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Abstract
We present here the first cases in Neandertals of congenital clefts of the arch of the atlas.

Two atlases from El Sidrón, northern Spain, present respectively a defect of the posterior

(frequency in extant modern human populations ranging from 0.73% to 3.84%), and anterior

(frequency in extant modern human populations ranging from 0.087% to 0.1%) arch, a con-

dition in most cases not associated with any clinical manifestation. The fact that two out of

three observable atlases present a low frequency congenital condition, together with previ-

ously reported evidence of retained deciduous mandibular canine in two out of ten denti-

tions from El Sidrón, supports the previous observation based on genetic evidence that

these Neandertals constituted a group with close genetic relations. Some have proposed

for humans and other species that the presence of skeletal congenital conditions, although

without clinical significance, could be used as a signal of endogamy or inbreeding. In the

present case this interpretation would fit the general scenario of high incidence of rare con-

ditions among Pleistocene humans and the specific scenariothat emerges from Neandertal

paleogenetics, which points to long-term small and decreasing population size with reduced

and isolated groups. Adverse environmental factors affecting early pregnancies would con-

stitute an alternative, non-exclusive, explanation for a high incidence of congenital condi-

tions. Further support or rejection of these interpretations will come from new genetic and

skeletal evidence from Neandertal remains.
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Introduction
A better understanding of the process of origin, change and extinction ofHomo neanderthalen-
sisis accomplished through the study of its population dynamics. This objective can now be
addressed through paleodemographic studies based on osteological data from the fossil record
[1], through analysis of Neandertal genetic data [2, 3] and through a combination of statistical
methods considering both kinds of information [4, 5].Besides this approach, based on gather-
ing available data from chronologically and geographically dispersed fossils, it is also informa-
tive to investigate the structure and dynamics of groups composed of contemporaneous
individuals, which represent a more fundamental unit of genetic and social organization of
Neandertal populations. The peculiarities of the El Sidrón site (Asturias, Northern Spain),
allow us to address these questions.

The El Sidrón Neandertal assemblage is composed of more than 2400 human fossils recov-
ered ina secondary context in a karst system [6, 7], and dated to 49000 years ago[8]. A mini-
mum number of thirteen individuals have been identified in this sample, including seven
adults, three adolescents, two juveniles and one infant, with representation of all skeletal
regions[9, 10].The genetic analysis of the sample indicated the presence of a small patrilocal
community with low genetic diversity [11], corroborating previous archaeological and geologi-
cal data that pointed to a contemporaneous social Neandertal group. Thus, besides genetic
studies associated with diverse functional traits in Neandertals (i.e. pigmentation, blood group,
language and taste perception) [12], the presence of this assemblage has allowed us to address
important questions at the intraspecific and intra-group levels. The analysis of dental calculus
has revealed evidence of cooking and plant use[13], further studies of the dentition have
addressed sexual division of labor [14] and handedness[15], and morphological variability has
been studied in different bone elements at the cranial [16, 17] and postcranial[18, 19]levels.

The presence of a contemporaneous Neandertal group with close genetic relations, together
with recent studies in Neandertalpaleogenetics pointing to long-term small and decreasing
population size with reduced and isolated groups [20], opens the possibility to explore the pres-
ence of skeletal traits related to kinship [21], and/or considered as potential signals of inbreed-
ing[22, 23], supplementing genetic research in Neandertals regarding their biological
variability and demography. In this regard, evidence of a retained deciduous mandibular
canine, a condition with a probable familial basis, was reported for two dentitions from El
Sidrón[24]. We present here the study of congenital clefts in the first cervical vertebrae within
this groupand discuss its potential implications for Neandertal demography.

Material and Methods

Neandertal sample
SD-1643 is an almost complete atlas reconstructed from three bony elements (Fig 1). It only
lacks the right lamina or right posterior arch of the atlas due to a post-mortem fracture (trans-
versal, regular surface of breakage with exposure of trabeculae) observed immediately posterior
to the right lateral mass. The left lamina is truncated at the sagittal midline, the location of the
posterior synchondrosis of the atlas (hereafter PS).

SD-1094 is a 33.1 mm length fragment whose location corresponds to the right anterolateral
quadrant of a first cervical vertebra. The anterior half of the superior and inferior articular sur-
faces, as well as the facet for the dens of the axis, are recognizable (Fig 2). The anterior arch of
the atlas truncates approximately at the sagittal midplane, whereas during development the
anterior arch presents two synchondrosis (hereafter AS), each one located symmetrically
medial to the lateral masses of the atlas.
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SD-1605/1595 is a complete adult atlas with no significant observable feature (Fig 3)

Human sample
An extant modern human subadult sample comprised of documented and archaeological skel-
etons was gathered for comparative purposes. The documented skeletons come from the
Museu Nacional de Historia Natural of Lisbon (Portugal), and from the Museo Anatómico
from the Faculty of Medicine of Valladolid (Spain), with a total of 47 skeletons with an age
range from birth to 14 years old. These known sex and age skeletonscomprised the skeletal doc-
umented sample (SDS). The 25 archaeological skeletons, ranging in dental age from 3.5 to 11.5
years[25], come from three different collections: Leiria (Portugal, 13th to 16thCenturies) [26],
Lagos (Portugal, 15th to 17th Centuries) [27],and Baza (Spain, 11th to 16th Centuries) [28]. The
degree of closure of the AS and PS, and the transverse foramen (hereafter TF) of the atlas were
recorded according to a three grade scale (0: absence of fusion; 1: active fusion; 2 complete
fusion). Three adult human atlases with congenital clefts at the PS were collected for compara-
tive purposes from the anatomical collection curated at the Anatomical Museum from the Fac-
ulty of Medicine, Valladolid (Spain).

Fig 1. Atlas SD-1643. (A) Superior view of SD-1643, bar represents 1 cm. (B) Left transverse foramen completely closed, bar represents 1 cm. (C) Visible
epiphyseal surface on the tip of the left transverse process. (D) Medial view of the tip of the left lamina, where no bone breakage and a smooth continuity of
the cortical bone can be observed. (E) ESEM image, detail of the tip, with continuous cortical bone. (F) ESEM image, detail of another area of the tip with
continuity of the cortical bone along its edge.

doi:10.1371/journal.pone.0136550.g001
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Fig 2. Atlas SD-1094. (A) Superior view of SD-1094, placed on its anatomical location within a modern
human atlas, bar represents 1 cm. (B) Posterior view of SD-1094, the right superior and inferior articular
surfaces can be observed. The facet for the dens of the axis can be observed in the anterior arch, bar
represents 1 cm. (C) Anterior view of SD-1094, the beginning of the anterior tubercle of the transverse
foramen can be observed on the left. (D) Medial anterior view of the midsagittal cleft, slightly tilted to superior
in order to view its anterior inferior corner. Continuity of the cortical bone from the anterior to the sagittal
surface can be observed. (E) ESEM image, with clearer view of the anterior inferior corner, with continuity of
the cortical bone from the anterior to the sagittal surfaces. (F) Medial view of the anterior sagittal cleft. Cortical
bone can be observed in the inferior and superior thirds. Bone breakage can be observed in the central third.
(G) ESEM image, with clearer view of the cortical bone and the areas of bone breakage. (H) Medial posterior
view with continuity of cortical bone from the posterior to the anterior surfaces of the posterior arch of the
atlas. (I) ESEM image of the superior corner of the midsagittal cleft, with clearer view of the cortical continuity
between the posterior and anterior surface along the sagittal cleft.

doi:10.1371/journal.pone.0136550.g002
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Methods
The regions of interest of SD-1643, SD-1094 and selected modern human atlases were
inspected under binocular lens and Environmental Scanning Electron Microscope (ESEM Fei-
Quanta 200) located at the National Museum of Natural History (MNCN-CSIC). Selected
atlases were examined at 25.0 kv accelerating voltage and low vacuum mode. The magnifica-
tion observations ranged from 40x to 1000x. Conventional radiographs were taken of the three
Neandertal atlases and selected modern human atlases.

Results and Discussion
The explanation of the truncation of the left lamina of SD-1643, and the anterior arch of SD-
1094 is discussed via a differential diagnosis including normal-for-age lack of fusion of the PS
and AS, ante-, peri- and post-mortem fractures, and congenital clefts of the arch of the atlas.
Each of these possibilities is discussed separately.

Fig 3. Atlas SD-1605/1595. (A) Superior view of SD-1605/1595, bar represents 1 cm. (B) Radiography of SD-1605/1595.

doi:10.1371/journal.pone.0136550.g003

Fig 4. Radiographic images of SD-1643 and SD-1094. (A) Radiography of SD-1643, with continuity of the
cortical bone through the irregularly-shaped tip of the left lamina. (B)Radiography of SD-1094, the arrow
indicates the continuity of cortical bone at the anterior inferior corner of the midsagittal cleft (see Fig 2D and
2E), while the triangle indicates the continuity of cortical bone at the superior corner of the cleft (see Fig 2H
and 2I). Lack of continuation of cortical bone through the entire cleft is due to post mortem breakage (see Fig
2F and 2G).

doi:10.1371/journal.pone.0136550.g004
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Normal-for-age lack of fusion of PS and AS
A normal-for-age lack of fusion of the PS for SD-1643 is excluded based on three observations.
First, a universal feature of the pattern of maturation of the atlas in humans is the fact that the
PS fuses invariably before the two AS [29–33], except in some atlases with only one sagittal AS,
which is not the case of SD-1643. Second, the continuity of the cortical surface along the tip of
the lamina can be observed in the radiograph(Fig 4). Third, absence of a synchondrosis-like
surface on the tip of the lamina can be observed, indicating that there was no cartilage bridging
the left lamina to the right lamina and thus there was no actual synchondrosis (Fig 5).Addi-
tional observations can be added regarding the maturation and chronological age of SD-1643
by modern human references, based on the degree of closure of the AS, the TF, and the degree
of maturation of the epiphyseal surface located in the tip of the left transverse process (Fig 1).
With regard to the AS, diverse CT scan studies indicate that the earliest age of closure is
reported to be at 3–4 years [31, 33], while the oldest age at which the AS is apparent ranges
from 6.83 years[33] to 7 years and 1 month [34] to 7 years and 3 months [31]. Our own obser-
vations in the SDS indicate that the oldest case of lack of fusion of the AS was 5.8 years, active
fusion was observed between 5.3 to 7.2 years, and the earliest case of complete fusion was 6.1
years. With regard to the TF, it has been stated that it is “usually near completion by years 3–4”
[35]. Our own observations in the SDS indicate that active formation of the TF was observed
between 1.5 and 9 years, while the earliest case of complete TF was observed at 4.75 years. With
regard to the epiphyseal surface of the tip of the transverse process, it has been observed that its
presence indicates an age below 18 years, while the transformation of this surface into cortical
bone indicates an age older than 15 years [36]. A broad age range from 4.75 years to 18 years
can thus be assigned to SD-1643 based both on the complete closure of the TF and on the pres-
ence of the epiphyseal surface in the tip of the transverse process.

With regard to SD-1094, from a maturation perspective the frequency of mid-sagittal ante-
rior clefts of the atlas in subadult samples ranges from 0.7% [31], to 16.5% [32], to even 21.8%
[30], (observations limited to ages below 7 years [31] or below a maximum of 12 years [32]),
indicating that during the subadult period the presence of only one AS at the anterior sagittal
midline represents a normal variant of the maturation of the anterior arch of the atlas. Fre-
quency values for adult samples range from 0.087% [37] to 0.1% [38], a fact that indicates that
most of the anterior clefts observed in the subadult samples eventually ossify before adulthood
[31]. Again, a normal-for-age lack of fusion of the AS for SD-1094 is excluded based on the
continuity of the cortical bone and the absence of a synchondrosis-like surface on the midsagit-
tal plane of the anterior arch, as observed in the ESEM and radiographic images (Figs 2, 4
and 5).

Fractures of the atlas
For SD-1643, the possibility of an ante-, peri- or post-mortem fracture is discarded based on
several observations. Different classifications of fractures of the atlas in the living have been
developed based on their location [39–44], but no one includes a single fracture at the posterior
sagittal midline. This fracture can occur, but in all the cases reviewed it is accompanied by at
least one other fracture generally at the anterior sagittal midline [45], a combination included
in some of the aforementioned classification systems [44]. Furthermore, as indicated above,
radiography and observations through binocular lens and ESEM show two features: First, a
clear smooth continuity of the cortex along the tip of the lamina of SD-1643, without exposure
of the inner trabeculae, thus excluding peri- and post-mortem fractures; second, absence of
osteogenic reaction thus excluding a healed but unfused ante-mortem fracture [46] (Fig 1).
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With regard to SD-1094, fractures at the anterior sagittal midline have been described [45],
but the augmented images again indicate a smooth continuity of the bony cortex from the

Fig 5. Non-fused posterior synchondrosis of the atlas. (A)The PS of the atlas of a 3 year old skeleton
from the anatomical collection curated at University of Valladolid. Cartilage was left in place in this
preparation and it can be observed bridging both tips of the posterior arches. Numbers are located in an area
of the synchondrosis where a small portion of the cartilage has been lost. Numbers indicate: 1, cortical bone;
2, synchondrosis surface; 3, cartilage. (B) ESEM image with detail of the aforementioned area. Smooth
surface of the cortical bone can be observed on the left (1). The surface of the synchondrosis presents a
uniform porous aspect formed by numerous and small pore-like structures (2). The cartilage presents a
uniform opaque surface (3). (C) ESEM image with further detail of the image presented in B. The porous-like
surface of the synchondrosis (2) can be clearly observed, associated to the anchorage of the cartilage. (D, E,
F, G, H)The PS (left posterior arch) of non-fused atlases frommodern human subadult skeletons. The limit
between the cortical bone and the synchondrosis surface is very diverse as can be observed in this small
sample, but the differentiation between both surfaces is clear.

doi:10.1371/journal.pone.0136550.g005
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ventral and dorsal surface of the anterior arch to the sagittal midplane (Fig 2). This continuity
is only interrupted due to post-mortem erosion with exposed trabeculae in the central part of
the midplane, and absence of osteogenic response compatible with a healed but unfused ante-
mortem fracture is observed also for SD-1094 [46](Fig 2). These observations exclude ante-,
peri- or post-mortem fractures as possible explanations for the presence of the sagittal mid-
plane truncation of the anterior arch of the atlas of SD-1094.

Congenital clefts of the atlas
The above findings indicate that the truncation of the left lamina of SD-1643 at the sagittal
midline correspond to a congenital defect that could be classified as type A according to the
system of Currarino et al. [47]. A comparison of SD-1643 with modern human cases with
type A defects is presented in Fig 6. A type B defect is defined as a condition affecting only one
lamina and ranging from a small gap to a complete absence of the lamina, and it cannot be
excluded for SD-1643 due to postmortem absence of the right lamina (Fig 1). The frequency of
type A defects ranges from 0.73% [48] to 3.84% [38], accounting for more than 77% of all of
the defects reported for the posterior arch of the atlas [49–55] (Table 1).

With regard to SD-1094, the above findings indicate that the truncation of the anterior arch
at the sagittal midplane corresponds to a congenital cleft, in this case a very rare condition in
adults according to previous work, with reported frequencies from 0.087% [37], to 0.09% [50]
to 0.1% [38]. It is also interesting to note that in most cases, an anterior cleft is associated with
the presence of a posterior cleft resulting in a bipartite atlas [56–72]. With regard to clinical
manifestations of defects of the arch of the atlas, they range from lack of symptoms even in

Fig 6. Atlases with type A defect.Comparison between SD-1643 and three cases of a type A posterior cleft of the atlas from the anatomical collection
curated at University of Valladolid (UVA). In this superior view the truncation of the anterior arches at the midsagittal line can be observed. As indicated in the
text, the post mortem breakage immediately posterior to the right lateral mass of SD-1643 opens the possibility of a type A or type B (absence of one lamina)
defect.

doi:10.1371/journal.pone.0136550.g006
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cases of total aplasia of the posterior arch [73] to atlantoaxial instability [74] and cervical mye-
lopathy (types C and D)[75]. Defects of the arch of the atlas have been also observed associated
with conditions such as Down syndrome [76, 77], Chiari malformation [78], thalassemia
minor [79], Klippel-Feil syndrome [80–82]and other skeletal dysplasias like Goldenhar syn-
drome, Conradi syndrome, and atlas assimilation [74]. Focusing on the type A defect, most of
the reported cases correspond to incidental findings during routine medical examination [37,
51, 83], with some exceptional cases of a type A associated with clinical manifestations (torti-
collis, facial asymmetry) [84]. With regard to anterior clefts of the atlas, in most cases a bipar-
tite atlas or an isolated anterior cleft again constitutes an incidental finding during clinical
examination subsequent to trauma to head and neck [56, 57, 61–72, 85, 86], and only in a few
cases is an anterior cleft of the atlas associated with clinical symptoms, for instance due to
hyperostosis caused by hypertrophy of the anterior arch [59]. Asrecently summarized [87], the
review of the literature indicates that most of the bifid dorsal and ventral atlantal arches could
be considered incidental findings, and thus likely no clinical symptoms would have been asso-
ciated with the congenital clefts of SD-1643 and SD-1094.

Interestingly, defects of the arch of the atlas have been observed in two family groups, a
mother (type B) and her sibling (type E) [47], and a mother (type A) and her two siblings (type
E plus anterior cleft of the atlas in both cases) [84], in the latter case a condition compatible
with autosomal dominant inheritance. At El Sidrón, a dental anomaly (retained left mandibu-
lar deciduous canine) with a potential heritable basis has been previously described for two
individuals who presented the same mitochondrial haplotype [24], and in this regard statisti-
cally significant higher frequencies of type A defects of the atlas have been associated consis-
tently with cleft palate [88, 89]and palatally displaced canines [90]. Other dental anomalies (i.e.
uneruption and transposition of teeth) have been incidentally associated with both anterior
and posterior clefts of the atlas [91, 92]. The association between clefts of the atlas with dental
and other cervical anomalies [60, 62, 64, 80], most likely indicates a disturbance common to
the close periods of embryogenesis of these structures. In this regard, a thorough and explana-
tory embryology-based classification of bony malformations of the craniovertebral junction
has been elaborated by Pang and Thompson [87], who indicate that malformations of the
arch of the atlas emerge from disturbances of the lateral zone of the upper cervical sclerotome
(posterior arch) and the hypochordal bow (anterior arch). Further research in the embryologi-
cal origin and schedule of cervical and craniofacial structures would shed light on these
associations.

Table 1. Frequency of congenital defects of the atlas in modern humans.

REFERENCE SAMPLE TYPE N TYPE-A TYPE-A(%) ALL DEFECTS (%)

[49] USA Clinical CT 839 26 3.1 -

[50] Switzerland Clinical CT 1069 34 3.18 3.8

[48] Spain Skeletal 136 1 0.73 0.73

[37] Korea Clinical CT 1153 9 0.78 0.95

[51] USA Clinical CT 1104 29 2.6 3.35

[51] USA Cadaveric 84 3 3.57 3.57

[47] USA Clinical (radiography & CT) 7200 - - 0.069

[52] French Skeletal 500 14 2.8 2.8

[53] European South African Clinical radiographic 220 7 3.18 3.63

[54] French Skeletal 300 9 3 -

[38] German Cadaveric 1613 62 3.84 4

[55] European Skeletal 1626 26 1.59 -

doi:10.1371/journal.pone.0136550.t001
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Potential implications for Neandertal demography
We present here the first report of congenital clefts of the arch of the atlas in Neandertals. No
other cases of such defects have been observed in studies of Neandertal cervical vertebrae
which include those cases with best preservation of the atlas such as La Ferrassie 1 [93], Kra-
pina 100–101[94, 95], and Regourdou 1 [96], or in studies of other well preserved hominin
atlases [97]. Based solely on the findings for the atlas presented here and on the previously
reported cases of dental anomalies [24], the number of individuals from El Sidrón presenting
congenital conditions would range from a minimum of two (Adolescent 3/SD-1643, an associ-
ation supported by compatible dental and bone age; Adult 2/SD-1094), to a maximum of four
(each atlas and tooth representing a different individual). The observation that at least two out
of three observable atlases present low frequency congenital anomalies supports previous
genetic [11] and dental [24] evidence from El Sidrón indicating that these Neandertals consti-
tuted a group with close genetic relations. Familial relationships have been previously proposed
for human skeletal remains in archaeological [21] and forensic [98] contexts, based on the
common presence of anatomical variants of low population frequency. Although most of the
variants used in the detection of kin groups are dental traits, cranial [99] and postcranial varia-
tions including traits of the first cervical vertebra [100, 101] have been also reported to be asso-
ciated to familial relations. But beyond the usefulness of these traits for recognition of kin
groups, it has been suggested in conservation biology that some anomalies without direct effect
on fitness (e.g. minor tooth anomalies and thoracolumbar and sacrococygeal transitional verte-
brae), could be used as indication of inbreeding [102]. In this regard, González-Reimers et al.
[103] observed a bipartite atlas, an atlas with a type B defect, and two cervical blocks in a pre-
hispanic ossuary of the island of El Hierro (Canary Islands), pointing to possible familial rela-
tions or to an unusually high prevalence of these conditions in this islander population. Similar
observations have been reported by Merbs[104] in his study of vertebral developmental errors
in Canadian Inuit skeletons, where a higher frequency and intensity of several spine defects
were observed in the smaller and more genetically isolated of the two compared populations.
While for North American islander prehistoric populations, it has been suggested that the high
prevalence of maxillary canine-premolar transposition could be a signal of endogamy[22]. A
more direct approach to inbreeding has been presented by Palma and Carini[105] and Alt et al
[23]. The former authors observed a high frequency of cervical ribs at the 7thcervical vertebra
in an isolated population from Sicily, while the latter observed a high frequency (35.7%) of con-
genitally missing maxillary lateral incisors in a 9000-year-old late Pre-Pottery Neolithic com-
munity in Southern Jordan. After a thorough review of the literature, these authors suggest that
this could only be explained by close familial relationships, in this case due to socio-cultural
choice of endogamy.

In general, skeletal findings suggesting inbreeding would fit the demographic scenario for
early humans, with small size groups, population dispersal and potentially significant levels of
intragroup and intrafamily mating resulting in high levels of consanguinity through time
[106]. In this respect, and with regard to a very rare anomaly observed in the parietal bones of
Xujiayao 11, an early Late Pleistocene fossil from China, Wu et al. [107] review the unusually
high incidence of rare conditions among Pleistocene humans. These authors suggest the possi-
bility that the high frequency of these conditions could reflect small and highly inbred popula-
tions during the Pleistocene, and the congenital clefts of the atlas from the Neandertals of El
Sidrón would fit this broader scenario for human population dynamics during the Pleistocene.
Specifically for Neandertals, as recently summarized [20], a similar general picture emerges
from recent advances in paleogenetics, which posits a long-term small and decreasing popula-
tion size sometime after 0.5–1.0 million years ago, with reduced and isolated groups. The
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consequence would be increased inbreeding at times. For instance, genetic analysis from two
Neandertal individuals, from El Sidrón and Vindija respectively, indicate that mating among
related individuals may have been more common in Neandertals than in present-day humans
[108]. This observation would join with genetic evidence from a Neandertal woman from Sibe-
ria indicating a close familial relation between her parents (e.g. half-siblings with a common
mother), further analysis pointing to frequent mating between closely related individuals in
Neandertals from this geographic area [3]. Thus, an additional potential interpretation of the
findings of dental and skeletal congenital anomalies at El Sidrón could be a signal of inbreeding
in Neandertals from this geographic area. Although this inference would fit the general sce-
nario emerging from skeletal studies [107] of Pleistocene humans and Neandertal paleoge-
netics [20], it is clear that further skeletal findings are needed in order to support this
interpretation. In this regard, supernumerary ribs associated to the first lumbar vertebra, a low
frequency developmental defect in modern humans, have been documented for two Neander-
tal individuals, Shanidar 3 and Kebara 2 [109, 110].

It is important to note, however, that inbreeding is not the only possible explanation for a
high incidence of congenital conditions, which could also be explained by adverse environmen-
tal conditions impacting early pregnancies. For instance, congenital defects such as neural tube
defects and orofacial clefts have been associated with socioeconomic status and maternal die-
tary patterns in epidemiological studies[111–113], while supernumerary ribs constitute a
common finding in standard developmental toxicology bioassays [114]. Following both possi-
bilities, it has been suggested that a combination of harsh environmental conditions and
inbreeding was the most likely explanation for the high incidence in Late Pleistocene mam-
moths of cervical ribs[115], a congenital condition that in humans has been associated with
multiple and major congenital abnormalities [116]. Studies of enamel hypoplasiaand dental
fluctuating asymmetry indicate that Neandertal populations possibly suffered similar [117], or
greater [118, 119] developmental stress than comparative prehistoric modern human samples.
Specific evidence from El Sidrón indicates that all the dental individuals showed enamel hypo-
plasia, with well-marked defects on the incisors (59%), canines (50%), premolars (58%), and
molars (32%) [7]. These data only partially support harsh environmental conditions as an
explanatory factor for the presence of congenital conditions since they refer specifically to the
period of crown formation, and not to the later period of pregnancy.

Conclusions
We present the first two cases in Neandertals of a congenital posterior and anterior cleft of the
arch of the atlas respectively. This observation, together with the previously reported presence
of dental anomalies for two individuals from this site, could be interpreted as further evidence
of the presence of a group with close genetic relations at El Sidrón, as a possible signal of
inbreeding in this Neandertal group, and as an indication of harsh environmental conditions.
Previous findings of high incidence of rare conditions among Pleistocene humans, and the gen-
eral demographic scenario for Neandertals that emerges from paleogenetics would be compati-
ble with inbreeding as an explanation of the presence of these low frequency clefts of the atlas
in two of three observable atlases from El Sidrón. Further support or rejection ofthis and the
aforementioned interpretations will come from new genetic and skeletal evidence from Nean-
dertal remains.
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