs and which can also learn to ground
the meaning of words.

Lastly, in the Cognitive Science community computational
models of spatial lexicon acquisition [Regier, 1996] have
been very influential. Importantly, while often not tested with
real robots, these models give quantifiable estimates of the
impact of certain strategies such as using cross-situational
statistics [Frank et al., 2008; Siskind, 1996] and biases [Saun-
ders et al., 2011; Griffiths et al., 2010].

Our work is based on many of these previous insights but
is different in its focus on grounding and the incremental co-
acquisition of spatial grammar and complex semantics.
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Figure 1: Spatial language game set-up. The images left and right
show the situation model as perceived by each robot.

2 Embodied Language Games
We use language games to study the acquisition of spatial lan-
guage [Steels, 2001]. Two robots (one is the tutor, the other
the learner) are interacting in a shared environment and are
trying to draw each others attention to objects in the vicin-
ity, using language. The set-up is shown in Figure 1. The
environment consists of a number of objects (represented in
the graphical representation of the situation model as circles),
boxes (rectangles) and interlocutors (arrows). The vision sys-
tem of each robot tracks objects in the vicinity and establishes
a model of the environment with real-valued distances and
orientations of objects with respect to the body of the robot.
The environment is open-ended. Objects and boxes are added
or removed and their spatial configuration changed. More-
over, robots are free to move around. For the purpose of
evaluation we recorded more than 1000 spatial scenes with
different numbers of objects (up to 15 objects) and different
configurations of objects.

1. Each agent perceives the scene
2. The speaker selects an object (further called the topic
T ) from the situation model. The speaker tries to find
a meaning (this can involve spatial relations, landmarks
and perspective) which discriminates T from other ob-
jects in the scene. Subsequently, the speaker produces
an utterance for this meaning.

3. The listener parses the utterance and tries to interpret the
(potentially partial) meaning of the observed utterance
to identify possible topics in the scene. The listener then
points to the topic he thinks is the most likely interpreta-
tion of the phrase.

4. The speaker checks whether the listener points to T . If
the listener pointed correctly, the game is a success and
the speaker signals this outcome to the listener.

5. If the game is a failure, then, depending on the tutoring
strategy, additional things may happen. The tutor can
point to the object he had in mind, the topic if he is the
speaker, or the thing he understood to be the topic when
he is the listener. Alternatively, a learner may point to
the topic, and the tutor might say how he would refer to
the topic.

3 Representing and expressing Spatial
Meaning

We are using a particular formalism called Incremental Re-
cruitment Language (IRL, [Spranger et al., 2012]) to rep-
resent the procedural semantics [Haddock, 1989] of spatial

(construct-region-lateral ?region ?ctx ?landmark ?cat ?f-o-r)

(bind lateral-category ?cat left)

(apply-selector ?landmark ?landmarks ?selector-2)

(apply-class ?landmarks ?ctx ?landmark-class) (bind selector ?selector-2 unique)

(bind object-class ?landmark-class block)(get-context ?ctx)

Figure 2: IRL-program Example 3.

utterances. Figure 2, for instance, shows the IRL-program
(meaning) of the phrase “left of the block”. The structure
contains pointers to concepts and spatial relations in the form
of bind statements (in bold), as well as a number of cognitive
operations. For example, construct-region-lateral
constructs a region representation. Cognitive operations and
bind statements are linked using variables (which are symbols
starting with ?). For instance, the variable ?lm links a subpart
of the IRL-program identifying “the box’ to the landmark
input slot of the operation construct-region-lateral
thereby capturing the fact that “the box” should act as the
landmark to the region.

Spatial relations: English locative spatial relations can be
broadly categorized into three different classes.
Proximal categories such as “near” and “far” rely on proxim-
ity to some particular landmark object.
Projective categories are categories such as “front”, “back”,
“left” and “right”. These categories are primarily angular cat-
egories signifying a direction. The direction can come from
the reference object itself (intrinsic) or can be induced by
the observer or some perspective (relative frame of reference
[Retz-Schmidt, 1988]).
Absolute categories such as “north”, “south”, “east” and
“west” which rely on a compass directions, with the pivot
direction to the magnetic north pole. Other absolute systems
rely on features of the environment to determine the layout of
the angles [Brown, 2008]. In the experiments discussed here,
the wall marker is used as a global direction on the scene.

We represent spatial categories using a similarity function
[Herskovits, 1986] based either on a prototypical angle (for
absolute, projective) or distance (for proximal) enveloped by
an exponential decay:

sima(o, c) := e−
1

2σc
|ao−ac|

where o is some object, c the category, ao the angle to a par-
ticular object o and ac is prototypical angle of category c.
Importantly, angular and proximal distances are always de-
fined relative to a coordinate system origin. By default this is
the robot observing the world.

Cognitive operations: Agents can use spatial relations
(and other concepts) in IRL-programs combined with differ-
ent cognitive operations:
Set operations such as picking the highest scored member of
a set etc., which are important for dealing with determiners
such as “the”.
Categorization operations take a set as input and score objects
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(apply-selector ?target ?source ?sel)

(bind selector ?sel unique)

(apply-angular-spatial-category-group-based ?source ?source-2 ?cat)

(bind lateral-category ?cat left)(apply-class ?source-2 ?ctx ?class)

(bind object-class ?class block)(get-context ?ctx)

Figure 3: IRL-program for Example 2.

according to some similarity functions defined by categories.
Examples are apply-class and apply-category.
Mental rotations: are implemented as linear algebra opera-
tions that transform a feature space such as angle and direc-
tion to another point of origin, e.g. geometric-transform.
These operations also handle different frames of reference
(intrinsic, relative and absolute).

An important insight from cognitive linguistics is that there
is a deep connection between semantics and syntax. The fol-
lowing gives two examples from English to highlight this.

(2) The left block.

(3) left of the block .

Both phrases consist of the same lexical material (the,
block and left) but their grammatical structure and their
meaning structure is quite different. In Example 2 the spatial
relation is used as modifier on the set of objects denoted by
the noun, whereas in Example 3 the spatial category is applied
to a landmark denoted by the determined noun phrase. In Ex-
ample 2 the spatial relation refers to a group-based relative
reference system [Tenbrink and Moratz, 2003]. Importantly,
these differences are signaled by word classes. When “left”
is used as a preposition, then it is used to construct a region.
When “left” is used as adjective, then the group-based refer-
ence operation is needed. The word order of the utterance and
grammatical markers such as “of” communicate how these
different cognitive operations are linked.

4 Acquisition of Spatial Categories
The first step in spatial language learning is the acquisition of
the spatial relations. Acquisition of a category is a two-step
process. It starts with the learner encountering an unknown
word in a particular communicative situation. To adopt the
word, the learner stores it together with an initial estimated
category as meaning. The information available to the learner
in a single interaction is typically insufficient for a good esti-
mate of the spatial category. The learner will therefore have to
integrate information from subsequent interactions in which
the new word is used to align better to the tutor.

Categories are initially encountered in a particular interac-
tion using the following operation:
Listener encounters unknown spatial term s
Problem: Listener does not know the term (step 4 fails).
Repair: Listener signals failure and the speaker points to the
topic T . Subsequently, the listener constructs a spatial cate-
gory c based on the relevant strategy (projective, proximal or

Figure 4: Adoption of an unknown category label by a learner
agent in interaction with a tutor agent. The tutor starts by
conceptualising the topic object in his world model (image
1). Here, obj-307 (obj-91 learner’s world model) is chosen
as topic. The tutor conceptualises a meaning for the topic
from the perspective of the learner (image 2). The tutor finds
the category left associated with the word “left” to be most
discriminating (image 3). The speaker utters the word to the
learner (context learner image 4). The learner does not know
the word and the interaction fails. After the speaker pointed
to the topic, the listener can adopt the string and connect it to
the newly invented projective category projective-1.

absolute) and the topic pointed at (see Figure 4). Addition-
ally, the listener invents a mapping associating c with s.

New words are always adopted in a particular interaction.
Angle and distance prototypes are based on the particular dis-
tance and angle of the topic of the interaction to the learner.
These are never exactly the same distance and angle of the
category used by the tutor. To align his representation of the
category of the tutor over time, the learner incrementally up-
dates the category. For this he keeps a memory of past dis-
tances and angles. After each interaction the learner updates
the prototype by averaging the angles (or distance) of objects
in the sample set S of experiences of the category. The new
prototypical angle ac of the category is computed using the
following formula where ao is the angle of sample o.

ac = atan2

(
1

|S|
∑
o∈S

sin ao,
1

|S|
∑
o∈S

cos ao

)

σ′c = σc + ασ ·

σc −√ 1

|S| − 1

∑
o∈S

(ac − ao)2



1911



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250
 0
 0.5

 1

 1.5

 2

 2.5
 3

 3.5

 4
co

m
m

un
ic

at
iv

e 
an

d 
in

te
rp

re
ta

tio
n 

su
cc

es
s

# 
of

 c
at

eg
or

ie
s

number of interactions

communicative success
# categories student

interpretation similarity

“left” “right” “front” “back”

Figure 5: Dynamics of lexicon acquisition.

The new σ value σ′ which describes the shape of the applica-
bility function of the category is adapted using the following
formula. This formula describes how much the new σc of the
category c is pushed in the direction of the standard deviation
of the sample set by a factor of ασ ∈]0,∞[.

We have tested the learning operators in experiments with
a population consisting of one English category tutor and one
learner. Figure 5 displays aggregated dynamics of 25 exper-
imental runs showing the acquisition of projective categories
(similar results exist for proximal and absolute categories).
The learner quickly reaches communicative success. After
roughly 25 interactions, all categories and their correspond-
ing strings have been adopted. In the remaining interactions
the alignment operator drives the interpretation similarity to-
wards 1.0 (which is the highest value and signifies total over-
lap between the categories of the tutor and the learner). The
bottom figure shows the categories acquired by the learner in
one particular acquisition experiment.

5 Learning Spatial Grammar
In this section we focus on the strategies for learning spatial
syntax. We assume, for now, that both agents share the IRL-
programs and categories for conceptualizing and interpreta-
tion. This is obviously a strong assumption but it makes it
possible to describe the learning of constructions in isolation.
Later on we take away this scaffold. The learner starts out
with no syntactic knowledge (no words or knowledge about
phrase structure).
Listener encounters unknown spatial phrase s
Problem: Listener does not know the phrase or some part of
the phrase (step 4 fails).
Repair: Listener points (if he can still interpret the phrase
given the context t) or signals failure and the speaker points
to the topic t. In any case, the listener will have constructed
an IRL-program for the topic. The learner invents a mapping
from the complete IRL-program to the complete phrase (or
parts thereof).

("the" "ball")

((bind selector ?selector unique)
 (bind object-class ?class ball)
 (apply-selector ?object ?classified-objects ?selector)
 (apply-class ?classified-objects ?src ?class)
 (get-context ?src))

("the" "box")

((bind selector ?selector unique)
 (bind object-class ?class box)
 (apply-selector ?object ?classified-objects ?selector)
 (apply-class ?classified-objects ?src ?class)
 (get-context ?src))

("the" ?
STRING-X)

((bind selector ?selector unique)
 (bind object-class ?class ?CONCEPT-X)
 (apply-selector ?object ?classified-objects ?selector)
 (apply-class ?classified-objects ?src ?class)
 (get-context ?src))

("ball") ((bind object-class ?class ball))

("box") ((bind object-class ?class box))

Figure 6: Schematic of an item-based construction (and two
more lexical constructions) invented by the learner through
reasoning over holophrases that have been heard before. The
input constructions differ in semantics and in the form in a
single item, which allows the learner to make a structural in-
ference and split up the existing constructions.

Once the learner has acquired enough exemplars, he tries
to extract more abstract constructions. Suppose the learner
first hears the determined noun phrase “the box”. Initially this
will allow him to successfully produce and interpret that exact
phrase. Upon hearing another example of a determiner and a
noun “the ball”, the learner can now deduce that likely he
can build phrases of the form “the X” where X is something
else namely a particular concept. The learner then invents an
item-based construction and other constructions by breaking
up the holophrases (see Figure 6 for a graphical explanation).

Once an item-based construction and its associated more
lexical constructions have emerged, they are in competition
with the holophrase constructions since they cover the same
communicative situations (same meanings and phrases). The
learner in production and interpretation knows this and so a
competition takes place in the learner between the new con-
structions and the old holophrases. Setting up the right align-
ment dynamics for the learner can eliminate the holophrase
constructions. Initially the learner will choose the new con-
structions over the older ones. Keeping track of how suc-
cessful they are and which constructions compete. Punishing
competing constructions after every interaction leads to a for-
getting of the holophrase constructions over time. Once mul-
tiple item-based constructions are learned, they can be further
broken up using the exact same learning operator. More and
more abstract constructions will emerge with more possible
arguments until finally something similar to phrase structure
constructions emerges.

We can test the learning by running multiple tutor-learner
simulations. The tutor can express a number of meanings
and phrases. In total we see that 546 phrases are used by the
tutor (on this particular data set) including determined noun
phrases, e.g. “the block” or “the box”, more complex adjec-
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Figure 7: Dynamics of grammar learning given the learner
knows all possible IRL-programs and categories.

tive noun phrases, e.g. “the left block”, and very complex
phrases such as “the block left of the box from your perspec-
tive”.

Figure 7 shows the overall dynamics of learning spatial
grammar (for 100 experiments). In all 100 experiments,
the learner learns to be successful in communication after
roughly 350 interactions (average 80% success). At this point
the learner has been exposed to an average of 120 utterances
(for about 550 total possible utterances used by the tutor),
which is before the learner has seen all possible utterances,
but enough to be successful for that stage. Initially the tutor
chooses to expose the learner to simple scenes. This makes
the learner immediately successful. Over time the tutor in-
creases the complexity of the environment and the language
needed to cope with the environment. That’s why the learner
does not reach 100% success but keeps learning.

At the same time, we can see an overshoot of the number of
constructions in the inventory of the learner. This is due to an
initial rise of holophrases, which later slowly die out, being
overtaken by more item-based constructions and the emer-
gence of lexical constructions (bind statements only mean-
ing), The lexical constructions give already a lot of informa-
tion and often allow the learner to successfully interpret the
phrase given simple environments. Later functional construc-
tions (handling a single cognitive operation or a set of them)
and more phrase structure like constructions (only mapping
variable linkings to word order) emerge. Slowly memory is
consolidated. Typically, the learner does not end up with 46
constructions (which is what the tutor is using). A few more
survive because the learner has not seen some enough exam-
ples of complex constructions. Importantly, the learnt system
is fully productive more or less from the start and the learner
can parse and make utterances he has never seen before.

6 Co-acquisition of Semantics and Grammar
The last piece of the puzzle for learning spatial language is
the development of complex semantics itself. We represent
complex semantics using IRL-programs such as the one in
Figure 3. Consequently, learners need a way to automat-
ically assemble new IRL-programs. IRL comes with such

mechanisms. Starting from a pool of cognitive operations,
IRL can put together IRL-programs in a process of automatic
programming, where new programs are created and tried out
by the learner. So for instance, initially the learner might
use a simple apply-category operation similar to the one
used in category learning. Later the apply-category oper-
ation can be combined with more complex operations such as
mental rotation geometric-transform. See Figure 8 for a
schematic explaining the process.

The process of creating IRL-programs is a heuristics
guided search process based on communicative intentions
shared by the interlocutors. For instance, the agents try to be
most discriminative in their choice of feature channels, per-
spective, landmark etc. Also, the learner extends its repertoire
of IRL-programs in a particular spatial context given a partic-
ular utterance of the tutor. For instance, the learner might be
able to detect certain lexical items when he is trying to guess
the meaning of an utterance. This partial information is used
to constrain the space of possible IRL-programs.

Similarly to constructions and categories, the learner track
the success of the IRL-programs he is using. Successful struc-
tures are retained for future interaction. Unsuccessful struc-
tures might be forgotten. Each IRL-program has a score and
the learner increases the score of the IRL-program when it
was used successfully and otherwise he decreases the score.
If the score falls too low, the structure might be removed.

In order to learn more and more complex semantics starting
out from simple ones, the communicative setting needs to be
controlled so as to allow the learner to go through a slow pro-
cess of incremental complexification. Similar to the previous
experiments, the tutor takes on the role of simplifying the lan-
guage up to a point, that the learner can establish first knowl-
edge of concepts before acquiring more complex semantics.
Roughly, the tutor will push the learner to go through the fol-
lowing stages.

Concept learning Initially, the tutor starts with simple envi-
ronments that allow the learner to start with simple IRL-
programs and conversely simple language (similar to the
category learning described earlier).

Simple phrase learning In the second stage, the language
becomes more complex and simple phrases such as the
“the block” etc are used. Here first item-based construc-
tions are learned and some simple phrases emerge.

More complex phrases In the third stage, complex phrases
such as “the block left of the box” require the learner to
start incorporating mental rotation operations.

More complex spatial semantics and phrases Here the tu-
tor will start using spatial adjectives and relative frames
of reference utterances. The learner has to come up with
semantics for group-based reference and perspective.

Initial experimental results (combining all the mecha-
nisms for concept, grammar and semantics learning) are very
promising for our approach. See Figure 9 and 10 for an
overview of the dynamics. The learner transitions incremen-
tally through learning more complex utterances and seman-
tics based on the tutor-guided acquisition process. This has
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(apply-category ?target ?source ?category)

(identify-object ?target ?source ?category)
(get-context ?ctx)

(geometric-transform ?tgt ?src ?lndm)

(group-objects ?tgt ?src)

(select-object ?target ?source ?selector)

(pick-best ?tgt ?src)

(identify-object ?target ?ctx ?category)

(get-context ?ctx)

(apply-category ?target-1 ?ctx ?category)

(select-object ?target ?target-1 ?selector)

(get-context ?ctx)

(apply-category ?target-1 ?ctx ?category)

(select-object ?lndm ?target-1 ?selector)

(geometric-transform ?tgt ?ctx ?lndm)

(apply-category ?target ?tgt ?category)

(get-context ?ctx)

Figure 8: Recruitment of cognitive operations to form new meaning in the form of IRL-programs. Left, the pool of operations
from which to build new structures. Middle top, a new program configured from the pool (this is what is used to learn the
first categories). When spatial categories have been acquired new structure might be build based on an increase in complexity
of syntax (here the part of the meaning of phrases like “the block”). Right, more complex structure emerging later in the
acquisition (similar to “left of the box”) process.
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Figure 9: Dynamics of grammar learning when the learner
simultaneously acquires IRL-programs and categories.
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Figure 10: Development of the learners concepts and seman-
tic structure for the same experiments as in Figure 9.

little impact on his success (because the environment is con-
trolled by the tutor). However, the learner manages to acquire
the 25 concepts needed and also manages to construct useful
IRL-programs (the tutor uses 7). Interestingly, even while
becoming more successful in more and more complex utter-
ances, the learnt system stays quite messy. All sorts of mean-
ings and constructions not used are still lingering around in
the memory of the agent. One aspect of future work is thus to
investigate adequate strategies of memory consolidation and
forgetting.

7 Conclusion and Future Work
The experiments developed in this paper show that it is possi-
ble to setup scenarios involving tutors and learners that allow
a fruitful study of the incremental development of language
in artificial agents. We have used these setups to quantify the
impact of tutoring strategies, the interaction scripts, the com-
plexity of the environment, and the power of learning mech-
anisms on the developmental dynamics of language acquisi-
tion. The initial results reported here show that this is indeed
possible.

Unavoidably, there are a number of scaffolds and simpli-
fications, which we hope to remove in future work. Specifi-
cally, the learning operators used so far have been quite sim-
ple, which has required that more constraints than desirable
had to be imposed for learning to take off. For instance, in
the experiments reported here, agents are biased to build cat-
egories on single feature channels because this leads them in
a quite straightforward way to proximal, absolute and projec-
tive strategies. In future work, we want to avoid this and let
agents learn themselves discover that this bias is appropriate.

Another goal of our future work is going to be scaling.
Locative spatial language is only a small albeit important
aspect of language. There has already been some work
within the same paradigm on learning color lexicons [Bleys
et al., 2009], the emergence of quantifiers [Pauw and Hilferty,
2012] and parts of tense and aspect systems [Gerasymova and
Spranger, 2010]. However, most of these experiments focus
on one specific aspect of language. It remains to be stud-
ied how a complete (or at least more complete) language can
arise from a developmental point of view.
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