
Improved actuator-fault detection and
isolation strategy using interval observers

and invariant sets
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Abstract: In this paper, an improved algorithm for actuator-fault detection and isolation
(FDI) using a bank of interval observers is presented, where each interval observer matches
one considered system mode. In this approach, interval observers and invariant sets are
simultaneously used for FDI. Under a collection of improved FDI conditions, this new algorithm
can detect and isolate the considered actuator faults. At the end of this paper, a circuit example
is used to illustrate the effectiveness of the proposed strategy.

1. INTRODUCTION

Interval observers have been successfully used for fault
detection (FD) but have only recently been extended to
fault isolation (FI) [Räıssi et al., 2010, Guerra et al., 2008,
Xu et al., 2013b,a].

In [Xu et al., 2013b], an FDI framework using a bank of
interval observers is firstly proposed, where invariant sets
and interval observers are used to establish FDI conditions
and implement an FDI mechanism, respectively. Addition-
ally, a direction different from that in [Xu et al., 2013b]
is followed in [Xu et al., 2013a], where a single interval
observer is used to detect and isolate a group of faults by
focusing on the transient behaviors of the system.

As per the previous results, the common weakness of the
proposed FDI frameworks stem from the definition of the
FDI guarantees. Although the previous algorithm pro-
posed in [Xu et al., 2013b] can effectively detect and isolate
faults, there are several points that could be improved from
the point of view of the FDI guarantees. Those points are
analyzed as follows.

First, whenever a fault occurs, there exists an uncertain
transition window between FD activation step and the FI
decision. Since the transient-state behaviors are unknown,
the algorithm in [Xu et al., 2013b] defines a waiting time
to avoid the transient-state uncertainties and starts the
FI task after the waiting time. Since the waiting time
is subjectively decided by the designers, this leads to an
inevitable drawback, i.e., how to define a proper waiting
time as short as possible while being also accurate in terms
of the FI implementation.

Second, in [Xu et al., 2013b], invariant sets are only
used for establishing FDI conditions, while on-line FDI

completely depends on interval observers. FD is performed
by testing if the inclusion between the origin and residual
intervals estimated by the interval observer matching the
current mode is violated, while FI is implemented by
searching the interval observer that can always contain
the origin after a waiting time. Actually, there exist
two potential and independent FDI mechanisms (interval
observer-based and invariant set-based) in the proposed
FDI framework. If one can simultaneously make use of
both the FDI mechanisms with a better integration instead
of only using interval observers, the FDI guarantees can be
improved.

Third, in [Xu et al., 2013b], if the FDI conditions are
satisfied, the faults are detectable and isolable and the
FDI guarantees are obtained by allowing the residual
intervals of one and only one interval observer to contain
the origin after a waiting time. This implies that the FDI
decisions are only given by the interval observer matching
the current mode and ignore the useful process information
provided by the other interval observers. Thus, if all the
interval observers can be used for the implementation of
FDI, the FDI approach can be enhanced.

The objectives of this paper are to address the three afore-
mentioned problems and obtain an improved FDI strategy.
First, the new algorithm avoids the specific definition of a
waiting time and the designer’s subjectivity by using the
invariant set-based mechanism. Second, the new algorithm
uses the two FDI mechanisms simultaneously and the final
FDI decision is made by using both interval observers and
invariant sets. Third, the system information provided by
all the interval observers is used in the implementation.
Consequently, the new algorithm is more sensitive to the
faults with less conservative FDI conditions and higher
FDI reliability.
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2. PLANT AND INTERVAL OBSERVERS

2.1 Plant Models

The linear discrete time-invariant plant is given as

xk+1 = Axk +BFiuk + ωk, (1a)

yk = Cxk + ηk, (1b)

where xk ∈ Rn, uk ∈ Rp and yk ∈ Rq are states, inputs
and outputs at time instant k, respectively, A ∈ Rn×n,
B ∈ Rn×p and C ∈ Rq×n are constant matrices, and
Fi ∈ Rp×p ( i ∈ I = {0, 1, 2, . . . , N} where N denotes
the number of considered actuator faults) is a diagonal
matrix 1 modeling the i-th mode where F0 is the identity
matrix denoting the healthy mode. The signals ωk ∈ W
and ηk ∈ V represent bounded disturbances and noises,
respectively 2 , where the sets W and V are defined as

W = {ωk ∈ Rn : |ωk − ωc| ≤ ω̄, ωc ∈ Rn, ω̄ ∈ Rn}, (2a)

V = {ηk ∈ Rq : |ηk − ηc| ≤ η̄, ηc ∈ Rq, η̄ ∈ Rq}, (2b)

where the vectors ωc, ηc, ω̄ and η̄ are constant, |·| denotes
the elementwise absolute value and the inequalities are
understood elementwise.

Furthermore, W and V can be rewritten as zonotopes 3

W = ωc ⊕Hω̄Bn and V = ηc ⊕Hη̄B
q, where Hω̄ ∈ Rn×n

and Hη̄ ∈ Rq×q are two diagonal matrices with the main
diagonals being ω̄ and η̄, respectively.

Assumption 1. The faults persist a sufficiently long time
such that the FDI strategy can detect and isolate them.�
Assumption 2. The matrix A in (1) is a Schur matrix (or
the pairs (A,BFi), for all i ∈ I, are stabilizable and the
given control inputs uk guarantee that the plant (1) is
always stable). The pair (A,C) is detectable. �

2.2 Interval Observers

The j-th (j ∈ I) interval observer corresponding to the
j-th system mode is designed as

X̂j
k+1 =(A− LjC)X̂j

k ⊕ {BFjuk} ⊕ {Ljyk}
⊕ (−Lj)V ⊕W, (3a)

Ŷ jk =CX̂j
k ⊕ V, (3b)

where X̂j
k and Ŷ jk are the estimated state and output sets,

and the interval observer gain Lj is selected to assure that
A−LjC is a Schur matrix. Additionally, two properties of
zonotopes are introduced in the following.

Property 1. Given zonotopes X1 = g1 ⊕G1B
r1 and X2 =

g2 ⊕G2B
r2 , X1 ⊕X2 = {g1 + g2} ⊕ [G1 G2]Br1+r2 . �

Property 2. Given a zonotope X = g ⊕ GBr and a
compatible matrix K, KX = Kg ⊕KGBr. �
Remark 1. From a computational point of view, the zono-
topic sets are used to propagate the dynamics of interval
observers in this paper. 3

1 All diagonal elements of Fi belong to the interval [0, 1] and a value
taken from (0, 1) characterizes the performance degradation of the
corresponding actuator. The limits of the interval, 0 and 1, stand for
completely faulty and healthy functioning, respectively.
2 For brevity, this paper uses ωk and ηk to denote uncertainties
under all the considered modes in (1). In general, the bounds of
uncertainties in different modes may be different.
3 Given a vector g ∈ Rn and a segment matrix G ∈ Rn×m(n ≤ m),
a zonotope X is defined as X = g ⊕ GBm, where ⊕ denotes the
Minkowski sum and Bm is a box composed of m unitary intervals.

Using Property 1 and Property 2, (3) can be transformed
into the equivalent center-segment matrix form

x̂j,ck+1 =(A− LjC)x̂j,ck +BFjuk + Ljyk

− Ljηc + wc, (4a)

Ĥx,j
k+1 =[(A− LjC)Ĥx,j

k − LjHη̄ Hω̄], (4b)

ŷj,ck =Cx̂j,ck + ηc, (4c)

Ĥy,j
k =[CĤx,j

k Hη̄], (4d)

where x̂j,ck+1, ŷj,ck , Ĥx,j
k+1 and Ĥy,j

k are the centers and

segment matrices of X̂j
k+1 and Ŷ jk , respectively.

Assumption 3. The initial plant state x0 is inside an initial
zonotope X̂0 of interval observers, i.e., x0 ∈ X̂0.

3. RESIDUAL ZONOTOPES

3.1 Residual Zonotopes

In this paper, the residual uncertainty is bounded using
zonotopes. When the system is in the i-th mode, residual
zonotopes corresponding to the j-th interval observer are
defined as

Rijk = {yk} ⊕ (−Ŷ jk )

= {Cxk + ηk} ⊕ {(−CX̂j
k)⊕ (−V )}

= C{{xk} ⊕ (−X̂j
k)} ⊕ {ηk} ⊕ (−V ), (5)

where Rijk denotes the residual zonotopes from the j-th
interval observer under the i-th mode.

In order to analyze the residual zonotopes (5), the term

{xk} ⊕ (−X̂j
k) is denoted as X̃ij

k , which is derived as

X̃ij
k = {(xk − x̂j,ck )} ⊕ Ĥx,j

k Bsj
k , (6)

where sjk denotes the order of X̂j
k at time instant k.

For brevity, the term xk − x̂j,ck in (6) is denoted as x̃ij,ck .
Furthermore, using (1) and (3), (6) can be derived as the
equivalent center-segment matrix form

x̃ij,ck+1 =(A− LjC)x̃ij,ck +B(Fi − Fj)uk
− Lj(ηk − ηc) + (ωk − ωc), (7a)

H̃ij
k+1 =Ĥx,j

k+1 = [(A− LjC)Ĥx,j
k − LjHη̄ Hω̄], (7b)

where x̃ij,ck and H̃ij
k are the center and segment matrix of

X̃ij
k , respectively. Thus, the residual zonotopes (5) can be

further rewritten as

Rijk =CX̃ij
k ⊕ {ηk} ⊕ (−V ). (8)

3.2 Residual-bounding Zonotopes

Assumption 4. The input uk is bounded by a known set

U = {uk ∈ Rp : |uk − uc| ≤ ū, uc ∈ Rp, ū ∈ Rp},
where the vectors uc and ū are constant. �

Similar with W and V in (2), U can be rewritten as a
zonotope U = uc ⊕HūB

p, where Hū ∈ Rp×p is a diagonal
matrix with the main diagonal being ū. By using V , W and
U to replace ηk, ωk and uk in (7), respectively, one can

derive a bounding zonotope denoted as X̆ij
k+1 to confine



X̃ij
k+1. By using zonotope operations, the center x̆ij,ck+1 and

segment matrix H̆ij
k+1 of X̆ij

k+1 can be derived as

x̆ij,ck+1 =(A− LjC)x̆ij,ck +B(Fi − Fj)uc, (9a)

H̆ij
k+1 =[(A− LjC)H̆ij

k B(Fi − Fj)Hū − LjHη̄

LjHη̄ Hω̄ −Hω̄]. (9b)

The equivalent compact description of (9) is given as

X̆ij
k+1 =(A− LjC)X̆ij

k ⊕B(Fi − Fj)U ⊕ Lj(−V )

⊕W ⊕ LjV ⊕ (−W ). (10)

Remark 2. By zonotope operations, (10) can be trans-
formed into the center-segment matrix form that is equal
to (9). Thus, (10) and (9) are equivalent. 3

Comparing (7) with (9), it is known that, as long as

X̃ij
k∗ ⊆ X̆ij

k∗ holds, then X̃ij
k ⊆ X̆ij

k will always hold for all

k ≥ k∗, where X̃ij
k and X̆ij

k are generated by (7) and (9),
respectively. Thus, according to (8), zonotopes to bound

the residual zonotopes Rijk can be derived as

R̆ijk =CX̆ij
k ⊕ V ⊕ (−V ). (11)

Note that the set-based dynamics (10) correspond to an
equivalent dynamics with the form

x̆ijk+1 =(A− LjC)x̆ijk +B(Fi − Fj)uk − Ljηk
+ ωk + Lj η̌k − ω̌k, (12)

where η̌k ∈ V and ω̌k ∈ W are used to describe the effect
of V and W in (3), respectively. Considering that η̌k, ω̌k,
ηk, ωk and uk are bounded, a robust positively invariant
(RPI) set of (12), denoted as X̊ij , can be constructed (see
[Kofman et al., 2007, Olaru et al., 2010] for the notion
and computation of invariant sets). Besides, the minimal
robust positively invariant (mRPI) set for the dynamics

(12) is denoted as X̆ij .

Furthermore, as per the results given in [Olaru et al.,
2010], the set sequence generated by (10) converges to

the mRPI set X̆ij . Because the mRPI set is contained
inside any RPI set of the dynamics, i.e., X̆ij ⊆ X̊ij , the
set sequence generated by (10) converges into the RPI set

X̊ij . Additionally, since X̆ij
k bounds X̃ij

k , as k increases,

X̃ij
k will finally enter into X̊ij and stay inside.

4. IMPROVED FDI STRATEGY

4.1 Interval Hull

Definition 1. The interval hull of X = g ⊕ GBr is the
smallest interval box that contains X, which is computed
as 2X = {x : |xi − gi| ≤‖ Gi ‖1}, where Gi is the i-th row
of G, xi and gi are the i-th components of x and g, and
‖ · ‖1 is the 1-norm of vectors, respectively. O

Based on Definition 1, one further gives a definition for
the width of the interval hull of a zonotope.

Definition 2. The interval hull width of X = g ⊕ GBr is
defined as a vector

width(X) = (2‖G1‖1, 2‖G2‖1, . . . , 2‖Gn‖1),

where n denotes the dimension of X and ‖Gi‖1 denotes
the width of the i-th interval component of 2X. O

Remark 3. As observed in (7b), the segment matrix of X̃ij
k

is not affected by the mode i, i.e., for the j-th interval
observer, the mode switching does not affect the evolution
of the interval hull width of X̃ij

k . Furthermore, according to
(8), the evolution of the interval hull width for the residual
zonotopes corresponding to a certain observer is free from
the effect of the mode switching. 3

Remark 4. Since A − LjC is a Schur matrix, as k tends

to infinity, the interval hull width of X̃ij
k corresponding

to the j-th interval observer converges to a fixed vector
independent of the effect of mode switching. The same
result holds for Rijk . 3

4.2 The FDI Algorithm in [Xu et al., 2013b]

In the previous work [Xu et al., 2013b], the FD and FI are
implemented only using the interval observer matching the
current mode. For example, if the plant is in the i-th mode,
the FD principle consists in real-time testing if

0 ∈ Riik , (13)

where Riik is generated by the i-th interval observer match-
ing the current i-th mode.

Furthermore, it is assumed that whenever a fault is de-
tected, then the FI is based on searching an interval
observer in real time, whose residual zonotopes satisfy

0 ∈ Rffk (14)

after a waiting time, where f denotes the index of the fault
that is unknown before FI.

4.3 Enhanced FDI Conditions

When the system is functioning in a certain mode, all
residual zonotopes estimated by a bank of interval ob-
servers can convey the system-operating information in
that mode. If it can be guaranteed that, using the system-
operating information provided by the interval observers,
all the modes can be distinguished from each other, then
all the faults can be detected and isolated.

At time instant k, the interval hull width of the resid-
ual zonotope predicted by the j-th interval observer is
denoted as width(Rjk) (because the interval hull is inde-

pendent of mode switching, it is denoted as width(Rjk)

not width(Rijk )). According to Remark 3 and Remark 4, it
is known that, at infinity, width(Rj∞) is a fixed vector 4 .

According to (11) and considering the limit set X̆ij of X̆ij
k ,

as k goes to infinity, R̆ijk will converge to

R̆ij =CX̆ij ⊕ V ⊕ (−V ), (15)

i.e., Rijk will finally enter into R̆ij and stay inside, where

R̆ij is the limit set of R̆ijk .

Thus, for the i-th system mode, one defines a vector

R̆i = (R̆i0, R̆i1, · · · , R̆iN )

to describe all the limit sets of residual-bounding zono-
topes (i.e., R̆ijk ) corresponding to all the interval observers.

Each element of R̆i corresponds to one interval observer.

4 At time instant k, Rj
k

generally denotes residual zonotopes esti-
mated by the j-th interval observer without caring about the modes.



Similarly, for the i-th mode, one defines the vector 5

Ri
k = (Ri0k , R

i1
k , · · · , RiNk )

to denote all real-time residual zonotopes estimated by
a bank of interval observers at time instant k. Thus, as
k increases, each component of Ri

k will finally enter into

that of R̆i and stay inside, i.e., Ri
k converges into R̆i.

To summarize the discussions above, guaranteed FDI
conditions are established in the following theorem.

Theorem 1. Given the plant (1), interval observers (3),
Assumption 1, 2, 3 and 4, for any two modes l and m,
if there exists at least one component (indexed by s) of R̆l

and R̆m (s, l, m ∈ I, l 6= m) such that

width(Rs∞) 6≤ width(2(R̆ls ∩ R̆ms)), (16)

where 6≤ is understood elementwise, then all the considered
modes are distinguishable from each other.

Proof : If a mode l or m occurs and (16) holds, as k tends

to infinity, Rk can finally enter in either R̆l or R̆m, which
identifies the mode. This implies that, if all the modes
satisfy (16), by real-time testing the inclusion between Rk

and all the candidate vectors R̆i, the fault can be isolated
by one and only one vector R̆i that contains Rk. �

Remark 5. Since R̆ls ∩ R̆ms may not be a zonotope, the
smallest box 2(R̆ls ∩ R̆ms) is used to replace it in (16). 3

Since Rs∞, R̆ls and R̆ms in (16) can not be accurately com-
puted but can be only approximated, Theorem 1 has only
theoretical value. Practically, one uses the approximations
of Rs∞, R̆ls and R̆ms instead.

Thus, by iterating the expression of the segment matrix of
residual zonotopes offline, one can obtain a sufficiently pre-
cise approximation denoted as width(Rsz) for width(Rs∞),
where z denotes the number of iterations. Furthermore,
following (16), one can have the practical FDI conditions
that are written as

width(Rsz) 6≤ width(2(R̊ls ∩ R̊ms)), (17)

where
R̊ls = CX̊ ls ⊕ V ⊕ (−V ),

R̊ms = CX̊ms ⊕ V ⊕ (−V ).

For some particular cases, one has another collection of
simplified FDI conditions with respect to (17), which is

R̊ls ∩ R̊ms = Ø, (18)

meaning that all the corresponding components of R̊ls and
R̊ms are separable from each other. As long as all the
considered actuator modes satisfy either (17) or (18), all
of them are detectable and isolable.

Note that the FDI conditions above are a set of sufficient
conditions but not necessary. Their satisfaction guarantees
FDI, while their violation does not mean that the faults
are non-detectable or non-isolable through complementary
computational efforts.

5 Ri
k corresponding to the i-th mode is used for theoretical analysis.

In practice, because residual zonotopes are obtainable in real time,
Ri

k is rewritten as Rk = (R0
k, R

1
k, · · · , R

N
k ) omitting the index

of modes, where Ri
k denotes the residual zonotopes from the i-th

interval observer at time instant k.

Remark 6. For FDI guarantees, the reduction of conserva-
tiveness of Theorem 1 is twofold. First, it is not necessary
to assure one and only one interval observer can generate
residual zonotopes that can contain the origin. Second, it
is not necessary to guarantee, in a mode, that all residual-
bounding zonotopes are disjoint at steady state. 3

4.4 Improved FDI Algorithm

The satisfaction of the FDI conditions (17) implies that
residual zonotopes estimated by a bank of interval ob-
servers in different modes ultimately enter into different
domains of the state space.

It is assumed that the current system is in the i-th mode,
thus, a fault is detected at time instant kd if the inclusions

Rkd ⊆ R̊i or 0 ∈ Riikd , i ∈ I (19)

are violated, where the inclusion ⊆ is understood element-
wise, and Rkd and Riikd denote the vector of residual zono-
topes estimated by a bank of interval observers and the
residual zonotope estimated by the i-th interval observer
at time instant kd, respectively 6 .

As long as the inclusion of either of the two FD criteria
in (19) is violated, it indicates that a new fault occurs.
Otherwise, it is still considered that the system is healthy.
In the on-line FD process, the FDI module selects the first
FD decision out of the two in real time.

Remark 7. In (19), since the two FD criteria and all the
interval observers are used for FD, comparing with the
one-criterion and one-observer approach, this combination
can be more sensitive to fault occurrences. 3

Algorithm 1 FDI algorithm

Require: X̂0, current mode i ∈ I;
Ensure: Fault index f ;

1: Initialize N + 1 interval observers by X̂0;
2: At k: Rk ⊆ R̊i, 0 ∈ Riik and fault ← FALSE;
3: while fault = FALSE do
4: k ← k + 1;
5: Obtain Rk;
6: if 0 6∈ Riik or Rk 6⊆ R̊i then
7: fault ← TRUE;
8: end if
9: end while

10: while fault = TRUE do
11: k ← k + 1;
12: Obtain Rk;
13: for s ∈ I \ {i} do

14: if Rk ⊆ R̊s then
15: if 0 ∈ Rssk then
16: f ← s;
17: fault ← FALSE;
18: terminate the algorithm;
19: end if
20: end if
21: end for;
22: end while
23: return f;

6 With respect to R̆i, R̊i is defined as R̊i = (R̊i0, R̊i1, · · · , R̊iN ).



The FI strategy consists in searching a set vector R̊f that
Rk ultimately enters into after a fault is detected 7 , where
f denotes the index of a fault. Thus, at time instant ki
after FD (ki > kd), if both

Rki ⊆ R̊f and 0 ∈ Rffki , f 6= i, f ∈ I (20)

hold, it implies that the system is currently in the f -th
mode, where the inclusion ⊆ is understood elementwise.

Remark 8. In (20), 0 ∈ Rffki (interval observer-based FI

principle) provides a guarantee for accuracy and reliability

of FI decisions made by the FI criterion Rki ⊆ R̊f

(invariant set-based FI principle). Thus, this combination
can improve the reliability of the final FI decision. 3

In order to summarize the aforementioned results, Algo-
rithm 1 is proposed in this paper for the FDI approach.

5. NUMERICAL EXAMPLE

The electric circuit example in [Ocampo-Martinez et al.,
2010] illustrates the effectiveness of the approach. The
performed simulations employed all the parameters in
[Ocampo-Martinez et al., 2010], which are omitted here.

Since there are two actuators in the circuit, three actuator
modes are considered in this example, which are denoted
as F0 (healthy), F1 (outage of the first actuator) and F2

(outage of the second actuator), i.e.,

F0 =

[
1 0
0 1

]
, F1 =

[
0 0
0 1

]
, F2 =

[
1 0
0 0

]
.

With a sampling time 0.01s, the continuous dynamics of
the circuit can be discretized into

A =

[
0.9804 0.3922
−0.0002 1.0049

]
, B =

[
0.0196 0
−0.0123 0.0125

]
,

C =

[
1 0
0 20

]
, E =

[
0.0196
0.0002

]
.

Based on the discrete-time model, three interval observers
matching the three actuator modes are designed as in
(3) and residual zonotopes are defined as in (5). For the
discrete model and interval observers, the parameters are

• observer gains: L0 = L1 = L2 =

[
0.3334 −0.8229
0.02 0.1333

]
,

• uncertainties: ω̄ =

[
0.0294
0.0004

]
, ωc =

[
0
0

]
,

• initial state: x0 =

[
0
0

]
, X̂0 =

[
0.1
0.1

]
⊕
[
0.5 0 0
0 0 0.5

]
B3.

All RPI approximations of the limit sets of residual-
bounding zonotopes (10) can be obtained after iterating
(10) thirty steps with an initial RPI set of (12). For brevity,
the numerical values of their boxes are presented here:
R̊00 = ([−0.1965, 0.1965], [−0.1504, 0.1504]),

R̊01 = ([2.9722, 3.5611], [−63.4954,−59.5046]),

R̊02 = ([−0.1965, 0.1965], [60.4746, 64.5254]),

R̊10 = ([−3.5611,−2.9722], [59.5046, 63.4954]),

R̊11 = ([−0.1965, 0.1965], [−0.1504, 0.1504]),

7 Before FI, the index f is unknown.

R̊12 = ([−3.5611,−2.9722], [120.1296, 127.8704]),

R̊20 = ([−0.1965, 0.1965], [−64.5254,−60.4746]),

R̊21 = ([2.9726, 3.5607], [−127.8231,−120.1769]),

R̊22 = ([−0.1965, 0.1965], [−0.1504, 0.1504]).

Since R̊0 ∩ R̊1, R̊0 ∩ R̊2 and R̊1 ∩ R̊2 are empty (i.e.,
satisfying (18)), then the proposed technique can be ap-
plied to this example. The scenarios for both faults are
defined as follows: from time instants 1 to 100, the system
is healthy, and from time instants 101 to 200, a fault
occurs. In Figure 1, Figure 2, Figure 3 and Figure 4, Rjk(n)

and R̊ijk (n) denote the n-th components of Rjk and R̊ijk ,
respectively.

In the second plot of Figure 1, 0 6∈ R0
103(2) and R103 6⊆ R̊0,

which indicates a fault is detected at time instant 103. In
Figure 2, both 0 ∈ R1

136 and R136 ⊆ R̊1 are confirmed,
which isolates the fault in the first actuator at time instant
136. Similarly, in the second figure of Figure 3, 0 6∈ R0

103(2)

and R103 6⊆ R̊0, which indicates a fault is detected at time
instant 103. In Figure 4, at time instant 135, 0 ∈ R2

135 and

R135 ⊆ R̊2 are confirmed, which implies that the fault in
the second actuator is isolated.

Notice that, R0
k(1) and R2

k(1), R̊00(1) and R̊02(1) in

Figure 1, R0
k(1) and R2

k(1), R̊10(1) and R̊12(1) in Figure 2,

R0
k(1) and R2

k(1), R̊00(1) and R̊02(1) in Figure 3, R0
k(1)

and R2
k(1), R̊20(1) and R̊22(1) in Figure 4 coincide with

each other, respectively. However, these coincidences do
not affect the effectiveness of the proposed strategy.
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Fig. 1. FD of the fault 1

6. CONCLUSIONS

Comparing with the previous work, the algorithm pro-
posed in this paper has at least three improvements. First,
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Fig. 2. FI of the fault 1
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Fig. 3. FD of the fault 2

the system information provided by all interval observers is
used for FDI. Second, both interval observers and invariant
sets are used for FDI. Third, the explicit definition of a
waiting time is avoided, instead, invariant sets are used to
measure the waiting time implicitly.
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