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1 Departamento de Biologı́a Molecular and Centro de Biologı́a Molecular ‘‘Severo Ochoa’’ (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain, 2 Centro Nacional

de Biotecnologı́a (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain

Abstract

Most viruses express during infection products that prevent or neutralize the effect of the host dsRNA activated protein
kinase (PKR). Translation of Sindbis virus (SINV) mRNA escapes to PKR activation and eIF2 phosphorylation in infected cells
by a mechanism that requires a stem loop structure in viral 26S mRNA termed DLP to initiate translation in the absence of
functional eIF2. Unlike the rest of viruses tested, we found that Alphavirus infection allowed a strong PKR activation and
eIF2a phosphorylation in vitro and in infected animals so that the presence of DLP structure in mRNA was critical for
translation and replication of SINV. Interestingly, infection of MEFs with some viruses that express PKR inhibitors prevented
eIF2a phosphorylation after superinfection with SINV, suggesting that viral anti-PKR mechanisms could be exchangeable.
Thus, translation of SINV mutant lacking the DLP structure (DDLP) in 26S mRNA was partially rescued in cells expressing
vaccinia virus (VV) E3 protein, a known inhibitor of PKR. This case of heterotypic complementation among evolutionary
distant viruses confirmed experimentally a remarkable case of convergent evolution in viral anti-PKR mechanisms. Our data
reinforce the critical role of PKR in regulating virus-host interaction and reveal the versatility of viruses to find different
solutions to solve the same conflict.
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Introduction

During virus-host coevolution, the acquisition of an antiviral

pathway by the host was generally followed by the appearance of a

viral countermeasure so that the current host-parasite interactions

are keeping on a dynamic equilibrium (the Red Queen principle)

[1,2,3]. A paradigmatic example of these complex interactions are

the different mechanisms that viruses have evolved to evade or

subvert the antiviral effect of interferons (IFNs) and other pro-

inflammatory cytokines that are secreted by vertebrate cells in

response to virus and other pathogens [4,5,6,7,8,9]. Thus, viruses

express products that impair the detection of viral proteins or

nucleic acids by host pattern-recognition receptors (PRRs; Toll-

like receptors and RIG-I-like receptors), block the signaling

pathways that lead to the synthesis of IFNa/b and other cytokines,

or prevent the activation of some IFN-stimulated genes such as

dsRNA-activated kinase (PKR) [6,9,10,11,12,13,14]. Moreover, in

some cases such as poxvirus or HCV, one or more viral product

can interfere with IFN secretion or signalling at multiple points,

ensuring a more efficient viral escape to innate immunity of the

host [6,9].

Among innate antiviral mechanisms of vertebrates, PKR

activation constitutes one of the first line of antiviral defense

acting at the immediate-early phase of virus replication that

precedes the eventual secretion of IFN. PKR is present at basal

levels in most of mammalian tissues, but its amount increases after

priming cells with IFNa/b [15,16]. PKR binds dsRNA molecules

generated during the replication of RNA viruses as well as in some

transcripts from DNA viruses, leading to the activation of the

kinase by a sequential wave of autophosphorylation events

[17,18,19,20]. Activated PKR phosphorylates and inactivates

eukaryotic initiation factor 2 (eIF2), the only well-described

substrate of the kinase that is also phosphorylated by other

members of eIF2-kinase family in vertebrates [17,21]. As result of

this, the general translation is rapidly inhibited in an attempt of the

infected cells to block viral translation and abort virus spreading

[16,22]. However, as in other pathways of innate response, viruses

have evolved a variety of strategies to prevent or overcome the

activation of PKR in infected cells (reviewed in [12]). Among these

mechanisms, the most frequent found are viral products that

prevent the activation of PKR by sequestering its activator

(dsRNA), by direct binding to the regulatory element of the kinase

or by expressing a pseudosubstrate that competes with eIF2 for

binding to the kinase (see figure 1). Other viruses such as poliovirus

and Rift Valley virus induce the degradation of PKR by a

mechanism that has not been well characterized yet [23,24]. In

some cases such as Herpes virus-infected cells, eIF2 phosphory-

lation is rapidly reversed by the action of viral phosphatases that
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are expressed along the infection [25,26,27]. For Alphavirus, the

strategy is markedly different; PKR is strongly activated upon

infection with SINV and Semliki Forest (SFV) viruses, so that eIF2

factor is completely phosphorylated [28,29]. Translation of viral

subgenomic mRNAs (26S), however, resists due to the presence of

a prominent hairpin loop structure in mRNA located downstream

of the initiation codon (DLP) that allows the 40S ribosome to

initiate in the absence of eIF2 [29].

The existence of these different mechanism stress the critical

role of PKR in regulating host-virus interaction and show a

remarkable example of convergent evolution to generate different

patterns of molecular mimicry [8]. For example, VV K3L mimics

eIF2a acting as a competitive inhibitor of PKR, whereas

Adenovirus VAI RNAs mimics dsRNA activators of PKR by

binding the kinase in an inhibitory manner [8,12]. Fingerprints of

this antagonist coevolution has been found recently in the

Figure 1. Current known viral strategies to prevent or counteract PKR activation can be grouped into three categories. A) First,
viruses can prevent the activation of PKR by expressing proteins or RNAs that bind the kinase in an inhibitory manner, by sequestering dsRNA activator
molecules or by inducing the degradation of PKR. Examples of this group are vaccinia E3 and K3, influenza NS1 and Adenovirus VAI RNAs and Rift Valley
virus NS1 protein. In the second category are viruses that promote eIF2a dephosphorylation such as Herpes virus c34.5 protein which acts as a
regulatory subunit of cellular protein phosphatase 1a (PP1). Herpesvirus also express products from the first group (Us11 gene, a PKR inhibitor). In the
third category, some viruses do not prevent PKR-mediated eIF2a phosphorylation, but viral mRNA can initiate translation in an eIF2-independent
manner by means of a RNA structure (DLP) that stalls the scanning 40S ribosome on the initiation codon. To date, this strategy has been found only in
Alphavirus. B) Secondary structure prediction of the 59extreme of 26S mRNAs of SINV and SFV. The stability of DLP structure (DGu) is expressed in kcal.
mol21. Arrows show the initiation codon. Circled nucleotides in SINV were mutated to adenines in DDLP mutant virus as described previously [29].
doi:10.1371/journal.pone.0016711.g001
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accelerated rates of positive evolution found in PKR gene for

defeating viral anti-PKR products such as poxvirus E3 and K3

[30,31]. However, an important issue that has not been addressed

to date is whether these different anti-PKR mechanisms might be

exchanged between non related viruses to get a functional

complementation. In this work we show that a cis-acting RNA

structure of Alphaviruses responsible for counteracting PKR

activation can be replaced by a viral protein such as vaccinia E3.

Results

Alphavirus are unique in allowing PKR activation in
cultured cells and infected animals

We and others have reported before that infection of 3T3

fibroblasts with SINV virus triggered the complete phosphoryla-

tion of eIF2 due to a strong PKR activation [28,29] (Figure 2). We

wanted to test whether such phosphorylation of host eIF2a was

also detected in cells infected with other Alphaviruses and with

members of other unrelated families of RNA viruses. For this, we

infected cells with SFV (Alphavirus), VSV (Rhabdovirus),

Influenza A (Orthomyxovirus) and EMCV (Picornavirus)

(Figure 2A). Equivalent or even stronger PKR activation was

observed in cells infected with SFV as judged by the mobility shift

of PKR band in SDS-PAGE that was indicative of autopho-

sphorylation associated to kinase activation (Figure 2B). As for

SINV, activation of PKR in SFV-infected cells induced a strong

phosphorylation of eIF2a that was not observed in the rest of

viruses analyzed with the exception of VSV, where a slight

increase in eIF2 phosphorylation was observed as reported before

[16]. The use of PKR gene knock-out cells (PKRo/o) showed that

eIF2 phosphorylation in Alphavirus-infected cells was almost

completely attributable to PKR activation as described before

(Figure 2B and [29]. With the exception of Alphavirus, the rest of

RNA viruses tested here did not trigger a substantial activation of

eIF2 kinases in infected cells.

Next, we analyzed whether eIF2a phosphorylation was also

detected in animals infected with Alphavirus. For this, mice were

infected with SINV by the intranasal route, and 4 days later brains

were subjected to immunofluorescence (IF) analysis. As described

previously, SINV showed a marked tropism for cortical and spinal

cord neurons [32,33,34,35]. Groups of neurons expressing viral

antigens were easily detected in pyriform, motor and somatosen-

sorial areas of brain cortex as well in hippocampus. Notably, the

vast majority of these infected cells showed a strong staining of

phospho eIF2 (Figure 3A), with no signal detected outside of areas

of viral replication. Clearly, no eIF2 phosphorylation was detected

in infected neurons of PKRo/o mice, showing that as occurred in

vitro PKR was responsible for eIF2 phosphorylation in response to

infection of animals (Figure 3A). We extended this in vivo analysis

to other viruses endowed with anti-PKR mechanisms such as VV.

Clearly, no eIF2 phosphorylation was detected in spleens of mice

infected with VV despite the efficient replication detected in this

organ (Figure 3B). The absence of eIF2 phosphorylation in mice

infected with VV was not attributable to a low expression of the

kinase in spleen, since a comparable expression of PKR was

detected in all murine organs analyzed (Figure 3C). Taken

together, our results show that PKR-induced eIF2 phosphoryla-

tion seems to be a specific feature of animals infected with

Alphavirus.

Resistance to PKR activation is critical for replication of
Alphavirus in animals

Viral anti-PKR products commonly act as virulence factors

necesary for efficient viral replication and pathogenesis in animals

[25,36,37,38]. To test whether translational resistance of SINV

virus to PKR activation was important for replication in vivo, we

compared the replication of wild type virus and a SINV mutant

lacking the DLP structure (DDLP) in 26S mRNA. This structure in

RNA has been reported before to be essential for translation and

virus replication in 3T3 cells [29]. Clearly, replication of DDLP

virus was greatly hampered in wild type, but not in PKRo/o mice

(Figure 3D). About 3–4 log reduction in viral yield of DDLP virus

were found in PKR+/+ mice (wild type) when compared to PKRo/o

counterparts, whereas wild type viruses replicated at similar levels

in both animal types. This result shows that as predicted from

other viruses, PKR resistance in Alphavirus is essential for efficient

replication in vivo.

Rescue of SINV DDLP translation by poxvirus E3 protein
In a first attempt to test whether anti-PKR mechanisms could

be exchangeable among viruses, we analyzed the phosphorylation

state of eIF2 in SINV-infected cells that had been first infected

with low doses of some RNA (Influenza A, VSV and EMVC) and

DNA (VV) viruses (Figure 4A). Time-lag between infections was

set to allow the simultaneous expression of products from both

viruses. Thus, the previous infection with the indicated viruses did

not prevent the replication and accumulation of SINV proteins in

doubly infected cells (Figure 4A). Interestingly, pre-infection with

VV and EMCV viruses completely prevented eIF2 phosphoryla-

tion triggered by SINV superinfection. However, other viruses

such as VSV were unable to prevent PKR activation after

superinfection with SINV, whereas Influenza A infection exerted

only a moderate preventive effect (,50% reduction). In this

experiment we also included a VV mutant lacking the E3L gene,

the main PKR inhibitor in VV-infected cells [39,40,41]. Notably,

mutant VV-DE3L was unable to prevent eIF2a phosphorylation

after SINV superinfection, showing that the inhibitory potential of

VV on PKR is largely attributable to the action of E3 protein. This

trans-inhibitory activity of E3 opened the possibility to rescue

translation of SINV DDLP mutant by expressing VV E3L gene in

MEF cells. For this, we used a previous established MEF line that

expressed the VV E3 protein in an inducible manner after

tetracycline withdrawal [42]. As is shown is Figure 4B, induction

of E3L gene partially prevented eIF2 phosphorylation after SINV

infection. Moreover, mobility shift of PKR in SDS-PAGE was

prevented by expression of E3 protein, showing that this viral

product targeted PKR to block its activation. Notably, expression

of E3 protein partially restored translation of DDLP virus mRNA

that was strongly inhibited due to eIF2 phosphorylation in non

induced cells. This allowed a ,50 fold increase of DDLP virus

yield in induced cells, showing that a deficiency in a cis-acting

RNA structure involved in translation can be complemented by an

unrelated product but that participates in the same biological trait.

Discussion

Adaptation of non-related parasites to the same host or

ecological niche is generally associated to events of convergent

evolution (homoplasy), where analogous genetic elements arise

during the acquisition of the same biological trait [8,43]. A

paradigmatic example of this is the plethora of viral mechanisms to

counteract the innate response of vertebrates (reviewed in [6]).

Collectively, viruses have acquired mechanisms to subvert or

counteract virtually all the biochemical routes of the host that lead

into the production of IFN and other antiviral cytokines (reviewed

in [6,8]). Among them, the appearance of mechanisms to prevent

or counteract PKR activation likely increased the replication

capabilities of viruses during their adaptation to vertebrate hosts.

Diversity in Viral Anti-PKR Mechanisms
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Figure 2. Alphaviruses are unique in allowing PKR activation and eIF2a phosphorylation in infected cells. A) Susceptibility of MEFs to
viruses used in this study. Cells were infected with the indicated viruses to a moi of 25 pfu/cell and 6 h later pulsed with [35S]-Met for 30 min. Labeled
proteins were resolved by SDS-PAGE followed of autoradiography. B) PKR activation and eIF2a phosphorylation in wild type or PKRo/o MEFs infected
with the indicated viruses at 4 and 6 hpi. Note the mobility shift of PKR band upon activation in SINV and SFV-infected cells (upper panel). eIF2a
phosphorylation in wild type (+/+) and PKR knock-out cells (o/o) infected with the indicated viruses. Only Alphavirus-infected cultures showed a
strong eIF2a phosphorylation. For VSV-infected cells, a slight increase in eIF2a phosphorylation was also observed.
doi:10.1371/journal.pone.0016711.g002
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Thus, the type of anti-PKR mechanism found in a given virus

seems to be greatly influenced by the genomic organization and

the natural history of the virus during the adaptation to vertebrate

hosts. Thus, the singular mechanism of PKR resistance found in

Alphavirus probably reflects a peculiar evolutionary adaptation to

vertebrates from arthropods (mainly mosquitoes), the vectors that

Alphavirus and other Arbovirus use for transmission [35,44,45].

Moreover, the appearance of cis-acting RNA structures such as

DLP to counteract PKR-mediated eIF2a phosphorylation was

probably limited to simple monocistronic RNA virus such as

Alphavirus, whereas in polycistronic RNA viruses (e.g. Influenza

A) and in complex DNA viruses (e.g. Poxvirus) the acquisition of

trans-acting PKR inhibitors allowed viral mRNAs to be

collectively translated in infected cells. Although being functional

equivalent, viral anti-PKR mechanisms that prevent or allow PKR

activation could have different biological consequences. The

strong eIF2a phosphorylation found in neurons of SINV-infected

mice is enough to completely block translation of non-viral

mRNAs throughout the infection [46], that probably leads to a

rapid and irreversible death of infected cells. This early shut-off of

host translation by eIF2a phosphorylation in SINV-infected cells

could also suppress the synthesis of IFN and ISG as described

recently for HCV infection [47]. This possibility agrees well with

previous findings showing that infection with many Alphaviruses

prevented the secretion of IFNa/b in infected cultured cells and

animals, despite SINV showed an exquisite sensitivity to IFNa/b
when cells were primed with this cytokine before infection

[32,48,49]. For other viruses such as poxviruses, however,

preventing PKR activation during in vivo replication could

maintain protein synthesis in infected cells for more time, allowing

the virus to express the late genes required for the culmination of

the cycle [7,36]. In this case, viruses had to further acquire a more

specific mechanism to prevent the synthesis and secretion of

interferons by blocking activation of NFkB or IRF7 factors [6,9].

Our results show that, in addition to VV, EMCV expresses a

trans-acting inhibitor that prevented the activation of PKR in

response to SINV superinfection. However, unlike to that found

in poliovirus-infected human cells, anti-PKR activity of EMCV

Figure 3. eIF2a phosphorylation and translational resistance of SINV virus also operates in infected animals. A) IF analysis of brains
from wild type and PKR knock-out mice infected with SINV at 4 dpi. Adjacent sections were incubated with anti-SINV and anti-phosphoeIF2a
antibodies as described in Materials and Methods. B) IF analysis of spleens from mice infected with VV-Luc at 1dpi. Sections were incubated with anti-
VVp14 (reactive against the envelope protein A27) and anti-phosphoeIF2a antibodies. Note that spleen cells expressing viral antigens did not react
with anti- phosphoeIF2a antibodies. C) Expression of PKR in different mouse organs from uninfected animals. Equivalent amounts of protein extracts
were analyzed by immunoblot against PKR, total eIF2a and b-actin. D) Attenuation of DDLP mutant virus in wild type, but not in PKRo/o mice. Animals
were inoculated with 107 of WT and 26107 of DDLP mutant viruses. Viral yields in mouse brains at 4 dpi were titrated by plaque assay. Results are the
mean from 10 animals inoculated for each group in three independent experiments. SD from each group is also showed.
doi:10.1371/journal.pone.0016711.g003
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does not seem to involve degradation of the kinase since no

alteration in the steady state of PKR was found in EMCV-

infected MEFs (Figure 2). For VSV, the absence of effect on

SINV-triggered eIF2a phosphorylation was expected in part

given the exquisite sensitivity that VSV showed to PKR

activation and eIF2a phosphorylation. Thus, VSV seems to lack

of an autonomous anti-PKR activity as suggested from previous

results [16], suggesting that this virus could hide the replicative

forms of dsRNA in a way that go unnoticed for host PKR [20].

For VV, our results show that E3 protein accounted for almost all

the anti-PKR activity in doubly infected cells, stressing the main

role of this protein over the K3 product that probably has only a

marginal contribution to the anti-PKR activity of the virus as

suggested before [39]. The heterotypic complementation ob-

tained for SINV DDLP mutant in cells expressing E3 revealed a

notable case of functional analogy that reinforced the importance

of anti-PKR mechanisms for virus replication in vertebrates.

Thus, as showed for other viruses such as VV, Herpes and

Influenza A, elimination of anti-PKR mechanism drastically

reduced the replication of SINV virus in wild type animals

(Figure 4). However, SINV DDLP mutant replicated to wild type

levels in PKRo/o mice where no eIF2a phosphorylation in infected

neurons was detected. This result showed that cis-acting DLP

structure in SINV 26S mRNA is only required to overcome the

effect of eIF2a phosphorylation on translation of viral mRNA, in

contrast with other scenarios such as Influenza NS1 or VV E3

proteins whose important functions extend beyond to PKR

inhibition [36,38,42,50]. At least for SINV virus, our results

demonstrate that resistance to PKR is exerted exclusively at

translational level and that probably only involves overcoming

eIF2 phosphorylation. In our opinion this is a remarkable point

because the existence of other substrates of PKR apart of eIF2a
has been suggested before [51,52] despite the exquisite catalytic

specificity that PKR shows for eIF2 [17,21].

Finally, the concept of molecular mimicry where pathogens

have taken on proteins or protein domains from their hosts to gain

evolutionary advantages could be also applicable to RNA

structures such as DLP involved in translational control of some

cellular mRNA. Thus, it is possible that Alphavirus had copied a

mechanism of translation initiation that already operated in the

cell. In our opinion, this is a very exciting possibility that deserves

further investigation.

Figure 4. Anti-PKR mechanisms can be exchanged between viruses. A) Previous infection with some viruses prevented eIF2a
phosphorylation after SINV virus superinfection. The protocol followed for mixed infections is outlined. Wild type MEFs were infected with the
indicated viruses at a moi of 2 pfu/cell. Three hours later, cells were superinfected with SINV at moi of 25 pfu/cell and 5 h later lysed in sample buffer
for immunoblot analysis against SINV capsid (SINV C, upper panel) and anti-phosphoeIF2a (bottom panel). B) Expression of VV E3L gene rescued
translation of DDLP SINV mutant. MEF-E3L cells were induced for the expression of VV E3L by tetracycline withdrawal and infected with SINV-WT or
SINV-DDLP mutant. Five hours later, cells were labeled with [35S]-Met+Cys for 30 min and analyzed by SDS-PAGE followed of autoradiography and by
immunoblot against anti-E3, anti-PKR and anti-phospho eIF2a. Parallel cultures were infected at moi of 5 pfu/cell and viral yields were determined by
plaque assay 2 days later. Data are the mean 6SD from three and two independent experiments in PKR+/+ and PKRo/o cells, respectively.
doi:10.1371/journal.pone.0016711.g004
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Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Directive 86/609/EEC of the European

Union on the protection of animals used for experimental and

other scientific purposes, and that was implemented by the

Spanish Government under approval Nu 1201/2005. The

protocol was approved by the committee on the ethics of animal

experiments of Universidad Autónoma de madrid (Permit

Number: CEI 20-419). All surgery was performed under isoflurane

anesthesia, and all efforts were made to minimize suffering.

Cells, virus and infections
MEFs derived from wild type (C57BL6/129sv) and PKRo/o

knock-out mice was described previously [53]. MEFs expressing

VV E3L gene under the control of tetracyclin repressor were

described previously [42]. SINV, SFV, VSV (indiana strain),

EMCV and VV-DE3L viruses were grown in BHK21. Influenza A

virus (Victoria strain, a gift of Amelia Nieto, CNB, Madrid) and

Vaccinia virus (VV and VV-Luc, [54]) were amplified in BSC-10

cells. SINV DDLP mutant bearing 7 point mutations that

disrupted the secondary structure of downstream loop structure

(DLP) in 26S mRNA was described previously [29]. Cells growing

in 24 well plates were infected at the indicated multiplicity of

infection (moi) in DMEN lacking serum for 1 h. After that, fresh

medium containing 10% of calf or foetal serum was added. At the

indicated times, cells were washed twice with cold DMEN lacking

serum and lysed in sample buffer. To estimate viral yields,

infections were done at a moi of 1–2 pfu/cell and two days later

both medium and cells were recovered, frozen and thawed three

times, centrifuged for 10 min at 8,0006g and virus in the

supernatant was titrated in BHK21 cells.

Infection of animals
4–6 week old mice of 129sv strain were infected with 107 pfu of

SINV by intranasal inoculation. PKR knock-out mice in the same

genetic background were kindly provided by J.C. Bell (University

of Ottawa, Canada) [55]. At 4–5 days postinfection, animals were

sacrificed by cervical dislocation, decapitated and brain extracted.

For VV inoculation, 5 weeks old mice of BALB/c strain were

inoculated by the intraperitoneal route with 26107 pfu of a

recombinant virus that expresses luciferase (VV-Luc) [54] and

organs were extracted at 1dpi. Brains and spleens were fixed O/N

with 4% of PFA, cryoprotected with 20% sucrose in PBS and

frozen for cryosectioning. Brains and spleens of some animals were

taken to titrate viral yields at 5 dpi. In these cases, brains were

homogenated in 1 mL of PBS, centrifuged 10 min at 8,0006g and

viral titres in the supernatants were quantified by plaque assay in

BHK21 cells.

Immunofluorescence of brain sections
Brains were cryosectioned at ,15 mm and the resulting slides

were post-fixed with 4% PFA for 209 at RT, treated with 50 mM

of NH4Cl, permeabilized with 0.2% Triton X-100, blocked in 5%

of BSA and incubated O/N at 4uC with the indicated antibodies

in a wet chamber. Primary antibodies used were: anti-phospho

eIF2a (Cell Signalling, 1:250 dilution), anti-SINV capsid (1:500)

and anti-VVp14 (1:500). Slides were then incubated with

secondary antibodies coupled to Alexa 488 or 595 for 2 h at

RT, washed with PBS-0.1% Triton X-100, stained with DAPI and

mounted. Slides were examined and photographed in a Leika

confocal microscope.

Metabolic labeling and Immunoblot analysis
Cells growing in 24 well plates were infected with the indicated

virus at a moi of 25 pfu/cell. At the indicated times, cultures were

labeled with 25 mCi/ml of Met+Cys (NEB) for 309, washed with

DMEN lacking serum and lysed in sample buffer as described

previously. Samples were analyzed in a 12% SDS-PAGE, soaked

in 1 M sodium salicylate, dried and exposed to X-rays films

(AGFA). For immunoblot, proteins were transferred to nitrocel-

lulose membrane and probed with the indicated antibodies: anti-

PKR (1:250, Santa Cruz Biotech.), anti-phosphoeIF2a (1:500,

Invitrogen), anti-eIF2 (1:500 Santa Cruz) and anti-b-actin (1:2000,

Sigma). For PKR detection, protein transfer was carried out O/N

at 4uC in a wet transfer apparatus (BIORAD), whereas a semi-dry

transfer (BIORAD) was used for detection of eIF2 and b-actin

proteins. To detect phosphoeIF2a, blots were first probed with

anti-phosphoeIF2a antibody, incubated with mild stripping buffer

(0.1 M NaOH, 159) and then probed with anti-total eIF2a
antibody. Blots were revealed by ECL as described previously

[29].
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