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Abstract— This paper proposes a novel methodology for
solving constrained optimization problems in a distributed
way, inspired by population dynamics and adding dynamics to
the population masses. The proposed methodology divides the
problem into smaller problems, whose feasible regions vary over
time achieving an agreement to solve the global problem. The
methodology also guarantees attraction to the feasible region
and allows to have few changes in the decision-making design,
when the network suffers the addition or removal of nodes.
Simulation results are presented in order to illustrate several
cases.

I. INTRODUCTION

An approach to design control systems is to express the
desired performance of the plant as an optimization problem
with multiple constraints, e.g., minimization of the error,
minimization of the norm of states, minimization of the
energy associated to control actions, all of those objectives
subject to physical and/or operating constraints. When the
system involves a large number of states, the design of
optimization-based controllers becomes challenging, because
of the lack of centralized information or because of other
implications associated to information. The limitation re-
garding information availability demands the development of
distributed optimization techniques that achieve an optimal
point for the total system by using only local information.

There are many distributed optimization applications in
engineering [2], and most of them are related to net-
worked systems. These problems have been solved by using
distributed optimization algorithms based on the Newton
method [10], the subgradient method [11], and the consensus
protocol [6]. On the other hand, game theory has become
an important and powerful tool for solving optimization
problems, e.g., the Nash equilibrium corresponds to the
extreme of a potential function satisfying the Karush-Kuhn-
Tucker (KKT) first order condition [8]. Consequently, finding
Nash equilibria based on local information allows to solve
distributed optimization problems [1]. For instance, in [7],
distributed optimization has been applied, using replicator
dynamics based on local information. In [5] the design
of utility functions for each agent in order to decouple
constraints is presented, and the usage of penalty functions
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and barrier functions is discussed. The consideration of dy-
namics in the graph that describes information sharing among
decision variables is paramount since some network systems
in engineering may grow (e.g., drainage network systems,
drinking water networks, distributed generation systems).
These dynamics represent an addition or removal of elements
to the network. Moreover, the connectivity of elements in the
network could change over time (e.g., the system topology
changes), which could affect availability of information. In
[4], variations on the graph that determines the information
sharing are studied, where the set of communication links
varies with a certain probability.

The main contribution of this paper is a novel method-
ology to solve constrained optimization problems in a dis-
tributed way, inspired by population dynamics and adding
dynamics to the population masses [8]. The global problem
is represented by a society, where there is limitation of
information sharing. The society is divided into several popu-
lations, where there is full information. Then, an optimization
problem is solved at each population, whose feasible region
varies dynamically, i.e., there is an interchange of masses
among populations. The dynamic feasible regions vary un-
til all populations agree to solve the global optimization
problem. In addition to this, applications in control may
involve disturbances that could lead the trajectories to leave
the feasible region. The proposed method guarantees that
the feasible region is attractive. Finally, the design of the
decision-making distributed system allows to have a reduced
number of modifications when the graph topology changes,
i.e., when there are new nodes in the graph or there are nodes
that disappear. Also, some redundant links can be identified,
i.e., links in the graph that are not essential to solve the
distributed problem.

The remainder of the paper is organized as follows.
Section II presents preliminaries. Section III presents the
population dynamics and the masses dynamics. Section IV
presents the optimization problem forms that could be solved
with the population dynamics and the masses dynamics, pre-
senting also some illustrative examples and results. Finally, in
Section V a discussion and the main conclusions are drawn.

II. PRELIMINARIES

Let G = (V, E) be an undirected non-complete connected
graph that exhibits the topology of a society, where V is
the set of vertices that represents the set of strategies in a
social game denoted by S = {1, ..., N}; and E = {(i, j) :
i, j ∈ V} is the set of edges or links that determines possible
interactions among strategies in the society. The graph G is
divided into M sub-complete graphs known as cliques [3],
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where each clique represents a population within the society.
The set of populations is denoted by P = {1, ...,M} and
the set of cliques is denoted by C = {Cp : p ∈ P}, where
Cp = (Vp, Ep). The set Vp represents the set of Np strategies
in a population game denoted by Sp = {i : i ∈ Vp}.

It is assumed that the cliques are already known, i.e., the
number of cliques M , the set Vp, and the set Ep for all p ∈ P
are known. However, if it is desired to obtain the optimal set
of cliques (i.e., the minimum amount of cliques M such that
∪p∈PVp = V), there are several methods. When cliques in
a graph are identified, it is possible to find redundant links.
A link (i, j) ∈ E , is a redundant link if (i, j) /∈ Ep for all
p ∈ P . The number of cliques containing a node i ∈ V
is denoted by G(i) =

∑
p∈P g(i, p), where g(i, p) = 1 if

i ∈ Vp and g(i, p) = 0 otherwise. Since G is a non-complete
connected graph, all cliques must share at least one node
with another clique. This node is known as an intersection
node, where the set of intersection nodes in a population
p ∈ P is denoted by Ip = {i ∈ Vp : G(i) > 1}. The set of
intersection nodes in G is I = ∪p∈PIp.

Throughout the paper, all the populations p are referred
such that the node i belongs to the set of nodes Vp (i.e.,
p : i ∈ Vp), e.g., for a case with two populations whose
sets of nodes are V1 = {1, 2} and V2 = {2, 3} respectively,
then {p : 1 ∈ Vp} = {1}, and {p : 2 ∈ Vp} = {1, 2}. The
scalar xi is the amount of agents in the society selecting the
strategy i ∈ S , and the scalar xpi is the amount of agents
selecting the strategy i ∈ Sp in the population p ∈ P . The
distribution of agents throughout the available strategies is
known as the social state and the population state denoted by
x ∈ RN and xp ∈ RNp

, respectively. The set of social states
is given by a simplex denoted by ∆, which is a constant set,
i.e., ∆ =

{
x ∈ RN+ : x>1 = m

}
, where m is the constant

mass of agents in the society and 1 is a column vector with
unitary entries. The set of states of the population p ∈ P is
given by a non-constant simplex denoted by ∆p, i.e., ∆p ={
xp ∈ RNp

+ : xp>1 = mp
}
, where mp corresponds to the

mass of agents in the population p. There is a relationship
between the social states and the population states, where
xpi = 0, if i /∈ Vp,

xi =
1

G(i)

∑

p∈P
xpi . (1)

Let Fi : ∆→ R be the fitness function for the proportion
of agents playing strategy i ∈ S, and F pi : ∆p → R is the
fitness function for the proportion of agents playing strategy
i ∈ Sp. The fitness for a strategy i ∈ S is the same as the
fitness for a strategy j ∈ Sp if i = j. Consequently, for all
i ∈ Sp and p : i ∈ Vp

Fi(x) = F pi (xp), if xi = xpi . (2)

The vector of fitness functions for the society is given by
F = {Fi : i ∈ S}, F ∈ RN . The society average function
denoted by F̄ is F̄ (x) = (x>F )/m. The vector of fitness
functions for a population p ∈ P is given by F p = {F pi : i ∈
Sp}, F p ∈ RNp

, and the average function for a population

p ∈ P is F̄ p(xp) = (xp>F p)/mp. The relationship between
the population masses and the social mass is given by

m =
∑

p∈P
mp −

∑

i∈S
(G(i)− 1)xi. (3)

Remark 1: The relationship between the population
masses and the social mass shown in (3) should be satisfied
to guarantee that the simplex ∆ is respected. ♦

The framework of this paper is given by the assumptions
stated below.

Assumption 1: F (x) is a full potential game [8], i.e., there
is a continuously differentiable function f(x), known as
the potential function, satisfying ∂f(x)

∂xi
= Fi(x) for all i ∈

S, x ∈ ∆. ♦
Assumption 2: Fitness functions depend only on strategies

that belong to the same clique. ♦
Assumption 3: The population masses are strictly positive,

i.e., mp > 0, for all p ∈ P; and there is not extinction of
proportion of agents playing a strategy, i.e., the scalar xpi > 0
for all p ∈ P , and i ∈ Sp. ♦

Assumption 4: F (x) is a stable game [8], i.e., the Jacobian
matrix DF (x) is negative semi-definite with respect to the
tangent space defined as T∆ = {z ∈ RN :

∑
i∈S zi = 0},

i.e., z>DF (x)z ≤ 0, for all z ∈ T∆, and x ∈ ∆. ♦
The characteristics of the potential function f(x) determine
if the full potential game F (x) is stable, i.e., if f(x) ∈ C2 is
concave, then the full potential game F (x) is a stable game.

III. POPULATION AND MASSES DYNAMICS

The objective for the society is to converge to a Nash
equilibrium denoted by x∗ ∈ ∆. In order to achieve this
objective, there is going to be a game at each population
p ∈ P converging to a Nash equilibrium denoted by xp∗ ∈
∆p, and the intersection nodes i ∈ I are going to allow mass
interchange between different populations.

A. Population Dynamics

A game is solved for each population with constraints
given by masses mp, which will vary dynamically. Dynamics
associated to each population are shown in (4). There are M
dynamics of this type, one for each clique Cp for all p ∈ P ,
i.e.,

ẋpi = xpi
(
F pi − F̄ p − φp

)
, for all i ∈ Sp, (4)

φp = β


 1

mp

∑

j∈Sp

xpj − 1


 , (5)

and β is a convergence factor. Note that when φp = 0 (i.e.,
xp ∈ ∆p), (4) is the replicator dynamics equation.

B. Masses Dynamics

On the other hand, the dynamics for population masses
mp are given by

ṁp
i = mp

i (xi − xpi − ψi) , for all p : i ∈ Vp, (6)

ψi = β


 1

κi + (G(i)− 1)xi

∑

q∈P

mq
i

|Iq| − 1


 . (7)



Equation (6) describes the movements of agents among
populations through intersection nodes, where mq

i = 0 if
q /∈ Vq . The term β is a convergence factor and forces the
following equality at equilibrium

κi + (G(i)− 1)x∗i =
∑

q∈P

mq
i
∗

|Iq| , (8)

where κi ∈ R+ is a distribution of the social mass m. Then, it
should be satisfied that

∑
i∈I κi = m. There is a relationship

between mp
i for all i ∈ Ip and the population masses mp

given by

mp =
1

|Ip|
∑

i∈Ip
mp
i , for all p ∈ P. (9)

For the masses dynamics at intersection nodes in (6), the
vector of masses and the vector of states, that are associated
to an intersection node i ∈ I are defined. The masses vector
is mi = {mp

i , for all p : i ∈ Vp}, mi ∈ RG(i), and the
vector of population states is xi = {xpi , for all p : i ∈ Vp},
xi ∈ RG(i). Note that mi 6= mi and xi 6= xi.

In order to illustrate the structure of the methodology
and the interaction between the population dynamics and
the masses dynamics, consider the social topology given
by the graph G = (V, E), where V = {1, 2, 3, 4, 5} and
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}. For this
society, there are two populations and only one intersection
node. Consequently, I1 = I2 = I = 3. The structure for
this problem is shown in Figure 1.

ẋ1i = x1i (F 1
i − F̄ 1 − φ1)

i ∈ V1 = {1, 2, 3}

ẋ2i = x2i (F 2
i − F̄ 2 − φ2)

i ∈ V2 = {3, 4, 5}

ṁp
3 = mp

3(x3 − xp3 − ψ3)

p : 3 ∈ Vp, p = {1, 2}

xi = 1
G(i)

∑
p∈{1,2}

xpi

i ∈ {1, 2, 3, 4, 5}

mp = 1
|Ip|

∑
i∈Ip

mp
i

p ∈ {1, 2}

m1

m2

x1i

x2i

x13

x23

mp
3

m1 = m1
3

m2 = m2
3

xi

Population dynamics

Masses dynamics

Fig. 1. The methodology structure with two population dynamics and one
masses dynamics.

C. Stability Analysis

It is necessary to show that the solution of the distributed
system with population dynamics (4) and masses dynamics
(6) at intersection nodes, imply the solution of the social
game (i.e. the global problem).

Proposition 1: If Assumption 3 is satisfied, the population
dynamics are in equilibrium xp∗ ∈ ∆p, for all p ∈ P , and
the masses dynamics are in equilibrium m∗i , for all i ∈ I;
then the society is in equilibrium x∗ ∈ ∆.

Proof: The equilibrium xp∗ ∈ ∆p of the population
dynamics (4), for all p ∈ P , implies that i) φp(xp∗) = 0,
and, ii) F pi (xp∗) = F̄ p, for all i ∈ Sp and p ∈ P .
The equilibrium mi

∗ of the masses dynamics (6), for all
i ∈ I, implies that i) ψi(x∗i ,m∗i ) = 0 since (8) is forced,
and, ii) x∗i = xpi

∗ for all p : i ∈ Vp. Then, for all

i ∈ I, x∗i = xri
∗ = xki

∗, for all r : i ∈ Vr, and
k : i ∈ Vk. By (2) Fi(x

r∗) = Fi(x
k∗) = Fi(x

∗).
Moreover, Fi(xr∗) = F̄ r(xr∗) = Fi(x

k∗) = F̄ k(xk
∗
), for

all r, k ∈ P and i ∈ I. Consequently, all population average
fitnesses are equal, then Fi(x

∗) = Fj(x
∗) = F̄ (x∗) for all

i, j ∈ S. Additionally, m∗i for all i ∈ I satisfies (8). Then,∑
i∈I (κi + (G(i)− 1)x∗i ) =

∑
i∈I
∑
p∈P

mp
i

|Ip| . By (9),
and using the fact that mp

i = 0, if i /∈ Ip, then∑
i∈I κi +

∑
i∈I(G(i) − 1)x∗i =

∑
p∈P m

p. For a node
i /∈ I, G(i) = 1; and since

∑
i∈I κi = m, xp∗ ∈ ∆p, and

owing that xpi = 0, if i /∈ Vp

m+
∑

i∈S
(G(i)− 1)x∗i =

∑

p∈P

∑

i∈Sp

xpi
∗

=
∑

p∈P

∑

i∈S
xpi
∗
,

by Equation (1), m +
∑
i∈S(G(i) − 1)x∗i =

∑
i∈S G(i)x∗i .

Then m =
∑
i∈S x

∗
i , and x∗ ∈ ∆ completes the proof.

Next, it is shown that the equilibrium points corresponding
to the population dynamics and the masses dynamics are
asymptotically stable.

Theorem 1: If F (x) is a stable game, then there exists a β
such that the equilibrium point xp∗ ∈ ∆p of the population
dynamics (4), for all p ∈ P , and the equilibrium point mi

∗

of the masses dynamics (6), for all i ∈ I, are asymptotically
stable.

Proof: Consider the convex radially unbounded Lya-
punov function 1

V (xp,mi) =
∑

p∈P

∑

i∈Sp

xpi − xpi
∗
(

1 + ln

(
xpi
xpi
∗

))
+

∑

i∈I

∑

p:i∈Vp

mp
i −mp

i
∗
(

1 + ln

(
mp
i

mp
i
∗

))
, (10)

where V (xp∗,mi
∗) = 0, and V (xp,mi) > 0 if xp 6= xp∗ or

mi 6= mi
∗. Its derivative considering only one population and

one intersection (to obtain the sum of negative elements),

V̇ (xp,mi) =
∑
i∈Sp

(
1− xpi

∗

xpi

)
ẋpi +

∑
p:i∈Vp

(
1− mp

i
∗

mp
i

)
ṁp

i .

Consider the column vector Ii = { 1
|Ip| , for all p : i ∈

Vp}, Ii ∈ RG(i), and the change of variable κ̃i = κi +
(G(i)− 1)xi, where κ̃ > 0. Then, We consider that xp>1 =
mp+ ε. The parameter ε could be either positive or negative
depending on xp. It is known that xp∗ ∈ ∆p, then xp∗>1 =
mp. In the same way, it is possible that in a transitory event,
mi does not satisfy the condition in (8) Then, m>i Ii = κ̃i+γ,
where γ could be either positive or negative depending on
condition in (8). Finally, since |Ip| ≥ 1, for all p ∈ P ,
κi + γ =

∑
p∈P

mp
i

|Ip| ≤
∑
p∈P m

p
i = κi + γ + θ, where

θ ≥ 0. Replacing xp>1, xp∗>1, m>i Ii, and m>i 1,

V̇ (xp,mi) =αxp>F p (xp)− β
ε2

mp
+ (xp − xp∗)

>
F p (xp)+

γ

G(i)
x>i 1+ (m∗i −mi)

>xi − β
γ2

κ̃i
,

with α =
(
1− mp+ε

mp

)
. There are some cases to analyze:

1Details in this proof have been omitted due to the lack of space.



i) ε = 0 and γ = 0. Then V̇ (xp,mi) =
(xp − xp∗)> F (xp) + (m∗i −mi)

>xi. The first term is neg-
ative since F (xp) is a stable game. The second term is also
negative since all fitness functions have the same decreasing
tendency. ii) In all other cases, there exists a β such that
V̇ (xp,mi) ≤ 0. For the case ε 6= 0 and γ 6= 0, β is

β ≥ mpκ̃i

κ̃iε2 +mpγ2

{(
1− mp + ε

mp

)
xp>F p (xp)

+ (xp − xp∗)
>
F p (xp) +

γ

G(i)
x>i 1+ (m∗i −mi)

>xi

}
.

Equality holds when xp = xp∗ and mi = m∗i (case
i). Applying LaSalle’s Invariance Principle, every solution
starting in xp(0) ∈ RNp

+ and mi(0) ∈ RG(i)
+ approaches to

xp∗ and m∗i as t→∞. Note that when population states are
near the feasible region (i.e., γ → 0, ε→ 0) the convergence
factor is not longer required (i.e., β can get any positive value
or zero).

Remark 2: This proof also shows that the feasible region
is attractive. i.e., if disturbances in the system make the
trajectories to leave the feasible region, then the distributed
system forces them to converge to a feasible solution. ♦
D. Changes in the graph

Network systems in engineering are constantly growing.
When this occurs, control systems have to be designed again
in order to fit new conditions for the system. The method
proposed in this paper allows to reduce the number of
changes in design, when there are changes in the graph.

There are two cases to be considered: a) the addition of a
clique to the graph; and b) the removal of a clique from the
graph.

1) Addition of nodes to the graph: Consider the graph
shown in Figure 2. For this graph, there are three popula-
tions (i.e., C = {C1, C2, C3}, and P = {1, 2, 3}) and two
intersections (i.e., I = {a, b}). Consequently, the decision-
making system is composed by five dynamical systems.

C1

C4

C2

C3b

a

Fig. 2. Addition or removal of nodes in a graph. Dotted line represents
the clique that is added or removed from the graph.

Now, suppose that there is a modification on the topology
of the graph, by adding a new clique to the intersection node
a ∈ I. This change implies that masses dynamics designed
for node a should be modified, and that a new population
dynamic system corresponding to clique C4 should be added
to the decision-making system. The population dynamics
designed for cliques C1, C2, and C3 (i.e., populations p =
{1, 2, 3}), and the masses dynamics for intersection node
b ∈ I remain the same. Besides the fact that most of the
dynamical systems do not need to be modified, when a
clique is added, then the initial conditions for the variables
associated to new nodes could get any value in R+ without

caring about the feasible region of the global problem. The
decision-making system forces the trajectories to get in the
feasible region. This property allows to design systems with
connection an disconnection of cliques.

2) Removal of nodes to the graph: Now, suppose that
the initial graph is shown in Figure 2, composed by four
population (i.e., C = {C1, C2, C3, C4}, and P = {1, 2, 3, 4}).
Then, the decision-making system is compounded by six
dynamical systems (i.e., four population dynamics and two
masses dynamics). When population p = 4 is removed
from intersection node a, then this implies the elimination
of one population dynamics system, and the modification
of one mass dynamics system in node a. In this case, the
population dynamics designed for cliques C1, C2 and C3 (i.e.,
populations p = {1, 2, 3}), and the masses dynamics for
intersection node b ∈ I remain the same.

The removal of a clique could force the trajectories to
leave the feasible region. However, the system adapts to
changes satisfying the feasible region.

IV. OPTIMIZATION PROBLEMS WITH CONSTRAINTS

One of the main features of full potential games is that
their Nash equilibrium points correspond to extreme points of
the potential function, i.e., Nash equilibria satisfy KKT first
order conditions [8]. Additionally, if the potential function is
concave, the games are stable and an optimization problem
can be solved in a distributed way by using the population
dynamics and the masses dynamics shown in Section III.
Some optimization problem forms are set in this section, and
illustrative examples are solved with the population dynamics
and the masses dynamics described previously.

A. Optimization problem with two constraints

The general optimization problem related to population
dynamics with full potential games is shown. This problem is
a resource allocation problem, where m is the total resource.
The maximization problem is

max f(x), subject to
∑N
i=1 xi = m, and x ∈ RN+ ,

where f : RN+ → R and m ∈ R+. It is assumed that f is
continuously differentiable (i.e., f ∈ C1) and concave. There
is a full potential stable game given by F (x) = ∇f(x).

The first constraint in this optimization problem deter-
mines the set of social states x ∈ ∆, and the second
constraint is satisfied with population dynamics since the
states are defined to be always positive. Constraints on
information are given by a graph, which affects possible
dependency among populations. An academical example of
this type of problems is

max −x>Ax+ bx,
subject to

∑13
i=1 xi = 522, and x ∈ R13

+ ,
where A ∈ R13×13 is a sparse matrix with
unitary diagonal and entries ai,j = 1 for
(i, j) ∈ {(1, 2), (6, 7), (9, 10), (11, 12), (12, 13)}, and
b = 10 [5 4 1.2 3 6 7 8.5 5 2.1 3.5
2.6 2.9 3.2]. For this optimization problem, there are
limitations in information dependency given by the graph
shown in Figure 4a). The results of convergence are shown



Fig. 3. Population states evolution (a, b and c) and fitness functions evolution (d, e and f) for different examples. Optimization problem with: two
constraints (a and d), one constraint (b and e) and multiple constraints (c and f).

Fig. 4. Social topology determining information availability at each node
for examples.

in Figures 3a) and 3d). It can be seen that the constraint
related to social mass is satisfied, even when population
masses vary over time. Also, since dynamics are defined
only for positive variables then the additional constraint
related positiveness of variable is satisfied as well.

B. Optimization problem with one constraint

A less restrictive optimization problem is studied. This
problem only demands the positiveness of variables. From
a game theoretical perspective, it implies a variation of the
social mass arbitrarily. The problem is

max f(x), subject to x ∈ RN+ ,
where f : RN+ → R, and f ∈ C1 is concave. Also, it is
supposed that the optimal point of this problem is an interior
point. Since it is not necessary to satisfy a determined social
mass, then equality shown in (9) is not longer required.
Consequently, the term ψi in (6) is not necessary. Then, the
masses dynamics are changed and rewritten as follows:

ṁp
i = mp

i (xi − xpi ) , for all p : i ∈ Vp. (11)

With this modification, m∗i still implies that xi = xpi for all
p : i ∈ Vp and i ∈ I. Also, the total system still converges
to a Nash equilibrium since the population dynamics are the
same. However, the social mass m and the average fitness
F̄ (x) take arbitrary values at equilibrium.

The dynamical system can be forced to converge to a Nash
equilibrium x∗ such that F̄ (x∗) = ∇f(x∗) converges to a

desired value Fi(r) for an i ∈ I, where r is a known value
(e.g., a reference). Modifying the relationship between the
states in (1) by adding the reference r, a new relationship
is obtained, xi = 1

G(i)+1

(∑
p∈P x

p
i + r

)
, where xpi = 0, if

i /∈ Vp. With this modification, and by (11), xi approaches to
r. This makes F̄ (x) to converge to the desired value Fi(r),
for only one i ∈ I.

The solution for the optimization problem with one con-
straint is found by F (x) = ∇f(x) = 0, because f(x) is
concave and the fact that it is known that the maximum point
is an interior point. Therefore, the desired value for average
fitness is Fi(r) = 0, and it is enough to find the correct value
for reference r for any intersection i ∈ I.

Remark 3: In case that r is not easily found for any
i ∈ I, it is possible to establish a known decreasing
fictitious function denoted by F̃N+1(xN+1), where xN+1

is an auxiliary intersection node that is not part of the
optimization problem. Reference r is known, so that F̃ (r) is
the desired value for average fitness. ♦

The masses dynamics and the relationship between states
have changed, then it is necessary to show stability for the
new dynamical system.

Theorem 2: If F (x) is a stable game, then there exists a
β such that the equilibrium xp∗ of the population dynamics
(4) for all p ∈ P , and the equilibrium mi

∗ of the masses
dynamics (11) for all i ∈ I are asymptotically stable. ♦
This proof can be made with the same Lyapunov function
as in Theorem 1.

An academical example for this optimization problem
form is

max −x>x+ bx, subject to x ∈ R10
+ ,

with b = 102 [5 4 1.2 3 6 7 8.5 2 2.1 2.3].
The graph for the social topology and possible information
sharing for this optimization problem is shown in Figure 4b).
It can be seen that the desired value of convergence is located
at node three that is a decision variable that belongs to the



optimization problem, i.e., it is known the argument of the
fitness function three such that F3(r) = 0. Figure 3b) and 3e)
show convergence to the unique solution, from two different
initial conditions. The results show convergence to the unique
optimal point independently of initial conditions. Also, it is
shown that fitness functions, which are the gradients of the
concave potential function, converge to zero satisfying KKT
conditions for an interior point.

C. Optimization problem with multiple constraints

Suppose that there is a strategic interaction with more than
one constraint, e.g., it is required to converge to an equilib-
rium point. Also suppose that the total amount of certain
groups of agent proportions are constant. This problem is
max f(x), s. t. Ax = b, and x ∈ RN+ , where x ∈ RN+ ,
f : RN+ → R, and f ∈ C1 is concave. A ∈ RV×N since there
are V constraints and N decision variables, and b ∈ RV .
For this optimization problem, µ is the Lagrange multiplier
vector. The Lagrange function l : RN×RV → R is l(x, µ) =
f(x) + µ>(Ax − b), and ∇xl(x, µ) = ∇f(x) + A>µ,
−∇µl(x, µ) = −Ax + b. The Lagrange condition is used
to find possible extreme points in the objective function, in
which ∇xl(x, µ) = 0, ∇µl(x, µ) = 0. Consequently, fitness
functions for each node are chosen as F (x) = ∇xl(x, µ),
and F (µ) = ∇µl(x, µ). This problem is solved by using
references r as it was explained in Section IV-B in order to
force a convergence value for the fitness functions associated
to the social states and the Lagrange multipliers. For both
F (x) and F (µ) a fictitious function can be set as explained
in Remark 3. In order to use the population dynamics and the
masses dynamics, it is necessary that the games are stable
according to Assumption 3.

Lemma 1: If f(x) ∈ C2 is concave, and constraints are
of the form Ax = b. Then the games F (x) = ∇xl(x, µ) and
F (µ) = ∇µl(x, µ) are stable. ♦

Finally, optimization problems with constraints of the form
Cx ≤ d can be written as the form Ax = b by using slack
variables [9]. An academical example for this optimization
problem type is

max (25−x1)2 + (20−x2)2 + (15−x3)2 + (10−x4)2+
espaci (5− x5)2,

subject to x1 + x2 = 50, x4 + x5 = 40, and x ∈ R5
+.

The graph corresponding to information limitation is shown
in Figure 4c). There are nodes added to the graph cor-
responding to the Lagrange multipliers. For the Lagrange
multipliers, there is an intersection node that is not part of the
optimization problem. Then, this node contains a decreasing
fictitious function F̃ with a known reference r such that
F̃ (r) = 0. The convergence of the population states to the
solution can be seen in Figure 3c) and the convergence of
fitness functions is shown in Figure 3f). The results show that
there is a transitory event in which trajectories do not belong
to the feasible region. However, the population dynamics and
the masses dynamics force the trajectories to converge to
the solution despite this fact. Additionally, the convergence
time to the feasible region in this example is shorter than
two seconds. Finally, Figure 3c) shows that both constraints

are satisfied at same time (about 1.5 s), what may be an
advantage to verify constraints throughout the network.

V. DISCUSSION AND CONCLUSIONS

A methodology to solve different optimization problems
with multiple constraints has been presented. The method
is based on population dynamics, whose set of states is
time varying. This variation represents a masses interchange
among populations. The population dynamics and the masses
dynamics are stable and the feasible region of the global
problem is attractive, under the assumptions related to the
objective function (i.e., potential function is concave). The
distributed proposed decision-making system allows to de-
sign systems where there is connection and/or disconnection
of cliques (which could be related to subsystems), without
having to ensure initial conditions that satisfy constraints. A
revision about whether or not the feasible region is satisfied
to set initial conditions would require full information. The
proposed methodology allows to initialize the distributed
system with any value in R+. Additionally, it has been shown
that changes in the network (e.g., the addition of a new
clique or the variation of an existing clique) imply only
local modifications in the decision-making system. Finally,
there are some applications in which the feasible region
should be satisfied all the time (e.g., physical constraints
in a plant, constraints associated to an actuator, etc). In this
case, the value of the convergence factor β can be tuned to
guarantee that the transitory event, where feasible region is
not respected, is as fast as it is required. This ensures that
when a decision is made, the feasible region is satisfied.
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