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Abstract—In the present work, we propose and validate a
complete probabilistic framework for human motion prediction
in urban or social environments. Additionally, we formulate a
powerful and useful tool: the human motion behavior estimator.
Three different basic behaviors have been detectedAware,
Balanced and Unaware. Our approach is based on the Social
Force Model (SFM) and the intentionality prediction BHMIP.
The main contribution of the present work is to make use of
the behavior estimator for formulating a reliable prediction
framework of human trajectories under the influence of dy-
namic crowds, robots, and in general any moving obstacle. Ac- ] ]
cordingly, we have demonstrated the great performance of our Fi9- 1. Urban environment corresponding to the BRL, wheré phathe

long-term prediction algorithm, in real scenarios, comparing to experiments were carried out. Prediction position covagarare drawn as
other prediction methods ' ' green ellipses projected and superposed in the plane.

|. INTRODUCTION .
The work of [5] has treated the problem by considering

A great interest in human motion prediction has rapidly collision time which determines the magnitude of the
grown among the robotic community. In this paper, wenteracting force. Nevertheless, this model is not able to
present a complete probabilistic framework for human maexplain why different people behave differently, under the
tion prediction. The aforementioned framework consists ofame configuration of the scene.

a prediction algorithm, the intentionality predictor, atie In [6], the human motion prediction is obtained using

behavior estimator. We analyze human trajectories Undgpnirol criteria and the human trajectories are generated i
the influence of dynamic crowded and heterogeneous enyigntrolied environments.

ronments, where there are moving people, moving objects

robots and also static obstacles. diction method in which they analyze a collection of peo-

_ The Social Force Model (SFM) [1] presents accurace trajectories in indoor environments. They clustesth
limitations when performing micro-prediction of human mo-, J:ion trajectories, by using the Expectation-Maximiaati

tion. The works such as [2] have proposed a learning-baseg ,iihm “and once they learn these primitive trajectrie
motion prediction approach which outperforms the SFMthey classify human motion trajectories.

Nonetheless, the present work expects to push the humarUsing heuristics and geometric criteria [8] has proposed

motion prediction paradigm a little further with the help Ofa geometric-based method for human motion prediction that

an improved SFM. We suggest to estimate the mteractlol?Ses human motion intentionality in terms of goals.

parameters described in the SFM for every target to improve .
greatly the prediction performance. Every person is ciffier .A vyork by [9] uses both place dependences and geomet_rlc
criteria. The authors have proposed to use a reward function

and behaves differently in equal situations, especiallgmwh . L .

s apear Th srves 35 3 movalon 0 obian he 48 0811 e bl pals ovate o osnaton, T
timator of human behavior for enhancing the human motion : : S 9 P
prediction as for inferring destinations.

The prediction of human behavior is not an easy endeavor.In the remainder of the paper, we discuss the human

There exist a wide variety of approaches such as the SocPJlediCtion problem in Section Il and we present the ba-

Force Model (SFM), heading heuristics [3], and learningS'C formulation. In section Ill, we describe the behavior
based approaches ['2], [4]. It is still unclear \’NhiCh appl,Dacestimation algorithm, one of the main contributions of the

works better since the calibration of models may be trick;‘?r?_sentt pallpeé, atﬁd \?’\? discuss the metft\)oc:)s_l_t? tLam the
and leads to contradictory conclusions. estimator. In Section IV we propose a probabilistic human

trajectory predictor, by making use of intentionality and
Work supported by the Spanish Ministry of Science and Intiomaunder human'thawor mformauqn. The. eXpe“memal results _and
project RobTaskCoop (DP12010-17112). conclusions are presented in sections V and VI, respegtivel

'In [7], the authors have proposed a place-dependent pre-



Il. PROBLEM OVERVIEW In the remainder of the paper, as can be seen in Fig. 2, we

In this section, we will present the requirements to forWiII use the Intentionality Eredictor (BHMlp)’,WhiCh Ses/e
mulate a successful prediction framework. We will alsd0 estimate the best destination a person aims to, and it is

present the tools that permit us to enhance the predictiglgScrioed in [10]. Although it is out of the scope discussing

performance, such as the Bayesian Human Motion InteR®W the BHMIP works, it is used intensively throughout
tionality Predictor (BHMIP) [10] or the Social-Force Model th€ Present paper. The other modules of the scheme are the

(SFM). As we will demonstrate later, additional estimation Main contributions of the present paper: a behavior estimat
of human parameters, like intention or behavior, clearl nd a trajectory prediction that makes use of the presented

enhances the accuracy of the prediction. ramework.

In brief, we present the basic formulation NECESSArY N crrrrmrmmmm e
analyze real trajectories. Let :

Xn(t) = {Xn(to)axn(t()+1)>"'axn(t)} (1)

be a set of positions (people detections) where each poi
Xn(t) = [z(t),y(t)], is the position at time of the nth
trajectory with respect to the world reference frame. Eac
point has its corresponding covariangg (t). The joint set
of trajectories is defined as

Xn(t) Bayesian human

: Destinations
intentionality prediction H

Human motion
behavior estimation

Trajectory
Prediction

Behavior

X(t) = {Xi(t), X2(t), ..., Xn (D)} )
Moreover, we define a set of destination positidhs= ‘. Humanmotion prediction scheme
{D1,Ds,...,Dy}, that indicates interesting positions in a_

Fig. 2. Basic scheme of the proposed prediction algorithm raxqdired

scene that people mlght go to. estimators for a complete framework for human motion prediction.

We infer the probability of the destinatiof? (D, (t) =
dpm| X,,L(t)), whereD,(t) is the inner intention for theith m
person to reach the destinatidn,,, and can be any of the
destination in the scene. For further details, see [10]. During experimentation in real scenarios [11], [12] we
We will briefly present the extended SFM [10]: the sociapbserved a high variability in human motion and it served as
force model generates trajectories as if there were fréBe motivation to develop the present work. Given the high
particles in a 2D space, The model have the followingariability of human behavior, it is difficult to accurately

. BEHAVIOR ESTIMATION

formulation: predict human motion using the same set of paraméters
d Vv, (t) since there appear a clear difference between predictiwhs a
a = f(t) ()  observations. Accordingly, our hypothesis is that each gfai

interactions is characterized by an specific set of parasete
Therefore, the prediction problem becomes an estimation
those specific behaviois.
To this end, we define a set of possible behavidrs-
fgoal(pn) = kn( V?l(Dn) — V), (4) {B1,Bs,...,Br}, each of them directly corresponds to a
set of interaction parametets = {k;, a;, b;, \;, d; }, which
where v, (D) is the desired velocity to reach its destinatioryefine the interaction forces according to the SFM. Addi-
D, The interaction forces are defined as follows: tionally, the inherent variablg,, , is the estimated behavior
g 5 betweenn andq, and can be any3; € B. Accordingly, we
Kq7 ®) propose a method to infer the latent st#ig(t) = B; of
) i a person that describes its force interaction with its nearb
Wh_ereq € Q, be!ng @ = P U O U R either a person, an targets, and hence, its trajectory.
object of the environment, or a robot. The behavior,, , corresponds to the interaction between
_ Accordingly, the resultant force is calculated as a summag,q persons. For ’instance, a person may react very conser-
tion: vative to an unexpected target while simultaneously behave
o in in in assively with a companion. As depicted in Fig. 3, we can
fo(t) = f2 Z(D"HZ fn,f+z fnyotJrZ fmt (6) gbserve how differentriargets exert d?fferent forcges wltigh
jep °0€0 reft only be explained if different behaviors are applied to each
where for each interaction force corresponds a set of ford¢arget.
parameter® = {k, anq, bng, Ang, dng }- INStead, we propose  The set of behaviors corresponding to one target is defined
an improvement of the model, by estimating a spedific as B, = {B, 4, Vg # n} as the set of parameters that
parameters for each pair qftargets that better suit to the describe the interactions of theh target and its surrounding
observed data and the situation. targets:

subject to velocity and acceleration restrictions.
Assuming that a pedestrian tries to adapt his or her velocigi
L ' . 1 ' f

v, within a relaxation timek; -, the steering force

fint — g e(da=dn.a)/ba
n,q



int

LB, = 37 £,m(B,,) ) Ong = argmin (| f s = B2HO)F) QD)

€Q
! i , In general, any method to calculate this minimization
We propose to use a HMM algorithm to classify the sequensyyeg the problem of finding the bést,,. We have chosen a
tial data information to infer the hidden behavior state: sampling method, the MCMC-MH by?naking useaopriori
information of values of typicab parameters calculated in
P(Byq(t) = BiIX(t)) = n- P(X(t)|Bngq(t))-  other works ([5], [4], [12]) to constrain the search space.
Once we have obtained a set 6f , parameters (for
P(B, ()| Bt —1))P(B, (t—1)|X(t-1 . - a
(Brnq (1) B ) B (B JIX( ) simplification referred hereafter #s), we make use of the

Bra(t=1) ®) Expectation-Maximization algorithm to obtain the clustef
0, and thus, the behavior primitive classBse B.
where The Expectation is calculated as:
~int .
P(X(t)|3nj(t)) :N(” f obs — fnlnt(Bﬂ)HmufaEf) (9) ’Y(ak) _ 7Lrl-/\/’(9ka/1'l72l) (12)
is a Gaussian distribution. The estimated interactionefosc 25 miN Ok 115, 35)
formulated as and the Maximization:
. in > 7(0k)
f obi = fobs - ng(ll(an)' (10) e 2’7(9) (13)
We can calculate the observed fortg, following (3), S (0r) - O
and the force to godl?°*!(D,,) by using (4), which is only W= W (14)
possible after estimating the destinati®,. The resulting Ok
~nt
subtraction is the estimated interaction forée,, . 5 Sov(0k) - Ok — ) (O — ) " (15)
l =

> 7(0k)

As we will demonstrate in Section V, the dimensionality
of the SFM parameterg can be reduced since the most
significant variables arda,b} for our experiment, which
greatly reduces the complexity of this calculation.

IV. MULTI-HYPOTHESIS MOTION PREDICTION

This section, as explained at the beginning of the pa-
Q per, makes use of the above explained tools and methods
to characterize typically human behaviors, and proposes a

straightforward algorithm to integrate all the presentad$

into a framework for enhancing the human motion prediction.
Intentionality prediction is essential for a good underdta

ing of human motion. We require destinations as explained in

previous sections, to set points in a scene as goal-integest

Fig. 3. Scheme of the social forces based on behavior estinsaths can ~ places. Behavior estimation is also of vital importance for

be seen, the behavidf; determines the magnitude of the forces, and henc¢he correct prediction of human trajectories. Therefore, w

int o e

£

the trajectories propagation. will update the probabilitiesP (B, 4(t) = B|X(t)) and
P (D, (t) = Di| X (t)) at every instantt. For simplicity
A. Behavior clustering of the explanation, we assume that the most expectable

Wi d to obtai tain knowled bout th | D, (t) and B, ,(t) are the only destinations’ estimations
€ need lo obtain certain knowledge about the values %pt. We will explain later a multi-hypothesis prediction

the basic classe8 in ordelr o use the algorlthm pmpose.d'method that contemplates different outcomes for a given
Consequently, the clustering problem boils down to obtain &ene configuration

large set Ofng = {.k’a”q’b"q’)‘”‘“d”q} parameters, Which Accordingly, the estimations oD, (¢t) and B, ,(t) are
are direct responsible for the motion behaviors as expaing, i~ via throughout the remaining calculations, faatiltg
in this section. ’

. . . .. int  the prediction of human motion.
We can obtain the estimated force of interactidn,,, Lets, (1) = [ Xa(t),va(#)] be the augmented state vector

as described in (10). However, we now require a funCt'OFbr the nth person in the scene consisting of position and its
or method to calculate the values @fthat fit better to the derivatev, (f) — %a(t). The motion propagation model is
n - n .

. ~nt .. .
observation of the forpef obs- The. training data prc_)wded subject to the following differential equations:
assumes a one-at-a-time interaction of the targetith a

single targey; to facilitate the calculations. 5,(t) = dc( sa(t), f,(t,Dn,Bn)), (16)



Algorithm 1 MH trajectory prediction
1: Initialize ¢t = ¢,
2: for t=tg,...,to0+h do
32 for n=1,...,N do

O

4 if X,,(t) € D,, then .

5 8,(t4+1) =8,(t) +dc(5.(t), f,(t, Dy, By)) - At o B (trh)
6 Sn(t+1) = S, (t) 4+ Saclt) e )
7: end if S S
8: end for

9: end for

Fig. 4. Trajectory propagation as a result of the multi-hjyests human
motion prediction.

which requires as inputs its own stat,(¢) and the social

forces f,(t,D,, B,) which can be calculated as explained V. EXPERIMENTS

in (6). In the present papetic( s,(t), f,(t,Dn,Bn)) = In order to conduct all the experiments and to test the
Vn(t), f,,(t,Dp, Bn)]". presented approach, we have used a mobile service robot,

Finally, we formulate a prediction trajectory for a timedeveloped for the URUS project [13], designed to work
horizon of h and its correspondent covariance. Let in urban pedestrian areas and to interact with people (see

o N . N Fig. 1).

Xn(t+h) = {Xn(t+ 1), Xn(t +2),.... St + h)} (17) The experimental areas are the BRL (Barcelona Robot
be the set of predicted positions and its correspondiriggb) and the FME (Facultat de Matetigues i Estaigtica).
augmented vectas, = [X,,V,] of positions and velocities: Both environments are outdoor and urban, and are located

R R R R respectively at the North and South Campus of the Univer-

Su(t+h) = {8u(t +1),8.(t+2),....8(+h)}  (18)  gjtat Policnica de Catalunya (UPC). The BRL is a large

Sa(t+h) = (S0t +1),50(t+2),...,Sa(t +h)}. (19) section of the campus that was outfitted as an experimental

] ) ) area, covering over 10.00@2, including six buildings and
As shown in Algorithm 1, all the present targets in they gquare.

scene propagate simultaneously and the expected propagagor the recording of the experiments, we have used two
tions are utilized in the next iteration. Once a target sadse Hokuyo UTM-30LX 2D laser range sensors. Human detec-
on its intention to reach its destinatidn,,, it remains idle  tjon is done using laser information and the tracker helgs ou
waiting for the rest of the targets to get to their correspegd o maintain targets in the scene (for further details, se@®[1
destinations or until the time horizaf expires. The first part of the experiments, performed in the FME,

An Euler integration method is chosen for the propagatiogynsisted of one robot and one person as obstacles and a set
of the ODE subject to a limitation in velocityiv|]| <  of volunteers performed experiments in a controlled scene.
Umag- The covariancelq.(t) is calculated depending on the The gbjective was obtaining data to calculate the behavior
propagation values. classes, as explained in Section IlI-A. Over 40 volunteers

Regarding the multi-hypothesis issue, we should considgfere recorded during a full day of experiments. Men and
that the estimation of the target intentionality (see [18]) \yomen, ranging from 20 to 56 years old participated as
not perfectly estimated and uncertainty is associatedherot o nteers and some of them had not any experience in
possible candidates for the best expected destinationaAs Ggpotics.
be seen in Fig. 4, the target can move towards any of the The experiment setting was simple: the volunteers were
mth destinations in the scene, with probabili(D,.(t)= told to naturally walk towards a very visible destination
Di| Xn(t)). A hypothesisi is the set of combinations of (3 huge red pylon), and meanwhile they approached their
people intentions, where each person has associated & singdstination, first the person-obstacle and then the robot,
expected intentionalitp, = Dy, . Thus, the joint probability moved crossing his/her path. During the experiment, it was
for NV persons is very important not to interact with both obstacles at theesam

time, but the volunteers were not told anything regardirng th
X), condition.
Once obtained and processed the trajectories, the param-

(20) etersf, = {k,ax,br, \r,dr} can be obtained by simply
where for each hypothesis the prediction is performed applying the procedure described in Sec. llI-A. As com-
following algorithm 1. If there are many targets in themented before, we have reduced the dimensionality of the
scene, the number of hypothesis grows exponentially and v@&-M parameter8 to the {a,b} parameters only for plotting
should branch and prune the hypothesis to those whose jomirposes. A PCA analysis revealed that the two principal
probabilities of (20) are more expectable, and proceed &igenvectors, were almost a linear combination{afb}
apply algorithm 1 with their respective parameters assedia exclusively and their respective eigenvalues concemtrate
with each hypothesis. more than 99% of the “energy”.

P(Dy=Dy,,....,Dy = Dy |X) = H P(D, =Dy,
nenN




Clustering behaviors Social-force modules as a function of distance
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Fig. 5. Cluster of behaviors, represented on the paraméters}. Fig. 6. Social-force modulg f obs\ with respect to distance from

interacting target.

The results in Fig. 5 clearly show three basic behaviors.
The Aware behavior, in blue,{k = 2.3,a = 4.78,b = target. Additionally, we can observe the obtained sooate
6.22,\ = 0.56,d = 0.20} is high both ina and b and parameters for eachy, that resulted in the minimization of
represents all those trajectories of people extremelyimasit (11). We can appreciate that the separation of the clusters
that exceed in consideration towards the other target. THig not so significant, despite the noisy conditions and the
behavior was clearly visible when some volunteers seemaa@riability of humans.
to be afraid of the robot. The second part of the experiments was performed in
In green, theUnawarebehavior{k = 2.3,a = 0.98,b = the BRL. Using the parameters obtained before for each
0.16, A = 0.56,d = 0.20}, corresponding to all those peoplebehavior, we tested the algorithm during a full morning
that virtually ignored their targets obstacle and went &irth of experiments. This time, the experiment setting was even
destination no matter what. This behavior is not atypical anmore simple. We did not require any direct volunteer: the
it may happen often in daily life. robot was navigating in the campus and meanwhile recording
And finally, in red, we can observe tiigalancedbehavior trajectories of persons on their natural habitat.
{k =23,a = 3.05,b = 2.91,\ = 0.56,d = 0.20} . This The idea was to apply the algorithms explained before in a
cluster describes all those behaviors that are Awére or  real scenario where nobody knows which kind of experiment
Unaware behaviors, and hence, it is a mixture of a greathe robot is performing. For all the trajectories observee,
variety of behaviors. have calculated the most expectable destination evergttarg
The separability of clusters is not really significant, thist aims to.
classification answers most of the questions arisen raggrdi An example of an interaction is depicted in Fig. 7. The
the interaction of moving targets in a scene. It is notobot slowly moves and three students quickly walk to attend
important the nature of the target, but the consideratidh@f a class. Each of the targets is depicted in the same color
person towards the target. An implication of this paradigm con each picture. On the left picture, the algorithm predicts
interaction modeling is that it is no longer reciprocal,ttisa  that target green may stop, due to the interaction with the
an Unaware pedestrian may inflict great social-force stresslue target and the robot. As can be seen in the complete
to other pedestrians, but in response he or she gets almosttrajectory, this never happens and green simply changes
social-force feedback since the force exerted by otherlpeopts direction and this time the algorithm predicts corngctl
to the Unaware pedestrian is much more shorter. On theAll those prediction trajectories, and their correspogdin
contrary, anAware pedestrian may suffer more social stresgovariances are calculated on a time horizon of two seconds.
on a typically social environment. All those considerasion In order to obtain reliable results and not a single ex-
greatly affect the deployment of social robots, being tre,fir periment of prediction, we have tested under the following
the Unawaretarget a threaten to the integrity of the robotcircumstances. For an incremental time horizon up to 10
and theAware pedestrian would suffer a high social stresseconds, we have evaluated the performance of the pradictio
in the presence of a robot which should act accordingly talgorithm for each time of the interval, that is, startingtju
reduce that impact. For these reasons it is of vital impagan after the observation on a horizon of 0.1 seconds to the
to detect those behaviors if we want to deploy social robotgaximum horizon of 10 seconds.
on urban or social environments and being accepted by|n order to evaluate the accuracy of a prediction, we have
humans and facilitate their daily life and not in the contrar set a binary function which returns a successful prediction
In Flg 6 is depicted a function of the social-force modulef the prediction at timet + h is within 1 meter of the
| f Ob3| for each set of parameters with respect to distance teal trajectory performed by the target. Additionally, we



.

Fig. 7. Prediction example. Each of the targets is depictatiensame color on each picture. On the left picture, the algarpredicts that target green
may stop, due to the interaction of the blue target and thetr@tbthose prediction trajectories, and their correspagdcovariances are calculated on a
time horizon of two seconds.

have compared various methods. As can be seen in Fig. 8In addition, we have presented a robust estimator of
in dashed blue is depicted the linear propagation as kehavior, where three different basic behaviors have been
prediction method. This method simply filters the velocitydetectedAware Balancedand Unaware Real experimenta-
and propagates accordingly to the remaining horizon timéion has demonstrated that the integration of the proposed
In solid green is depicted the performance of the socialefor prediction tools clearly improves the accuracy of human
approach, that is, making use of intentionality informatio motion prediction in real scenarios.

and interaction forces, but using fixed parameters. It tlear
outperforms the linear propagation, even for a short harizo
time and for |ong horizons, it S|mp|y can not be Compared_[l] D I:Ielbing and P: Molnar, “Social force model for pedemstridynam-
in dashed dotted red is drawn our complete approach, noys; 1S, VS feiew ol S5 oS pp, 4262 1286, 1065,
using prediction information as well as behavior estintatio based prediction of trajectories for socially compliantigation,” in
We can appreciate how the performance can be enhanced just Proc. of Robotics: Science and Systems (R3E&)2.

. . . . .. - . 3] M. Moussdd, D. Helbing, and G. Theraulaz, “How simple rules
by adding intentionality prediction and behavior inforipat determine pedestrian behavior and crowd disastégteedings of
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