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New Geometric Approaches to the Analysis and Design
of Stewart-Gough Platforms

Julia Borras, Member, IEEE Federico Thomadylember, IEEE Carme TorrasMember, IEEE

Abstract— In general, rearranging the legs of a Stewart-Gough for position and orientation [23], [24] or a complete georitet
platform, i.e, changing the locations of its leg attachments, understanding of its singularities [25], [26], [27]. Despi
modifies the platform singularity locus in a rather unexpected their nice properties, these designs are not usually chosen

way. Nevertheless, some leg rearrangements have been recentl¥ tical licati inlv due t h terit
found to leave singularities invariant. Identification of such or practical applications, mainly due to a characterisey

rearrangements is useful not only for the kinematic analysis all have in common: some spherical joints in the platform,
of the platforms, but also as a tool to redesign manipulators the base, or both, share the same center of rotation forming

avoiding the implementation of multiple spherical joints, which  multiple spherical joints Such multiple spherical joints are
are difficult to construct and have a small motion range. difficult to construct and have a small range of motion.

In this work, a summary of these singularity-invariant leg Several solutions have been proposed in literature to solve
rearrangements is presented, and their practical implications are prop

illustrated with several examples including well-known architec- this issue. The most usual approach for practical applinati
tures. consists in substituting the multiple spherical joint byraup

of single spherical joints with small offsets between them,
thus simplifying the implementation of the platform but-sig
. INTRODUCTION nificantly increasing the complexity of the kinematic sauat
Parallel platforms have been widely studied during thend the characterization of its singularities. If such etffsare
last decades because of their advantages with respectneglected, then errors arise in the computations [28]. IOthe
serial robots: improved stiffness-to-load ratio, loweerim, researchers have made efforts to design equivalent-motion
enhanced dynamics and better accuracy. Among them, thechanisms to substitute the multiple ball and socket .joint
Stewart-Gough platform [1], [2] has attracted the interafst Such designs present several drawbacks, such as a complex
many researchers and it is still the focus of several importadesign, expensive implementation, small range of motion or
research projects for many applications: micro-force sens poor rigidity and accuracy [28], [29], [30], [31], [32], [33
[3], positioning tools [4], [5], micro-precision interfeme- The present work proposes a new approach to solve this
ters [5], milling machines [6], flight simulators [7], radio issue: finding leg rearrangements in a given Stewart-Gough
telescopes [8], [9], cable-driven robots [10] or suppatinplatform that leave its kinematic solutions and singuarit
devices for rehabilitation and surgery interventions [f1P]. locus invariant. In other words, finding how to redesign the
The Stewart-Gough platform is defined as a 6-DoF parallgeometry of the platform so that the resulting architechas
mechanism with six identical_ SPlegs. Despite its geometricits singularities located at the same positions of the weaks
simplicity, its analysis translates into challenging neattatical as the previous design. Even when there is no known solution
problems [13], [14]. Forward kinematics usually involve$o a given mathematical problem, it is always possible to try
solving high-order polynomial systems with no possibleselo to find the set of transformations to the problem that lease it
form solution, i.e. they must be approached with computasolution invariant. Although this does not solve the prable
tionally costly numerical methods [15], [16]. The singitias itself, it provides a lot of insight into its nature. This way
of a Stewart-Gough platform are those poses for which ti@inking is the one applied herein for the characterizatn
manipulator loses stiffness. Characterizing such unstaes the singularity loci of Stewart-Gough platforms and it lsdd
is essential for improving the performance capacities ef ti® complete characterization of all the singularity invatikeg
robot, but has revealed as a challenging problem, restuiliingrearrangements.
an extensive literature in the scientific kinematic worl@][1 It will be shown how such rearrangements provide a guide
[18], [19]. to substitute a multiple spherical joint by a group of single
Closed-form forward kinematics and the characterizatigipherical joints separated by small offsets following acéfje
of singularities has only been completely solved for son@€ometry, so that the kinematics and the singularities ef th
particular architectures. Indeed, there are specific desij Platform remain the same as those of the original architectu
Stewart-Gough platforms with nice symmetry propertieq,[20in other words, for the previously mentioned designs, this
closed-form solution kinematics [21], [22], decoupled iong Work proposes a methodology to redesign them in a way that
their nice kinematic and geometric properties are preserve
During the development of this work, the authors were with ligtitut  pyt avoiding the use of multiple spherical joints.
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characteristics without altering such locus. 1). The pose of the platform is defined by a position vector
(b) If the singularity locus of the analyzed platform has ngb = (p., p,,p.)? and a rotation matriR
been characterized yet, it could be of interest to simplify

the platform’s geometry by changing the location of its R=(i,j,k) — z“ Jz /;x
legs, thus easing the task of obtaining this characteoaati =W = Z.y ‘;y ky ’
z z z

In [34] it is shown that, for a leg rearrangement to be ) )
singularity-invariant, it is necessary and sufficient tila¢ SO that the platform attachments can be written in the base

linear actuators’ velocities, before and after the reayeament, 'éference frame ab; = p + Rb,, fori =1,...,6 (Fig. 1).
are linearly related. It is important to realize that, if sthi To Simplify the notation, the same name will be used to denote
condition is satisfied, a one-to-one correspondence betwdeP0int and its position vector. _
the elements of the platform forward kinematics solution There are 2 types of parameters that fully define a Stewart-
sets, before and after the rearrangement, exists. Acfuby Gough plat_form. The set of parameters that define the design
invariance in the singularities and the assembly modes ofhthe manipulators:
parallel platform are two faces of the same coin. These ideas Geometric parameters:
are closely related to those that made possible the develapm
of kinematic substitutions [35]. They are general in thesgen
that they can be applied to any kind of mechanism, not ond two sets of parameters that can define the location of the
parallel platforms. Indeed, there are several platformg wimanipulator within its workspace:
:ine—bgseld tsfingula[gi;a]s [[:;g] Ctr;]ap;ter 12, pp 27|2],totr etgelrz:tm— Pose parameters:
egged platforms , , that are equivalent to 6-legjge S
Stewart-Gough platforms. X = (pw,pwpz, bas Tys b2y Jos Jys 25 Koo By, k.)
This paper shows how the application of singularity- Joint parameters:
invariant leg rearrangements to well-studied platformed$e O =(l,...,l)
to interesting new results.
Section Il introduces the notation used in the paper ala%

Sec'uon i d.eflnes a singularity-invariant Ieg.rearrangem leg attachmentsEach point of this space defines a leg that goes
in mathematical terms. Then, three case studies are peebe? om base attachment — (x,y, 2)T to platform attachment
- ) )

(Sections 1V, VI and V), with particular numerical example% — (r,5,0)T
showing interesting results, as well as the development and 7’7 °
implementation of two prototypes based in them.

G = (z1,Y1, 21,71, 51, t1, - - -, T6, Y6, 26, 6 56 L6)

Finally, it will be useful to introduce a 6-dimensional spac
fined by the coordinatds:, y, 2, r, s, t), calledthe space of

Il1. SINGULARITY-INVARIANT LEG REARRANGEMENTS

A leg rearrangement consists in a relocation of the attach-
ments of the manipulator, without modifying the pose of the
platform, and thus, leading to new leg lengths d,, ..., ds
(Fig. 1). In general, such rearrangement completely madifie
the kinematics of the manipulator and also the location ©f it
singularities, because the solution of the forward kinérsat
of the rearranged platform changes, which leads to a differe
number of assembly modes and to a different set of singular-
ities.

Despite this, recently, we have been able to identify leg
rearrangements that do not modify the singularity locus of
the platform, nor the solution of its forward kinematics. In
other words, for the rearranged platform, the location of
the singular poses within the workspace of the manipulator
remain at the same position. This kind of rearrangements
are calledsingularity-invariant leg rearrangementand where
Fig. 1. A general Stewart-Gough platform with base attachsapn and characterized in detail in [34].
platform attachments d;, i = 1, ..., 6. A single leg rearrangement consists  |n Fig. 1 we show the rearrangement of the jeghat is, the
in the substitution of one of the legs by a new one, in gray e&ndhawing. relocation of the attachmem@ andf)j to the new coordinates

a=(z,y,2)7 andb = (r,s,£)T. In [34], it was shown that
such rearrangement is singularity invariant if, and onjythie
Il. NOTATION coordinates(z, y, z,7, s,t) make the matrixP in (1) to be

A general Stewart-Gough platform is a 6SBlatform. In rank defective. Details of how we obtained such matrix can
other words, it has six actuated prismatic legs with lengthe found in the appendix.

l;,, i = 1,...,6, connecting two spherical passive joints Note that the first 6 rows oP contain only geometric
centered at; = (x;,v;,2)7 and b, = (r:,85,t:)T, given parameters of the manipulator, while the last row depends on
in base and platform reference frames, respectively (sge Rhe coordinates of the new attachments of the rearranged leg




—ry —s1 —f1 T1 Y1 21 T1T1 TY1 121 S1T1 S1y1 s121 thiwn tiyr tizn 1
—Ty —83 —la Tz Y2 22 ToT2 ToY2 ToZz SaTa SaY2 S22z laka tayz tazp 1
—r3 —S3 —l3 T3 Y3 23 T3T3 T3Yys T323 S3T3 S3Ys S323 13Tz t3ys 32zl
P= —ry—s4 —l424 Y420 7T4T4 Tays TaZ4 SaTa SaYa Saza TaTg tays taza 1 | 1)
—75 —85 —l5 T5 Y5 25 Ts5T5 Ts5Ys 7525 S5T5 SsYs Ss525 Usxs  tsys tszs 1
—16 —S¢ —l6 Te Y6 26 T6Te TeYs 1626 S6Te SeYs Se6z6 LeTe teYs teze 1
-r —s —t x Yy z X Y Tz ST sy sz tx ty tz 1

TABLE |

The 6 first rows ofP where used in [39], [40] to characterize ATTACHMENT COORDINATES (a: — (1, 41, 0), By = (21,15, 0)T).

architectural singularities. With this additional row, we able
to characterize any singularity-invariant leg rearrangetiby
studying the rank oP. |

Gaussian Elimination uses elementary row operations to
reduce a given matrix into a rank-equivalent one, with areupp
triangular shape. After it is applied to a matrix, rank defidy
occurs when all the elements of the last row are zero. Matrix
P is 7 x 16 and, if we apply Gaussian Elimination, the last
row of the resulting matrix can be expressed as:

i | zi

<

o 01| | | Nf K| .
N N| U1| ©f | Ui
a1l | o] 0| 0| oo | S

©| O ©f ©| | U1

©| o1l K| oo ~| w| | B

000000 P ... Py, @ case, the last row of the resulting matrix has only 3 nonzero

whereP;, fori = 1,..., 10, are polynomials in the unknowns!erms dependent om, y, » and ¢. Different but equivalent
(z,y, 21, s,t), and we can state th@ is rank defective if, €guations arise _depen_dlng on the order of the columns_. For
and only if, the 10 polynomials do simultaneously vanish. €xample, Gaussian Elimination on matii as it appears in

In conclusion, if any of the legs is relocated to the nefduation (3) leads to a matrix whose last row is

attachmenta = (z,y,z)” andb = (r, s, )T, the resulting leg 1
rearrangement is singularity-invariant if, and only {2, = Pogo (000000 PRy P Prs),
0,...,P = 0}.

This i det ined " that h luti fwherePij is the determinant of the submatrix obtained from
IS 1S an overdetermined system that has no sofution after deleting columns and j, and P;;;, the determinant

a generic case. We need to impose at least 5 more sc%lgrthe submatrix formed by the first 6 rows d® after

qu:Janns to obltam a 1-fd|me2_5|(;nal ?E]}; (_)f S‘?'““l‘?fﬂsa Nei;t V&eleting columng, 5 andk. With the corresponding numerical
Wil see several cases for which malrt 1S simplified an values, P;sg = —12180 and the singularity-invariant leg

solutions of dimension 1 and 2 are obtained. rearrangements are defined by the condition definedHgy =
P79 = P;g = 0}, which reads

IV. CASE STUDY |: DOUBLY-PLANAR STEWART-GOUGH 1096 99713

PLATFORMS —Go0 %% + ot + LYz + 1w — Y
TR,
For any doubly planar Stewart-Gough platform, the coordi- 3045 1015
nates of the base and platform attachments can be written 470 .. 4 10519 13274 61662
i : > '~ %09 3045 Y2 Tyt + T — Yy
without loss of generality, as; = (z,%;,0) and b; = 609 3045 _ iy n 30485, _ 4)
(z:,t:,0). In this case, a leg rearrangement with coordinates 3045 1015
(z,y,z,t) stands for the substitution of any of the legs by A7 4y 384, 6T, 4 194,
another one going from the base attachment locateal -at 609 609+&7§°f @fﬂfl -0
609 203 -

(z,5,0)T to the platform attachment &t = p + R(z,t,0)7. _ o . _
In this case, matri® can be simplified to Note that any equation consisting of a submatrix determi-
nant P;; equated to zero will be bilinear in the unknowns,

—z1 —t1 1 Y1 ;z1 yize Tty it 1 but with different monomials. As the system is linear, bath i
—zy —ly T2 Y2 T2Zp Y2z2 Xty Yotz 1 (x,y) and in(z,t), it can be rewritten in matrix form as
—z3 —t3 T3 Y3 T3z3 Yszz X3tz ysiz 1
P=| —2z4 —l4 %4 ys X424 Yaza Taly Yalg 1 z 0
—25 —l5 T5 Y5 T525 Y525 Tsls  Ysts 1 Se|t]=10]: ®)
—2z6 —le Te Yo Tez6 Yoz6 Tele Yele 1 1 0
-z -t xy xz yz axt oyt 1l whereS; is
) . (3) —27743 3706,, _ 338 19302 22713, _ 1096
Consider the example with attachment local coordinates/ 305 + 3045Y ~ s09% % 1 o1 1015 1015
appearing in Table . 10519, 87557 _ 470 4 51343 61662 13274
To check rank deficiency, Gaussian Elimination is applied to [ 0% ¢~ 3015 609 ¥ Hors s ¥ o1
P with the corresponding numerical values substituted. is th ALy — 3By 27 S0 1+ Phr— 15y




Fig. 4. Griffis-Duffy type | platform with the attachment cadimates given in Table Il (left), and its equivalent octafadnanipulator after applying a leg

rearrangement (right).
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Fig. 2. A general singularity-invariant leg rearrangements doubly-planar Fig. 3. The base and the platform curves of the doubly-plStawart-Gough
Stewart-Gough platform. : .
platform depicted in Fig. 2.

which only depends om andy (b refers tobase asx and _ .
y are the coordinates of the base attachments). The other wagrespondence may not be one-to-one for special points on
round, the system can also be written as the cubics for non-generic examples (see details in [41]).

For this particular example, the equation of the cubic on the

“ 0 base is
Sp y|=10], (6)
1 0 16 5 293 5 253 o 142 5 1061 ,
—x - —7 —y - — —
wheres, is 1457 609" Y 101577 T 6097 T 3045
B 4343 2313 , 17888 26032 261691
IO T ewt it *as?  avis s st 0577 " 10157 1015 ¢ 1015 Y 3045
s~ f52  Trores t momrtt Gome — Yot and that on the platform is
=67 4 17 =38, 104 247, | 102,
203 + G097 500 # T 203 gos # t 303t — 1 9 4 396 2 4 203 o @t?’ 282 , 1877 .
that only depends on andt (p refers toplatform asz and  135° ~ 1015° " 1015~ _ 203 203° T 1015~
t are the coordinates of the platform attachments). 2229 , 17799 98097 32922
From e i it i iant [ z— =0,
quation (5) it is clear that the system has a solution” 145 1015 1015 145

for (z,t) only for those (z,y) that satisfydet(S;) = 0,
and this solution is unique (assuming ti8¢ has rank 2). which have been plotted in Fig. 3. The curves attached to the

In the same way, there exists a solution far,y) only for manipulator base and platform are shown in Fig. 2.
those(z, t) that makedet(S,) = 0. Both determinants define Depending on the placement of the attachments, these
cubic curves on the base and platform planes, respectively.curves can be generic curves of degree 3, or a line and a
other words, system (4) defines a one-to-one correspondenonic, or even 3 lines crossing 2 by 2. In the next example,
between generic points on two cubic curves. However, tlome of these degenerate cases is analyzed.



A. An octahedral manipulator implementation

In 1993, Griffis and Duffy patented a manipulator name
thereafter Griffis-Duffy platform [42]. The platform hassit
attachments distributed on triangles, three attachmeanth®
vertexes and three on the midpoints of the edges, and
platform is formed by joining the attachments on the midoin
on the base to the vertexes on the platform, as in the exam
with attachment coordinates given in Table Il. A represgora
of this manipulator can be found in Fig. 4-(left).

TABLE I
COORDINATES OF THE ATTACHMENTSa; = (x4, yi,0) AND
b; = p + R(z;,t;,0)T FOR THE ANALYZED ROBOT

Lil @ [ v [ = [ & |
1 1 V3 1 0
2 2 0 1/2 0
3] 2/3 0 —1 0
4| -2 0 —1/2 | V/3/2
5| —2/3 | (4/3)V3 0 V3
6 0 2v/3 1/2 | v3/2

Fig. 6. This platform consists of six extensible legs coiimgca moving
platform to a fixed base. We avoid the use of multiple sphejmals (that
is, spherical joints sharing the same center) without losiegproperties of
the celebrated octahedral architecture.

respectively.
Actually, it can be checked that system (7) has 6 sets of
solutions

Ay ={(x,y,2,t) |

z=XNy=(\+2)V3,2=0,t =13\ €R},
Ape ={(x,y,2,t) |

=X,y =(2—X)V3,2=1,t=0;\ € R},
Apz ={(z,y,2,1) |

Fig. 5. Contrarily to what happens to the Stoughton-Arairagimnation, the r=X3,y=0,2=-1L1t=0;A3 € R}v
proposed modification leads to a 6-6 platform kinematicallyieajent to the Ay = {(z,y,2,1) |
octahedral manipulator. pl = y Y5 2y

r=-2y=02=X\,t=V3\ +1); s € R},
In this case, the equation system obtained by applyinézﬂ ={(z,y,2,1) |

Gaussian Elimination on the corresponding maffixresults =0,y =2V3,2= X5t =V3(1— X5); \s € R},
in . Ap3:{(x’y7zat) |
A—y+yztat =0 x=2,y=0,2=X¢,t =0; X6 € R}.

(V3z4+t—3)y =0
—2\/§z+4t+\/§m—y+\/§xz+3yz—2\/§ =0
(7)  These are 6 point-line correspondences, that is, to eatéxver
The resolution of this system gives correspondences batweg the base (platform) triangle corresponds a line on the
base and platform attachments that leave singularitiesrinv platform (base) triangle. This means that, for the Griffisip
ant. The base and platform cubic curves, in this case, iaetortype manipulator, we can fix the attachments at the vertexes

into the 3 lines: of the platform (base), and then rearrange the oppositehatta
(\/§z b \/3)(\/52 L \/§)t -0 ments along a line in the base (platform) without modifying
’ the kinematics of the platform.
and As a result, by moving the six midpoint attachments along

(=3z 4+ V3y — 6)(3z + 3y — 6)y = 0, their supporting lines, the manipulator can be rearrangea i



the manipulator depicted in Fig. 4-(right), which is the elig
known octahedral manipulator. This is an interesting tesul
because we can avoid the use of multiple spherical jointg (th
is, spherical joints sharing the same center) without [psive
properties of the celebrated octahedral architecture [25]

Following the design in Fig. 5, a manipulator has been
constructed in the Laboratory of Parallel Robots, at thétirs
de Rolwtica i Informatica Industrial [43] (Fig. 6). Its advantage
is that it is a 6-6 manipulator with the same kinematics and
singularities as the widely studied octahedral manipulate
computed the relationship between the legs lengths befate a
after the rearrangement in Fig. 5, in the form of equation
(10) in the appendixj. e, we obtainedA andb. Given a
configuration of the manufactured manipulator, its leg teag
are used to compute the leg lengths of a virtual octahedral
using (10). With the new legs lengths, we can solve the
kinematics of the octahedral, whose solution will be the
pose of the platform (see more details in [44], [45]). The
manipulator in Fig. 6 is a practical proof that, indeed, sudfig. 7. Pentapod analyzed in Section V. Note that it is in asidgdown
rearrangement does not change the kinematic solution of figgfiguration, so that the platform is located under the base
octahedral.

Most, if not all, of the Stewart-Gough platform practical In this caseP is a square matrix, so its rank deficiency is
implementations are based on an approximation to the octa- '

nedral manipulatr,locating the spherical jonts cloggetoer o SRS SO SRR T e
but avoiding the double spherical joints, and thus, resglti P

in a different manipulator with a complex kinematic solatio between the platform attachments and the lines of a pencil

Here we propose a design that is not an approximation, k?t}_ached to the base. The center of this pencil, calied

has the same kinematic properties as the octahedral With80{nt in [48], [49], plays an important role in the geometric

any double-spherical joint. This has applications randiog ¢ gra:t?dnzrattrl]on ?(f ::el mva\}irtl;]pﬁIar;orrflnlgularrlg%s.t fin
the well known flight simulators to micro-positioning desgc in ta%les Ve € example umerical coordinates appearing

V. CASE STUDY Il: PENTAPODS TABLE Il

A pentapod is usually defined as a 5-degree-of-freedom ATTACHMENTS a; = (i, yi,0) AND b; = (2, 0,0)
fully-parallel manipulator with an axial spindle as moving

platform. This kind of manipulators have revealed as an | '1 | fz | y2 | 52 |
interesting alternative to serial robots handling axisyetnm > T =1 =2 | =1
tools. The moving platform can freely rotate around the axis 370 3 0
defined by the five aligned revolute joints, but if this raati g ; —22 ;

axis is made coincident with the symmetry axis of the tool,
the uncontrolled motion becomes irrelevant in most cases. T
particular geometry of pentapods permits that, in one 100l agier sypstituting the numerical values B, we get that
axis, Iar_ge mcl_matmn angles are possible thus overcgrttie the condition for singularity invariance is
orientation limits of the classical Stewart-Gough platfior

A pentapod involves only 5 of the 6 legs of the Stewart- det(P)=2—2=0. 9)
Gough platform, with the platform attachments collinedrisT . .
5 legs form a rigid component by itself that can be studiel!lS Méans that any leg can be rez;rrangNed to a Iengomg
separately. In addition to the platform attachments celiity, 7O the base attachmeat = (\,y,0)" to b = (},0,0)

if we consider all the base attachments coplanar, then we ¢4§fftout modifying the singularity locus (where for a fixed
write the coordinates of the attachmentsaas= (z;, y;,0)T A, the y coordinate can take any value). This corresponds

andb; = (2:,0,0)7 for i = 1..5 and the corresponding matrix!0 the rearrangements plotted in Fig. 7, that is, a one-to-on
P after somve ’simplifications reads correspondence between the attachments at the platform and

a pencil of parallel lines attached at the base. In this dase,
center of the pencil lies at infinity.
This particular architecture was proven to be quadraticall
®) solvable in [50], [48], that is, its forward kinematics can
be obtained by solving only 2 quadratic polynomials. If
we fix the attachments of the platform, the corresponding
base attachments can be relocated to any point of the red

21 T1 Y1 Tizr Y1z
Z2 T2 Y2 X222 Y222
P— 23 X3 Y3 X323 Y323
24 T4 Y4s T4R4 Y424
25 T Ys TsR5 Y525
z T oy Tz Yz

e el e e



TABLE IV
ATTACHMENT COORDINATESa; = (x4, y;,0) AND
b; = p + R(r, si,t:)7

~
<!

[ yi [ ri|si]
1] 22
4|2
|2
215

2

1

7
-2

o 0| & w| N k| =
Gl N[N | o V|| 8
===

invariant if it fulfills the following 6 conditions

—2xr+yr+4x —2y+6r — 65+ 18t =0,
—dxr/3 + xs+ 2x/3 4 6r — 6s + 12t = 0,

1/5(17zr + ys — 34z — 10y — 34r 4 34s — 207t) = 0,
S5xr/3 + xt —10x/3 — 5r + 5s — 17t = 0,

92r/5 4+ yt — 18x/5 — 18r/5 + 18s/5 — 89t/5 = 0,
Aar/2 4@+ —38/249t/2+1=0.

~=

This system of equations has 4 sets of solutions:
Fig. 8. Prototype of the reconfigurable quadratically-able pentapod and

its joint implementations. T = {(x y) (r s t) |
r=ANy=pur=2s=2t=0\pcR}

lines plotted in Fig. 7. Taking advantage of this idea, at the 21 = {(z,9), (r,s,1) |

Laboratory of Parallel Robots of IRl we have developed a r=2y="Tr=2,s=24+3\t=\\€R},
reconfigurable manipulator prototype based on this stractu_ Ao ={(z,y),(rs,t) |z ="T1y=—2

Its_ base attaghr_nents can be recon_flgured along actuateeisgwd P=5-8)/2s = \t=1-A/2)€R]},
without modifying the nature of its forward kinematics nor

the singularities of the manipulator, and thus increasig t Qs = {(z.y), (r;s,1) | v = =3,y = =2;

versatility of the manipulator, since for each task, theslegn r=2-3\s=2-2\t=X\X€R}L
be reconfigured to equally distribute the forces among gs le . . .
(Fig. 8). The first one corresponds to the tripod component and it means

%t base attachments can be rearranged to any point of the
ase plane as long as its corresponding platform attachment
is the vertex of the tripod. The other 3 sets correspond to
point-line correspondences as before, depicted as resl iime
Fig. 9. This means thadi,, b; andbg can be relocated to any
other point of the red lines (as long as their corresponding
VI. CASE STUDYIIl: A DECOUPLEDSTEWART-GOUGH  Pase attachments remain the same).
PLATFORM In Fig. 10 we show two possible singularity-invariant leg
rearrangements of the manipulator at hand. For all of them,
Consider the manipulator in Fig. 9. It contains a tripod anghe decoupling properties remain the same as they are all
3 more legs, with all the base attachments coplanar. Thesjuivalent manipulators.
without loss of generality, we can write the coordinateshef t  Note that with this strategy we cannot completely eliminate
attachments aa; = (z;,4;,0)” andb; = (r;,s;,¢;)”. This all the multiple spherical joints. But we can design a dededip
manipulator is said to be decoupled because the three legsnipulator with only single spherical joints by imposing
forming the tripod give the position of the platform, whileet extra alignments on the attachments. For example, consider
three remaining ones orient it [23]. When the tripod is rigidthe manipulator in Fig. 11. It is still decoupled but, in this
i. e, fixed at a position, this manipulator is also known asase, it contains a Line-Plane component. As mentioned in
spherical [46], [47]. the preceding section, for the 5 legs forming the Line-Plane
Consider the example with numeric coordinates appearingmponent, there exists a one-to-one relationship betieen
in Table IV. After performing Gaussian Elimination on thecollinear attachments (the Line) and a pencil of lines (at th
corresponding matri®, only six non-zero elements remain aPlane), whose center is calldgtpoint. In this case, thes-
the last row. That is, a leg rearrangement will be singufarit point is made coincident with the attachméntand the pencil

This pentapod design can be useful to enlarge the worksp
of robots handling axisymmetric tools, with applicationgls
as 5-axis milling, laser-engraving, spray-based painéind
water-jet cutting.
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Fig. 9. A decoupled manipulator with non-planar platform. lueh its
singularity-invariant leg rearrangement lines.

1

Fig. 11. A decoupled manipulator with a collinearity at thedand coplanar
platform and base. Below, the rearrangement to an equivalenipulator with
only single spherical joints.

aj ay ai ay

VII. CONCLUSIONS
Fig. 10. Singularity-invariant leg rearrangements fromekample in Fig. 9.

The present work shows how the application of singularity-
invariant leg rearrangements provides a new geometric ap-
proach to the study of Stewart-Gough platform singulagitie

of lines is located attached to the platform. We can split thadeed, three case studies have been provided that illeistra
triple spherical joint by placing two more attachmentsicelar several new results. The background theory is based on the
with a4, a5 andag and then moving the platform attachmenmathematical invariance of type 2 singularities, as no rothe
along their corresponding lines of the pencil (see [48] foren type of singularities appear for Stewart-Gough platforms.
details). Nevertheless, it is also extensible to type 1 singularities
A manipulator with decoupled position and orientation hak> apply it to lower mobility parallel platforms, a more
many advantages. For example, the calibration becomes stheughtful mathematical definition of singularity invanie
pler because the translation and rotation become 3-dimeaisi may be needed to consider constrain singularities [51].
independent functions instead of a complex 6-dimensional o We have presented a tool to detect equivalences between
It also simplifies path planning, for example, in coopematiomanipulators, allowing the application of previously kmow
tasks between manipulators. As a drawback, the designs @eemetric interpretations of singularities to new arattitees.
sented to date have a complex implementation and small rafides is the case of the Griffis-Duffy platform in Section IV.
of motion due to joint limits. Our proposed architectureilm-s The 6-6 Stewart-Gough platform prototype shown in Fig. 6 has
pler than any other decoupled manipulator presented hefdtee same kinematic properties as the octahedral manipulato
in the sense that it only contains single spherical jointst Bthat is, the same geometric interpretation for its singtider
it can benefit from the kinematic decoupling properties, las applies, as well as all other kinematic properties studied i
the computations can be performed for the original decaliplthe extensive literature about the octahedral manipylatitin
manipulator and be used for the rearranged one. In otlecrucial advantage: the new architecture contains ontylesin
words, we have designed a decoupled parallel manipulaggherical joints.
easier to implement that avoids the common drawbacks ofWe have also shown how decoupled manipulators can be

multiple spherical joints. rearranged to equivalent and apparently non-decoupledibman



ulators, with different configurations of their sphericalnts computed independently of the pose parameters. For space

that might be easier to implement. reasons, we only give a sketch of the proof.
Moreover, the hidden geometric structure revealed by theBy definition, leg lengths satisfy
curves of singularity-invariant leg rearrangements carobe (b —a)? =12, fori=1,...,6 and

help in the simplification of the forward kinematics resaat ) )
For example, in the case study Il, we show a manipulator that (b—a)” =d,
is quadratically solvable. where the geometric and joint parameters are considered

Finally, new geometric interpretations of singularities/@ given and the unknowns are the pose parameters cand
been found thanks to singularity-invariant leg rearrang@is.  This quadratic system of equations can be converted into
For example, for pentapods with planar bases, the identifigdiinear system by simplifying all the equations, using the
pencil of lines at the base of the manipulator reveals to Ipeoperties of the orthogonality and determinant equal td 1 o
crucial for the geometric interpretation of its singul@st the rotation matrixR and introducing new variables= p -1,
Similar interpretations represent a challenge for futuogkw + = p-j andw = p - k. The only quadratic terms in the

In conclusion, this indirect approach to the analysis oésultant system are the same 3 terms in all the equations,
Stewart-Gough platform singularities has succeeded ifnfind p2 + p2 + p2, which can be eliminated subtracting the first
new results in a topic with an extensive previous literature equation from all the others. The result is a linear system
of 6 equations in 16 unknowns: the 12 pose parameters,
the 3 new variables{u,v,w} and the length we want to
compute, d. We define the vector of unknowns as =

In this appendix we mathematically define the notion C{fpz,py,pz,iz,iy,iz,jz,jy,jz,kx,ky,kz,uw,w}-
singularity-invariance and we give the derivation of maiid We want to computel, so we choose 5 extra unknowns
in equation (1). from the list y to solve the linear system using Crammer’s

Singularities are defined as the zeros of the determinantrgfe. As a result, we obtain an algebraic expression depgndi
the Jacobian matrix. The Jacobian matrix relates the u@sci on the other 10 left unknowns in the form
of the joints with the twist of the platforr” in the well known 10
equationJ7 = © [17]. d= L(Cm + ZCiX[i]) (11)

We define a leg rearrangement as singularity-invariant if, €02 im1

and only if, there is an affine one-to-one relationship betweWhere \[i] is the ith element from the list of non-chosen

the leg lengths before and after such rearrangement. S'ﬂl?ﬁ'(nownsx. It can be shown that for a non architecturally

relationship can aIvyays be compgted mdepend.ently of tgﬁwgular manipulator, we can always choose a set of unknowns
pose parametergg,, it is constant with respect to time. More, ' <oive the linear system so thag, # 0

formally, if A = (d, ..., dg) are the lengths Of the legs after To guarantee that such expression does not depend on any
the rea_rrangement ar@ = (I1,...,ls) the original ones, we of the unknowns, we need to impose the 10 coefficients
can write to be zero. It can be checked that such 10 coefficients are
A=AO+b, (10) 10 maximal minor of the matrix P. Depending on which
are the variables for which one chooses to solve the system,
"different combinations of minors appear but all from the sam
matrix. Finally, using linear algebra properties, it candeen
that such minors will vanish if, and only if, the matrR is
rank defective.
The ten coefficientsc; are expressions depending only
determinant has the same zerodase., the same singularities on geometric parameters and the coordinates of t_he new
attachments. In fact, they are the same 10 polynomials that

as the original platform. See [34] for details. . . :
g. P [34] we obtain when we study the rank deficiency of the makix
In practice, we perform rearrangements of only one Ieﬁ .
) . oo : il equation (2).
at a time, as any sequence of singularity-invariant leg-rear
rangements is also singularity-invariant. In Fig. 1 we show
the rearrangement of the leg that is, the relocation of the
attachmentgij and Bj to the new coordinates = (z, y, Z)T [1] V. Gough and S. Whitehall, “Universal tyre test machin& Hroceed-

o T . . . ings 9th Int. Technical Congress F.I.S.I.T.¥ol. 117, 1962, pp. 117-135.
andb = (r,s,¢)". Such rearrangement will be singularity [2] D. Stewart, “A platform with 6 degrees of freedom,” Proc. of The

invariant if, and only if, the length of the new relocated leg = institution of Mechanical Engineersol. 180, 1965/66, pp. 371—386.
is uniquely determined by the geometry parameters and th@ P! - Piezo Nano Positioning, “Parallel kinematics: Heaep & tripods,”

P ; http://www.physikinstrumente.com/en/products/hexafrgzbd/.
joint parameters. In [34], it was shown that such rearrange;, v Pl'ing, v pC}lYu-Shin, nd HoC. JaFr), "Modeling glngcoumor a

ment is singularity invariant if, and only if, the coordirat Gough-Stewart platform CNC machineJournal of Robotic Systems

(z,y, 2,7, s,t) make the matrixP in (1) to be rank defective. vol. 21, no. 11, pp. 609-623, 2004.

The key of the derivation of this matrix is based on the _ _ o _ _
. f the | th of the new relocated léa.and A maximal minor of a matrixA is the determinant of a square sub-matrix

computation .0 e eng . W - _g, cut down fromA, with the maximum size you can obtain removing one or

on the consideration of under which conditions it can beore of its rows or columns.

APPENDIX

whereA is a constant matrix anb a constant vector. Indeed
differentiating with respect to time the above equationegiv
a linear relationship between the joint velocities befonel a
after the rearrangement. Substituting such linear reiatigp
in the equation]7 = © leads toAJ7 = A. In other words,
the Jacobian matrix of the rearranged platfornAi, whose
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