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One of the most challenging aspects of managing a volcanic crisis is the interpretation of the monitoring data, so
as to anticipate to the evolution of the unrest and implement timely mitigation actions. An unrest episode may
include different stages or time intervals of increasing activity that may or may not precede a volcanic eruption,
depending on the causes of the unrest (magmatic, geothermal or tectonic). Therefore, one of the main goals in
monitoring volcanic unrest is to forecast whether or not such increase of activity will end up with an eruption,
and if this is the case, how, when, and where this eruption will take place. As an alternative method to expert
elicitation for assessing and merging monitoring data and relevant past information, we present a probabilistic
method to transform precursory activity into the probability of experiencing a significant variation by the next
time interval (i.e. the next step in the unrest), given its preceding evolution, and by further estimating the
probability of the occurrence of a particular eruptive scenario combining monitoring and past data. With the
1991 Pinatubo volcanic crisis as a reference, we have developed such a method to assess short-term volcanic
hazard using Bayesian inference.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Assessing eruption hazard scenarios in probabilistic ways has
become a main challenge in modern volcanology (Newhall and
Hoblitt, 2002; Marzocchi et al., 2004, 2006; Aspinall, 2006; Martí et al.,
2008; Neri et al., 2008; Sobradelo andMartí, 2010). An effectivemethod
for assessing volcanic hazard is to prepare scenarios that describe the
potential impact of an eruption. The most commonly used procedures
have focused on scenarios for the possible eruptive behavior of a
volcano. The event tree based Bayesian methodology proposed by
Newhall and Hoblitt (2002) has been used to develop computer-
assisted procedures for transforming field data into the probability
that a volcanic scenario will take place (Marzocchi et al., 2007, 2010;
Sobradelo et al., 2013).

Limitations in the Bayesian methodology to incorporate and
evaluate monitoring data using event tree structures has meant that
these methods are mostly used for long-term hazard assessment. Elici-
tation of expert judgment has been widely used to complement the
Bayesian event tree with monitoring information (Aspinall, 2006;
Martí et al., 2008; Neri et al., 2008) when dealing with short-term
hazard assessment. However, this method has a human decision
component which adds an additional source of bias to the model,
. This is an open access article under
which requires the event tree structure to be as simple as possible,
does not allow for epistemic and aleatoric uncertainties to be dealt
with in a formal probabilistic way, unlike the Bayesian methods, and
require the elicitation team to meet in order to update the probabilities
each time new data arrives. Alternatively (Marzocchi et al., 2007, 2010)
fuzzy logic has been used to incorporate monitoring data into the first
three nodes of the event tree structure, and to quantify the probability
of a magmatic eruption in the next time window. This approach
requires a specific set of unrest indicators to be defined at each step of
the event tree (branch and node), and a threshold value to be set a priori
for each one. However, this reduces its applicability to volcanoes with
long repose periods andwithout monitoring information from previous
unrest/eruptive episodes.

To apply the Bayesian event tree methodology for the evaluation
of different eruptive scenarios when conducting short-term hazard
assessment, an automated and systematic approach is needed to
complement past information with monitoring data, and to estimate
the probability of a volcanic event in the next time interval. Thismethod
should incorporate information on monitoring data using flexible
criteria to determine the relevant parameters and corresponding critical
levels, as these may vary across volcanic systems. Although there is
a group of precursory signals commonly used in most volcanoes
(seismicity, ground deformation, gas, etc), the absolute values and
trigger threshold (that is, values that set off the event),may significantly
differ from one volcano to another.
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In order to provide a simple and automated way of assessing the
evolution of the volcanic system from looking at themonitoring signals,
we propose a flexible probabilistic approach to incorporate monitoring
information for the quantification of short-term volcanic hazard that
looks for significant changes in the values of the measured unrest indi-
cators, across consecutive time intervals. Rather than focusing on the
absolute value of each variable, this method compares its degree of
change with respect to the previous time interval. In each case, a
variation which is considered significant can be defined in advance
given the specific characteristics of the volcano being studied.

The activity of the volcano is analyzed through a series of reports or
bulletins generated at each time interval with updated precursory data.
The probabilistic method presented here uses Bayesian inference to
estimate for each variable (unrest indicator) the probability of
experiencing a significant variation between now and the next report.
This information can be interpreted on its own or combined into a set
of “precursory signals” that can be linked to a particular evolution of
the unrest episode and, if this predicts an eruption, to a particular
eruptive scenario. The short-term probability of an occurrence for that
particular unrest and potential eruptive scenario can be estimated
using Bayesian inference, complementing the monitoring data with
past records. The final probabilities can then be used to assess the
different mitigation actions associated with each scenario and estimate
the corresponding potential risk (Sobradelo et al., submitted for
publication). The application of the method is illustrated by retrospec-
tively evaluating the volcanic crisis before the 1991 eruption of Pinatubo
for stratovolcano cases. The same approach can be used for other
volcano types, and it could be easily adapted to study similar natural
hazards.
2. The Pinatubo 1991 volcanic crisis

Mount Pinatubo, in the Philippines, erupted in June 1991 after more
than 500 years of repose and two months of monitored unrest
(Punongbayan and Newhall, 1996). Before that, there was no scientific
monitoring on the volcano, so the actual beginning of the unrest is
unknown. The main eruption is assumed to have started on June 12
with the formation of vertical eruption columns, and generated the
climatic explosive event (VEI 6) on June 15, (Hoblit et al., 1996; Wolfe
and Hoblit, 1996). However, several minor eruptive episodes had
already occurred in the previous days with some steam explosion and
vigorous fumaroles in early April, some phreatic explosions on mid to
late May, and the extrusion of a dacite spine on June 7 (Hoblit et al.,
1996). Unrestwasmarkedmainly by a significant increase in seismicity,
ground deformation and gas emissions. Seismicitywas characterized by
the presence of volcano-tectonic, LP, tremor, and hybrid events, located
at two distinct source regions, one near the summit of the volcano at
depths of 0 to 3 km and another approximately 5 km to the Northwest
at depths of 2–6 km (Cornelius and Voight, 1996; Harlow et al., 1996).
Ground deformation marked a significant inflation of the upper part of
the volcano between June 4 and June 7 (Ewert et al., 1996), coinciding
with an increase in shallow seismicity and a decrease in the SO2
emissions (Daag et al., 1996) which taken together were interpreted
as indications that magma was ascending from the chamber to the
surface.

Very little was known about the geology and past volcanology of
Mount Pinatubo before the beginning of the unrest, and most of this
knowledge was related to mineral and geothermal exploration around
the volcano (Newhall et al., 1996; Punongbayan et al., 1996). When
unrest began, and the potential for a volcanic eruption was obvious,
extra field work was undertaken which established that Pinatubo was
the site of large explosive eruptions in the relatively recent past. This
explosive activity was responsible for the deposition of numerous
pyroclastic flow deposits and fallout layers, and associated lahars, on
the lower flanks of the volcano (Newhall et al., 1996).
A preliminary hazard assessment was conducted, including an
event tree and a hazard map with the three major volcanic hazards
(pyroclastic flows, air fall, and lahars), in order to forecast the possible
outcome and products of a future eruption (Punongbayan et al., 1996;
Newhall and Hoblitt, 2002), and. This was used as the basis on which
to update the probabilities of each potential scenario, according to the
monitoring information which was periodically sent by the parties
responsible for volcano surveillance in the form of different bulletins.
This was the result of a joint effort by the Philippine Institute of
Volcanology and Seismology (PHIVOLCS) and theU.S. Geological Survey
Volcano Crisis Assistance Team (USGS VCAT), which allowed decision-
makers to manage massive evacuations, resulting in a significant
reduction of the potential impact the eruption could have caused on
the local population (Punongbayan et al., 1996).

The type of volcanic hazard assessment done at the time of the
crisis was based on expert elicitation, using as a starting point the
major volcanic hazards identified in a previous long-term volcanic
hazard assessment, complemented with short-term monitoring data
(Punongbayan et al., 1996).

3. Short-term volcanic hazard assessment

In volcanic hazard assessment, long-term hazard assessment is
based on historical and geological data and theoretical and physical
models, and is basically used for territorial planning and the definition
of emergency plans. It is conducted during a quiet phase of the volcano
(eg. Marzocchi et al., 2010; Sobradelo et al., 2013). Short-term hazard
assessment is done when the volcano goes into unrest and consists in
complementing the long-term hazard assessment with continuous
monitoring data. Therefore, the main objective in monitoring volcanic
unrest is to forecast whether or not such an increase in activity will
end up with an eruption, and if so, which eruptive scenario is the
most likely.

Continuous monitoring should identify the different stages in the
evolution of an unrest episode by detecting any increase in activity
that may be indicated by a change in the monitored geophysical and
geochemical parameters. However, determining when these parame-
ters will reach a maximum value or will pass a threshold after which
the eruption will occur is at present a nearly impossible task.

Each volcano has different characteristics (internal structure, rock
rheology, magma composition, etc) which may result in different
maximum values or thresholds for the monitored parameters before
reaching the eruption conditions. It is a big challenge to estimate
short-term probabilities at each stage of a volcanic unrest episode, as
new data arrives. The method proposed here is a simple approach,
through Bayesian inference, to incorporate monitoring data and
automatically update short-term probability estimates, which does not
require a previously set threshold value for the unrest indicators.

3.1. Monitoring variables

3.1.1. Definition of unrest indicators
Volcano monitoring includes several ground-based and remote

techniques which are able to detect any change (i.e.: departure from
the background) in the geophysical and geochemical variables that
characterize the state of activity of a volcanic system (Scarpa and
Tilling, 1996). Most of these variables are associated with changes
produced by themovement of freshmagma and associated fluids inside
the volcano’s plumbing system (Sparks, 2003; Cañón Tapia, 2014).
Therefore, these changes will be noticed in the form of variations in
the amount of seismicity and of its characteristics (frequency, etc),
ground deformation, variations in the gravity, magmatic and/or electric
fields, and changes in the amount and nature of volcanic gases released
to the atmosphere, etc. Some of these variations, or rather some combi-
nations of them, have been used as unrest indicators of eruptive activity
(Voight, 1988; Cornelius and Voight, 1994; De-La-Cruz-Reyna and



Table 1
Combination of unrest indicators needed to be present for a particular type of unrest to de-
velop. The value 1 means Yes, a value of 0 means No and a blank space means it can take
either value.

Unrest type

Unrest indicators Magmatic Geothermal Tectonic

Overall seismicity increase
Seismicity increase 1 1 1
RSAM acceleration 1 1
Accumulated energy released rate increase 1 1 1
Lateral migration of seismicity
Vertical migration of seismicity 1 0 0
Deep seismicity 0
Shallow seismicity 1 1
VT events 1 1 0
LP events 1 1 0
Tremor events 1 1 0
Hybrid events 1 1 0

Overall gas increase
Gas flux increase 1 1 0
H2O increase 1 0
CO2 increase 0
SO2 increase 0 0
Others 1 0
Fluids temperature increase 1 0

Overall ground deformation increase
Strain increase 1 1 1
Inflation rate increase 0
Lateral migration 0 0
Vertical migration 0 0
Δg/Δh anomaly 0

Other changes
Fractures
Phreatic explosions 0
Fresh magma 0 0
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Reyes-Davila, 2001; Kilburn, 2003; Bell and Kilburn, 2012; Segall, 2013,
2013), although the exact amount and type of change may significantly
vary for each volcano (Chouet andMatoza, 2013). Therefore, as indicat-
ed before, the identification and use of geophysical and geochemical in-
formation should not be linked to standardized values, as they require
careful examination in each particular situation.

3.1.2. Monitoring variables commonly used as unrest indicators
In this paperwe prefer to use the term unrest “indicator” rather than

“precursor” as we will consider observables and also some inter-
pretations in the group of variables that we will take into account to
apply our methodology. Based on previous studies, we include a list of
the most representative monitoring variables (observables) and inter-
pretations that have regularly been used to forecast potential eruptive
activity (Sparks, 2003; Sandri et al., 2004; Chouet and Matoza, 2013;
Phillipson et al., 2013; Segall, 2013): 1) seismicity increase (i.e.: number
of seismic events); 2) real-time seismic-amplitude measurement
(RSAM) acceleration; 3) accumulated energy released rate increase;
4) lateral migration of seismicity; 5) vertical ascent of seismicity;
6) deep seismicity; 7) shallow seismicity; 8) volcano tectonic events;
9) long period events; 10) tremor events; 11) hybrid events; 12) gas
flux increase; 13) H2O increase; 14) SO2 increase; 15) CO2 increase;
16) presence of other gases; 17) fluids temperature increase; 18) total
strain increase; 19) inflation rate (i.e.: ground velocity) increase; 20)
lateral migration of the source of ground deformation; 21) vertical
migration of the source of ground deformation; 22) delta g/delta h
anomaly; 23) presence of new fractures; 24) phreatic explosions; and
25) appearance of fresh magma at surface. These parameters may be
grouped into four categories: seismicity, gases, ground deformation,
and others, for which general changes may be noted by observers,
even without operating a monitoring network near the volcano. For
the purpose of this study if the unrest indicator has experienced a
significant variation with respect to previous measurements taken,
the corresponding variable will simply take value “Y” (yes, 1) or “N”
(no, 0) otherwise.

3.1.3. Unrest outcomes and unrest indicators
As each volcanic system may behave in a different way, it will

require a specific combination of precursory signals to identify unrest
and raise the alarm. At present there is no general definition to clearly
identify the stages of unrest. This is particularly obvious if we compare
volcanoes characterized by long quiescent periods with volcanoes
with long on-going eruption episodes (such as Etna, Stromboli, Mont-
serrat, etc), where identification of new unrest episodes may be more
challenging than in well known and regularly erupting volcanoes,
with clear quiescence periods between eruptions (e.g.: Piton de la
Fournaise).

The evolution of an unrest episode will depend on the causes of the
unrest (magmatic, tectonic, or geothermal), which can lead to different
outcomes (magmatic eruption, phreatic explosion, sector failure, or
other), in different locations, andwith different possibilities of eruption
magnitude, products, extent, etc. We define an unrest outcome as one
particular combination of these different possibilities. Each particular
scenario is expected to result from a particular pattern in precursory ac-
tivity. However, there are factors in each scenario that cannot be antic-
ipated by looking at monitoring data, but which can be anticipated by
looking at the products from past events, so this is why we must also
consider past data when doing short-term hazard assessment. Table 1
shows three simple sources of unrest (unrest scenarios), and the
corresponding values needed for each to occur.

3.2. The monitoring data for the 1991 Pinatubo volcanic crisis

Systematic volcano monitoring at Mount Pinatubo started in early
April 1991 (see Punongbayan and Newhall (1996) references herein),
with the deployment of different portable and permanent equipment
at different dates, so the information recorded up to mid May, when a
full monitoring network was operating, may not be complete. Table 2
illustrates the parameters monitored that served as precursory signals
for the duration of the unrest period previous to the 1991 Pinatubo
eruption.

Using the summary information from Table 1 we build our Table 2
with information on the state of each unrest indicator at each time
bulletin, based on the particular information provided for each variable
(Cornelius and Voight, 1996; Daag et al., 1996; Ewert et al., 1996;
Harlow et al., 1996).
3.3. The impact of past events on short-term volcanic hazard assessment

To best assess how the volcanic unrest will evolve, it is also impor-
tant to know how the volcano has acted in the past. For this reason, it
is relevant to incorporate historical and geological information or any
previous long-term hazard assessment. In the case of Pinatubo there
were no previous studies done at the time of the unrest preceding the
1991 eruption, except for the logic tree mentioned earlier (Newhall
et al., 1996; Punongbayan et al., 1996), based on an aerial exploration
of the area when unrest started and which allowed scientists to
detect the hazardous nature of the volcano. The logic tree presented to
civil defense and military leaders on 17 May highlighted a number of
potentially hazardous scenarios.

Based on this preliminary long-term volcanic hazard assessment,
combined with existing monitoring information, the probability that a
pyroclastic flow would reach into the populated areas - 15 km from
the summit - within one year was estimated to be about 1% on 17
May, and about 8% on 10 June (Newhall, 2000). This estimate would
most probably have risen significantly if the event tree had been
updated after the explosive phase on June 7–14, 1991.
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4. Probability model: short-term volcanic hazard assessment
through Bayesian inference

At this point we introduce Bayesian inference as a way tomerge and
quantify the information from precursory signals, and to detect possible
patterns across different unrest indicators. Furthermore, the method
will provide away to quantify the uncertainty surrounding themonitor-
ing variables, and estimate the probability that an unrest indicator will
experience a significant variation in the next time interval compared
to the previous one.

The Bayesianmethod applied here follows the same structure as the
one applied in Sobradelo and Martí (2010) for long-term hazard
assessment to estimate the likelihood at each node of the event tree.
For simplicity, the method presented here only considers two possible
values for the random (dummy) variables (Yes, No).
4.1. Probability estimate for each individual unrest indicator

The probabilistic evaluation of each unrest indicator is done at each
time interval or unrest stage, when the parties responsible for the
volcano monitoring network report on the current state of activity of
the volcano. This information is then assessed by comparison with the
previous report. The evaluation will focus on any significant variation
in the monitoring activity with respect to the last report, and will then
look at the overall evolution. We consider a significant variation to be
any change (increase, decrease, migration) comparedwith the previous
value for the same indicator. In the case of an escalation towards the
onset of an eruptive event, most indicators tend to show a significant
increase in their values (Chouet and Matoza, 2013; Cañón Tapia,
2014), but a significant decrease (or just a significant variation) could
also occur, as in gas composition. These conditions should be addressed
in advance by the corresponding monitoring experts.
Table 2
Information on unrest indicators at different stages of the Pinatubo unrest period before the cl
1990 the rest of the columns refer to year 1991. The value 1 means Yes, the value 0 means No,

Unrest indicators evolution 7-8 90 15/3-2/4 2/4-26/5 26-27/5

Overall seismicity increase 1 1 1 1
Seismicity increase 0 0
RSAM acceleration 0 0
Accum. energy released rate increase 0 0
Lateral migration of seismicity 0 0
Vertical migration of seismicity 1 1 1
Deep seismicity 0 1
Shallow seismicity 1 1
VT events 1 1 1
LP events 1 1
Tremor events 1 1
Hybrid events

Overall gas increase 1 1 1 1
Gas flux increase 1 1
H2O increase
CO2 increase
SO2 increase 1 1
Others
Fluids temperature increase

Overall ground deform. increase 0 0
Strain increase 0 0
Inflation rate increase 0 0
Lateral migration 0 0
Vertical migration 0 0
Δg/Δh anomaly

Other changes 1 0 0
Fractures 1 1
Phreatic explosions 0 0 1 0
Fresh magma 0 0 0 0
Adopting this approach, the monitoring information is used to
observe the relative evolution of the precursory data and to determine
the tendency of the activity to increase or decrease. Rather than waiting
for a particular precursory signal to reach a specific value (threshold),
we assess its variation with respect to previous measurements, as a
result of the variation of the system, by observing the evolution of the
corresponding probabilities of occurrence, looking for significant or
sudden changes. This can further allow comparison of the unrest
episodes of two volcanoes with different starting points and different
behaviours, by just looking at the relative changes of the system as the
monitoring signals evolve. There may be situations where we want to
know if the unrest indicator reaches a particular critical value. In that
case the range of all possible values of the variable can be segmented
into continuous, non-overlaping intervals and each interval modelled
as a dummy variable. This will be set to Y or N depending on the
observed value falling in the same interval as the critical value or not.

Defining each unrest indicator Ri, i = 1, …, n, as a dummy variable,
where n is the number of unrest indicators, means each can have only
two outcomes, either success, Y, with probability θi, or failure, N, with
probability (1–θi). Table 2 shows the Ri unrest indicators and
corresponding values across different time bulletins. We understand by
success the occurrence of that particular unrest indicator, that is to say
the value of that particular monitoring variable has experienced a signif-
icant variation with respect to its previously measured stage, and failure
otherwise. Let Ti represent the number of equal length time intervals
with success for unrest indicator i. Both Ti and θi are random variables.
Ti takes values in the interval [0, ∞] and θi takes values in [0,1].

θi is unknown and all its possible values are deemed equally likely a
priori. This uncertainty can be described by assigning to θi a uniform
distribution on the interval [0,1]. This is appropriate because θi being a
probability, can take only values between 0 and 1; furthermore, the
uniform distribution assigns equal probability density to all points in
the interval, which reflects the fact that no possible value of θi is, a priori,
imatic eruption on June 15th, 1991. Aside from the first column that refers to July–August
and a blank space means No information.

2/6 3/6 5/6 7/6 8/6 9/6 10/6 12/6 13/6 14/6 15/6

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 1 1 1 1 1 1

1 1 1 1
0 0 0 1 1 1 1

0 0 0 1 1 1 1

0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1
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deemed more likely than any of the others. In the case that a priori
beliefs, physical models or past data allow us to assign different initial
values for the θi parameters, then, as the uniform distribution is a
particular case of the beta distribution with parameters α = β = 1,
we would simply model this random variable with a Beta distribution
of parameters (α, β). The Beta distribution is a continuous probability
distribution having two parameters (when there are more than two
parameters it is called a Dirichlet distribution). One of its most common
uses is to model one’s uncertainty about the probability of success of an
experiment.

The only requirement for the prior distribution is that it should
represent the knowledge about θi, before observing the current data.
The prior distribution can be specified to be entirely subjective, or to
depend on past data or be weak or non-informative (uniform prior).
The prior distribution represents our “best guess”. A priori, we know
that the event Ri happens with probability θi, and we are interested in
knowing what is the posterior value of θi after observing the data, that
is, we want to know p(θi|Ti = yi) (also written as p(θi|yi)), where yi is
the number of time windows that had a success, for unrest indicator
Ri, out of ni equal length non overlaping time windows (eg. the time
from one monitoring bulletin to next).

Using Bayesian inference this is computed as:

p θijyið Þ∝p θið Þ � p yijθið Þ ð1Þ

Where θi is a random variable that follows a beta distribution of
parameters (αi, βi) (uniform distribution if αi = βi = 1) and yi is a
random variable that follows a binomial distribution of parameters
(ni, θi). By the convenient property that the beta distribution is a
conjugate prior of the binomial distribution, we find that the right
hand side product of Eq. (1), that is, the posterior distribution of θi,
follows a beta distribution of parameters (αi + yi, βi + (ni − yi)). And
so, we estimate p(θi|yi) with the expected value E and corresponding
Table 3
Evolution of the unrest indicators at different stages of the Pinatubo unrest period, before the c
individual indicator. All columns refer to year 1991.

4-5 91 26-27/5 2/6 3/6 5

Overall seismicity increase .8 .83 .86 .88 .
Seismicity increase .27 .22 .33 .42 .
RSAM acceleration .27 .22 .33 .42 .
Accum. energy released rate increase .27 .22 .33 .42 .
Lateral migration of seismicity .27 .22 .33 .29 .
Vertical migration of seismicity .6 .67 .71 .63 .
Deep seismicity .27 .39 .48 .54 .
Shallow seismicity .47 .56 .62 .67 .
VT events .6 .67 .71 .75 .
LP events .47 .56 .62 .67 .
Tremor events .47 .56 .62 .67 .
Hybrid events

Overall gas increase .8 .83
Gas flux increase .47 .56 .48 .42 .
H2O increase
CO2 increase
SO2 increase .47 .56 .48 .42 .
Others
Fluids temperature increase

Overall ground deformation increase .27 .22 .19 .29 .
Strain increase .27 .22 .19 .29 .
Inflation rate increase .27 .22 .19 .29 .
Lateral migration .27 .22 .19 .17 .
Vertical migration .27 .22 .19 .17 .
Δg/Δh anomaly

Other changes .53 .44 .52 .58 .
Fractures .73
Phreatic explosions .4 .33 .43 .5 .
Fresh magma .2 .17 .14 .13 .
variance V of a random variable that follows a beta distribution with
parameters (αi + yi, βi + (ni − yi)), that has the form:

E θijyi½ � ¼ α�
i

α�
i þ β�

i
ð2Þ

V θijyi½ � ¼ α�
i β

�
i

� �� �2 � �� � ð3Þ

αi þ βi αi þ βi þ 1

where αi
⁎= αi+ yi, βi

⁎= βi+(ni− yi) and the parameters αi, βiwill be
determined by:

αi ¼ E θi½ � λi þ J−1ð Þ;βi ¼ 1−E θi½ �ð Þ λi þ J−1ð Þ ð4Þ

where E[θi] is the central value inferred by a priori models and/or of the
theoretical beliefs, and will account for the aleatoric uncertainty, while
λi controls the confidence at which E[θi] is considered a reliable
estimate and will account for the epistemic uncertainty (Sobradelo
and Martí, 2010). Both these parameters will be inputs to the model.
J is the number of possible mutually exclusive and exhaustive values
that the variable can take, which in our case is 2 as we use binary
variables.

Similarly, for the posterior probability of failure (N), the expected
value

E 1−θið Þj ni−yið Þ½ � ¼ β�
i

α�
i þ β�

i
ð5Þ

and the variance remains the same as in Eq. (3)
Table 3 shows the posterior probabilities for all the unrest indicators

computed at each time bulletin using Eq. (2). In the first bulletin we do
not have any information on the initial probabilities, so our “best guess”
for the probability of “success” of each unrest indicator is non-
limatic eruption on June 15th, 1991, with corresponding probability of “success” for each

/6 7/6 8/6 9/6 10/6 12/6 13/6 14/6 15/6

89 .9 .91 .92 .92 .93 .93 .94 .94
48 .53 .58 .61 .64 .67 .69 .71 .73
48 .53 .58 .61 .64 .67 .69 .71 .73
48 .53 .59 .63 .67 .71 .74 .77 .78
26 .23 .21 .19 .18 .17 .16 .15 .14
56 .5 .45 .42 .38 .36 .33 .31 .29
59 .63 .67
7 .73 .76 .78 .79 .81 .82 .83 .84
78 .8 .82 .83 .85 .86 .87 .88 .88
7 .73 .76 .78 .79 .81 .82 .83 .84
59 .53 .48 .53 .56 .6 .62 .65 .67

.85 .86 .88 .88
37 .43 .48 .53 .56

37 .43 .48 .53 .56

37 .43 .39 .36 .33 .31
37 .43 .39 .36 .33 .31
37 .43 .39 .36 .33 .31
15 .13 .12 .11 .1 .1
15 .13 .12 .11 .1 .1

63 .67 .7 .72 .74 .76 .78 .79 .8

56 .5 .45 .42 .38 .36 .33 .31 .29
11 .2 .27 .33 .38 .43 .47 .5 .53



Fig. 1. Evolution of probabilities for the overall unrest indicators as the unrest episode evolves.
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informative, and we assign 0.5 to each option, with a maximum
epistemic uncertainty value of 1. In this way, if new data arrives it will
contribute significantly to update our prior probabilities. We set the
length of the studied time window to be the time from the last report.
We are looking at only one report since the last so the time interval
investigated is 1. Using this information on Eqs. (2) and (4) we obtain
the updated (posterior) probability of any particular unrest indicator
for the next time interval (bulletin).

For the following bulletins, as the time window for the study is the
interval in between reports, we use as our prior probability the
Fig. 2. Evolution of individual probabilities for each
posterior probability from the previous one, and so the posterior prob-
ability in the last report now becomes the priorweigh input for our E[θi]
parameter. With this assumption, we ensure the same data is not used
twice in the probability estimation and remove the bias that different
lengths between reports would add to the estimations. If there is no in-
formation for a particular unrest indicator, we can either assume the
same probability as in the last bulletin for which data existed, implying
a constant rate until new data arrives, or we can do a linear interpola-
tion between reports for which data is reported. In this case, as it is
done retrospectively, we opted for the second option.
unrest indicator as the unrest episode evolves.

image of Fig.�1
Image of Fig.�2
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Using the input information from Table 2, we compute the probabil-
ity estimates at each stage. Figs. 1 and 2 show how the probability
evolves in time for each unrest indicator. Unrest indicators for which
there is very little or no information (increase in number of seismic
events, hybrid events, fumarole temperature increase, etc) are not
considered in the analysis.

As the monitoring reports continue to arrive, and the probability
estimates are updated for each unrest indicator, our level of confidence
in the assigned prior weights increases, and so we reflect this in the
epistemic uncertainties by increasing the value of λi by 1 at each time
bulletin, so by 15 June, 1991 the value used would be 15. This means
that as the crisis progresses and we receive more information, we are
incorporating the previous knowledge and gradually increasing our
confidence in the prior probabilities.
4.2. Probability estimate for a particular eruptive scenario

In this section we show how the monitoring information can be
combined to assess the short-term probability of a possible eruptive
scenario. After extra field work was carried out, it was determined
that Pinatubo had originated large explosive eruptions in the relatively
recent past, responsible for the numerous pyroclastic flow deposits
and fallout layers, with associated lahars, exposed on the lower flank
of the volcano. The logic tree presented to civil defense and military
leaders on May 17, 1991 (Newhall et al., 1996; Punongbayan et al.,
1996), during what was then still low-level, steady-state unrest,
showed three possible eruptive scenarios associated with the major
volcanic hazards: pyroclastic flows, air fall and lahars, which could
reach Clark Air Base and adjoining cities of Angeles and Mabalacat.
The first version of this tree was the basis to update the probabilities
of occurrence as monitoring information arrived.

Formally speaking, let s be a particular volcanic scenario whose
probability we want to estimate p(s). Define s as a combination of
Fig. 3. Evolution of the probability of a magmatic eruption
n independent precursory signals, m1, m2, …, mn, then p(s) =
p(m1, m2, …, mn) = ∏i = 1

n p(mi), where p(mi) is the probability of
success of unrest indicator mi computed as in Eq. (2). So we get:

p sð Þ ¼ E sð Þ ¼ ∏
n

i¼1
E θijyið Þ ð6Þ

This step is equivalent to computing the long-term probability for
each eruptive scenario as in Eq. (11) of Sobradelo and Martí (2010).
Therefore, once we have computed the corresponding posterior proba-
bilities for each unrest indicator, and know their probability density
functions, we can compute the probability of a particular scenario by
multiplying their individual probabilities. As with the assumption of
independence of the nodes when building event trees for volcanic
hazard assessment, addressed in Sobradelo et al. (submitted for
publication), the assumption of independence of the unrest indicators
made here has an impact on the final results. This initial condition is
set for simplicity and practical application of the Bayesian inference
methodology. In general, some unrest indicators need not be indepen-
dent of each other, in which case a different mathematical approach
may be more suitable. Future work is needed to address this. However,
it remains to be proven whether the presumed accuracy increase in the
probability estimates would justify the additional complexity that
dependency would introduce to the model settings and calculations.
The list of unrest indicators in Section 3.1.2 was defined to include
only those that would contribute with new information to the process.
However, caution should be takenwhen selecting a particular combina-
tion of unrest indicators to describe an unrest outcome and a possible
eruptive scenario.

As the product of the variance is not the same as the variance of the
product, to compute the corresponding variance of the estimate we use
the approximation technique based on the Delta method (Rice, 2007)

to determine the asymptotic distribution of the variance σ̂2 and
based on different combinations of unrest indicators.

Image of Fig.�3
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corresponding standard deviation σ̂ ¼
ffiffiffiffiffiffi
σ̂2

p
for each scenario s, as

follows:

σ̂2 ¼ E sð Þ2
Xn
i¼1

V θijyið Þ
E θijyið Þ½ �2 ð7Þ

where, E(s) is from Eq. (6), E(θi|yi) from Eq. (2), and V(θi|yi) from
Eq. (3). See Sobradelo et al. (2013), for further details on how to
derive Eq. (7).

Once the source of the unrest has been established as magmatic, the
next step is to assess the type of outcome from this unrest. Suppose that
for a magmatic eruption to occur, a particular combination of unrest
indicators needs to happen. Let us use the seismicity indicators for
example, and say that a magmatic eruption is more likely to occur if
there is seismicity increase, RSAM acceleration, accumulated energy
release rate increase, shallow seismicity, VT and LP events and tremor.
Using Eq. (6) we compute these probabilities. Fig. 3 shows how using
different combinations of unrest indicators, the total probability of an
eruption varies. The challenge is to select the combination of unrest
indicators that best describes this particular volcanic system.

4.2.1. Probability estimate incorporating past data
So far we have estimated the probability of the occurrence of a

particular scenario using monitoring data only. As mentioned in
Section 3.3, in addition to the monitoring data, it is also important to
look at the past behavior of the volcano, since thismay define the poten-
tial outcome of the unrest. In the case of Pinatubo, we want to use our
Bayesian approach to assess the short-term probability of having a
magmatic eruption that originates pyroclastic flows and/or fallout. The
same eruptive scenarios that were evaluated in the logic tree presented
on 17 May, as described in Sections 3.3 and 4.2. Call this scenario u. We
consider lahar as a secondary hazard, for which an eruption with
pyroclastic flows and/or fall out needs to occur first. Using monitoring
data, we can approximate the odds of having a volcanic eruption with
the approach described in Section 4.2, as this scenario is directly related
to the evolution of the precursory signals. However, to assess
the eruption hazards we need to use information on past volcanic
events, as precursory signals provide little or no information on the
outcome of a potential eruption. This can be done using the Bayesian
Fig. 4. Evolution of the probability of amagmatic eruption for various scenarios, merging past in
gas increase, deformation and fresh magma.
approach, also used in Sobradelo et al. (submitted for publication), as
follows:

h ujvð Þ ¼ f vjuð Þg uð ÞZ
f vjuð Þg uð Þdu

ð8Þ

Where h(u|v) is the posterior distribution of scenario u after we
observed monitoring data v. The posterior probability h(u|v) describes
the hazard, where g(u) is the probability of occurrence of scenario u
beforewe observe themonitoring data v, this is, the long-termprobabil-
ity of scenario u. The term f(v|u) is the conditional distribution of
monitoring data v given scenario u, which can be interpreted as the
probability of observing these values of the unrest indicators if scenario
u was to happen.

As the denominator in Eq. (8) is a constant, let c=(∫ f(v|u)g(u)
du)−1, and we get:

h ujvð Þ ¼ cf vjuð Þg uð Þ ð9Þ

The probability function h is estimated with the expected value. For
simplicity in the notation, denote E(h) and V(h) as the expected value
and variance associated with h(u|v), E(f) and V(f) as the expected
value and variance associated with f(v|u), computed with Eqs. (6) and
(7) respectively, and E(g) and V(g) as the expected value and variance
to describe g(u), which can be estimated using the Bayesian event tree
methodology described in (Sobradelo and Martí, 2010) and automated
in HASSET (Sobradelo et al., 2013), (other methods may also be used
(Aspinall, 2006; Marzocchi et al., 2010)), or with expert elicitation as
in the original logic tree of Pinatubo. Then:

E hð Þ ¼ cE fgð Þ ¼ cE fð ÞE gð Þ ð10Þ

V hð Þ ¼ c2V fgð Þ ¼ c2 E fð Þð Þ2V gð Þ þ E gð Þð Þ2V fð Þ þ V fð ÞV gð Þ
h i

ð11Þ

And so we have written the expected value and variance of a
particular scenario as a function of the expected value and variances
of the variables that measure the uncertainty associated with monitor-
ing data, weighted by the uncertainty associated with past events.
formation on size, location and extent withmonitoring data on overall seismicity increase,

Image of Fig.�4
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Fig. 4 shows the evolution of the short-term probabilities in the
Pinatubo example, computed with Eq. (9), merging past data and
monitoring information on overall seismicity, overall gas increase,
deformation and presence of fresh magma. The long-term probabilities
for each scenario are from the logic tree presented in 17 May.

5. Discussion and results

Fig. 3 shows the evolution of the probability estimates of an erup-
tion based on different combinations of unrest indicators. The last
scenario, formed from a combination of monitoring information on
total seismicity, RSAM, energy release, shallow seismicity, VT, LP
events, and tremor, estimated the probability of an imminent erup-
tion to be less than 1% as of May 1991, and 8% by 10 June. These are
consistent with the estimations reported initially in the Pinatubo
crisis Punongbayan et al. (1996); Newhall et al. (1996). However, if
we look at the second scenario, formed from combining information
on overall seismicity increase and gas increase only, the probability
estimates jump to 64% and 81% respectively for the same dates. The
results in the first example suggest that the probabilities could
have been underestimated, causing delays in the implementation
of adequate mitigation actions. On the contrary, the resulting proba-
bilities from the second case could have been overestimated, incurring
in unnecessary economic costs if mitigation actions are implemented
too soon.

The challenge is to find an adequate combination of unrest indicators
(observations and interpretations) that best describe this particular
volcano, weighting down those parameters that may be less relevant
to it. In this respect, there seems to be a good compromise between
the third scenario (based on overall seismicity, gas and deformation)
and the fourth scenario in Fig. 3 (based on overall seismicity, gas, defor-
mation, and freshmagma). In our case, we gavemore importance to the
existence of fresh magma towards the total probability of an eruption.
The non existence of fresh magma in the earlier stages of the unrest
brings the total probability of eruption down to 9% on 5 June, as opposed
to an 89% if we look at the overall seismicity increase only. The same
effect is observed to a lesser extent when combining indicators on
seismicity and gas.

Assume that we wanted to assess the type of unrest observed as of
April 1991, given that this could be either magmatic, geothermal or
tectonic. Table 1 shows the expected behavior of each indicator for a
particular type of unrest to occur. Comparing those values with the
observed precursory behavior in April 1991 shown in Table 2, we can
say from looking at the seismicity indicators that the unrest is likely to
be magmatic, as some of the observed unrest indicators clearly rule
out geothermal and tectonic unrest.

So far we have shown in Fig. 3 the evolution of the probability
estimates based onmonitoring information alone. Let us take the fourth
scenario from Fig. 3, then, when the short-term probability estimates
based on overall seismicity, overall gas increase, deformation and
presence of fresh magma are updated with information on past events
(Section 4.2.1), we obtain a better assessment on the potential size
Table 4
Short-term probabilities merging past data and monitoring information on overall seismicity in

Size Location Extent LT pr. 4-5 91 26-27/5 2/6

Large .8 East .4 10Km .75 .24 .04 .04 .04
15Km .2 .064 .01 .01 .01
20Km .05 .016 0 0 0

Small .2 East .4 10Km .75 .06 .01 .01 .01
15Km .2 .016 0 0 0
20Km .05 .004 0 0 0

Large .8 Else .6 .48 .08 .08 .07
Small .2 Else .6 .12 .02 .02 .02
ST probability estimates .17 .16 .15
and extent of the volcanic hazards. Table 4 and Fig. 4 show for the
same monitoring information how the evolution of the probability of
a volcanic event varies significantly across different scenarios. The
probability of having a large magnitude event increases drastically
from June 5th onwards, driven by the significant increase in having a
large magnitude event directed to the East and affecting distances up
to 10 km. This could be understood as an indication that mitigation
actions should be considered to protect the East side up to a distance
of 10 Km.

These probability results need to be used together with the cost and
losses associated to those areas. This should be the next step of the
analysis, where the output probabilities would serve as input parame-
ters in a probabilistic decision model. The cost of implementing actions,
and associated losses if the event occurs before the area is protected, are
incorporated to assess each mitigation action Marzocchi and Woo,
2007; Sobradelo et al. (submitted for publication).

5.1. The unrest indicators

With the methodology explained in previous sections, we compute
the probability estimates for each unrest indicator at each time interval.
Figs. 1 and 2 show for each unrest indicator the probability that the
activity will increase significantly by the next time interval (assumed
to be of the same length as the interval since last) if thepattern observed
in the past is to be continued. As an example,figure Fig. 1 shows the 0.83
overall seismicity increase on 26–27May 1991 reported in Table 3. This
is computed using Eq. (2) as (4+ 1)/(4+ 1+ 1), where the value 4 =
0.80(4 + 1) is computed using Eq. (4).

Overall, the total seismicity experienced a gradual increase from 2
April 1991 to 15 June, whereas the ground deformation showed an
increase between3 and 7 June, and a decrease after that. The gas param-
eters (based on overall information detected and on gas flux and SO2
measurements) experienced an overall gradual increase up to the last
measurements on 10 June. On 5 June, 2 days before the ground
deformation stops increasing, the presence of fresh magma begins to
increase and the number of phreatic explosions stops.

Fig. 2 shows the evolution of the unrest indicators studied individu-
ally. Mapping them into a common probability scale makes it easier to
detect abnormal trends, possible patterns, and compare the behavior
of different indicators. In our example, there seems to be a clear division
between those unrest indicators that increase as the crisis evolves
towards an eruption and those that decrease. It is also important to
detect the inflexion point in some key unrest indicators, as in the SO2
increase on June 5, where the inflation rate increase stops on June 7th,
and the tremor increases on June 8th. These inflexion points between
June 5 and June 7th could be an indication that the system was
experiencing a shift into a new phase.

Some of the unrest indicators have similar probability estimate
curves because they show the same pattern of successive Y and N as
the crisis evolves. As this behavior is expected for certain groups of
unrest indicators in specific scenarios, in particular seismicity indicators,
it serves as a way to spot abnormal behavior. For example, if we see a
crease, overall gas increase, ground deformation increase and presence of fresh magma.

3/6 5/6 7/6 8/6 9/6 10/6 12/6 13/6 14/6 15/6

.03 .02 .04 .06 .07 .09 .11 .12 .12 .13

.01 .01 .01 .01 .02 .02 .03 .03 .03 .03
0 0 0 0 0 .01 .01 .01 .01 .01
.01 .01 .01 .01 .02 .02 .03 .03 .03 .0

0 0 0 0 0 .01 .01 .01 .01 .01
0 0 0 0 0 0 0 0 0 0
.06 .04 .08 .11 .15 .18 .21 .23 .24 .26
.01 .01 .02 .03 .04 .04 .05 .06 .06 .06
.12 .09 .16 .23 .31 .37 .44 .48 .51 .54
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significant increase in seismicity but no VT events, it could indicate a
tectonic rather than a magmatic unrest. It could also suggest inconsis-
tencies in the measurement devices.

Alternatively, if the increase in activity across different reports varies
substantially for a particular time interval with respect to a previous
one, the absolute value of the increase can be reflected in the probability
curve by adjusting the corresponding prior information for that
particular bulletin. In our example, the accumulated energy release
rate increase and the RSAM acceleration show the same pattern in
Table 2, but we see in Fig. 2 that from 7 June the probability curve for
the accumulated energy release rate increase is above the RSAM trend.
This is because the absolute value of the energy rate increase from 8
June onwards was substantially larger than for the significant increases
experienced in the period leading up to 7 June, and so we reflected this
significantly larger increase in the prior weights assigned, puttingmore
emphasis on the later changes. With this approach we are able to
capture and highlight relevant shifts in the precursory activity.

6. Conclusion

Understanding the evolution of volcanic unrest is one of the
fundamental tasks to forecast volcanic activity. The time variation of
the different geophysical and geochemical parameters monitored by
the surveillance networks, or simply the variation in the normal behav-
ior directly noticed by an observer located close to the volcano, may
indicate that an unrest episode is evolving towards a volcanic eruption.
However, quantifying this degree of evolution and the time to the onset
of the eruption is not an easy task, due to the fact that forecasting
volcanic eruptions is still a young science. Even more important is the
fact that each volcano or volcanic system responds in a different way
when an over-pressurized batch of magma tries to reach the surface.
In addition to this, the possibility of having unrest triggered by geother-
mal or tectonic causes (i.e.: without movement of fresh magma) may
complicate even more the understanding of this complex problem.

In this study we present a quantitative approach through Bayesian
inference, consisting of an open structure that allows mapping individ-
ual unrest indicators into a common probability scale, which can then
be combined to asses the hazard of a particular scenario. This approach
estimates (for each unrest indicator) the probability of experiencing a
significant variation between two consecutive stages or time intervals
during the unrest episode, which can be interpreted as an evolution
towards the onset of a particular eruptive scenario. This means that
we are not putting restrictions on any particular value of the unrest
indicator, but rather emphasizing the relative change with respect to a
previous stage. As we update the probability estimates at each point,
using only the new information since the last bulletin, we also make
the model independent of the length of the interval between reports.
The short-term probability of occurrence for an eruptive scenario
takes into account monitoring data, as well as any relevant past history
of the volcano (long-term hazard assessment). As defined, the method
can be applied to any volcanic system, regardless of their characteristics,
allowing comparisons between them.

Most important, the method provides a rapid and formal way of
transforming precursory information into a common probabilistic
scale for comparison, useful to assist decision makers and experts
during an evolving crisis, and detect sudden changes or shifts in the
activity of the volcano that may require immediate attention. The
method also allows identifying alternative unrest indicators for those
volcanic systems that are less monitored than others. For instance, if
there is no monitoring system in place but there is overall seismicity
felt by the population, or overall deformation, these can be taken into
account to assess the short-term probabilities. The fact that we consider
observables (i.e. precursors) and interpretations as unrest indicators
does not challenge the validity of our approach. Basically, it claims to
identify changes in apparent tendencies or patterns, rather than
absolute values that could be interpreted as fixed trigger indicators.
This methodology could be applied to the study of all volcano types
and is equally applicable to monogenetic fields and collapse calderas.
For example, in monogenetic volcanism, lateral migration of seismicity
and deformation may be crucial to understand the evolution of the
unrest (e.g.: Martí et al., 2013). The methodology can also be used to
compare the behavior of the same parameters for different eruptions
from the same volcano and try to look for a pattern. The epistemic and
aleatoric uncertainties can be formally adjusted at each step of the
unrest and for each unrest indicator via the model input parameters
(prior and data weights), as explained in previous sections. The selec-
tion of the prior probabilities in a Bayesian model has a subjective
component, which in some occasions has been object of criticism. The
tool presented here does not claim to replace existing approaches to
themanagement of a volcanic crisis, but tries to assist in the interpreta-
tion and analysis of relevant data. Caution should always be executed
regarding the interpretation and applicability of any approach to an
evolving crisis. Although this approach has been developed for volcanic
hazard, it could be adapted to assess similar natural hazards.
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