
Physics Letters B 724 (2013) 127–132

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC
Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

A study of the diffusion pattern in N = 4 SYM at high energies

F. Caporale a, G. Chachamis b, J.D. Madrigal a, B. Murdaca c,∗, A. Sabio Vera a

a Instituto de Física Teórica UAM/CSIC & Universidad Autónoma de Madrid, E-28049 Madrid, Spain
b Instituto de Física Corpuscular UVEG/CSIC, 46980 Paterna, Valencia, Spain
c Dipartimento di Fisica, Università della Calabria & Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, I-87036 Arcavacata di Rende,
Cosenza, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 May 2013
Accepted 25 May 2013
Available online 28 May 2013
Editor: G.F. Giudice

In the context of evolution equations and scattering amplitudes in the high energy limit of the N = 4
super Yang–Mills theory we investigate in some detail the BFKL gluon Green function at next-to-
leading order. In particular, we study its collinear behavior in terms of an expansion in different angular
components. We also perform a Monte Carlo simulation of the different final states contributing to such
a Green function and construct the diffusion pattern into infrared and ultraviolet modes and multiplicity
distributions, making emphasis in separating the gluon contributions from those of scalars and gluinos.
We find that the combined role of the non-gluonic degrees of freedom is to improve the collinear
behavior and reduce the diffusion into ultraviolet regions while not having any effect on the average
multiplicities or diffusion into the infrared. In terms of growth with energy, the non-zero conformal spin
components are mainly driven by the gluon terms in the BFKL kernel. For zero conformal spin (Pomeron)
the effect of the scalar and gluino sectors is to dramatically push the Green function towards higher
values.

© 2013 Elsevier B.V. Open access under CC BY license.
In this brief Letter we address the question of what is the ef-
fect in the BFKL equation [1] for a supersymmetric theory (N = 4
super Yang–Mills (SYM)) of the non-gluonic contributions to the
kernel. We perform the analysis at next-to-leading order (NLO),
where the QCD [2] and N = 4 SYM evolution equations start being
different [3]. This is a topical subject [4] given the recent works
by Costa, Goncalves and Penedones [5] on conformal Regge the-
ory, and by Kotikov and Lipatov [6] on the structure of the BFKL
Pomeron at strong coupling in the same theory. The available ker-
nel has been calculated at NLO but it is feasible to construct higher
order corrections to it in the near future, in the planar limit of
color space. It will then be interesting to extend our calculations
to those higher order equations with the target to understand
how the diffusion features of the BFKL equation change from a
resummation at weak coupling to the strong coupling results of
Polchinski and Strassler [7], Costa, Goncalves and Penedones [5]
and Kotikov and Lipatov [6].

Without further introduction let us set our notations. It is well
known that the BFKL gluon Green function (the solution to the
BFKL equation at NLO for forward scattering) can be written as an
expansion on azimuthal angle Fourier components, i.e.
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f (�ka, �kb,Y) =
∞∑

n=−∞
fn

(|�ka|, |�kb|,Y
)
einθ . (1)

We consider the amplitude for off-shell reggeized gluons with
transverse momenta �ka,b with a relative azimuthal angle θ and
a separation in rapidity space given by Y . Evolution with energy
of this gluon Green function corresponds to evolution in this vari-
able Y .

The coefficients of the θ -expansion can be written in the form
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) =
2π∫
0

dθ

2π
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= 1
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)γ − 1
2

eωn(a,γ )Y, (2)

where we have performed a Mellin transform in transverse mo-
mentum space, with the following eigenvalue for the BFKL ker-
nel [6]:
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Fig. 1. Collinear behavior of the gluon Green function for n = 0.

− 2Φ(n,1 − γ )
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with
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The function of the coupling

ξΘ = a + a2

4

(
1

3
− π2

3
+ Θ

)
, (6)

has been introduced where Θ = 1 corresponds to diagrams with
only gluons and Θ = 0 to the full N = 4 SYM result (there are
cancellations due to the gluino and scalar contributions). We have
not separated the scalars from the gluinos for simplicity since the
expressions for the kernel, especially in kt space, are rather com-
plicated and do not add much information to our results. For this
first, analytic, study we have not considered the contributions to
the running of the coupling in the gluonic kernel since we wanted
to work with true eigenfunctions also at NLO and keep all the
terms in the kernel diagonal in γ space. But when working with
a Monte Carlo code in the second part of our analysis we have in-
cluded these running coupling terms (note that there are running
contributions both in the gluon and gluino/scalars sectors inde-
pendently, which cancel each other in the complete N = 4 SYM
kernel).

Let us first scan the (anti)-collinear regions where one of the
virtualities of the external reggeized gluons is much larger than
Fig. 2. Eigenvalue of the BFKL kernel for different conformal spins, n.

the other. This is parameterized by the ratio ka/kb being away from
one in the Green function values plotted in Fig. 1 (we have fixed
the coupling to 0.2, Y = 10 and kb = 30 GeV, but the features
here discussed are generic). We have first focused on the n = 0
component (azimuthal angle averaged kernel), which corresponds
to Pomeron exchange and is the relevant one when going to the
strong coupling limit [8]. We observe that the LO Green function
has good collinear behavior while the NLO lines go rapidly to zero
when ka is very different from kb . This is a manifestation of the
double maxima present in the eigenvalue of the kernel, as it can
be seen in Fig. 2 where we have set γ = 1/2 + iν [9]. Since the
eigenvalue is smaller, even negative at ν = 0, for the purely glu-
onic case it is in this case that the collinear behavior is worse (in
the sense that the Green function hits negative values for values
of ka/kb closer to one). The effect of the scalar and gluino pieces
is to greatly improve the convergence, making the NLO corrections
to the LO result not too large in a wide range of virtuality space.

In Fig. 2 we also plot the n = 1,2 eigenvalues and notice that
the effect of the gluino and scalar contributions is very small. It is
then natural to observe that, at the level of the gluon Green func-
tion, in Fig. 3 the plots with Θ = 0,1 are very similar for all n > 0.
We find it instructive to plot the full gluon Green function with
all n components but subtracting the n = 0 term while showing
the collinear shape in Fig. 4. The perturbative convergence of the
BFKL expansion for the n �= 0 contributions is very good since the
NLO corrections are very small in a very wide range of the plot.
We collect the full angular information in a single plot in Fig. 5.
We have fixed ka = 20 GeV, kb = 30 GeV and Y = 3,5. The full
NLO SUSY results are very similar in shape to the LO lines. An
intriguing feature is that the Green function for the gluon contri-
butions reaches a much smaller value at θ = π than when scalars
and gluinos are included in the analysis (∂ f /∂θ is much more neg-
ative in the N = 4 SYM case for θ > 1).

To conclude this part of the analysis we can investigate the
growth with energy of the gluon Green function for different
conformal spins n. This is done in Fig. 6 where we can see
that the LO and the full NLO SUSY results are surprisingly sim-
ilar for the range of Y we have chosen to plot (for n = 0). It
is clear that the scalar and gluino contributions do push the
Green function to higher values. This implies that they generate
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Fig. 3. Collinear behavior of the gluon Green function for different values of n.
a larger amount of real emission and/or reduce the relative
weight of the virtual diagrams, mainly via their contribution
to the gluon Regge trajectory. For the coefficients associated to
n > 0 the non-gluonic terms do not modify the gluonic ones,
they give a very small contribution. As in QCD, only the n = 0
component, associated to the hard Pomeron, grows with en-
ergy.

Let us highlight a very interesting property of the NLO eigen-
value, already pointed out in Ref. [10, Eq. (38)] for the QCD case.
When n = 1 the asymptotic intercept (at γ = 1/2) can be written
as

ωn=1

(
a, γ = 1

2

)
= a2

(
3

2
ζ(3) + 1

2
ψ ′′(1) − Φ

(
1,

1

2

))
= 0, (7)

which is equal to zero, independently of the scalar and gluino
terms, i.e., it is an effect only associated to the gluon sector. A sim-
ilar feature was found in QCD, where the quark contributions to
this intercept were always multiplying the LO eigenvalue, which is
also zero for (γ ,n) = (1/2,1). The fact that this intercept is zero
at LO and NLO seems to indicate that it is protected by some sym-
metry not broken by radiative corrections. It would be instructive
to find out if it is present in the strong coupling limit and its con-
nection to all-orders corrections to Odderon exchange in QCD and
SUSY theories (see Ref. [11] for a related discussion).

In order to proceed further and obtain more exclusive informa-
tion from the different pieces of the SUSY NLO BFKL kernel now
we use a different, more numerical, method (see Ref. [12] for a
related work). We Mellin transform in rapidity space, i.e.

f (ka,kb, Y ) = 1

2π i

a+i∞∫
dω eωY fω(ka,kb). (8)
a−i∞
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Fig. 4. Collinear behavior of the gluon Green function subtracting the n = 0 compo-
nent.

Fig. 5. The gluon Green function versus θ .

We can then write the NLO BFKL equation in momentum repre-
sentation:

(
ω − ω

(
k2

a , λ2)) fω(ka,kb)

= δ(2)(ka − kb) +
∫

d2k
(

ξΘ

πk2
θ
(
k2 − λ2) +K(ka,ka + k)

)
× fω(ka + k,kb), (9)

where λ is a mass parameter used to regularize the infrared di-
vergences (our results are λ independent for small values of λ).
The NLO Regge gluon trajectory (which defines the propagators of
t-channel gluons) is

ω
(
q2, λ2) = −ξΘ ln

q2

2
+ a2 3

ζ(3). (10)

λ 2
Fig. 6. Growth with energy of the gluon Green function for different conformal
spins n.

The real emission part of the kernel is rather complicated [6] and
reads
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With all of this information it is now possible to use an itera-
tive method and go back to rapidity space to obtain the following
expression for the gluon Green function
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(
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where y0 ≡ Y . We have obtained numerical results for this formula
by performing a Monte Carlo integration of each of the terms in
the sum, which implies to solve a large amount of nested integrals
in transverse momentum and rapidity space. This is a rather com-
plicated procedure where the correct sampling of the integrands
plays a very important role, but which allows for a complete han-
dling of the exclusive information in the parton ladder since we
know the statistical weight of the different final state configura-
tions.

We can check that the distribution in the number of iterations
of the kernel needed to construct the gluon Green function does
not vary, qualitatively, when scalars and gluinos are added to the
gluon terms, which drive the multiplicity distribution (see Fig. 7,
where the Green function corresponds to the area under the plots).
This statement is independent from introducing a running of the
coupling in the gluon (QCD with no quarks) kernel (see last plot in
Fig. 7).

It is also possible to find out what is the typical transverse
momentum scale running in the internal propagators of the BFKL
ladder. This is conveniently shown in Fig. 8 where the mean value
of the variable τ = log〈pi〉/(GeV2) is calculated (together with the
lines of one standard deviation towards the infrared and ultravio-
let) as a function of the normalized rapidities of the corresponding
emitted particles. The main lesson to be taken from these plots is
that the region with diffusion in the infrared is fully governed by
the gluon dynamics in the SUSY kernel (setting Θ = 0,1 does not
modify the lower lines) while in the ultraviolet region the scalars
and gluinos do squeeze the plot downwards, decreasing the diffu-
sion probability towards large scales.

Conclusions

In this work we have presented a study of the solution to
the NLO BFKL equation in the N = 4 supersymmetric Yang–Mills
theory. The target has been to separate the “QCD-like” gluon con-
tributions from those stemming from scalar particles and gluinos.
Our investigation has been performed at the level of the gluon
Green function for the scattering of two off-shell reggeized gluons
in quasi-multi-Regge kinematics. We have shown the good con-
vergence in collinear regions of the perturbative series for higher
Fourier components in the azimuthal angle (non-zero conformal
spin n) and proven that the effect of the scalar and gluino dia-
grams is minimal for n > 0 and very important for n = 0, making
Fig. 7. Multiplicity distribution in the number of emissions contributing to the gluon
Green function.

the growth with energy of the forward amplitude to be much
faster than for the purely gluon contributions. Using Monte Carlo
integration techniques we showed that the scalars and gluinos do
not affect the diffusion into the infrared in the so-called “Bartels’
cigar” but force the average transverse momenta in the BFKL lad-
der to lie at less perturbative scales when looking at the ultraviolet
diffusion sector. In future works it would be interesting to investi-
gate theories with a lower number of supersymmetries, the NNLO
version of the BFKL kernel and perform a similar study for the
BFKL Pomeron at strong coupling.
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Fig. 8. Diffusion plots for the propagation of internal modes into infrared and ultra-
violet regions in transverse momenta when constructing the gluon Green function.
The upper plot corresponds to Y = 1 and the lower one to Y = 3.
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