
New Geometric Approaches to the Analysis and Design
of Stewart-Gough Platforms
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Abstract— In general, rearranging the legs of a Stewart-Gough
platform, i.e., changing the locations of its leg attachments,
modifies the platform singularity locus in a rather unexpected
way. Nevertheless, some leg rearrangements have been recently
found to leave singularities invariant. Identification of such
rearrangements is useful not only for the kinematic analysis
of the platforms, but also as a tool to redesign manipulators
avoiding the implementation of multiple spherical joints, which
are difficult to construct and have a small motion range.

In this work, a summary of these singularity-invariant leg
rearrangements is presented, and their practical implications are
illustrated with several examples including well-known architec-
tures.

I. I NTRODUCTION

Parallel platforms have been widely studied during the
last decades because of their advantages with respect to
serial robots: improved stiffness-to-load ratio, lower inertia,
enhanced dynamics and better accuracy. Among them, the
Stewart-Gough platform [1], [2] has attracted the interestof
many researchers and it is still the focus of several important
research projects for many applications: micro-force sensors
[3], positioning tools [4], [5], micro-precision interferome-
ters [5], milling machines [6], flight simulators [7], radio-
telescopes [8], [9], cable-driven robots [10] or supporting
devices for rehabilitation and surgery interventions [11], [12].

The Stewart-Gough platform is defined as a 6-DoF parallel
mechanism with six identical SPS legs. Despite its geometric
simplicity, its analysis translates into challenging mathematical
problems [13], [14]. Forward kinematics usually involves
solving high-order polynomial systems with no possible close-
form solution, i.e. they must be approached with computa-
tionally costly numerical methods [15], [16]. The singularities
of a Stewart-Gough platform are those poses for which the
manipulator loses stiffness. Characterizing such unstable poses
is essential for improving the performance capacities of the
robot, but has revealed as a challenging problem, resultingin
an extensive literature in the scientific kinematic world [17],
[18], [19].

Closed-form forward kinematics and the characterization
of singularities has only been completely solved for some
particular architectures. Indeed, there are specific designs of
Stewart-Gough platforms with nice symmetry properties [20],
closed-form solution kinematics [21], [22], decoupled motions

During the development of this work, the authors were with theInstitut
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for position and orientation [23], [24] or a complete geometric
understanding of its singularities [25], [26], [27]. Despite
their nice properties, these designs are not usually chosen
for practical applications, mainly due to a characteristicthey
all have in common: some spherical joints in the platform,
the base, or both, share the same center of rotation forming
multiple spherical joints. Such multiple spherical joints are
difficult to construct and have a small range of motion.

Several solutions have been proposed in literature to solve
this issue. The most usual approach for practical applications
consists in substituting the multiple spherical joint by a group
of single spherical joints with small offsets between them,
thus simplifying the implementation of the platform but sig-
nificantly increasing the complexity of the kinematic solution
and the characterization of its singularities. If such offsets are
neglected, then errors arise in the computations [28]. Other
researchers have made efforts to design equivalent-motion
mechanisms to substitute the multiple ball and socket joint.
Such designs present several drawbacks, such as a complex
design, expensive implementation, small range of motion or
poor rigidity and accuracy [28], [29], [30], [31], [32], [33].

The present work proposes a new approach to solve this
issue: finding leg rearrangements in a given Stewart-Gough
platform that leave its kinematic solutions and singularity
locus invariant. In other words, finding how to redesign the
geometry of the platform so that the resulting architecturehas
its singularities located at the same positions of the workspace
as the previous design. Even when there is no known solution
to a given mathematical problem, it is always possible to try
to find the set of transformations to the problem that leave its
solution invariant. Although this does not solve the problem
itself, it provides a lot of insight into its nature. This wayof
thinking is the one applied herein for the characterizationof
the singularity loci of Stewart-Gough platforms and it leads to
a complete characterization of all the singularity invariant leg
rearrangements.

It will be shown how such rearrangements provide a guide
to substitute a multiple spherical joint by a group of single
spherical joints separated by small offsets following a specific
geometry, so that the kinematics and the singularities of the
platform remain the same as those of the original architecture.
In other words, for the previously mentioned designs, this
work proposes a methodology to redesign them in a way that
their nice kinematic and geometric properties are preserved,
but avoiding the use of multiple spherical joints.

The presentedsingularity-invariant leg rearrangementsare
also useful for other reasons:
(a) If the singularity locus of the platform at hand has already

been characterized, it could be interesting to modify the
location of its legs to optimize some other platform
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characteristics without altering such locus.
(b) If the singularity locus of the analyzed platform has not

been characterized yet, it could be of interest to simplify
the platform’s geometry by changing the location of its
legs, thus easing the task of obtaining this characterization.

In [34] it is shown that, for a leg rearrangement to be
singularity-invariant, it is necessary and sufficient thatthe
linear actuators’ velocities, before and after the rearrangement,
are linearly related. It is important to realize that, if this
condition is satisfied, a one-to-one correspondence between
the elements of the platform forward kinematics solution
sets, before and after the rearrangement, exists. Actually, the
invariance in the singularities and the assembly modes of a
parallel platform are two faces of the same coin. These ideas
are closely related to those that made possible the development
of kinematic substitutions [35]. They are general in the sense
that they can be applied to any kind of mechanism, not only
parallel platforms. Indeed, there are several platforms with
line-based singularities [36, Chapter 12, pp 272], or even three-
legged platforms [37], [38], that are equivalent to 6-legged
Stewart-Gough platforms.

This paper shows how the application of singularity-
invariant leg rearrangements to well-studied platforms leads
to interesting new results.

Section II introduces the notation used in the paper and
Section III defines a singularity-invariant leg rearrangement
in mathematical terms. Then, three case studies are presented
(Sections IV, VI and V), with particular numerical examples
showing interesting results, as well as the development and
implementation of two prototypes based in them.
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Fig. 1. A general Stewart-Gough platform with base attachments ai and
platform attachments atbi, i = 1, ..., 6. A single leg rearrangement consists
in the substitution of one of the legs by a new one, in gray in the drawing.

II. N OTATION

A general Stewart-Gough platform is a 6-SPS platform. In
other words, it has six actuated prismatic legs with lengths
li, i = 1, . . . , 6, connecting two spherical passive joints
centered atai = (xi, yi, zi)

T and b̃i = (ri, si, ti)
T , given

in base and platform reference frames, respectively (see Fig.

1). The pose of the platform is defined by a position vector
p = (px, py, pz)

T and a rotation matrixR

R = (i, j,k) =





ix jx kx

iy jy ky

iz jz kz



 ,

so that the platform attachments can be written in the base
reference frame asbi = p + Rb̃i, for i = 1, . . . , 6 (Fig. 1).
To simplify the notation, the same name will be used to denote
a point and its position vector.

There are 2 types of parameters that fully define a Stewart-
Gough platform. The set of parameters that define the design
of the manipulators:

Geometric parameters:

G = (x1, y1, z1, r1, s1, t1, . . . , x6, y6, z6, r6, s6, t6)

and two sets of parameters that can define the location of the
manipulator within its workspace:

Pose parameters:

X = (px, py, pz, ix, iy, iz, jx, jy, jz, kx, ky, kz)

Joint parameters:

Θ = (l1, . . . , l6)

Finally, it will be useful to introduce a 6-dimensional space
defined by the coordinates(x, y, z, r, s, t), calledthe space of
leg attachments. Each point of this space defines a leg that goes
from base attachmenta = (x, y, z)T to platform attachment
b̃ = (r, s, t)T .

III. S INGULARITY-INVARIANT LEG REARRANGEMENTS

A leg rearrangement consists in a relocation of the attach-
ments of the manipulator, without modifying the pose of the
platform, and thus, leading to new leg lengthsd1, d2, . . . , d6

(Fig. 1). In general, such rearrangement completely modifies
the kinematics of the manipulator and also the location of its
singularities, because the solution of the forward kinematics
of the rearranged platform changes, which leads to a different
number of assembly modes and to a different set of singular-
ities.

Despite this, recently, we have been able to identify leg
rearrangements that do not modify the singularity locus of
the platform, nor the solution of its forward kinematics. In
other words, for the rearranged platform, the location of
the singular poses within the workspace of the manipulator
remain at the same position. This kind of rearrangements
are calledsingularity-invariant leg rearrangements, and where
characterized in detail in [34].

In Fig. 1 we show the rearrangement of the legj, that is, the
relocation of the attachmentsaj andb̃j to the new coordinates
a = (x, y, z)T and b̃ = (r, s, t)T . In [34], it was shown that
such rearrangement is singularity invariant if, and only if, the
coordinates(x, y, z, r, s, t) make the matrixP in (1) to be
rank defective. Details of how we obtained such matrix can
be found in the appendix.

Note that the first 6 rows ofP contain only geometric
parameters of the manipulator, while the last row depends on
the coordinates of the new attachments of the rearranged leg.



P =





















−r1 −s1 −t1 x1 y1 z1 r1x1 r1y1 r1z1 s1x1 s1y1 s1z1 t1x1 t1y1 t1z1 1
−r2 −s2 −t2 x2 y2 z2 r2x2 r2y2 r2z2 s2x2 s2y2 s2z2 t2x2 t2y2 t2z2 1
−r3 −s3 −t3 x3 y3 z3 r3x3 r3y3 r3z3 s3x3 s3y3 s3z3 t3x3 t3y3 t3z3 1
−r4 −s4 −t4 x4 y4 z4 r4x4 r4y4 r4z4 s4x4 s4y4 s4z4 t4x4 t4y4 t4z4 1
−r5 −s5 −t5 x5 y5 z5 r5x5 r5y5 r5z5 s5x5 s5y5 s5z5 t5x5 t5y5 t5z5 1
−r6 −s6 −t6 x6 y6 z6 r6x6 r6y6 r6z6 s6x6 s6y6 s6z6 t6x6 t6y6 t6z6 1
−r −s −t x y z rx ry rz sx sy sz tx ty tz 1





















. (1)

The 6 first rows ofP where used in [39], [40] to characterize
architectural singularities. With this additional row, weare able
to characterize any singularity-invariant leg rearrangement by
studying the rank ofP.

Gaussian Elimination uses elementary row operations to
reduce a given matrix into a rank-equivalent one, with an upper
triangular shape. After it is applied to a matrix, rank deficiency
occurs when all the elements of the last row are zero. Matrix
P is 7 × 16 and, if we apply Gaussian Elimination, the last
row of the resulting matrix can be expressed as:

(

0 0 0 0 0 0 P1 . . . P10

)

, (2)

wherePi, for i = 1, . . . , 10, are polynomials in the unknowns
(x, y, z, r, s, t), and we can state thatP is rank defective if,
and only if, the 10 polynomials do simultaneously vanish.

In conclusion, if any of the legs is relocated to the new
attachmentsa = (x, y, z)T andb̃ = (r, s, t)T , the resulting leg
rearrangement is singularity-invariant if, and only if,{P1 =
0, . . . ,P10 = 0}.

This is an overdetermined system that has no solution for
a generic case. We need to impose at least 5 more scalar
equations to obtain a 1-dimensional set of solutions. Next we
will see several cases for which matrixP is simplified and
solutions of dimension 1 and 2 are obtained.

IV. CASE STUDY I: DOUBLY-PLANAR STEWART-GOUGH

PLATFORMS

For any doubly planar Stewart-Gough platform, the coordi-
nates of the base and platform attachments can be written,
without loss of generality, asai = (xi, yi, 0) and b̃i =
(zi, ti, 0). In this case, a leg rearrangement with coordinates
(x, y, z, t) stands for the substitution of any of the legs by
another one going from the base attachment located ata =
(x, y, 0)T to the platform attachment atb = p + R(z, t, 0)T .
In this case, matrixP can be simplified to

P =





















−z1 −t1 x1 y1 x1z1 y1z1 x1t1 y1t1 1
−z2 −t2 x2 y2 x2z2 y2z2 x2t2 y2t2 1
−z3 −t3 x3 y3 x3z3 y3z3 x3t3 y3t3 1
−z4 −t4 x4 y4 x4z4 y4z4 x4t4 y4t4 1
−z5 −t5 x5 y5 x5z5 y5z5 x5t5 y5t5 1
−z6 −t6 x6 y6 x6z6 y6z6 x6t6 y6t6 1
−z −t x y xz yz xt yt 1





















.

(3)
Consider the example with attachment local coordinates

appearing in Table I.
To check rank deficiency, Gaussian Elimination is applied to

P with the corresponding numerical values substituted. In this

TABLE I

ATTACHMENT COORDINATES(ai = (xi, yi, 0)
T , b̃i = (zi, ti, 0)

T ).

i xi yi zi ti

1 3 5 5 6
2 7 9 7 8
3 8 9 9 8
4 12 5 9 6
5 5 2 6 4
6 9 2 9 5

case, the last row of the resulting matrix has only 3 nonzero
terms dependent onx, y, z and t. Different but equivalent
equations arise depending on the order of the columns. For
example, Gaussian Elimination on matrixP as it appears in
equation (3) leads to a matrix whose last row is

1

P789

(

0 0 0 0 0 0 P89 P79 P78

)

,

wherePij is the determinant of the submatrix obtained from
P after deleting columnsi and j, and Pijk the determinant
of the submatrix formed by the first 6 rows ofP after
deleting columnsi, j andk. With the corresponding numerical
values, P789 = −12180 and the singularity-invariant leg
rearrangements are defined by the condition defined by{P89 =
P79 = P78 = 0}, which reads
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(4)

Note that any equation consisting of a submatrix determi-
nant Pij equated to zero will be bilinear in the unknowns,
but with different monomials. As the system is linear, both in
(x, y) and in (z, t), it can be rewritten in matrix form as

Sb





z
t
1



 =





0
0
0



 , (5)

whereSb is
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Fig. 4. Griffis-Duffy type I platform with the attachment coordinates given in Table II (left), and its equivalent octahedral manipulator after applying a leg
rearrangement (right).

Fig. 2. A general singularity-invariant leg rearrangement for a doubly-planar
Stewart-Gough platform.

which only depends onx and y (b refers tobase, asx and
y are the coordinates of the base attachments). The other way
round, the system can also be written as

Sp





x
y
1



 =





0
0
0



 , (6)

whereSp is
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that only depends onz and t (p refers toplatform, asz and
t are the coordinates of the platform attachments).

From equation (5) it is clear that the system has a solution
for (z, t) only for those (x, y) that satisfy det(Sb) = 0,
and this solution is unique (assuming thatSb has rank 2).
In the same way, there exists a solution for(x, y) only for
those(z, t) that makedet(Sp) = 0. Both determinants define
cubic curves on the base and platform planes, respectively.In
other words, system (4) defines a one-to-one correspondence
between generic points on two cubic curves. However, the

z
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Fig. 3. The base and the platform curves of the doubly-planarStewart-Gough
platform depicted in Fig. 2.

correspondence may not be one-to-one for special points on
the cubics for non-generic examples (see details in [41]).

For this particular example, the equation of the cubic on the
base is

16

145
x3 − 293

609
x2y +

253

1015
xy2 − 142

609
y3 +

1061

3045
x2+

4343

1015
xy +

2313

1015
y2 − 17888

1015
x − 26032

1015
y +

261691

3045
= 0,

and that on the platform is

9

145
z3 − 396

1015
z2t +

293

1015
zt2 − 192

203
t3 +

282

203
z2 +

1877

1015
zt

+
2229

145
t2 − 17799

1015
z − 98097

1015
t +

32922

145
= 0,

which have been plotted in Fig. 3. The curves attached to the
manipulator base and platform are shown in Fig. 2.

Depending on the placement of the attachments, these
curves can be generic curves of degree 3, or a line and a
conic, or even 3 lines crossing 2 by 2. In the next example,
one of these degenerate cases is analyzed.



A. An octahedral manipulator implementation

In 1993, Griffis and Duffy patented a manipulator named
thereafter Griffis-Duffy platform [42]. The platform has its
attachments distributed on triangles, three attachments on the
vertexes and three on the midpoints of the edges, and the
platform is formed by joining the attachments on the midpoints
on the base to the vertexes on the platform, as in the example
with attachment coordinates given in Table II. A representation
of this manipulator can be found in Fig. 4-(left).

TABLE II

COORDINATES OF THE ATTACHMENTSai = (xi, yi, 0) AND

bi = p + R(zi, ti, 0)
T FOR THE ANALYZED ROBOT

i xi yi zi ti

1 1
√

3 1 0
2 2 0 1/2 0
3 2/3 0 −1 0

4 −2 0 −1/2
√

3/2

5 −2/3 (4/3)
√

3 0
√

3

6 0 2
√

3 1/2
√

3/2

m1
m2

m3

m4m5

m6

δ1

δ2

δ3

δ4

δ5

δ6

P1 P2

P3

P4

P5
P6

Fig. 5. Contrarily to what happens to the Stoughton-Arai approximation, the
proposed modification leads to a 6-6 platform kinematically equivalent to the
octahedral manipulator.

In this case, the equation system obtained by applying
Gaussian Elimination on the corresponding matrixP results
in :

2t − y + yz + xt = 0

(
√

3z + t −
√

3)y = 0

−2
√

3z + 4t +
√

3x − y +
√

3xz + 3yz − 2
√

3 = 0







(7)
The resolution of this system gives correspondences between
base and platform attachments that leave singularities invari-
ant. The base and platform cubic curves, in this case, factorize
into the 3 lines:

(
√

3z − t +
√

3)(
√

3z + t −
√

3)t = 0,

and
(−3x +

√
3y − 6)(3x +

√
3y − 6)y = 0,

Fig. 6. This platform consists of six extensible legs connecting a moving
platform to a fixed base. We avoid the use of multiple sphericaljoints (that
is, spherical joints sharing the same center) without losingthe properties of
the celebrated octahedral architecture.

respectively.
Actually, it can be checked that system (7) has 6 sets of

solutions

∆b1 = {(x, y, z, t) |
x = λ, y = (λ1 + 2)

√
3, z = 0, t =

√
3;λ1 ∈ R},

∆b2 = {(x, y, z, t) |
x = λ2, y = (2 − λ2)

√
3, z = 1, t = 0;λ2 ∈ R},

∆b3 = {(x, y, z, t) |
x = λ3, y = 0, z = −1, t = 0;λ3 ∈ R},

∆p1 = {(x, y, z, t) |
x = −2, y = 0, z = λ4, t =

√
3(λ4 + 1);λ4 ∈ R},

∆p2 = {(x, y, z, t) |
x = 0, y = 2

√
3, z = λ5, t =

√
3(1 − λ5);λ5 ∈ R},

∆p3 = {(x, y, z, t) |
x = 2, y = 0, z = λ6, t = 0;λ6 ∈ R}.

These are 6 point-line correspondences, that is, to each vertex
of the base (platform) triangle corresponds a line on the
platform (base) triangle. This means that, for the Griffis-Duffy
type manipulator, we can fix the attachments at the vertexes
of the platform (base), and then rearrange the opposite attach-
ments along a line in the base (platform) without modifying
the kinematics of the platform.

As a result, by moving the six midpoint attachments along
their supporting lines, the manipulator can be rearranged into



the manipulator depicted in Fig. 4-(right), which is the widely
known octahedral manipulator. This is an interesting result,
because we can avoid the use of multiple spherical joints (that
is, spherical joints sharing the same center) without losing the
properties of the celebrated octahedral architecture [25].

Following the design in Fig. 5, a manipulator has been
constructed in the Laboratory of Parallel Robots, at the Institut
de Rob̀otica i Informàtica Industrial [43] (Fig. 6). Its advantage
is that it is a 6-6 manipulator with the same kinematics and
singularities as the widely studied octahedral manipulator. We
computed the relationship between the legs lengths before and
after the rearrangement in Fig. 5, in the form of equation
(10) in the appendix,i. e., we obtainedA and b. Given a
configuration of the manufactured manipulator, its leg lengths
are used to compute the leg lengths of a virtual octahedral
using (10). With the new legs lengths, we can solve the
kinematics of the octahedral, whose solution will be the
pose of the platform (see more details in [44], [45]). The
manipulator in Fig. 6 is a practical proof that, indeed, such
rearrangement does not change the kinematic solution of the
octahedral.

Most, if not all, of the Stewart-Gough platform practical
implementations are based on an approximation to the octa-
hedral manipulator, locating the spherical joints close together
but avoiding the double spherical joints, and thus, resulting
in a different manipulator with a complex kinematic solution.
Here we propose a design that is not an approximation, but
has the same kinematic properties as the octahedral without
any double-spherical joint. This has applications rangingfrom
the well known flight simulators to micro-positioning devices.

V. CASE STUDY II: PENTAPODS

A pentapod is usually defined as a 5-degree-of-freedom
fully-parallel manipulator with an axial spindle as moving
platform. This kind of manipulators have revealed as an
interesting alternative to serial robots handling axisymmetric
tools. The moving platform can freely rotate around the axis
defined by the five aligned revolute joints, but if this rotation
axis is made coincident with the symmetry axis of the tool,
the uncontrolled motion becomes irrelevant in most cases. The
particular geometry of pentapods permits that, in one tool
axis, large inclination angles are possible thus overcoming the
orientation limits of the classical Stewart-Gough platform.

A pentapod involves only 5 of the 6 legs of the Stewart-
Gough platform, with the platform attachments collinear. This
5 legs form a rigid component by itself that can be studied
separately. In addition to the platform attachments collinearity,
if we consider all the base attachments coplanar, then we can
write the coordinates of the attachments asai = (xi, yi, 0)T

andb̃i = (zi, 0, 0)T for i = 1..5 and the corresponding matrix
P after some simplifications reads

P =

















z1 x1 y1 x1z1 y1z1 1
z2 x2 y2 x2z2 y2z2 1
z3 x3 y3 x3z3 y3z3 1
z4 x4 y4 x4z4 y4z4 1
z5 x5 y5 x5z5 y5z5 1
z x y xz yz 1

















. (8)

Fig. 7. Pentapod analyzed in Section V. Note that it is in an upside-down
configuration, so that the platform is located under the base.

In this case,P is a square matrix, so its rank deficiency is
characterized only by the equationdet(P) = 0. In [48] it was
shown that such condition defines a one-to-one correspondence
between the platform attachments and the lines of a pencil
attached to the base. The center of this pencil, calledB-
point in [48], [49], plays an important role in the geometric
characterization of the manipulator singularities.

Consider the example with numerical coordinates appearing
in table V.

TABLE III

ATTACHMENTS ai = (xi, yi, 0) AND b̃i = (zi, 0, 0)

i xi yi zi

1 −2 2 −2
2 −1 −2 −1
3 0 3 0
4 1 −2 1
5 2 2 2

After substituting the numerical values inP, we get that
the condition for singularity invariance is

det(P) = x − z = 0. (9)

This means that any leg can be rearranged to a leg going
from the base attachmenta = (λ, y, 0)T to b̃ = (λ, 0, 0)T

without modifying the singularity locus (where for a fixed
λ, the y coordinate can take any value). This corresponds
to the rearrangements plotted in Fig. 7, that is, a one-to-one
correspondence between the attachments at the platform and
a pencil of parallel lines attached at the base. In this case,the
center of the pencil lies at infinity.

This particular architecture was proven to be quadratically
solvable in [50], [48], that is, its forward kinematics can
be obtained by solving only 2 quadratic polynomials. If
we fix the attachments of the platform, the corresponding
base attachments can be relocated to any point of the red



Fig. 8. Prototype of the reconfigurable quadratically-solvable pentapod and
its joint implementations.

lines plotted in Fig. 7. Taking advantage of this idea, at the
Laboratory of Parallel Robots of IRI we have developed a
reconfigurable manipulator prototype based on this structure.
Its base attachments can be reconfigured along actuated guides,
without modifying the nature of its forward kinematics nor
the singularities of the manipulator, and thus increasing the
versatility of the manipulator, since for each task, the legs can
be reconfigured to equally distribute the forces among its legs
(Fig. 8).

This pentapod design can be useful to enlarge the workspace
of robots handling axisymmetric tools, with applications such
as 5-axis milling, laser-engraving, spray-based paintinsand
water-jet cutting.

VI. CASE STUDY III: A DECOUPLEDSTEWART-GOUGH

PLATFORM

Consider the manipulator in Fig. 9. It contains a tripod and
3 more legs, with all the base attachments coplanar. Thus,
without loss of generality, we can write the coordinates of the
attachments asai = (xi, yi, 0)T and b̃i = (ri, si, ti)

T . This
manipulator is said to be decoupled because the three legs
forming the tripod give the position of the platform, while the
three remaining ones orient it [23]. When the tripod is rigid,
i. e., fixed at a position, this manipulator is also known as
spherical [46], [47].

Consider the example with numeric coordinates appearing
in Table IV. After performing Gaussian Elimination on the
corresponding matrixP, only six non-zero elements remain at
the last row. That is, a leg rearrangement will be singularity-

TABLE IV

ATTACHMENT COORDINATESai = (xi, yi, 0) AND

bi = p + R(ri, si, ti)
T

i xi yi ri si ti

1 2 -1 2 2 0
2 5 4 2 2 0
3 -1 4 2 2 0
4 7 -2 5 0 1
5 2 7 2 5 1
6 -3 -2 -1 0 1

invariant if it fulfills the following 6 conditions

−2xr + yr + 4x − 2y + 6r − 6s + 18t = 0,

−4xr/3 + xs + 2x/3 + 6r − 6s + 12t = 0,

1/5(17xr + ys − 34x − 10y − 34r + 34s − 207t) = 0,

5xr/3 + xt − 10x/3 − 5r + 5s − 17t = 0,

9xr/5 + yt − 18x/5 − 18r/5 + 18s/5 − 89t/5 = 0,

−1xr/2 + x + r − 3s/2 + 9t/2 + 1 = 0.

This system of equations has 4 sets of solutions:

T = {(x, y), (r, s, t) |
x = λ, y = µ; r = 2, s = 2, t = 0, λ, µ ∈ R},

∆1 = {(x, y), (r, s, t) |
x = 2, y = 7; r = 2, s = 2 + 3λ, t = λ, λ ∈ R},

∆2 = {(x, y), (r, s, t) | x = 7, y = −2;

r = 5 − 3λ/2, s = λ, t = 1 − λ/2, λ ∈ R},
∆3 = {(x, y), (r, s, t) | x = −3, y = −2;

r = 2 − 3λ, s = 2 − 2λ, t = λ, λ ∈ R}.

The first one corresponds to the tripod component and it means
that base attachments can be rearranged to any point of the
base plane as long as its corresponding platform attachment
is the vertex of the tripod. The other 3 sets correspond to
point-line correspondences as before, depicted as red lines in
Fig. 9. This means thatb4, b5 andb6 can be relocated to any
other point of the red lines (as long as their corresponding
base attachments remain the same).

In Fig. 10 we show two possible singularity-invariant leg
rearrangements of the manipulator at hand. For all of them,
the decoupling properties remain the same as they are all
equivalent manipulators.

Note that with this strategy we cannot completely eliminate
all the multiple spherical joints. But we can design a decoupled
manipulator with only single spherical joints by imposing
extra alignments on the attachments. For example, consider
the manipulator in Fig. 11. It is still decoupled but, in this
case, it contains a Line-Plane component. As mentioned in
the preceding section, for the 5 legs forming the Line-Plane
component, there exists a one-to-one relationship betweenthe
collinear attachments (the Line) and a pencil of lines (at the
Plane), whose center is calledB-point. In this case, theB-
point is made coincident with the attachmentb1 and the pencil
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Fig. 9. A decoupled manipulator with non-planar platform. In blue, its
singularity-invariant leg rearrangement lines.
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Fig. 10. Singularity-invariant leg rearrangements from theexample in Fig. 9.

of lines is located attached to the platform. We can split the
triple spherical joint by placing two more attachments collinear
with a4, a5 anda6 and then moving the platform attachment
along their corresponding lines of the pencil (see [48] for more
details).

A manipulator with decoupled position and orientation has
many advantages. For example, the calibration becomes sim-
pler because the translation and rotation become 3-dimensional
independent functions instead of a complex 6-dimensional one.
It also simplifies path planning, for example, in cooperation
tasks between manipulators. As a drawback, the designs pre-
sented to date have a complex implementation and small range
of motion due to joint limits. Our proposed architecture is sim-
pler than any other decoupled manipulator presented before,
in the sense that it only contains single spherical joints. But
it can benefit from the kinematic decoupling properties, as all
the computations can be performed for the original decoupled
manipulator and be used for the rearranged one. In other
words, we have designed a decoupled parallel manipulator
easier to implement that avoids the common drawbacks of
multiple spherical joints.
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Fig. 11. A decoupled manipulator with a collinearity at the base and coplanar
platform and base. Below, the rearrangement to an equivalentmanipulator with
only single spherical joints.

VII. C ONCLUSIONS

The present work shows how the application of singularity-
invariant leg rearrangements provides a new geometric ap-
proach to the study of Stewart-Gough platform singularities.
Indeed, three case studies have been provided that illustrate
several new results. The background theory is based on the
mathematical invariance of type 2 singularities, as no other
type of singularities appear for Stewart-Gough platforms.
Nevertheless, it is also extensible to type 1 singularities.
To apply it to lower mobility parallel platforms, a more
thoughtful mathematical definition of singularity invariance
may be needed to consider constrain singularities [51].

We have presented a tool to detect equivalences between
manipulators, allowing the application of previously known
geometric interpretations of singularities to new architectures.
This is the case of the Griffis-Duffy platform in Section IV.
The 6-6 Stewart-Gough platform prototype shown in Fig. 6 has
the same kinematic properties as the octahedral manipulator,
that is, the same geometric interpretation for its singularities
applies, as well as all other kinematic properties studied in
the extensive literature about the octahedral manipulator, with
a crucial advantage: the new architecture contains only single
spherical joints.

We have also shown how decoupled manipulators can be
rearranged to equivalent and apparently non-decoupled manip-



ulators, with different configurations of their spherical joints
that might be easier to implement.

Moreover, the hidden geometric structure revealed by the
curves of singularity-invariant leg rearrangements can beof
help in the simplification of the forward kinematics resolution.
For example, in the case study II, we show a manipulator that
is quadratically solvable.

Finally, new geometric interpretations of singularities have
been found thanks to singularity-invariant leg rearrangements.
For example, for pentapods with planar bases, the identified
pencil of lines at the base of the manipulator reveals to be
crucial for the geometric interpretation of its singularities.
Similar interpretations represent a challenge for future work.

In conclusion, this indirect approach to the analysis of
Stewart-Gough platform singularities has succeeded in finding
new results in a topic with an extensive previous literature.

APPENDIX

In this appendix we mathematically define the notion of
singularity-invariance and we give the derivation of matrix P

in equation (1).
Singularities are defined as the zeros of the determinant of

the Jacobian matrix. The Jacobian matrix relates the velocities
of the joints with the twist of the platformT in the well known
equationJT = Θ̇ [17].

We define a leg rearrangement as singularity-invariant if,
and only if, there is an affine one-to-one relationship between
the leg lengths before and after such rearrangement. Such
relationship can always be computed independently of the
pose parameters,i.e., it is constant with respect to time. More
formally, if Λ = (d1, ..., d6) are the lengths of the legs after
the rearrangement andΘ = (l1, . . . , l6) the original ones, we
can write

Λ = AΘ + b, (10)

whereA is a constant matrix andb a constant vector. Indeed,
differentiating with respect to time the above equation gives
a linear relationship between the joint velocities before and
after the rearrangement. Substituting such linear relationship
in the equationJT = Θ̇ leads toAJT = ∆̇. In other words,
the Jacobian matrix of the rearranged platform isAJ, whose
determinant has the same zeros asJ, i.e., the same singularities
as the original platform. See [34] for details.

In practice, we perform rearrangements of only one leg
at a time, as any sequence of singularity-invariant leg rear-
rangements is also singularity-invariant. In Fig. 1 we show
the rearrangement of the legj, that is, the relocation of the
attachmentsaj and b̃j to the new coordinatesa = (x, y, z)T

and b̃ = (r, s, t)T . Such rearrangement will be singularity
invariant if, and only if, the length of the new relocated leg
is uniquely determined by the geometry parameters and the
joint parameters. In [34], it was shown that such rearrange-
ment is singularity invariant if, and only if, the coordinates
(x, y, z, r, s, t) make the matrixP in (1) to be rank defective.
The key of the derivation of this matrix is based on the
computation of the length of the new relocated leg,d, and
on the consideration of under which conditions it can be

computed independently of the pose parameters. For space
reasons, we only give a sketch of the proof.

By definition, leg lengths satisfy

(bi − ai)
2 = l2i , for i = 1, . . . , 6 and

(b − a)2 = d2,

where the geometric and joint parameters are considered
given and the unknowns are the pose parameters andd.
This quadratic system of equations can be converted into
a linear system by simplifying all the equations, using the
properties of the orthogonality and determinant equal to 1 of
the rotation matrixR and introducing new variablesu = p · i,
v = p · j and w = p · k. The only quadratic terms in the
resultant system are the same 3 terms in all the equations,
p2

x + p2

y + p2

z, which can be eliminated subtracting the first
equation from all the others. The result is a linear system
of 6 equations in 16 unknowns: the 12 pose parameters,
the 3 new variables{u, v, w} and the length we want to
compute, d. We define the vector of unknowns asχ =
{px, py, pz, ix, iy, iz, jx, jy, jz, kx, ky, kz, u, v, w}.

We want to computed, so we choose 5 extra unknowns
from the list χ to solve the linear system using Crammer’s
rule. As a result, we obtain an algebraic expression depending
on the other 10 left unknowns in the form

d =
1

c02

(c01 +

10
∑

i=1

ciχ[i]) (11)

where χ[i] is the ith element from the list of non-chosen
unknownsχ. It can be shown that for a non architecturally
singular manipulator, we can always choose a set of unknowns
to solve the linear system so thatc02 6= 0.

To guarantee that such expression does not depend on any
of the unknowns, we need to impose the 10 coefficientsci

to be zero. It can be checked that such 10 coefficients are
10 maximal minors1 of the matrixP. Depending on which
are the variables for which one chooses to solve the system,
different combinations of minors appear but all from the same
matrix. Finally, using linear algebra properties, it can beseen
that such minors will vanish if, and only if, the matrixP is
rank defective.

The ten coefficientsci are expressions depending only
on geometric parameters and the coordinates of the new
attachments. In fact, they are the same 10 polynomials that
we obtain when we study the rank deficiency of the matrixP

in equation (2).

REFERENCES

[1] V. Gough and S. Whitehall, “Universal tyre test machine,” in Proceed-
ings 9th Int. Technical Congress F.I.S.I.T.A., vol. 117, 1962, pp. 117–135.

[2] D. Stewart, “A platform with 6 degrees of freedom,” inProc. of The
Institution of Mechanical Engineers, vol. 180, 1965/66, pp. 371–386.

[3] PI - Piezo Nano Positioning, “Parallel kinematics: Hexapods & tripods,”
http://www.physikinstrumente.com/en/products/hexapodtripod/.

[4] Y. Ting, Y. C. Yu-Shin, and H.-C. Jar, “Modeling and control for a
Gough-Stewart platform CNC machine,”Journal of Robotic Systems,
vol. 21, no. 11, pp. 609–623, 2004.

1A maximal minor of a matrixA is the determinant of a square sub-matrix
cut down fromA, with the maximum size you can obtain removing one or
more of its rows or columns.



[5] J. McInroy, J. O’Brien, and G. Neat, “Precise, fault-tolerant pointing
using a Stewart platform,”IEEE/ASME Transactions on Mechatronics,
vol. 4, no. 1, pp. 91 –95, 1999.

[6] D. Shaw, “Cutting path generation of the Stewart-platform-based milling
machine using an end-mill,”International journal of production re-
search, vol. 39, no. 7, p. 1367, 2001.

[7] K. L. Cappel and N. Marlton, “Motion simulator,”US Patent 3,295,224,
1967.

[8] Y. Su, B. Duan, R. Nan, and B. Peng, “Mechatronics design of stiffness
enhancement of the feed supporting system for the square-kilometer
array,” IEEE/ASME Transactions on Mechatronics, vol. 8, no. 4, pp.
425 –430, 2003.

[9] Y. X. Su and B. Y. Duan, “The application of the Stewart platform in
large spherical radio telescopes,”Journal of Robotic Systems, vol. 17,
no. 7, pp. 375–383, 2000.

[10] S. Kurbanhusen Mustafa, G. Yang, S. Huat Yeo, W. Lin, andM. Chen,
“Self-calibration of a biologically inspired 7 dof cable-driven robotic
arm,” IEEE/ASME Transactions on Mechatronics, vol. 13, no. 1, pp. 66
–75, 2008.

[11] M.Girone, G. Burdea, M. Bouzit, V. Popescu, and J. Deutsch, “A Stewart
platform-based system for ankle telerehabilitation,”Autonomous Robots,
vol. 10, pp. 203–212, 2001.

[12] M. Wapler, V. Urban, T. Weisener, J. Stallkamp, M. Dürr, and A. Hiller,
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