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Abstract: Drinking Water Networks (DWN) are large-scale multiple-input multiple-output
systems with uncertain disturbances (such as the water demand from the consumers) and
involve components of linear, non-linear and switching nature. Operating, safety and quality
constraints deem it important for the state and the input of such systems to be constrained
into a given domain. Moreover, DWNs’ operation is driven by time-varying demands and
involves an considerable consumption of electric energy and the exploitation of limited water
resources. Hence, the management of these networks must be carried out optimally with respect
to the use of available resources and infrastructure, whilst satisfying high service levels for the
drinking water supply. To accomplish this task, this paper explores various methods for demand
forecasting, such as Seasonal ARIMA, BATS and Support Vector Machine, and presents a set
of statistically validated time series models. These models, integrated with a Model Predictive
Control (MPC) strategy addressed in this paper, allow to account for an accurate on-line
forecasting and flow management of a DWN.
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of Large-Scale Systems

1. INTRODUCTION

1.1 Motivation

Drinking Water Networks (DWN) are large-scale, multiple-
input multiple-output systems whose operation is liable to
a set of operating, safety and quality-of-service constraints
while at the same time their dynamics is affected by
disturbances of stochastic nature (see Brdys and Ulan-
icki [1994], Grosso et al. [2013]). All these characteristics
render their control a challenging problem. The optimal
management of DWNs is a complex task with outstanding
socio-economic and environmental implications and has re-
ceived considerable attention by the scientific community
as Ocampo-Martinez et al. [2012] and Barcelli et al. [2010]
have pointed out.

Water usage can vary in both the long-term and the short-
term, usually exhibiting time-based patterns for different
areas. Hence, a better understanding of the characteristics
of the time-series is necessary so as to perform accurate
forecasts of water demand and have an optimal closed-
loop performance. The overall objective of DWNs man-
agers is to provide a reliable water supply in the cheapest
? This work was financially supported by the EU FP7 research
project EFFINET “Efficient Integrated Real-time monitoring and
Control of Drinking Water Networks,” grant agreement no. 318556.

way, guaranteeing availability and continuity of the service
with a certain probability and without delay under some
operating conditions, specific environments and uncertain
events. Accordingly, optimal management of these systems
is a complex task and has become an increasingly environ-
mental and socio-economic research subject worldwide.

Therefore, the operation of a DWN is strongly condi-
tioned by the uncertain water demand, which follows a
non-stationary dynamics (see Quevedo et al. [2006]). In
this paper, three well-established time series modelling
methodologies are employed to capture the dynamics of
water demand, namely a Seasonal Auto-Regressive Inte-
grated Moving-Average (sARIMA) model, a BATS model
developed by De Livera et al. [2011], and a Support Vector
Machine model. All these models are statistically validated
and are accompanied by an estimation of their prediction
error. All these approaches proved to be adequate for the
modelling of the demand.

On the other hand, in this paper Model Predictive Control
(MPC) (see Rawlings and Mayne [2009], Qin and Badgwell
[2003]) is used for computing optimal decisions regarding
the operation of a DWN taking into account the man-
agement criteria and the various operating, safety and
physical constraints of the problem. It is known that MPC
is well suited for large-scale MIMO systems and is also
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amenable to structural changes of the dynamical model
of the considered system. Moreover, a performance index
related to water and energy costs is optimised leading to
a suitable operation of the water network. The forecasting
of demands and their variances are then used to prop-
agate uncertainty in the open-loop prediction within the
MPC strategy to assure better handling of constraints and
proper fulfilment of the control objectives (management
criteria).

Most of the results presented in this paper resulted from
the preliminary work performed within the framework of
the FP7-funded EU project EFFINET.

1.2 Hydraulic Modelling

The dynamics of DWNs have been studied in depth in the
last two decades (see Brdys and Ulanicki [1994], Ocampo-
Martinez et al. [2009]). The hydraulic model of the DWN
consists of the mass balance equations for the water in
every reservoir i = 1, . . . , Nr and distribution node j =
1, . . . , Nn. Let Vi(t) be the volume of water inside the
tank i and let qouti,p (t) for p = 1, . . . ,Mout

i and qini,q(t) for

q = 1, . . . ,M in
i be the influx and outflux streams from and

to tank i. It then follows that:

dVi(t)

dt
=

Min
i∑

p=1

qini,p(t)−
Mout

i∑
l=1

qouti,l (t). (1)

At every tank it should hold that:

V mini ≤ Vi ≤ V maxi , (2)

where V mini and V maxi are respectively the lower and the
upper tank volume capacities. The upper limit is imposed
so that the tank does not overflow and should in all cases
be treated as a hard constraint. In most cases, the flows
qini,p and qouti,l are not driven by gravity, but are instead
controlled by a set of pumps which come with certain
technical limitations which give rise to the constraints:

0 ≤ qi(t) ≤ qmaxi . (3)

In a DWN, a node is a meeting point of three or more
pipes. There, the mass balance yields the static equality
constraint:

Min
j∑

p=1

qinj,p(t) =

Mout
j∑
l=1

qoutj,l (t) (4)

for j = 1, . . . , Nn where Nn is the number of nodes. It
is assumed here, that all flows in the network can be
modelled with a set of unidirectional positive flows, which
translates to the constraint qi(t) ≥ 0, for every flow.
Certain outgoing flows qi are actual demands from the
supply network and, as such, they are stochastic variables.
Let us first of all put together the aforementioned mass
balance equations to arrive at the following expression in
discrete-time:

xk+1 = Adxk +Bduk +Gddk, (5)

where x ∈ Rnx is the state vector corresponding to the
volumes of water in the storage tanks, u ∈ Rnu is the
vector of manipulated inputs and d ∈ Rnd is the vector
of uncertain demands. Mass preservation gives rise to the
following input-disturbance coupling equation:

Euk + Eddk = 0, (6)

where E and Ed are matrices of proper dimensions.

In this context, the state and input constraints can be
rewritten as:

uk ∈ U , {u ∈ Rnu | umin ≤ u ≤ umax}, ∀k ∈ N (7a)

xk ∈ X , {x ∈ Rnx | xmin ≤ x ≤ xmax}, ∀k ∈ N (7b)

Both X and U are compact polytopes. The flow model
that results from this analysis is a Linear Time-Invariant
(LTI) discrete-time dynamical model with linear con-
straints which perfectly fits into the control framework of
linear MPC.

1.3 Notation

In this paper, N[k1,k2] denotes the set of natural numbers

between k1. Let k2, P ⊂ Rn be a polytope and A ∈ Rm×n
be a matrix; then it is defined A · P , {y ∈ Rm :
y = Ax;x ∈ P}. Let P, Q be two polytopes in Rn; the
Pontryagin difference of these polytopes is the polytope
P 	 Q , {z ∈ Rn,∃q ∈ Q, such that z + q ∈ P}.
The Minkowski sum of P and Q is the polytope P ⊕
Q , {z = p+ q : p ∈ P, q ∈ Q}.

2. DEMAND FORECASTING

The reliable modelling and the ability to predict the up-
coming water demands from every output node of the net-
work is an essential task for the design of proper controllers
for the DWN. The non-stationarity of the demand time
series along with the presence of multiple seasonal patterns
calls for state-of-the art modelling approached that can
capture such complex dynamics.

In this section, three different modelling approaches are
presented to model the water demand from a DWN case
study. These models are trained using the same dataset of
2700 demand measurements from the DWN of Barcelona,
out of 8760 data points that are available. The rest is used
as an external test-set for validating these models. These
data were provided by AGBAR (Aguas de Barcelona, s.a.),
which is the company that manages the Barcelona DWN).

2.1 Seasonal ARIMA Time-Series Models

ARIMA models are widely used as they can capture com-
plex linear dynamics of stationary processes or processes
that become stationary after one applies the difference
operator finitely many times. ARIMA models put more
emphasis on the recent past of the time series they in-
tercept, so, they are considered to be suitable for short-
term forecasting (see Box et al. [1994]). Here we con-
sider Seasonal ARIMA models seasonally integrated with
seasonal AR (Auto-Regressive) terms which describe well
time series that follow a periodic pattern.

In order to derive ARIMA models, the following notation
is introduced. For a time series dk, let Ldk = dk−1 be the
backward shift operator. For i ≥ 2, define Li = LLi−1,
then, Lidk = dk−i. Denoting by 1 the identity operator
1zt = zt and ∇ = 1 − L, it follows that ∇dt = dt − dt−1.
Let αt be a white noise process, i.e., a time series such
that Eαt = 0, αt ∼ N(0, σ2

α) and cov(at, at+k) = 0 for all
k 6= 0.

Let φ be a polynomial of L of order p with unitary constant
term, symbolically φ ∈ K1

p[L], i.e., φ(L) = 1−φ1L−φ2L
2−
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Fig. 1. Stochastic forecasts using the SARIMA model (8).
The purple dashed thin lines represent the 99% up-
per and lower bounds computed by a Monte Carlo
simulation using 105 seeds.

. . .− φpLp and let ψ ∈ Kq[L] be a polynomial with of the
form ψ(L) = 1+ψ1L+. . .+ψqL

q. Then, an ARIMA(p, d, q)
model has the form φ(L)(1 − L)dd̄t = ψ(L)αt, where
d̄t = dt − µ where µ = Edt is the (known) expected
value of dt. In certain cases, φ and ψ are assumed to have
some of their coefficients fixed to 0. Then, if χp and χq
are the sets of non-zero coefficients of φ and ψ repectively
(with maxχp = p and maxχq = q), the respective ARIMA
model is denoted by ARIMA(χp, d, χq).

Water demand generally exhibits a periodic variation
which in time-series analysis is referred to as seasonality,
which might follow some calendric trend such as daily,
weekly or monthly. This periodicity is captured by a
term of the form 1 − Ls (that acts on d̄t) where s is
the seasonality of the process and the respective model
is denoted as SARIMA(χp, d, χq; s). The model can be
enhanced by a multi-seasonal auto-regressive polynomial
operator Ψ(L) = 1 − Ψt1L

t1 − . . . − ΨtQL
tQ whose ex-

ponents form the set χΨ
Q. Such a model is denoted by

SARIMA(χp, d, χq; s)× SAR(χΨ
Q).

A set of models was created for each of the 88 demands
of the DWN of Barcelona. Indicatively, we present the
following model for the demand form the output node
c450BEG of the Barcelona DWN:

ARIMA({1 : 4, 6 : 9}, 1, {1 : 13, 15, 17}; 168)×
SAR({168, 336}), (8)

which was trained using 2700 samples and was formulated
as a maximum likelihood problem. All the parameters of
this model were determined with high statistical signifi-
cance (based on their t-statistic).

For the evaluation of the predictive power of each model
we forecast the water demand throughout a horizon of
Hp = 24h ahead, but will enable us to demonstrate how

each model performs in the long run. Let d̂k+j|k be the
predicted expected demand of water for the future time
instant k + j performed at time k. Let dk+j be the actual
value of the demand. The total prediction error along the
period [k, k + Hp] is quantified by the prediction mean
squared error (PMSE), defined as:

PMSEHp,k =
1

Hp

Hp∑
i=1

(d̂k+i|k − dk+i)
2, (9)

and its square root is the PRMSE, i.e., PRMSEHp,k =√
PMSEHp,k. Model (8) was found to have PMSE24 =

0.0158 (with st. dev. 0.0049) and a PRMSE24 = 0.1311
on average 1 . This model passed the Ljung-Box test for
uncorrelated residuals with a p-value of 0.2908, the value
of the Ljung-Box statistic being 22.96 with critical value
31.41. This model was selected among a set of many other
models using the Akaike Information Criterion given by
AIC = ln(σ̂2

α) + 2k/T , where σ̂2
α is the statistical estimate

of σ2
α, k is the number of parameters of the model and

T is the number of observations used for the estimation
of the model. For the model in (8) there was obtained an
AIC = −8.5044.

Conclusively, model (8) interpolates very well the demand
time series, it has high predictive ability, its residuals
are uncorrelated, it is determined with high statistical
significance and it is invertible.

2.2 Box-Cox transformation, ARMA Errors, Trends and
Seasonality (BATS) Modelling

BATS models were introduced by De Livera et al. [2011]
and have proven to be well-suited for modelling time series
with multiple seasonal patterns and complex dynamics.

Let dk, k ∈ N, denote an observed time series of any water

demand, and d
(ω)
k its Box-Cox transformation with the

parameter ω. The transformed series is then decomposed
into an irregular component hk, a level component lk,

a growth component bk and possible seasonal ones s
(i)
k

with seasonal frequencies mi, for i = 1, . . . , P , where P
is the total number of seasonal patterns in the series. The
irregular component hk is described by an ARMA(p, q)
process with parameters φi for i = 1, . . . , p and θi for
i = 1, . . . , q, and an error term εk which is assumed to
be a Gaussian white noise process with zero mean and
constant variance σ2. The smoothing parameters, given
by αd, βd, γd,i for i = 1, . . . , P , determine the extent of
the effect of the irregular component on the states lk, bk,

s
(i)
k respectively. The equations of the model are:

d
(ω)
k =

 d
(ω)
k − 1

ω
, ω 6= 0,

log (dk) , ω = 0,
(10a)

d
(ω)
k = lk−1 + φbk−1 +

P∑
i=1

s
(i)
k−mi

+ hk, (10b)

lk = lk−1 + φbk−1 + αdhk, (10c)

bk = φbk−1 + βdhk, (10d)

s
(i)
k = s

(i)
k−mi

+ γd,ihk, (10e)

hk =

p∑
i=1

ϕihk−i +

q∑
i=1

θiεk−i + εk. (10f)

1 Based on external data and using 150 samples. The computation
was carried out against an external test-set, not available to the
model.
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Fig. 2. Forecasting of water demand using the proposed
BATS model. (Black thick line) expected forecast,
(surrounding lines) confidence intervals for 90%, 95%,
97%, 99% and 99.9999% confidence levels.

The decomposition of the time series into such components
and the use of them for modelling and forecasting offers
also a qualitative insight into the dynamics of the process.

A set of BATS models was trained for the demand
time series by maximizing their log-likelihood according
to De Livera et al. [2011] using two seasonal patterns:
one daily and one weekly. The best BATS model for each
demand time series was chosed on the basis of the Akaike
Information Criterion given by AIC = L? + 2k, where L?

is the maximum log-likelihood of the model, and k is the
number of tunable parameters of the model.

2.3 RBF-based Support Vector Machine

Excellent results were obtained using a Support Vector
Machine (SVM) model with a Radial Basis Function
(RBF) kernel with γ = 0.015. The problem was formulated
as an ε-SVM (see Cortes and Vapnik [1995]) with ε =
10−5 and was solved using the celebrated library libSVM
by Chang and Lin [2011]. The parameter C of the cost
function of the problem was set to 1000. The explanatory
variables used were 200 past values of the demand and a
set of binary calendar variables as follows: Let mi be 1
if the day when the measurement was taken was the i-th
day of the week (for i = 0, . . . , 6) and 0 otherwise. Let hj
be the corresponding variable referring to the hour of the
day for j = 0, . . . , 23. In this way, the information about
the seasonal pattern of the time series is encoded. All the
features of the dataset were scaled to the interval [0, 1].

A 10-fold cross-validation of the model produced a q2 =
0.9952. It was found that PMSE24 = 0.0065 (with st. dev.
0.0051) and PRMSE24 = 0.0743 on average based on 150
samples. The performance of the SVM-based predictor and
the stringency of the confidence intervals for its forecasts
is illustrated in Fig. 3.

2.4 Comparison and Evaluation

The three proposed models are concisely compared in
Table 1 in regard to their complexity and predictive ability
against external data.

3. OPTIMAL OPERATING MANAGEMENT

3.1 Control Objectives

The formulation of the MPC problem amounts to de-
termining optimal control actions so as to minimise the
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Fig. 3. Forecasting of the demand time series using the
proposed RBF-SVM model. (Blue line): past demand
data, (Red line): Actual demand, (Black dashed line):
SVM predictions, (Light magenta dashed lines): 99%
confidence intervals calculated by Monte Carlo simu-
lations using 5000 seeds.

Table 1. Comparison of the Predictive Models

Performance Index sARIMA BATS RBF-SVM

Average PMSE24 0.0158 0.0043 0.0065
Average PRMSE24 0.1311 0.0584 0.0743
No. Parameters 25 26 229

water production and transportation cost, minimise the
deviation of the volume of water in storage tanks from
the prescribed operating limits and deliver smooth control
actions. These costs were quantified following the approach
reported by Barcelli et al. [2010].

Briefly, the water production and transportation cost is
quantified by the cost function:

`w(uk, k) ,Wα (α1uk + α2,kuk) , (11)

where α1 is a vector related to the production costs of
water according to the selected source (treatment plant,
dwell, etc.), and α2,k is associated with the pumping cost
for the transportation of the water through certain paths.
Wα is a proper scaling factor. The safety-storage cost is
given by `s(xk) = s′kWxsk, where sk = max {0, xs − xk}.
This cost term is, however, non-quadratic, but we may
replace it with the term:

`S(ξk) = ξ′kWxξk, (12)

where ξk = ξk(xk) ≥ xs − xk accompanied by the convex
constraint ξk ≥ 0. The smooth operation cost is defined as:

`∆(∆uk) = (∆uk)′Wu∆uk, (13)

where Wu is a nu-by-nu square positive semi-definite
matrix, and ∆uk=uk−uk−1.

3.2 Formulation of the MPC problem

MPC algorithms recently started being used for the control
of DWNs (see for example Ocampo-Martinez et al. [2012])
as they guarantee certain quality of service, satisfaction of
the operating constraints of the plant and optimal opera-
tion (according to the prescribed performance indices). In
this section, an MPC problem is formulated taking into
account the nominal demand forecasts and the estimated
bounds for the prediction error (which are generated by
the demand forecast module). It is assumed that, at every



Fig. 4. The closed loop system with the MPC controller
and a demand estimator.

time instant k, the controller has access to the current
demand measurement dk and to a set of Hp future demand

estimates, namely d̂k+j|k such that

dk+j|k = d̂k+j|k + εk+j|k,∀j ∈ N[0,Hp] (14)

where εk+j|k is an error term drawn from a compact set

Ek+j|k = {ε : εmink+j|k ≤ ε ≤ εmaxk+j|k} which contains the

origin in its interior; in practice, such sets can be chosed
to be the 99.9% (or higher) confidence intervals of the
prediction error. Henceforth, the index k+j|k will refer
to a prediction at time k for the future time instant k+ j.

The total cost function and performance index is made up
of the aforementioned costs; it is:

J(xk,uk,Ξk,∆uk, k)=Lw(uk, k)+L∆(∆uk)+LS(Ξk),

where Hp is the prediction horizon and Hu is the control
horizon (normally Hu ∈ N[1,Hp−1]). L

w is the total water

production cost, L∆ is the total smooth operation cost and
LS is the total safety volume cost given by:

Lw(uk, k) =
∑

i∈N[0,Hu]

`w(uk+i|k, k), (15a)

L∆(∆uk) =
∑

i∈N[0,Hu−1]

`∆(∆uk+i|k), (15b)

LS(Ξk) =
∑

i∈N[0,Hp−1]

`S(ξk+i|k). (15c)

Hereinafter, it is denoted uk , (uk, uk+1|k, . . . , uk+Hu|k)

for the sequence of control actions, ∆uk , (uk+1|k −
uk, . . . , uk+Hu|k−uk+Hu−1|k) for the successive differences
of u, and Ξk = (ξk+1|k, . . . , ξk+Hp|k). The vector dk that
appears in the formulation of the MPC problem is defined

as dk = (dk, d̂k+1|k, . . . , d̂k+Hp−1|k) and is provided to the
controller from the demand forecast module along with the
vector of maximum/minimum estimated prediction errors:

ek = (εmink+1|k, . . . , e
min
k+Hp|k, ε

max
k+1|k, . . . , e

max
k+Hp|k).

It is known that the prediction error εk+j|k ∈ Ek+j|k and
Ek|k = {0} because dk|k = dk is measured. This implies
that the predicted sequence of states is:

xk+j|k = x̂k+j|k +

j∑
l=1

Al−1Gdεk+l|k, (16)

where x̂k+j|k stands for the nominal predicted state, whose
dynamics, starting from x̂k|k = xk is described following
(5), i.e.,

x̂k+j+1|k = Ax̂k+j|k +Buk +Gdd̂k+1|k, (17)

The MPC problem is then formulated as follows:

PHp,Hu(xk,dk, ek, k) :

J?(xk,dk, k) = min
uk,Ξk

J(xk,uk,Ξk,∆uk, k) (18a)

subject to the constraints:

x̂k+i|k ∈ X 	
i⊕

j=1

Aj−1GdEk+j|k,∀i ∈ N[1,Hp−1] (18b)

umin ≤ uk+i|k ≤ umax,∀i ∈ N[0,Hu] (18c)

x̂k+i+1|k=Ax̂k+i|k+Buk+i|k+Gdd̂k+i|k,

∀i ∈ N[0,Hp−1] (18d)

Euk+i|k + Edd̂k+i|k = 0,∀i ∈ N[0,Hu] (18e)

uk+j|k = uk+Hu|k,∀j ∈ N[Hu+1,Hp−1] (18f)

ξk+i|k ≥ xs − x̂k+i|k,∀i ∈ N[0,Hp] (18g)

ξk+i|k ≥ 0,∀i ∈ N[0,Hp] (18h)

d̂k|k = dk, and x̂k|k = xk (18i)

Equation (18b) implies that for all i ∈ N[0,Hp−1], then
xk+i|k ∈ X as long as εk+j|k ∈ Ek+j|k for all j ∈ N[1,i].
Normally, in order to perform the set operations in (18b),
it is required to iterate over all vertices of the sets Ek+j|k
(i.e., 2nd elements). However, in the case study of this
paper, Gd is a very sparse matrix (maximum 3 non-zero
elements per row) so the complexity is such that allows the
on-line implementation of the proposed algorithm. Notice
that the (predicted) state is constrained in a set that is
smaller than X and that the constraints are time-varying
along the prediction horizon and are conditioned by the
estimated prediction error.

The above optimisation problem can be easily formu-
lated as a convex quadratic problem and solved on-line,
very efficiently, using state-of-the-art methods such as
the global piece-wise smooth Newton method by Patrinos
et al. [2011] and the accelerated dual gradient-projection
method by Patrinos and Bemporad [2012].

Let us denote by:

(u?k(xk, k),Ξ?k(xk, k)) = argmin J(xk,uk,Ξk,∆uk, k),

where:

u?k(xk, k) = (u?k|k(xk, k), . . . , u?k+Hu|k(xk, k)).

Then, the associated MPC control law is κ(xk, k) =
u?k|k(xk, k), i.e., the first element of the sequence u?k(xk, k)

is applied to the system according to the receding horizon
control strategy.

This approach allows for the decoupling of the predictor
from the controller. The effect of the predictor’s estimated
error on the controller is clear from the formulation of the
problem as in (18): the bigger the error is, the stricter the
constraints and the more conservative the control policy
will be.

3.3 Control of the Barcelona DWN

The case study addressed in this paper is the Barcelona
DWN, which has been previously reported by Ocampo-



Martinez et al. [2011]. The system is modelled follow-
ing Section 1.2, using a linear time-invariant dynamical
system with 63 state variables, 114 manipulated inputs,
88 disturbances and 17 flow intersection nodes. The time
series models calibrated in Section 2 are used in a closed-
loop setting with the MPC controller described above. The
weighting matrices in (11), (12) and (13) are chosen to
be Wα = 1, Wu = I, and Wx = 10−6 · I, respectively.
All other parameters and technical characteristics, such as
xmin, xmax, xs were specified by the network manager
(AGBAR). The prediction horizon Hp = 24h and the
control horizon Hu = 23h were considered with a sampling
time of 1h.
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Fig. 5. The MPC control action (scaled in the range [0, 1])
and the water production cost. The bold dashed lines
represent the average values (average control action
and average production cost). The input trajectories
are split in two graphs for clarity. Only pumping
actions are presented here.

As shown in Fig. 5, the controller tends to operate the
pumps when the electricity cost is low. Moreover, Fig. 6
shows that the volume of water in the tanks remains always
between the prescribed bounds and tends to stay over the
safety storage limit.
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Fig. 6. The controlled trajectory of the volume of water in
the tank d130BAR of the Barcelona DWN.

The optimisation problem (18) was solved online very
efficienty using CPLEX. In terms of complexity, it com-
prises 4248 decision variables, 1512 bound constraints, 408

linear equations and 4536 linear inequality constraints. On
average (based on 500 samples) the computational time
for the solution of the optimisation problem was 1.85s (st.
dev.: 0.055s) and the time needed for the its formulation
was 0.018s (st. dev.: 0.005s).
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