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Abstract— We present a real time method for pose estimation
of objects from an UAV, using visual marks placed on non
planar surfaces. It is designed to overcome constraints in
small aerial robots, such as slow CPUs, low resolution cameras
and image deformations due to distortions introduced by the
lens or by the viewpoint changes produced during the flight
navigation. The method consists of shape registration from
extracted contours in an image. Instead of working with dense
image patches or corresponding image features, we optimize
a geometric alignment cost computed directly from the raw
polygonal representations of the observed regions using efficient
clipping algorithms. Moreover, instead of doing 2D image pro-
cessing operations, the optimization is performed in the polygon
representation space, allowing real-time projective matching.
Deformation modes are easily included in the optimization
scheme, allowing an accurate registration of different markers
attached to curved surfaces using a single deformable prototype.

As a result, the method achieves accurate object pose
estimation precision in real-time, which is very important
for interactive UAV tasks, for example for short distance
surveillance or bar assembly. We describe the main algorithmic
components of the method and present experiments where our
method yields an average error of less than 5mm in position
at a distance of 0.7m, using a visual mark of 19mm x 19mm.
Finally, we compare these results with current computer vision
state-of-the-art systems.

I. INTRODUCTION

Image registration is at the core of many tasks in robotics,
including object detection and manipulation, pose estima-
tion, human-robot interaction or inter-robot interaction. In
the context of UAV outdoor navigation, the feature-based
image registration problem is hard to deal with because of
light changes, images are distorted due to the aerial robot
motion and vibrations, cameras usually have low resolution,
lens small defects and the computational capabilities are
frequently limited. Therefore, we need robust and simple
feature detection or segmentation methods that can handle
these issues. Moreover, when one seeks to obtain accurate
pose estimations of textured or non-textured objects, we need
to select what kind of features and geometry are required.
In our case, we have selected artificial visual markers, like
ARToolkit [1], to obtain high accuracy in object pose estima-
tion. This is especially necessary in the tasks we describe in
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Fig. 1: Left: Case scenario we consider in this paper of a
quadrotor under a supervision task. Right: Images of the bars
acquired with the onboard cameras. Our goal is to recover
the pose of the bar from the squared markers at the opposite
sides of the bars. This kind of markers can be easily deployed
in any kind of surface. Note, however, that the difficulty of
estimating pose from these marks is specially difficult due
to their small size. Dotted patterns are just used for ground
truth computation, and are not used by our algorithm.

this paper of supervision and manipulation of non-textured
bars using UAVs.

Traditional registration methods like Lucas-Kanade (LK)
[2], [3] are very powerful for textured images. However,
when working on essentially binary images the optimization
steps are only qualitative, and improvements like pyramids
only help to solve for image displacements.

ARToolkit [1] is commonly used for augmented reality
purposes, and requires corner extraction and rectification
before recognizing the artificial markers. Several improve-
ments have been proposed [4] to increase robustness to light
changes, partial occlusion and inter-marker detection. We
can find more recent work on fiducial markers in [5], that
proposes an approach that produces very accurate results
and shows robustness to strong occlusions thanks to the
large number of dots and the redundancy included in the
marker. The method uses coplanar circle rectification [6],
but is constrained to planar surfaces to work properly.

In contrast to making a particular design for each purpose,
we propose a general contour alignment approach that meets
the same requirements as fiducial markers but with extra
precision and an extension to deformable contours.
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Fig. 2: Left: the vector field δp(x) shows the local deformation required to improve alignment and the effects of the
transformation which must be combined to match δ. Right: Signed XOR alignment error between a template T and an
observed shape I , and the corresponding average residuals δ.

The problem of general contour alignment has been widely
studied in previous works. Active contours [7] use splines
and observation vectors based on locating edges along the
normal of the contour. Alignment is based on energy mini-
mization [8] or dynamic programming [9]. Other approaches
like Gradient Vector Flow [10] perform better when the
initialization is not as good. More recent approaches in
contour alignment work on different contour representations.
In [11] a polygon triangulation representation is used for the
optimization, whereas [12] uses a different scheme based
on hierarchical point locations. Besides being computation-
ally expensive, these methods can not achieve the goal of
providing reliable correspondences because they are image-
based. Also, they require good gradient information, not
available from binary images. Other methods for homog-
raphy estimation from general planar contours have been
proposed [13], [14], [15], [16], but they typically require
complex optimization schemes and cannot be easily extended
to deformable shapes.

Also related with our work, are the point alignment meth-
ods that seek to align two sets of points of the same dimen-
sionality. The well known Iterative-Closest-Point algorithm
[17] and other related approaches [18] can be used to register
this transformation. However, ICP-based methods are not
capable of dealing with constrained deformations, required
for further pose estimation. In contrast, our method can
estimate the pose because the deformation model provides
metric information about the template.

More specifically, in this paper we have developed an
efficient registration method for contours which is based on a
Gauss-Newton optimization of a natural geometric alignment
cost based on polygonal XOR clipping. The method is based
on the whole image, does not need to search for correspon-
dences and is noise tolerant, while working directly on a
simple polygonal representation of region boundaries. All
necessary optimization magnitudes (gradient and Hessian)
are computed in closed form from vertexes coordinates.

The method is very precise and can compete against
vision-based global positioning and motion capture systems
as a low cost onboard solution for small object pose esti-
mation (Fig. 1). In addition, our approach has the benefit
over motion capture systems because they are not really
appropriate for outdoors, where the environment is less
controllable in most situations.

The rest of the paper is organized as follows. In Section
2 we describe the formulation for contour-based alignment.

The method is extended to deformation modes in Section
3. In Section 4 we present an experimental validation of
the approach for different real scene configurations using a
quadrotor with an attached camera. The paper closes with
some concluding remarks and future directions of this work.

II. CONTOUR-BASED REGISTRATION

For simplicity we assume that the regions of interest
are represented by piecewise linear contours obtained from
standard image processing functions for thresholding [19],
contour extraction, and polygon reduction [20].

A natural alignment cost not based on explicit landmarks
or correspondences is the total area of discrepancy between
target and transformed template. The error regions can be
efficiently obtained by an XOR (symmetric difference) clip-
ping algorithm working on region boundaries [21], and their
areas can be easily computed just from the contour nodes.

Given a transformation model x′ = Wp(x), the contour
registration problem will be formulated as finding the pa-
rameters p that minimize the error area XOR(O, Wp(T))
for the observed contour O and template T . This can be
solved using Gauss-Newton’s iterative optimization: Given
a residual vector f with Jacobian J = ∂f/∂p, the squared
error C = 1/2fTf can be reduced by using the update rule
∆p = −H−1∇C, where ∇C = JTf and the Hessian is
approximated by H = JTJ.

Exact residuals for contour alignment would require ex-
plicit template-observation correspondences, which are as-
sumed not available. For efficiency and simplicity we will
work just with the XOR error regions, without any further
image or contour processing steps. We propose a variant of
Gauss-Newton with an infinite, continuous vector of approx-
imate residuals for all points in the contour. These residuals
and the required optimization magnitudes are efficiently
computed in closed form from the nodes of the XOR error
polygons.

Each point in the contour produces two residuals in f ,
denoted by δ. Fig 2 (left) shows the ideal δ field in a
hypothetical alignment example. Analogously, the corre-
sponding two rows of the Jacobian will be denoted by D.
The component Dp quantifies up to first order the effect of
parameter p.

In this continuous setting the gradient and Hessian of the
Gauss-Newton update rule become:

JTf =

∮
x∈∂T

JT(x)f(x)dx (1)



Fig. 3: Left: assignation of δ and contribution to eq. (3) on the k-th segment. Right: Average error in successive steps.

JTJ =

∮
x∈∂T

JT(x)J(x)dx (2)

In terms of δ and Dp, and for a polygonal contour with
segments Sk joining nodes k and k + 1, the components of
the gradient and Hessian can be expressed as:

{∇C}p =

n∑
k=1

∫
x∈Sk

Dp(x) · δ(x) dx (3)

Hpq =

n∑
k=1

∫
x∈Sk

Dp(x) ·Dq(x) dx (4)

The δ field provides a geometric interpretation of the
optimization process (Fig 2, left). The correction ∆p is based
on the accumulation along the whole contour of the scalar
products Dp · δ. The locations in which they point to the
same (opposite) direction support the fact that increasing
(decreasing) this particular parameter the aligment error will
be reduced. If they are nearly orthogonal the effect of p
to improve alignment is negligible. The inverse Hessian is
needed to coordinate possibly conflicting effects of different
transformation parameters.

We use the areas of the mismatched regions, computed by
the signed XOR clipping operation (Fig. 2, right), to estimate
the amount of local deformation required for alignment.
Since we do not have landmarks or corresponding points the
local alignment error δ is estimated at the average distance
in perpendicular direction between the contours in each
mismatched region1. This can be easily obtained as the area
of that region divided by the length of the corresponding
section of the contour. Fig. 3 (left) shows the δ field for
an illustrative mismatch region represented by a polygonal
approximation.

This apparently crude estimation of the local error as
average distance on the whole region is still very useful
and easy to compute just from the template nodes. Large
mismatched regions with different contour distances usually
take only one optimization step to be divided into more
uniform regions in which the average estimation is more
accurate (Fig. 3, right).

Once the δ field is available from XOR polygon clipping,
eqs. (3) and (4) reduce to simple integrals over piecewise

1Active contours scan the normal to the contour in the image until they
find and edge. In contrast, we obtain an average displacement in closed form
just from the template, which becomes more precise in successive iterations.

Fig. 4: Left: Linear deformation model expressed as a base
shape (blue) and two deformation modes (black and red).
Right: Linear interpolation in a deformation mode.

linear sections with constant δ, that can be obtained in closed
form in terms of the vertex coordinates (Fig. 3, right).

Consider the k-th segment δk from point (xk, yk) to
(xk+1, yk+1) . The p-th element of the gradient is

{∇C}p =
∑
k

Gk (5)

where the contribution of each segment can be expressed as

Gk =

∫ xk+1

xk

δkDp(x) = δxX
p
k + δyY

p
k (6)

in terms of the accumulated effect of the transformation:

Xp
k =

∫ 1

0

∂x

∂p
(xk(t), yk(t))dt (7)

Y pk =

∫ 1

0

∂y

∂p
(xk(t), yk(t))dt (8)

In the above expression (xk(t), yk(t)) is a parameteriza-
tion of the segment from (xk, yk) to (xk+1, yk+1).

It can also be easily checked that the contribution of
segment k to the element Hpq of the Hessian (approximated
by JTJ) is the following (the components of the piecewise
constant template gradient are denoted by ∇T = (gx, gy)):

Hk
pq = g2x

∫
k

∂x

∂p

∂x

∂q
+ gxgy

∫
k

∂x

∂p

∂y

∂q
+

+ gygx

∫
k

∂y

∂p

∂x

∂q
+ g2y

∫
k

∂y

∂p

∂y

∂q
(9)

We will express the derivatives Dp = (∂x∂p ,
∂y
∂p )T of the

transformation W at p = 0 in terms of the coefficients s
and t and the exponents a, b, c, and d of a simple monomial
as follows:

Dp =

[
sxayb

txcyd

]
≡M(s, a, b, t, c, d) (10)



This simple expression is general enough to accommodate
all image transformations of interest, from simple displace-
ments to projective warping. The derivatives are taken at
the origin, where W is the identity transformation, which is
suitable for the inverse compositional update variant. For ex-
ample, a rotation is M(−1, 0, 1, 1, 1, 0), the h3,1 coefficient
of a homography is M(−1, 2, 0,−1, 1, 1), and so on.

The products required in eq. (9) for the Hessian reduce to
the same monomial structure

s1x
a1yb1s2x

a2yb2 = (s1s2)xa1+a2yb1+b2 (11)

so we only need a closed form expression for the moment

In,mk =

∫ (xk+1,yk+1)

(xk,yk)

xnym (12)

which can be easily obtained for the required exponents n
and m using any computer algebra system2.

Using this, the contribution to the gradient (6) of parameter
p ∼M(s, a, b, t, c, d) becomes

Gk = δxsI
a,b
k + δytI

c,d
k (13)

and the Hessian element for p ∼M(s1, a1, b1, t1, c1, d1) and
q ∼M(s2, a2, b2, t2, c2, d2) can be expressed as:

Hk
pq = g2xs1s2I

a1+a2,b1+b2
k + gxgys1t2I

a1+c2,b1+d2
k + . . .

(14)
This approach requires very low computational effort com-

pared to the 2D image processing operations required by the
standard registration approaches. Since the global alignment
area works without point correspondences, we do not need
a big number of vertexes in the polygonal approximation to
the regions.

The initial state for the optimization is obtained from
an affine invariant canonical frame obtained by whitening,
which can also be computed in closed form from the contour
vertexes. Rotation ambiguity can be eliminated by looking
for the points in the whitened contour at extreme distances
from the origin. For rigid templates the method must only
estimate the nonaffine component of the transformation.

III. DEFORMATION MODES

Rigid templates are unsatisfactory for many practical ap-
plications. On one hand, many shapes have different versions
which cannot be modeled by affine or projective transforma-
tions (e.g., thickness or relative lengths of alphanumeric char-
acters). There is a continuous set of possible shape variants
that cannot be captured by a finite set of fixed prototypes. A
more natural approach is to align a deformable template to
the observed shape: from a single template we can extract
both the image transformation parameters (with information
about camera pose), and also the deformation parameters,
which may be useful to identify the observed template

2There is a general expression for In,m
k in terms of a hypergeometric

function but in practice it is much faster to use special solutions as in
I2,0k = (x21 + x22 + x1x2)/3, and so on.

version. On the other hand, deformable templates can be
useful to model special observation circumstances such as
curved surfaces and small occlusions or self-occlusions.

We will adopt a linear deformation model comprising a
base polygon and a set of variation modes described as
vectors attached to each vertex (Fig. 4, left). This model
is general enough to describe artificial markers with variable
dimensions attached to curved surfaces, and can be easily
incorporated to the previous alignment framework.

The vertexes of the template are generated by a linear
combination of the deformation parameters:

T (α) = T 0 + α1u+ α2v + . . . (15)

The contour at a particular location parametrized by t ∈
[0, 1) along the k-segment is obtained by linear interpolation
of the base figure and the deformation vectors (Fig. 4, right):

xkα1,α2,...(t) = t(xk + α1uk + α2vk + . . .)+

+ (1− t)(xk+1 + α1uk+1 + α2vk+1 + . . .) (16)

In order to incorporate the deformation parameters α into
the framework developed in Sect. II we must only compute
the integrals of eq. (7) for the gradient, and (9) for the
Hessian. Because of the linear nature of the deformation, the
first ones are proportional to the average of the deformation
vectors attached to the segment (of length lk):[

Xα
k

Y αk

]
=
u(k) + u(k+1)

2
lk (17)

There are now two kinds of parameters: pj for the image
transformation, and αk for the deformation modes, so the
integrals required by the Hessian are of three types. The
products for pj pk are computed as before using (11) and
(12). The products for αi ∼ (u1,u2) and αj ∼ (v1,v2), and
the mixed products for p ∼M(s, a, b, t, c, d) and α ∼ (u,v)
can again be expressed in closed form in terms of the vertex
coordinates and a new moment

J(w, z, n,m) ≡
∫ 1

0

(tw + (1− t)z)x(t)ny(t)m (18)

where x(t) and y(t) is a linear parametrization for t ∈ [0, 1)
of the k-segment (from (xk, yk) to (xk+1, yk+1)). Explicit
expressions for Hk

ij and J(w, z, n,m) for typical exponents
are included as supplementary material.

The linear deformation model is not a group (we cannot
“remove” the estimated ∆α from the observed image, we
can only add it to the template), and therefore we cannot
apply the more efficient inverse compositional optimization
variant.

For computational convenience in our prototype we apply
a mixed strategy, using inverse compositional update for the
image warping parameters and forward additive update for
the deformation modes (Fig. 7). The two sets of updates
converge to the deformed shape actually observed, with the
projective warped removed.



Fig. 5: Results of the algorithm for the handheld camera scenario. Left and center: different frames with projection of 3D
points and bar coordinate system. Right: Camera representation and trajectory with respect to the 3D model.

As an example, Fig. 6 shows how we can use deformation
modes for a squared contour placed parallel to a cylinder
cross axis. In this case, the contour deformation only occurs
on the left and right sides of the square. This model will be
used for the experiments in the following section.

Fig. 6: Deformable model for a square over a cylinder

(a) (b) (c)

Fig. 7: Illustration of the mixed update alignment strategy
with two deformation modes. (a) Observed contour (blue)
and template (red). (b) Additive forward updates for the
deformation modes (red) and inverse compositional updates
for the warping parameters (blue). (c) The matching result
after 5 steps, with the following sequence of XOR alignment
errors: (0.65,0.42,0.22,0.05,0.01).

IV. EXPERIMENTS

For the method validation we have designed two cylindri-
cal bars with several patterns placed over them. These bars
contain ARTags over both sides and another grid of points is
placed in the middle. We assume that we have a precise 3D
model of the objects. In our case, all necessary measurements
are taken with a digital caliper (with precision of 0.01mm).

We propose two different configurations to validate the
method. For the first configuration (Section IV-A), we show a

realistic case in an outdoors scenario where there is a certain
structure with two bars on it. The method extracts the pose
of each bar using one or two markers per bar (depending
on the visibility). In this case, we use a handheld camera to
produce more challenging illumination conditions (not easily
retrieved with the quadrotor).

For the second configuration (Section IV-B), we will use a
quadrotor with an attached camera to calculate the precision
of the method and compare with other methods.

Fig. 9: Different bar configurations

Our method will only work with the ARTags, not using the
central grid at all. The grid will only be used for ground-truth
calculation in Section IV-B.

A. Handheld camera real experiments

We will use a webcam with a down-scaled resolution of
800x448 pixels. The main results are summarized in Fig. 5.
Firstly, we run our contour alignment method to detect the
internal shape so the method can identify each one of the
markers (any other method is valid in this case, because for
the identification there is no need for extra precision). The
contour alignment method provides a camera pose for each
one of the bars, using 10 points for each marker. Secondly,
we project the 3D points of the central grid, the system
coordinates and the marker itself. Finally, we can draw the
trajectory of the camera with respect to the 3D model of the
structure. As we see, the precision is very good since the
squares are very close to the dots in the central grid.



0 5 10 15 20 25 30 35
30

40

50

60

70

80

90

frame

al
tit

ud
e 

(c
m

)

 

 

scene1
scene2
scene3
scene4
scene5
scene6
scene7

40

45

50

55

60

65

70

75

80

85

90

1 2 3 4 5 6 7
scene number

al
tit

ud
e 

(c
m

)

Fig. 8: Top left: Ground truth representation of the different coordinate systems. Top-middle: Comparison with ground-truth
showing the reprojection of the 3D points with the pose calculated from the 3D to 2D correspondences. The image shows:
ground-truth (green squares), proposed method results (red squares) and points obtained by the alignment (black stars).
Top-right: Zoomed-in version of previous image, showing one side of a bar. Bottom-left: Quadrotor scene image taken from
outside. Bottom-middle: Trajectories (altitude) of the quadrotor for the different scenes. Bottom-right: Average altitudes.

B. Quadrotor experiments for accuracy validation

In this section we evaluate the accuracy of the proposed
method in a quadrotor with different scenes and bars config-
urations. We have developed an implementation in ROS. For
the purpose of accuracy evaluation we will show the design
of these experimental setups and the calculation of a reliable
ground-truth for further validation of the method. Finally, we
provide error measurements with respect to the ground-truth
as well as some images extracted from the method.

1) Experimental setup: For these experiments we will use
a Pelican quadrotor with an attached camera of 752x480
pixels of resolution and 4mm of focal length. After different
camera configurations this one has proven to be good enough
for our experiments3.

The experimental setup consists of a flight area of ap-
proximately 3m3 where a big planar grid pattern (A3 size)
is placed on the floor. This pattern will be used for a precise
altitude calculation as part of the ground-truth, and also for
the camera calibration. Then, we place a prism of plastic of
30 and 60 degrees of slope, respectively (Fig. 9). Two bars
are arranged forming different angles between them for each
scene type.

For ground-truth calculation we use the middle grid pat-

3In UAVs we have additional problems with cameras because a tiny field
of view can lead to more detail of the region of interest but is more unstable
as this region of interest can be easily lost for the camera. We finally chose
a small focal length at the cost of having less marker occupancy in the
images to ensure that the marker is visible most of the time.

tern. We extract 25 2D-3D point correspondences by hand
for each frame (we avoid unnecessary errors produced by
detection processes) and obtain the pose using EPnP[22] and
Lu & Hager method for further refinement[23]. After that,
we reproject the axis and other known 3D points of the bar
model (not used for the pose calculation) to make sure that
the result is correct.

The method detects both ARTags and aligns the template
with the deformations, obtaining another pose for each bar.
Finally, we can evaluate the true error by just comparing
with the ground-truth.

This experiment is repeated for 7 different bar configura-
tions, all of them shown in Fig. 9.

2) Results: The results can be summarized in the figure
above (Fig. 8). The ground-truth is correctly calculated as
expected because we have used almost perfect measurements
with nearly zero error. Also, the figure shows the quadrotor
real trajectories in altitude and the average altitude for
each experimental setup. The altitude data is very important
for precision evaluation because it influences the marker
occupancy in the image.

The zoomed-in image (top-right) shows the alignment
error. The method is close to the ground-truth, even though
the resolution is really low at this level of detail.

Finally, we translate the quantitative results into Table
I. We show absolute and relative errors for translation,
because marker occupancy, camera resolution and precision
are correlated. The relative error is calculated as:



εabs (mm) εrel Yaw Pitch Roll
µ 4.29 0.77% 4.94◦ 0.70◦ 0.99◦
σ 2.21 0.38% 3.70◦ 0.44◦ 0.58◦

ARToolkit 5-26 0.83-4.33% - - -

TABLE I: Average and standard deviation errors of the
proposed method for the quadrotor experiment. ARToolkit
errors were extracted from the benchmark in the website.

Proposed method Infrared motion capture
Frequency 30 Hz 80-300 Hz
Precision 4.29 mm ∼0.5mm
Number of cameras 1 15-25
Suitable for outdoors Yes No

TABLE II: Comparison with global motion estimation sys-
tems. Precision for motion capture depends on the working
area size.

ε
(i)
rel =

ε
(i)
abs

‖T (i)
true‖2

Note that we can achieve a 0.77% of relative error. This
means that, at a distance of 10cm, we have 0.8mm of error,
which can satisfy UAV manipulation requirements where the
precision is very important. Other methods like ARToolkit
can not achieve this precision in these imaging conditions.

This method can be used as a low cost alternative to other
high precision systems like infrared-based motion capture
systems, as shown in Table II.

V. CONCLUSIONS

In this paper we have presented a new method for object
pose estimation from an UAV using visual landmarks that do
the computation in real time, it is based on onboard vision
and obtains high pose precision. Moreover the method can
handle deformable contour aligment from textureless images
working from the raw vertexes of the observed contour. In
contrast with the standard techniques based on corresponding
image features, our method considers the true alignment error
of the contours. The algorithm optimizes the alignment of the
XOR area computed by means of computer graphics clipping
techniques. This method allows for real-time applications
on low cost hardware. We can work over a reduced set
of vertexes and compute in closed form all the necessary
magnitudes for Gauss-Newton optimization. Additionally, we
can estimate deformations over strongly projective views.

To the best of our knowledge this geometric approach
has not been studied before, even though it provides a
very natural measure of alignment error without explicit
correspondences. Our experiments show that the method
provides very precise pose estimations in indoors and out-
doors, showing very competitive results and proving itself
as a low cost alternative to infrared motion capture systems.
This is very useful for supervision and assembly tasks in
UAVs because we can achieve very high precision at close
distances. Also, it is very appropriate for outdoors where the

illumination conditions are continuously changing and there
is extra noise because of the flying movement.

Future work includes registration of 3D contours and low
level optimizations of the implementation.
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