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Abstract

Given that so many ecosystems currently face major habitat change conducive to the rising

global spread of invasive species, there is growing awareness of the need to adopt proactive

management strategies. Among models most used to predict future changes in distribution

of invasive species, few explicitly incorporate characteristic of the population dynamics

at the invasion front and the spatial heterogeneity of the environment. In particular,

the influence of landscape composition and configuration on population dynamics and

ecosystem susceptibility to invasion, remain dependant on broad generalization.

The purpose of this study was to investigate how biological characteristics of inva-

sive species interact with the structure of the landscape, to determine establishment and

spread success. Critical to this research was the development of a unique spatially-explicit

model that allowed for a systemic investigation of the impact of landscape structure on

population dynamics of a species. The modelling framework has three components,1) a

spatially-explicit, individual-based dispersal simulation framework, 2) a landscape gen-

erator allowing independent change in the composition and configuration of landscape

components, and, 3) appropriate landscape measures that establish a quantitative rela-

tionship between demography, dispersal and the environment. The framework allowed a

shift in focus from an individual species, to a more general approach where the pattern

of invasion over multiple species and landscape scenarios were used to infer key drivers of

invasion.

To identify appropriate landscape measures for this research, a multi-scale analysis

of widely used landscape metrics was carried out. That analysis highlighted that land-

scape metrics are sensitive to complex interactions between the intrinsic characteristics of

a landscape, and scale-dependent factors, making it difficult to isolate landscape pattern

driven effects from the effects of changing spatial scale. As a solution, the self-organising
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map (SOM) clustering approach is proposed as an efficient way to disentangle the rela-

tionships among landscape metrics and spatial scale when accurate characterization of

landscape pattern is a key input in spatially explicit ecological models.

The investigation of the effect of landscape structure on the establishment and spread

of invasive species showed that both population density and rate of spread are affected

in significant ways, and sometimes interactively, by landscape based components such as,

suitable habitat amount, habitat patch aggregation, core area, edge density and habitat

shape complexity. A key result of this research suggests that areas that are vulnerable

to invasion can be better predicted by quantifying the elements of the landscape that

significantly influence the density and spread of a species. However, the identification of

an optimal set of landscape metrics for a species will require case specific study as clearly

different species will respond to landscape structure in different ways.

This research also demonstrated that dominant processes shaping population den-

sity and spread of invasive species can be identified and prioritized, as well as those of

secondary importance. Variables representing an Allee effect, the intrinsic rate of increase

and propagule pressure were found to be the three most influential on both density and

spread over multiple invasive species scenarios. The frequency of long-distance dispersal

events, in combination with measures of suitable habitat amount and habitat aggregation,

was found to be a better indicators of population dynamics than the intrinsic abilities of

a species to disperse in fragmented landscapes. This research has shown that the pres-

ence of an Allee effect leads to a balance between the effectiveness of spread and invasion

success. Spread is maximized at an intermediate dispersal rate and inhibited at both low

and high rates. The configuration and composition of the landscape, by either increasing

or mitigating or the dispersal abilities of a species, can lead to a rate of spread under a

dispersal threshold for which density and spread is at the highest.

This research highlights how complex interactions between propagule pressure, species

traits and habitat characteristics can determine patterns of invasion across fragmented

landscapes. Successful management of invasive species, particularly for prioritisation and

design efficient surveillance and control strategies, will depend on understanding this con-

text dependent effect across habitats. More important, however, the research highlights

the need for implementing multi-scenario modelling frameworks to reduce model uncer-
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tainty and to identify optimal trade-offs between model precision and complexity. Such

development is in its infancy, and further research to correctly and consistently assess,

and communicate uncertainty, surrounding spread modelling is needed. Informative as-

sessments and clear communication of uncertainty will allow end-users and practitioners

to make more informed decisions about the potential for invasive species establishment
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Chapter 1

General introduction

1.1 Biological invasions in changing ecosystems

Invasive alien species are species that are introduced in a location outside their natural

geographical range, where they become established and then proliferate and spread to the

detriment of natural systems and human interests (Richardson et al., 2000; Blackburn

et al., 2011). The on-going, global mass invasion by invasive alien species comprises a

rapidly growing array of unique ecological, economic and social challenges of unprecedented

magnitude (Carpenter et al., 2006). The negative ecological impacts of invasive species

have been reported at multiple levels of biological organization, ranging from genetic and

evolutionary changes in individual organisms, disruption of native population dynamics,

local and regional extinctions of native species, to the alteration of biochemical pools

and fluxes of nutrients, fire regimes and water quality (Simberloff et al., 2013). Invasive

species have now affected nearly every type of ecosystem on the planet and pose one of the

biggest threats to biodiversity worldwide and associated ecosystems services (Carpenter

et al., 2006; Bellard et al., 2016).

Invasive species have significant socio-economic impacts, inevitably affecting human

well-being. They can reduce yields from agriculture, fisheries, and forestry, sometimes

exacerbating the already grave situation of food security in developing countries (Steiner,

2010). The conversion of native communities to invasive-dominated communities has aes-

thetic and cultural impacts (Nuñez & Simberloff, 2005). Some of the large epidemics that

caused humanitarian and economic crises, such as malaria (Plasmodium spp.), Bubonic

plague (Yersinia pestis) and West Nile virus (Flavivirus spp.), are known to be spread by

invasive species (Lounibos, 2002). Various publications report large sums of money spent

with respect to the cost of detection, control and eradication of invasive species. According
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to De Poorter et al. (2007), USD 1.5 trillion/year is incurred globally (5% of the global

economy), the majority of which is due to crop losses and the application of herbicides

and pesticides to reduce invasive weeds and pests. Pimentel et al. (2000, 2005) estimated

damage costs associated with invasive species effects and their control to be approximately

USD 120 billion/year in the United States alone. Even for a small island nation in the

Southern Hemisphere, Giera & Bell (2009) concluded that close to $2 billion dollars are

spent in New Zealand annually on invasive alien species alone. Invasive species therefore

contribute to social instability and economic hardship, placing constraints on sustainable

development, economic growth, food security and public health.

As humans have broken down the major biogeographic barriers by the rapid expan-

sion of enhanced transport technology and trade routes among previously disconnected

countries, the frequency and magnitude of biological invasions and their costs to society

have been increasing at an alarming rate (Meyerson & Mooney, 2007; Perrings et al., 2005;

Banks et al., 2015). It is also becoming clear that the human driven changes in regional

land-use, environment and climate, through eutrophication, urbanization, pollution, and

non-sustainable harvesting, for example, can increase the numerical abundance and/or

geographic range size of an invasive species (Didham et al., 2007; Thuiller et al., 2008).

Land-use changes, through habitat loss and fragmentation, continue to open new areas to

invasive species and alter disturbance regimes that are conducive to the establishment and

spread of invasive species (Didham et al., 2005). Increase in nutrients such as nitrogen

from land-use, also promote the growth of opportunistic species. Taranu et al. (2015), for

example, reported that an increase in nitrogen from agricultural activity promotes the

expansion of harmful cyanobacteria throughout lakes in the northern temperate-subarctic

regions, posing a serious threat to drinking water sources. Climate change is projected to

alter temperature and precipitation regimes at a regional scale, extending the climatic suit-

ability for some species, in particular, tropical and sub-tropical invasive species (Hellmann

et al., 2008).

The prolific nature of the invasive species problem has made biological invasions an

enormous ecological and societal challenge. Prevention and early detection, coupled with

a rapid assessment and a quick and effective response, is viewed as one of the most cost-

effective approaches to combating invasive species (Pyšek & Richardson, 2010). While real
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progress has been made towards identifying key drivers and processes that facilitate or

prevent biological invasions, the on-going and future change in the distribution of invasive

species remains extremely difficult to predict. For example, we are still no closer to

determining why some species establish self-sustaining populations in an area and others

do not. Nor are we any closer to determining why a species may become overwhelmingly

invasive in a particular environment, while others will spread slowly or not at all. As a

result, management strategies of invasive species are mostly reactive. However, given the

projected rate of environmental change and associated risk of biological invasion, there

is a growing interest in pre-emptively managing ecosystems to mitigate negative impacts

of invasive species before significant damage occurs (Larson et al., 2011; Thuiller et al.,

2008).

Proactive responses are limited without the existence of effective forecasting meth-

ods and the availability of advanced models to do this. Species distribution models (SDMs)

and prediction of spread have become increasingly important tools to investigate hypothe-

ses about the processes and drivers of invasions (Venette, 2015). Mechanistic models,

in particular, provide excellent tools for evaluating the relative importance of different

drivers of biological invasion because they involve, 1) inventories of the biological, eco-

logical, environmental and human factors that impact the establishment and spread of

invasive species, and, 2) quantifying the probabilities of invasion associated with these fac-

tors (Robledo-Arnuncio et al., 2014; Venette, 2015). In practice, however, risk predictions

of establishment and spread typically lack explicit consideration of the interaction between

multiple drivers of invasion (Catford et al., 2011; Gallien et al., 2014). Current theoret-

ical and empirical studies lead to conclusions most applicable to the specific conditions

under which they are developed, which limit inference across species and ecosystems.For

example, the relative importance of population growth, dispersal abilities and propag-

ule pressure versus habitat structure remains poorly understood (González-Moreno et al.,

2013a). Robledo-Arnuncio et al. (2014) emphasized the urgent need for more integrative

approaches and broader modelling frameworks that focus on cross-study comparisons at

different spatio-temporal scales to make better predictions of the vulnerability of organisms

and ecosystems to invasion.

In this research I broadly review the recent achievements in developing forecasts
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of spread of invasive species and address some of their limitations. I devote particular

attention to the challenge of accounting for the relative contribution of multiple drivers of

invasion which comprises an essential basis for explaining and predicting spatial patterns

of spread in changing ecosystems. The broad aim of this thesis is to undertake an inte-

grated assessment based on a spatially-explicit model of spread of an invasive species under

different scenarios of habitat composition and configuration. The integrated assessment

and its methodological approach are intended to be useful for decision-making within New

Zealand‘s existing biosecurity system and can be easily applied elsewhere. The remainder

of this Chapter provides a broad overview of the research topic and thesis organization. It

provides the rationale for the present study and its significance, as well as a statement of

the research objectives and tasks undertaken. In particular, Section 1.2 gives an overview

of the research topic relating to drivers of establishment and spread of invasive species.

Section 1.3 broadly reviews the achievements in developing models of spread. Section 1.4

emphasises the knowledge gaps and future direction of research, and details the research

development of this thesis.

1.2 Drivers of establishment and spread of invasive species

1.2.1 The process of invasion

Biological invasions involve four sequential stages, 1) the arrival phase, generally driven

by a small number of individuals (propagules), 2) the establishment phase with low spread

rate, 3) an expansion phase characterized by high spread rates and exponential population

growth, and, 4) a saturation phase when spread rates reach a limit (Lockwood et al., 2013).

I focus on the second and third stages where spatial-modelling has the most to offer.

These invasion stages are perceived as being divided by ecological filters that species must

overcome before proceeding to the next stage. The invading population has to disperse

into a suitable environment (1st filter), where it can survive and breed successfully (2nd

filter), establish in recipient communities through competitive interactions (3rd filter),

and finally promote further survival and reproduction by expanding its range to suitable

habitats (4th filter). Among others, Catford et al. (2009) and Gurevitch et al. (2011)

identified more than a dozen leading hypotheses that have been proposed and tested to
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characterize the vulnerability of organisms and ecosystems to invasion. These hypotheses

typically consider the size and frequency of introduction (propagule pressure), the life-

history traits of the invaders, and the abiotic and biotic characteristics of the recipient

ecosystems, all of which vary in time and space. Surprisingly, despite the general consensus

on the importance of investigating these three processes and their interactions, they are

usually studied independently (e.g. Gallien et al., 2014).

1.2.2 Propagule pressure

A predominant observation in a variety of taxonomic groups is that, as propagule pres-

sure increases, so does establishment and spread success (Lockwood et al., 2005, 2009).

Intuitively, increasing the size and number of propagules enables the incipient population

to overcome limitations associated with small populations, such as Allee effects, envi-

ronmental stochasticity and demographic stochasticity. Reflecting on the generality of

the relationship between propagule pressure and invasion success, Colautti et al. (2006)

have advocated that propagule pressure is the key driver of invasion and should form a

foundational element of all establishment and spread risk analysis.

The relative effect of a single, versus multiple incursions remains, however, relatively

unexplored. Hopper & Roush (1993), Grevstad (1999) and Liebhold & Bascompte (2003)

argued that Allee effects, such as reduced fitness when conspecific density is low, favour

fewer introductions of more individuals, while high environmental stochasticity favours

a larger number of introductions. Nevertheless, Brook (2004) suggested that repeated

introductions of small populations may systematically promote establishment by supple-

menting genetic variation adaptive for new habitats. Using a simulation model to explore

the probability of establishment of exotic birds, Cassey et al. (2014), found that one intro-

duction event always outperformed multiple introduction events that summed to the same

size. In addition, while the size of propagule was undoubtedly important for ensuring pop-

ulation growth in the novel environment, the authors found that demographic traits had

the greatest effect on establishment. This finding echoes several other studies that have

also questioned the generality of the positive relationship between propagule pressure and

invasion success (Nuñez et al., 2011; Yeates et al., 2012). The initial introduction stage of

most biological invasions is poorly understood, in part, because there is often no reliable
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records of the species that were introduced but failed to establish (Haydar & Wolff, 2011;

Jerde & Lewis, 2007; Ferrari & Lookingbill, 2009). McGregor et al. (2012) emphasized that

non-random patterns of introduction may result in the pool of introduced species being

a biased subset with regard to key species attributes and life-history traits, potentially

biasing our perception of which factors are important for determining establishment and

spread success.

1.2.3 The importance of life-history traits

Successful invaders often possess life-history traits that promote invasiveness. Different

combinations of life-history traits might be required depending on the characteristics of

the invaded habitat (Delatte et al., 2009) and may vary across invading species (Sakai

et al., 2001). For example, current theory on optimal insect development involves a direct

trade-off between the disadvantage of a longer juvenile development time and the fitness

advantages of large body size. However, it is widely recognized that rapid demographic

growth and rapid dispersal rates promote the establishment and spread of an invading

population in a novel environment (Kolar & Lodge, 2001; Kneitel & Chase, 2004; Pyšek

& Hulme, 2005).

Upon arriving in a novel environment, invading populations are likely to be small

and therefore subject to demographic and environmental stochasticity, as well as Allee

effects (Taylor & Hastings, 2005). Rapid demographic growth may promote establishment

by counteracting such negative effects, while populations with low growth rates may face

extinction. On the other hand, spread of invading organisms is often the result of short-

distance dispersal (natural dispersal abilities of the organism into surrounding adjacent

areas) in combination with long-distance dispersal (e.g. wind-borne transfer of small or-

ganisms, human transportation). Both isolated colonies formed by long-range dispersal

and populations standing on the boundaries of the population front are generally of low

density and therefore subjected to stochasticity and Allee effects, as in the establishment

phase. Keitt et al. (2001) and Taylor & Hastings (2005) suggested that the intrinsic rate

of population increase represents a critical factor regulating the rate of range expansion,

by counteracting demographic stochasticity and Allee effects once the population is estab-

lished.
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On the other hand, high dispersal rates have been proposed to facilitate spread,

suggesting a positive feedback between range expansion with selection for increased dis-

persability (Hill et al., 2011). Smith et al. (2014), however, showed that when Allee effects

apply, high dispersal rates can also act as a drain on the introduced population, which

can become too small to be maintained. The authors concluded that spread was max-

imal for intermediate dispersal rates but was inhibited at low and high dispersal rates.

Dispersal rates are determined to a large extent by long-distance dispersal events, partic-

ularly in patchy or fragmented environments because long-distance dispersal events can

connect habitat patches that are no longer physically linked (Clobert et al., 2012). Robledo-

Arnuncio et al. (2014) suggest that it is clear that the frequency and length of long-distance

dispersal events are important for explaining differences in propagule deposition, but they

only explain a small fraction of the variation observed in population density and rate

of spread of invasive species across habitats. In many studies, such variation has been

attributed to temporal and spatial variation in habitat conditions (abiotic and biotic in-

teractions and habitat structure) that can act to limit or exacerbate the growth and

dispersal abilities of invading organisms (e.g. Robledo-Arnuncio et al., 2014).

1.2.4 Vulnerability of ecosystems to invasion

Facon et al. (2006) and Barney & Whitlow (2008) emphasize the central role of a match

between species requirements and the characteristics of the new environment invaded. This

match can either be present at initial contact between a species and its novel environment,

or may develop subsequently through changes to the invasive species (evolution), the

environment (land-use or climate change for example) or both (Facon et al., 2006). At

global and regional scales, it is generally well accepted that abiotic conditions, such as

temperature and precipitation, and resource availability (e.g. host availability), are the

main drivers of species distributions. This acceptance is related to the fact that species

will not be able to invade an area that has abiotic conditions outside of its physiological

tolerance levels (Petitpierre et al., 2012). At a local scale, invasive species typically have

higher density in their novel habitat than in their native ranges (Vilà et al., 2007; Ibáñez

et al., 2009). These differences have been partly explained by biotic interactions and

human influence, such as biotic resistance and human generated disturbance.
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The biotic resistance hypothesis proposes that habitats with higher biodiversity are

more resistant against invaders than habitats with low biodiversity (Elton, 2000; Shea

& Chesson, 2002). Because of their geographic and evolutionary isolation, islands often

present lower biodiversity than continents and are expected to be more prone to invasion

(island susceptibility hypothesis) (Elton, 2000). Alternatively, the ‘enemy release hypoth-

esis’ (Colautti et al., 2004) specifies that invasive species is often not be regulated in the

new environment due to the absence of their native enemies. The ‘novel weapons hypothe-

sis’ proposes that some invasive species gain advantages over native species by possessing a

trait, such as better defence mechanism or competitive ability that is new to the resident

community of native species, that can affect them negatively (Keane & Crawley, 2002;

Colautti et al., 2004). Finally, the ‘meltdown hypothesis’ claims that the establishment of

one invasive species in a new environment makes it easier for other non-native species to

invade (Simberloff & Von Holle, 1999).

All the hypotheses and theories have connections and points upon which various

authors disagree, along with gaps and limitations in what they encompass. Ultimately,

propagule pressure, abiotic factors and biotic interactions, both with ecological and evolu-

tionary components, can act as filters that control the match of a population of invading

species to its novel habitat (Worner, 2002; Catford et al., 2009; Gurevitch et al., 2011).

As such, disturbance, defined in this study as any event that disrupts ecosystem structure

and function (Pickett & White, 2013), is widely recognized to offer new opportunities

for a species to enter an ecosystem by encouraging a shift in abiotic conditions, biotic

composition and disrupting source pools of natural enemies. Increasing levels of human

driven change in regional land-use and climate, coupled with the dramatic increase in the

transport of biota across the world (propagule pressure), have created types of disturbance

that are unlike anything in the evolutionary history of many species. Early in the devel-

opment of the field of invasion science, several approaches were considered to address how

alteration of landscapes might promote invasive establishment and spread (Fisher, 1937).

Among these, the utility of landscape ecology, that aims to better understand the effect

of landscape structure on population dynamics and spread of invasive species, has long

been recognized (With, 2002). However, it is only recently that it has seen a resurgence

of interest (Vilà & Ibáñez, 2011).
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1.2.5 Landscape effects on the invasion process

Human activities have become key drivers of invasive species establishment and disper-

sal, through their direct contribution to the transport of propagules and intense land-

use changes (Mack & Lonsdale, 2001; Zimmermann et al., 2014). Land-use change can

be seen as a landscape-level disturbance underlying habitat loss and habitat fragmenta-

tion (Hobbs, 2000). Urban and semi-urban areas are particularly vulnerable to biological

invasion. Cities are centres of intentional and accidental species immigration, for example

through ornamental plantings, green waste dumping and domestic animals and serve as

major sources of propagule pressure due to the amount of commodities arriving or passing

through for trade and commercial activities (Vitousek et al., 1996; Garden et al., 2006; Ni-

inemets & Peñuelas, 2008). Human infrastructures, such as roads, highways, hiking trails

and railways, create new potential habitat for invasion, as well as potential for propagule

transportation along transport routes (Mortensen et al., 2009).

The modern human modification of open range lands, converts complex natural

ecosystems to simplified managed ecosystems with increased nutrient availability that

encourages the establishment of invasive species (Chytrỳ et al., 2008; Pyšek et al., 2010).

In agricultural ecosystems for example, modern methods have generated monocultures that

are amalgamated and enlarged to enhance farming efficiency. Landscape simplification,

coupled with the intense use of fertilizers, increases the concentration of suitable resources

that are available to a particular invasive species and can reduce habitat types that support

invasive species’ natural enemies (Jonsson et al., 2015; Tscharntke et al., 2012; Rigot

et al., 2014). Fragmentation of wild-land habitat, resulting from expanded agricultural and

urban development, diminishes habitat size and connectivity among native populations

and increases edge habitat between natural and transformed areas (Harper et al., 2005;

González-Moreno et al., 2014; La Morgia et al., 2011). Habitat edges are disturbed habitats

that have different environmental and species composition than interior habitats that can

modify nutrient transport (Peterjohn & Correll, 1984), affecting species persistence and

biodiversity and nurturing invasive species (Kennedy et al., 2002). Because fragmentation

tends to give invasive species a foothold in the landscape, it can have devastating effects

even on interior habitats.

Empirical studies are strongly supported by simulation models showing that the local
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density of invasive species is determined not only by local habitat quality, but also by the

spatial structure of the habitat in the surrounding landscape (With, 2002, 2004). In this

context, landscapes comprised of more or less isolated patches of suitable habitat within a

matrix of less suitable habitat. From the perspective of a particular species, this patchwork

of various habitat types may offer different resources for foraging and reproduction, and

different suitability for species dispersal (Hanski, 1999). Within landscape theory there are

two important aspects of landscape spatial structure capable of impacting the growth and

movement of species (Hansson et al., 2012). First is landscape connectivity, defined as the

combined effect of landscape elements that facilitate or disrupt the movement of individuals

between habitat patches, and, second, environmental heterogeneity (i.e. variance and

range of environmental conditions and their spatial autocorrelation). However, we only

have a limited understanding of how these factors interact to affect the establishment and

spread of an invasive species.

Surprisingly, theoretical and empirical approaches lack explicit consideration of the

effect of landscape features on the success of establishment and spread of species. Little is

known about how invasive species move through the landscape. This lack of understanding

may be partly due to the difficulty measuring long-distance dispersal across species and

habitats (Robledo-Arnuncio et al., 2014). Even less is known about the relative importance

of different features of landscape structure, for example, patch size, shape, edge density,

patch aggregation, compared with propagule pressure and life-history traits in shaping

the distribution and abundance of invasive species. Identifying which factors have most

influence on the rate of spread and population density is nevertheless fundamental. The

ability to identify the importance of each factor will not only contribute to an improved

understanding of the underlying process, but will also facilitate the development of efficient

invasion predictors and the identification of factors that may be most effective reducing

population density and dispersal rates.

1.2.6 Summary and future perspectives

The distribution and spread of invasive species is the result of complex combinations of

factors. The size and frequency of introduction (propagule pressure), the life-history traits

of the invaders, population interactions and suitability of the abiotic recipient environment
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create the conditions that lead to demographic changes resulting in population establish-

ment and growth. Processes such as disturbance that provide physical space or resource

availability encourage shifts in community composition and increased the susceptibility

to invasion. Interest in the effects of broad scale environmental changes has spurred the

effort by landscape ecologists to decipher the effect of habitat loss and fragmentation on

various ecological processes, including the establishment and spread of invasive species.

Surprisingly, despite the general consensus about the importance of investigating these

different processes and their interactions on the success of invasion, risk predictions of

establishment and spread typically lack explicit consideration of the interaction between

multiple drivers (e.g. Gallien et al., 2014). In particular, spatially-explicit analyses of inva-

sive spread at a landscape level are very few and current empirical and theoretical studies

traditionally focus on a single-species approach and habitat requirements, which limits

inference across species and habitats (e.g. Catford et al., 2011). As a result, the relative

role of habitat structure (composition and configuration) versus propagule pressure and

life-history traits of the invasive species remain unclear.

Correctly establishing causality through a mechanistic understanding of habitat

modification on species invasion is crucial to achieve better prediction and management

of invasive-species in changing ecosystems. For example, if the spread of a local invasion

is habitat limited (e.g. if space is saturated), the potential for further impacts, such as

the displacement of native species, is low. On the contrary, if marginal habitat limits

the invasion by providing natural barriers to dispersal, the risk of invasion of adjacent,

potentially suitable habitat remain important and the potential for further impact is much

higher. The outcome of such spatial analysis, however, remains limited by constraints in

the ability to carry out a comprehensive quantitative synthesis of landscape effects on the

spread of invasive species. In particular, empirical studies fail to account for large gradi-

ents of habitat complexity, such as differing patch size, shape, juxtaposition, interpatch

connectivity or habitat aggregation, and therefore offer insufficient or even no replication

across habitat, in part because of an unavoidable trade-off between spatial scope, sampling

intensity and accuracy (Robledo-Arnuncio et al., 2014).

To incorporate landscape ecological expertise in risk assessment of biological inva-

sion, tools and models are required that allow for a systematic investigation of the impact
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of changes in landscape structure on population dynamics. Understanding the landscape

ecology of invasive spread may afford new insights and opportunities for managing and

restoring landscapes to control the spread of invasive species and minimize the invasibility

of communities.

1.3 Models of establishment and spread of invasive species

1.3.1 Species distribution models

A major division has existed between the approaches employed for modelling large-scale

species distribution and those for modelling local-scale population spread. Broad scale

projections of species’ distribution are largely based on static approaches linking current

species distribution (SDMs) to environmental variables such as temperature, precipita-

tion and elevation, and resource distribution (Guisan & Thuiller, 2005). These models

can be used to project future distribution and impacts from future land-use or climate

scenarios (Thomas et al., 2004). Techniques for fitting SDMs to observed data have devel-

oped rapidly and offer practical advantages over more mechanistic modelling approaches

due to the relative simplicity of their data requirements, their relative ease of use within

freeware packages, and the range of the interactions (biotic and abiotic) they can detect

and characterize (Guisan & Thuiller, 2005; Elith & Leathwick, 2009). Consequently, cor-

relative SDMs have been used widely for invasive species risk screening and conservation

applications (e.g. Moilanen & Wintle, 2007). However, despite the status of dispersal and

population dynamics as key ecological constraints of species distribution and spread, as

well as the role of spatial structure in limiting or exacerbating the dispersal abilities of

an invading population, these factors have rarely been incorporated into SDMs (Guisan

& Thuiller, 2005; Franklin, 2010; Huntley et al., 2010; Schurr et al., 2012; Thuiller et al.,

2013). In contrast, mechanistic models of spread incorporate, to differing degrees, both

demography and dispersal at their core.

1.3.2 Analytical models of spread

Historically, spread models relate the spatial location of reproducing individuals to the

spatial location of their parents through the definition of a dispersal kernel, a probability
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function describing the distance from the original location after dispersal. Partial differ-

ential equations (PDEs) and reaction-diffusion (RD) models assume spatial homogeneity,

random reproduction and random movement during an individual life time (Fisher, 1937;

Skellam, 1951). These basic approaches were then extended to include the role of de-

mographic heterogeneity using, for example, age-dependency of movement and reproduc-

tion (Mollison, 1991; Van den Bosch et al., 1992). Later, discrete-time integro-difference

equations (IDEs) were developed to account for different forms of dispersal kernel and,

in particular, to accommodate the fat-tailed shape of observed long-distance dispersal

data (Kot et al., 1996). More detailed models link an age- or stage-structured matrix IDE

and thus account for age dependent dispersal (Caswell, 2001). Adding demographic com-

plexity to spatial population models has greatly improved the understanding of how local

dynamics can affect spatial spread (Jongejans et al., 2008). However, both RD models

and the IDE framework again assume spatial homogeneity of the environment.

Theoretical examination of the influence of spatial heterogeneity in modelling efforts

begins with a binary classification of suitable and unsuitable sites (Shigesada et al., 1986).

Persistence conditions as a function of the fraction of favourable area have been found

and Shigesada et al. (1995) showed that rate of spatial spread is dependent on the mean

spread rate in different environments. Their approach has been extended to include sinu-

soidally varying environments (Kinezaki et al., 2006), two dimensional domains (Kinezaki

et al., 2003; Roques et al., 2008), more general periodic environments in multiple dimen-

sions (Weinberger, 2002; Berestycki et al., 2005; Roques & Hamel, 2007; Hamel et al.,

2010), directional movements (Petrovskii & Li, 2003; Almeida et al., 2006) and many

other phenomena (Berestycki et al., 2009; Kinezaki et al., 2010; Roques & Chekroun,

2010; Garnier et al., 2012; Kawasaki et al., 2012; Vergni et al., 2012). The effect of peri-

odic fragmentation has also been examined in the framework of an IDE model (Shigesada

& Kawasaki, 1997; Van Kirk & Lewis, 1997) incorporating spatially varying growth rates

and varying dispersal kernels (Weinberger et al., 2008). Recent developments in IDE incor-

porate fluctuating environments (Neubert et al., 2000), Allee effects (Veit & Lewis, 1996;

Wang et al., 2002; Dewhirst & Lutscher, 2009), interspecies competition (Owen & Lewis,

2001; Samia & Lutscher, 2010) and other phenomena associated with spatio-temporal het-

erogeneity (Caswell et al., 2011; Schreiber & Ryan, 2011; Brown et al., 2012). There are
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clear benefits to using theoretical oriented approaches in that they provide exact solu-

tions in many cases and allow for important comparisons of model outputs between study

systems. However, at present, it is not clear how an analytically tractable model can for-

mally represent a real landscape in the form of a quality function and thus consideration

of biological and geographic realism is still limited.

1.3.3 Simulation-based models

Simulation-based models have been used as a possible alternative as they can easily in-

corporate important characteristics of large numbers of individual organisms and their

interactions with resources and ecological processes (Hastings et al., 2005; Jongejans et al.,

2008; Hui et al., 2011). The way in which landscape structure and habitat factors have been

incorporated into such models has changed markedly over time (Fahrig & Nuttle, 2005).

Early models were developed under the scope of metapopulation theory which considers the

habitat spatial structure as populations subdivided into spatially isolated suitable habitat

patches, functionally connected by distance-dependant dispersal fluxes (Levins, 1969; Han-

ski, 1991). The dynamics of the system results in a balance between local extinctions and

re-colonisation but ignores local demographic dynamics and assumes independence of habi-

tat patches and constant colonization probabilities (Hanski, 1999). These models are built

based on the perspective of identifying specific conditions in habitat patches were their

pattern in a landscape has implications for population dynamics or persistence (Fahrig &

Nuttle, 2005). Several extensions have considered partially explicit representations of the

spatial relationships among habitat patches by including, for example, stochastic patch

occupancy (Moilanen, 1999; Hanski & Ovaskainen, 2000; Facon & David, 2006), variation

in patch size (Howe et al., 1991), variation in patch isolation (Adler & Nuernberger, 1994;

Day & Possingham, 1995) or by considering situations where colonization and extinction

rates are not at equilibrium (Marvier et al., 2004; Seno & Koshiba, 2005). Network models

also consider spatially located subpopulations with their own dynamics, but with variabil-

ity in the connection structure of subpopulations (Keeling, 1999; Minor & Gardner, 2011;

Ferrari et al., 2014).

More recently, models that represent landscapes based on geographical maps where

groups of individuals or single individuals are located explicitly in a cell (habitat patch)
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within a regular grid representing the environment, have been created. One approach is

represented by cellular automaton models where each cell is attributed a state (‘occupied’

or ‘empty’) which is updated in every time step by examining the state of the neighbour-

ing cells and the previous state using well-defined transition rules (Cannas et al., 2003;

Soons et al., 2005; Ferrari & Lookingbill, 2009; Crespo-Pérez et al., 2011). Percolation

theory is another approach that examines how spatial heterogeneity affects the invasion

process by determining whether the organism reaches all suitable sites or is limited to a

subset of suitable sites by distance or barriers (Grassberger, 1983; Ming & Albrecht, 2004;

With, 2004; Oborny et al., 2007). An important recurrent theme has been the emergence

of critical threshold responses to landscape structure. The connectivity between habitat

patches in a landscape may decline suddenly once a certain amount of habitat loss and

fragmentation is reached. The effect on invasive spread is that it may dramatically de-

clines past some critical level of habitat loss, which depends upon the species dispersal

abilities and degree of habitat fragmentation (With, 2002). However, these methods do

not incorporate species-specific demographic processes that are known to contribute to

invasive spread.

The general evolution of combining demographic and spatial complexity in spatial

population models has taken the form of spatially-explicit, raster-based or individual-based

models (IBMs) (Nehrbass & Winkler, 2007; Pitt et al., 2009; Renton et al., 2011; Guichard

et al., 2012). Each individual is explicitly modelled and acts in response to limited infor-

mation that may come from intra-specific interactions (breeding) or interactions with the

environment (habitat suitability) that drives movement across the landscape. Correlative

SDMs often act as templates on which mechanistic model can operate. The parallel devel-

opment of digital representation of landscape structures using Geographical Information

Systems (GIS) provides insight into how real-world landscape heterogeneity can affect the

spatial patterns of spread of invasive species (Ming & Albrecht, 2004; Pitt et al., 2009;

Bocedi et al., 2014; Meier et al., 2014). We now have the ability to develop models of

range expansion that incorporate different levels of complexity such as, propagule pres-

sure, important individual characteristics, population dynamics and dispersal, and their

interaction with resources and species community over a realistic spatial and temporal

landscape (see for example Keesing et al., 2006; Keith et al., 2008; Meentemeyer et al.,
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2011; Carrasco et al., 2012; Parry et al., 2013). Yet, only a few studies have employed them

to simulate species establishment and spread, and even fewer have derived projections for

species under different land-use scenarios.

1.3.4 Detecting and predicting the response to landscape changes

The explicit consideration of spatial heterogeneity in a model of spread is currently recog-

nised as a major advance in contemporary ecology (Fahrig et al., 2011). At the foundation

of this analytical advance is the basic need to characterize and quantify spatial hetero-

geneity to detect change in landscape structure and to investigate the relationship between

landscape structure and demographic processes. Rapid fragmentation and habitat loss due

to anthropogenic activities spurred the development of a variety of landscape metrics to

quantify spatial composition (e.g. habitat type and abundance) and configuration (e.g.

shape complexity, edge density) of landscapes. Yet, these metrics have been rarely used as

explanatory factors of invasion success (With, 2002; Sebert-Cuvillier et al., 2008; Robinson

et al., 2014; Smith et al., 2014; Morel-Journel et al., 2015).

The general perception is that three basic problems are found with the utilization

of landscape metrics. These are, 1) the metrics are highly correlated, 2) there may be

ambiguous responses to different spatial processes, and, 3) there are sensitive to changes

in spatial scale (resolution and extent). Quantifying the specific effect of habitat configu-

ration on spread success, for example, is difficult because many configuration metrics are

correlated with habitat amount (Kupfer, 2012). Such limitations can often be addressed,

or put into perspective through careful data manipulation, analysis and interpretation.

More fundamental, however, spatial modelling in invasion ecology is confronted with dif-

ficulties arising from a lack of a conceptual framework to investigate the relationships

between quantitative measures of spatial heterogeneity and the spread of invasive species.

1.4 Challenges for invasive species dispersal modelling

The ability to predict when and where an already introduced or potentially invasive species

will go next in the landscape has great advantages for the development of subsequent

monitoring and eradication strategies. In particular, time and money can be prioritized
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effectively if comparatively easy-to-measure life-history traits, propagule pressure, ecosys-

tem characteristics or landscape factors can be used to refine assessments of the relative

risks of invasiveness among a pool of non-native species and habitats. However a number

of theoretical and technical factors still challenge the use of complex spatial models of

spread. Two of these factors important to this thesis are discussed below.

1.4.1 Limited taxonomic and geographic scope of current research

One of the factors currently limiting our understanding of the effect of habitat changes

on population dynamics of invasive species is the relatively limited taxonomic and geo-

graphic scope of current research. It is acknowledged that for many, if not all invasive

species, multiple drivers contribute to their establishment and dispersal, but as suggested

previously, their combined effects are rarely investigated. Most empirical and theoretical

studies evaluate questions and hypotheses about the role of landscape structure within a

single landscape and thus provide no replication. The majority of these studies focus on a

single species and thus do not provide insight into the response of multiple species in the

same landscape. Similarly, spatially-explicit simulation models of invasive spread gener-

ally integrate specific characteristics of the studied species, for example, specific dispersal

strategies or population dynamics, to obtain ‘realism’, but the result of the simulations are

closely linked to the choice of the parameters rather than providing any insight into gen-

eral principles. More holistic models are based on assumptions about dispersal but tend

to ignore important demographic processes, such as Allee effects at the leading edge of

geographical ranges. While applied studies of single species of interest are important and

will continue to be useful, building a better quantitative understanding of how interactions

among drivers might mitigate or exacerbate establishment and spread of non-indigenous

organisms, demands more than the current focus on a single-species approach and specific

environmental requirements (Robinet et al., 2012b; Wang & Jackson, 2014). Critical to

this effort is the development of a framework that should facilitate a systematic investi-

gation into the impact of spatial heterogeneity on spatially-explicit ecological processes.

Such studies are in their infancy, but a more rigorous framework is needed to advance pre-

dictive landscape structure so that it can more reliably inform future actions to address

the effect global land-use change (Robledo-Arnuncio et al., 2014).
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1.4.2 Uncertainty in spread modelling

Another central issue involved with predicting future species distribution and abundance

in a spatially-explicit context, is to understand and deal with a vast array of uncertain-

ties. Poor quality data, estimation errors, unpredictable climate or environmental dis-

turbances, model types, and a lack of understanding of the fundamental mechanisms of

invasive spread, are among the many different factors causing the uncertainty in assess-

ing spread risk, and more particularly, spatially-explicit spread forecasts. For example, a

major problem with any model of spread dynamics is fitting a dispersal kernels because

spread patterns are very sensitive to the behaviour of long-term distance dispersal, for

which reliable observation data are less available (Robledo-Arnuncio et al., 2014). Tack-

ling such uncertainty is particularly challenging for pest risk managers to incorporate into

their decision-making process. It has often been stated that complex spatial models used

to synthesise available knowledge of the dynamics of the invasion process, are too hard to

parametrize, test and understand because they contain too many poorly known parame-

ters and cannot be evaluated using traditional statistical approaches. This criticism has

especially been targeted towards such complex models for guiding effective management

of invasive species at a regional scale (Robinet et al., 2012b; Venette, 2015). However,

models are often most useful for challenging what we think we understand. Investigat-

ing the use of different modelling approaches (different model structures and parameters)

and the impact on projections performance could help identify the optimal trade-offs be-

tween precision and complexity. Such development has been aided by the development of

consensus on parametrization, evaluation methods (see for example the pattern oriented

modelling framework (POM) developed by Grimm et al., 2005) along with the parallel

progress in data availability, computation, statistics and formal quantitative measurement

of uncertainty. While initial investigation showed the incorporation of uncertainty adds to

the credibility to pest risk maps, systematically quantifying uncertainty or at least speci-

fying it, is not yet routine. Venette et al. (2010) and Venette (2015) emphasized the urgent

need for substantial improvement in the quantification and communication of uncertainty

with respect to invasive spread modelling.
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1.4.3 Overall aim and Objectives

The overall aim of this thesis is to determine how biological characteristics of invasive

species interact with the abiotic variables and resource distribution to determine estab-

lishment success and spread in a varying environment. The specific objectives are:

• Objective 1: To develop a general dispersal simulation framework that allows

for systematic investigation of changes in the landscape structure on population

dynamics of invasive species

• Objective 2: To identify a set of key generic landscape metrics that enable a concise

characterization of independent aspects of landscape structure, regardless the spatial

scale at which the patterns are represented.

• Objective 3: To disentangle the independent and interactive effects of landscape

composition and landscape configuration on the establishment and spread of invasive

species.

• Objective 4: To determine the relative importance of dispersal, reproductive rate,

propagule pressure and habitat structure on population growth and spread of invasive

species.

• Objective 5: To review the sources of uncertainty associated with the develop-

ment of a spread model, and, to investigate a selected set of methods for evaluating

spatially-explicit spread model performance and uncertainty.

1.4.4 Thesis structure

Chapter 2 provides a general modelling framework that allows for a systemic investigation

of the impact of landscape structure on population dynamics of invasive insects. It com-

prises of a spatially-explicit dispersal simulation framework, a landscape generator allow-

ing independent change in the composition and configuration of landscape components,

and appropriate landscape measures that establish a quantitative relationship between

landscape structure and population dynamics.

Chapter 3 discusses the influence of spatial resolution and extent on the charac-

terization of spatial patterns. It describes novel methods to identify a set of key generic
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landscape metrics that enable a concise characterization of independent aspects of land-

scape structure, regardless the spatial scale at which the patterns are described.

Chapter 4 identifies the essential aspects of landscape that interact with dispersal

and demographic processes based on multi-species dispersal scenarios and discusses the

role of landscape structure shaping the rate and pattern of spread.

Chapter 5 evaluates the relative role of biological characteristics of invasive species

compared with abiotic variables and resource distribution in determining establishment

success and spread in a varying environment.

Chapter 6 provides a brief literature review of the sources of uncertainty associated

with the development of species distribution models and spread models, and proposes a

selected set of methods for quantifying spatially-explicit spread model performance and

uncertainty.

Chapter 7 presents a general discussion of all the results reported in this thesis and

their contribution to addressing the research topics and issues outlined in the objectives.

Concluding remarks as well as recommendation for future research to improve models of

spread for a better predictions of invasive species, especially under global changes, are

given.
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Chapter 2

MDiG: a modelling platform for the establishment

and spread of invasive species in heterogeneous en-

vironments

Contribution of authors

This chapter describes a collaboration between the current author with Joel P. W. Pitt,

who developed the general modular dispersal framework (MDiG), and Senait D. Senay,

who collected the data, parametrized and applied the MDiG to model the spread of Pieris

brassicae in the South Island, New Zealand. This work is integrated and extended by the

current author to further illustrate MDiG’s capability by investigating the effect of change

in landscape composition and configuration on population density and the dispersal of an

invasive species using the European gypsy moth, Lymantria dispar, as a case study. This

chapter has been submitted for publication with J. P. W. Pitt, S. D. Senay, D. B. Stouffer,

C. Doscher and S. P. Worner as authors to Methods in Ecology and Evolution, 2016.

Abstract

Human activities have become key drivers of invasive species dispersal through their di-

rect contribution to the transport of the species and through intensive land-use changes,

such as habitat loss and fragmentation. Yet, only recently has the influence of the sur-

rounding landscape on invasive species spread started to be considered. The scientific

community increasingly recognizes the need for broader modelling framework that focuses

on cross-study comparisons at different spatio-temporal scales. Such studies are expected

to make better prediction regarding the vulnerability of ecosystems to invasion in changing

environments. Using two illustrative examples, we introduce MDiG, a general modelling
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framework that allows for a systematic investigation of the effect of habitat change on

invasive species establishment and spread. The essential parts of the framework are, 1)

a spatially explicit model (MDIG), that allows population dynamics and dispersal to be

modelled in geographical information system (GIS), 2) a landscape generator that allow

replicated landscape patterns with partially controllable spatial properties to be gener-

ated, and, 3) landscape metrics that depict the essential aspects of landscape with which

dispersal and demographic processes interact. The modelling framework provides func-

tionality for a wide variety of applications ranging from predictions of the spatio-temporal

spread of real species and comparison of potential management strategies, to theoretical

investigation of the effect habitat change on population dynamics.

Keywords

Heterogeneous landscape, invasive species, spatial modelling, stratified dispersal, popula-

tion dynamics, environmental change, landscape metrics

2.1 Introduction

Biological invasions can be both the result of global change as well as the drivers of that

change, posing extraordinary ecological, economic and health challenges world-wide (Did-

ham et al., 2007; Lockwood et al., 2013). Human activities, in particular, have become key

drivers of invasive species establishment and dispersal, through their direct contribution to

the transport of propagules and through regional changes in habitats and climates (Hobbs,

2000; Hellmann et al., 2008; Robledo-Arnuncio et al., 2014). Understanding establishment

and spread mechanisms and the ability to predict when and where an already introduced

alien species will go next in the landscape, is central to controlling their spread and mitigat-

ing their impacts in rapidly changing environments (Venette, 2015). The outcome of such

spatial analysis, however, remains limited by constraints in the ability to carry out a com-

prehensive quantitative synthesis of habitat change on the spread of invasive species (With

et al., 1997; With, 2002, 2004; Vilà & Ibáñez, 2011; Robledo-Arnuncio et al., 2014) and by

22



the relatively limited taxonomic and geographic scope of current research (Catford et al.,

2011; Robledo-Arnuncio et al., 2014).

Preventing the spread of invasive species into new habitats requires an awareness

of the types of species that might pose a threat to an ecosystem, and which ecosystems

are especially vulnerable to invasion in the face of increasing land-use and climate change.

Theory indicates that the distribution and spread of invasive species is the result of a

complex combination of factors (see for example the invasion framework described in Cat-

ford et al., 2011). These factors include the size and frequency of introduction (propagule

pressure), species specific traits that are thought to confer high fitness such as high re-

productive and efficient dispersal abilities, and the abiotic and biotic characteristics of the

recipient ecosystems that may limit or facilitate the establishment of invasive species. Par-

ticular characteristics of a species demography and dispersal, have long been recognised as

the main factors influencing the survival of invasive organisms in fragmented landscapes,

such that the capability of individuals to grow and disperse between small subpopulations

allows the system to function as a viable metapopulation (Hanski, 1999). Demographic

stochasticity, caused by chance events influencing individual mortality, reproduction and

dispersal, results in random fluctuations in population size that also varies according to

local population density and environmental conditions. Surprisingly, despite the general

consensus that establishment and spread of invasive species in heterogeneous landscapes

depends on the interplay between spatio-temporal heterogeneity, stochastic dispersal and

demographic processes, and idiosyncratic propagule pressure, dynamic risk predictions of

establishment and spread typically lack explicit consideration of the interaction between

these multiple drivers of invasion (Catford et al., 2011; Gallien et al., 2014). In particular,

spatio-temporal predictions of establishment and spread, across different species demog-

raphy and dispersal characteristics and environmental conditions, are very few (Worner,

1994; Guisan & Thuiller, 2005; Franklin, 2010; Huntley et al., 2010; Dormann et al., 2012;

Schurr et al., 2012; Thuiller et al., 2013). In addition, the relative effect of habitat change

versus propagule pressure, demography and dispersal on invasion success remains unclear.

Early progress in the development of models of establishment and spread were di-

vided into approaches used for modelling large-scale species distribution, versus those for

modelling local-scale population spread (Hastings et al., 2005; Hui et al., 2011). Broad
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scale projections of species’ distribution, which have dominated the recent literature, are

largely based on static approaches linking current species occurrences to environmental

variables such as temperature, precipitation and resource distribution (SDMs: Guisan

& Zimmermann, 2000). These models can be used to project future distribution and

impacts from future land-use or climate scenarios (Thomas et al., 2004), yet typically

overlook important demographic and dispersal processes. On the contrary, phenomeno-

logical/mechanistic models of spread, such as reaction-diffusion processes (Fisher, 1937;

Skellam, 1951), integro-difference equations (Kot et al., 1996), matrix models (Caswell,

2001; Ramula et al., 2008), metapopulation models (Hanski, 1999; Hanski & Ovaskainen,

2000) or cellular automata (Higgins et al., 2000), incorporate, to differing degrees, both

demography and dispersal processes as their basis, but they assume a relatively homo-

geneous environment. The general evolution of combining demographic, dispersal and

spatial complexity in spatial population models has resulted in spatially-explicit disper-

sal models integrated within geographical information systems (GIS) or process-based

SDMs (Nehrbass & Winkler, 2007; Pitt et al., 2009; Renton et al., 2011; Guichard et al.,

2012; Bocedi et al., 2014). These models are thought to be more robust to extrapolation to

novel habitat and climate conditions because they rely on the characterization of processes

regulating the probability of a population surviving to reproduce and disperse in response

to local environment conditions. Therefore such models account for the effect of landscape

characteristics on the mobility and survival of invading species (Ewers & Didham, 2006;

Pitt et al., 2009).

Despite much progress having been made regarding our understanding of the effects

of spatial heterogeneity on establishment and spread of invasive species (see for example the

review of Hastings et al., 2005; Blackwood et al., 2010), generalised insights of landscape

effects that are needed to obtain reliable predictions of species response to habitat changes,

are lacking. Particular issues are that most empirical and theoretical studies evaluate

questions and hypotheses about the role of landscape structure within a single landscape

and thus provide no replication (but see With, 2002; Vilà & Ibáñez, 2011; González-Moreno

et al., 2013b). Additionally, the majority of these studies focus on a single species and thus

do not provide insight into trait variability in the same landscape (but see Catford et al.,

2011; Robinet et al., 2012b; Wang & Jackson, 2014). More fundamental, in a thorough

24



review of contemporary plant dispersal ecology, Robledo-Arnuncio et al. (2014) emphasized

that spatial-explicit spread modelling is confronted with difficulties arising from a lack of

a conceptual framework to investigate the relationships between quantitative measures of

spatial heterogeneity and the spread of species.

The primary aim of this study was therefore to construct a general modelling frame-

work that allows for a systematic investigation of the impact of habitat change (e.g. patch

characteristics, habitat corridors or landscape permeability) on invasive species estab-

lishment and spread. The essential parts of the framework are, 1) a spatially explicit

model (MDIG), that allows population dynamics and dispersal to be modelled in ge-

ographical information system (GIS) (Pitt, 2008), 2) a landscape generator that allow

replicated landscape patterns with partially controllable spatial properties to be gener-

ated, and, 3) landscape metrics that depict the essential aspects of landscape with which

dispersal and demographic processes interact. Such a framework will give deeper insights

into species traits and landscape features that lead to establishment and spread success,

and may be key to preventing new incursions and the development of efficient monitor-

ing, surveillance, control and eradication programmes. The framework is unique in two

key aspects. First, it includes the capability for much greater realism when modelling

reproduction and dispersal processes as it accounts for that inter-individual variability

and key stochasticities in demographic and dispersal processes. Second, MDiG explicitly

relates demographic and dispersal processes to the landscape in which these processes

occur, using the open-source GIS program GRASS (http://grass.osgeo.org). MDiG

therefore offers possibilities for a broad range of simulation-based modelling experiments,

from basic theoretical investigations of invasion dynamics, to strategic modelling of spatio-

temporal species distribution and management options. The software was implemented

using the programming languages C and Python, and packaged as a freely available,

standalone application for Linux and Microsoft Windows. A web implemented interface

facilitates initial model exploration. In this study, we describe the general structure of

the model and demonstrate its capabilities with two examples. Further details about the

model and its implementation can be found in both Pitt (2008) and the official website

(http://github.com/ferrouswheel/mdig).
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2.2 Model description

2.2.1 A spatially explicit dispersal model (MDiG)

The modular dispersal model (MDiG) was originally developed by Pitt (2008). MDiG

uses GRASS-GIS raster maps to represent either the presence/absence or abundances of

the species under study in raster cells. Initial distribution data can be imported or de-

fined by the user. The model architecture was designed to be extensible to many different

taxa, characterized by different population dynamics and dispersal strategies, over realis-

tic landscapes. At a population-scale, a demographic sub-model provides different levels

of complexity to mimic the fate of individual organisms, by simulating the life-history

events of birth and death. The population can have discrete generations or population

structure, for which fecundity, survival and development can also be stage dependent. At

the landscape-scale, a dispersal sub-model provides explicit rules that determine the pat-

tern of dispersal for each individual. Demographic stochasticity (intraspecific variation in

growth and dispersal traits) and spatio-temporal heterogeneity (spatial or temporal vari-

ation in population dynamics traits, dispersal abilities, carrying capacity and Allee effect)

can be easily modelled by modifying growth and dispersal traits as a function of local den-

sity, local habitat quality or life-stages. Finally, the framework contains a management

sub-model that allows different in situ management strategies that impact the spread of

population distribution to be tested, either by adding an additional event to a life-stage,

or by modifying life-history attributes or dispersal traits. These treatments can be global

or restricted to a certain region. The model definition file is specified in a file formatted

in XML, that defines when and how demography, dispersal, simulation results and other

model aspects are specified.

2.2.2 The population sub-model

The growth module, ‘r.mdig.growth’, is designed to represent local growth or the number

of individuals within each cell, from one time step to another. The definition of a time

step is up to the user, but applies to the entire model. The carrying capacity parame-

ter indicate the maximal number of individuals in a cell. It can be specified as a global
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value, for each land-cover category or for each cell of the map, to accommodate for spatio-

temporal variation in habitat quality. The population growth dynamic is determined by

a difference equation chosen and parametrized by the user. The options include logistic

growth (Verhulst, 1838), the Beverton-Holt equation (Beverton & Holt, 1957), the Ricker

equation (Ricker, 1958), Neubert equation (Neubert, 1997), the Wang equation (Wang

et al., 2002) and the Keitt equation (Keitt et al., 2001). Population-based simulations

with different life-stages can apply a matrix-based population model using the life-stage

module, ‘r.mdig.agepop’. The module is designed to account for growth and dispersal age

dependency. Population behaviour is programmed based on knowledge about the biology

and the life cycle of the species collected from the literature or from experiments.

2.2.3 The dispersal sub-model

2.2.3.1 Local dispersal

The neighbourhood module, ‘r.mdig.neighbour’, is designed to represent local spread or

a diffusion process based on random walks to surrounding adjacent cells. The proportion

of individuals that spread from any cell can be specified as a parameter. Both the shape,

which defines the direction of the neighbourhood of a cell (East, North, West, South) and

the range, which pre-determines the radius of the neighbourhood around the focal cell

(2 or 4 cells), are used to represent local random movement of individuals. Example of

neighbourhoods include the Von Neumann and the Moore shapes (Figure 2.1).

2.2.3.2 Long-distance dispersal events

The kernel module, ‘r.mdig.kernel’ is designed to represent long-distance dispersal events,

resulting, for example, from wind disturbances, animal dispersal or through human trans-

portation. A Poisson process is used to approximate the number of long-distance dis-

persal events that are generated from an occupied cell, while the user can parametrise a

Cauchy (Shaw, 1995) or exponential (Mollison, 1972) dispersal kernel to determine the

distances travelled from the occupied site (Nathan et al., 2002; Levin et al., 2003). Fi-

nally, a uniform distribution in the range of [0, 2π] is sampled to determine the direction of

each generated long-distance event (Pitt, 2008). Currently, the model does not allow one
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Figure 2.1: From Senay (2014), with permission. Local dispersal neighbourhoods, (A) Von Neumann
shape with radius =1, (B) Von Neumann shape with radius = 2, (C) Moore shape with
radius = 1, (D) Moore shape with radius = 2.

to explicitly explore the relative contribution of multiple vectors to particular dispersal

pathways. While representing such pathways explicitly would generate more realistic long-

distance dispersal, it is usually very difficult to find such detailed information empirically.

If such information was available, then dispersal kernels characterised by mixed proba-

bility distributions could be used to model them (Gilbert et al., 2004). Both local and

long-dispersal events can be programmed based on knowledge about the dispersal ability

of the species under study collected from the literature or from experimental studies, such

as capture-recapture data.

2.2.3.3 Dispersal survival

The survival module, ‘r.mdig.survival’, allows the species-landscape interactions to be

incorporated. The user specifies a habitat suitability map, that can be either realistic

maps based on known habitat suitability generated in GIS (Pitt, 2008) or artificial maps

produced by a landscape generator, in the form of survival probability map ranging from

0-1 reflecting the difficulty that populations have establishing in each raster cell. The

framework is totally asynchronous: the individuals modelled through the local dispersal
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and dispersal kernel modules are passed through the survival module to determine the

population in each cell surviving to the next simulation step based on the underlying

suitability value. It is also possible to provide a single survival value if the landscape

is homogeneous, such as with a monoculture in an agricultural field or glasshouse (Pitt,

2008).

2.2.4 Modelling habitat suitability

2.2.4.1 Generating habitat suitability maps or the survival layer

There are numerous ways to create habitat suitability maps and they can be based on

a wide range of data (Guisan & Zimmermann, 2000; Guisan & Thuiller, 2005). The

most common methods are based on static approaches linking current species distribution

to environmental variables such as climate, elevation, biotic interactions, vegetation or

human disturbance (Guisan & Thuiller, 2005; Thuiller et al., 2008). Others used pheno-

logical models (Régnière & Nealis, 2002; Pitt et al., 2007) or expert opinion (Harris, 2002).

In a thorough review of the ecological principles and assumptions underpinning habitat

suitability modelling, Guisan & Thuiller (2005), Araújo & Guisan (2006) and Elith et al.

(2009) have all highlighted the key steps in good habitat-suitability-modelling practice

including gathering the relevant data, dealing with correlated predictor variables, select-

ing an appropriate modelling algorithm, fitting and evaluating the model performance

and predictive performance. A number of programs, such as the python-based ArcGIS

toolbox – SDMtoolbox developed by Brown (2014) or the open-source R package dismo

developed by Hijmans et al. (2016), provide ample opportunity to apply and improve

existing approaches and ultimately to develop new ones.

2.2.4.2 Computationally generated landscapes

Another option for creating habitat suitability maps comprises using a landscape simula-

tor that provides a framework for generating replicated landscape patterns with partially

controllable spatial properties, particularly with respect to their composition and con-

figuration of components (With & King, 1997; Turner, 1990). When combined with a

population dynamic model such as MDiG, these artificial landscapes serve as a template

to systematically investigate the effect of landscape structure in fragmented and hetero-
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geneous landscapes (Turner, 2005). The successful application of computer generated

landscapes has also led to the development of software designed to create them using a

variety of algorithms. Examples include standalone software such as RULE (Gardner,

1999), the subsequent QRULE (Gardner & Urban, 2007), SIMMAP (Saura, 2003), as

well as software packages such as a the ecomodtools package for R (Chipperfield et al.,

2011) or the python-based NLMpy package (Etherington et al., 2014). These frameworks

provide easy integration with GIS data and can be integrated within MDiG, providing out-

standing opportunities for the design of models ranging from a very simple static spatial

establishment and spread model to very complex dynamic ones.

2.2.4.3 Characterization of landscape structure

The ability to quantitatively describe landscape structure is a prerequisite to detect

changes and to investigate the relationship between landscape structure and, demographic

and dispersal processes. The structure of the landscape – that is the composition and con-

figuration of its components – can be described and quantified by means of landscape

metrics for the purpose of understanding the influence of different landscape components

such as habitat size, shape, and abundance on demographic and dispersal processes. The

plethora of metrics available means that an exhaustive review of all published metrics is

beyond the scope of this study. To date, the most comprehensive overview of formulae and

domains of traditional metrics has been provided by McGarigal et al. (2012). The general

perception is that there are three important problems associated with the use of landscape

metrics. They are, 1) a high degree of correlation in between the metrics themselves, 2)

ambiguous responses to different spatial processes, and, 3) sensitivity to changes in spatial

scale (resolution and extent). Quantifying the specific effect of habitat configuration on

spread success, for example, is difficult because many configuration metrics are correlated

with habitat amount (Kupfer, 2012). Such limitations can often be addressed, or put in

perspective, through careful data manipulation, analysis and interpretation (Kupfer, 2012;

McGarigal et al., 2012; Uuemaa et al., 2013; Lustig et al., 2015). Landscape metrics can be

used in conjunction with both geospatial data and computationally generated landscapes,

allowing for comparison between the two sources of data. To calculate landscape metrics,

computer programs have been developed such as Fragstats (McGarigal et al., 2012), the
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python-based vLATE and Patch Analyst 4.1 modules implemented on the very well-known

ArcGIS (Rempel et al., 2012), or the plugin LecoS (http://www.qgis.org/en/site/) for

the Quantum GIS freeware and the two open-sources modules r.le and r.li (Rocchini et al.,

2013) implemented in GRASS-GIS.

2.3 Example of applications

2.3.1 The effect of spatial heterogeneity on the establishment and spread

of P. brassicae

MDiG was developed to model invasive species spread in heterogeneous environments (Pitt,

2008) and has been employed in variety of applications (Kriticos et al., 2008; Pitt et al.,

2009, 2011; Worner et al., In Press). In this study, we use the great white butterfly,

Pieris brassicae, to illustrate some of the capability of MDiG for modelling dynamic range

expansion at a regional scale. In this example, we investigate how different representa-

tions of spatial heterogeneity in urban landscapes can change the final projected species’

distribution.

P. brassicae is an oligophagous butterfly, native to Europe and Asia that feeds on

members of the family Brassicacea, commonly found in home gardens and as crops in

agriculture (Phillips et al., 2014). Additionally, New Zealand has a number of threatened

native Brassicae species. The species was first detected in Nelson, New Zealand in May

2010, and has since been the focus of intense monitoring and eradication efforts (Phillips

et al., 2014). We investigated the spread dynamic of the species in five administrative

districts in the South Island, New Zealand, that were either in contact with or near to

the locations invaded by P. brassicae. These districts were Buller, Tasman, Nelson City,

Marlborough and Kaikoura (comprising 12, 466 sq. ha).

For simplicity, we focus on a dynamic presence/absence model. The initial dispersal

site was set in a cell close to Nelson port which is suspected to be the site of P. brassicae

unintentional introduction. The cell resolution was set to 100 m to approximate the median

distance of local movement of P. brassicae as reviewed in Feltwell (1982). Estimates of

the median distance and average frequency of long-distance dispersal events were obtained
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from the dispersal history of P. brassicae in the United Kingdom for which, well referenced

temporal presence data were found in Feltwell (1982), Heath et al. (1984) and the Global

Biodiversity Information Facility (GBIF) database. Two survival layers were developed

to investigate the effect of urban landscape structure on invasive species spread. The first

survival layer (Surv1) included four data sources: climate suitability, degree days, land

cover, and high resolution remotely sensed data (Figure 2.2 - 2.3). The second survival

layer (Surv2) included all components used in Surv1, except the high resolution remotely

sensed data (Figure 2.3). High resolution remotely sensed data are needed to distinguish

highly suitable home gardens, public parks and untended green spaces from human-made

structures such as houses and roads. Underestimation of the complexity of the urban

landscape could lead to an over-estimation of the spread ability of P. brassicae.

Figure 2.2: From Senay (2014), with permission. Suitability maps used to build the survival layer of

P. brassicae: (A) hybrid climate model, (B) land-cover suitability layer (C) accumulated

growing degree days layer
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Figure 2.3: From Senay (2014), with permission. Zoom on the high resolution SPOT Map R© data used

for generating the survival layer Surv1, in which man-made structures can be identified.

Sixteen years of simulations were undertaken representing dispersal from the year

2010 to 2025. The simulation was replicated 1000 times to account for dispersal stochas-

ticity. Three thresholds [5%, 10%, 50%] that corresponded to the number of times a cell

was occupied during dispersal for all the replications was used to estimate probability of

dispersal into a cell (Pitt et al., 2009). The New Zealand data set of P. brassicae detec-

tions and absences, obtained from the Department of Conservation (Phillips et al., 2014),

was used to compare the first three years of the dispersal occupancy envelopes of both

Surv1 and Surv2 dispersal model outputs with field data. Three performance measures

- accuracy, sensitivity and specificity - were used to estimate the mean performance of

the two dispersal models. Further explanation about the datasets, the parametrization

methods and performance measures can be found in Appendix A and Senay (2014).

Both models closely simulated the progression of the Nelson inner city invasion,

according to patterns observed from the occurrence data (Figure A.2). For 2011, however,

there were more actual occurrences than presence locations predicted by the spread model.

This discrepancy could result from high stochasticity in dispersal patterns at early stages of

the invasion process (Pitt et al., 2009). Nevertheless, while we assumed that P. brassicae

was first introduced in New Zealand in 2010, it is highly possible that the species had

already completed a generation or two before it was detected, which could explain the

more dispersed surveillance data when compared to the few presence locations predicted
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by the models for the year 2011.

Accounting for the complexity of the urban landscape resulted in a substantial in-

crease in the accuracy (68% versus 27%) and specificity (69% versus 25%) of the model

predictions, but a lower sensitivity score (48% versus 83%). The high sensitivity obtained

from the model using the survival layer Surv2 was due to the high survival value given

to all urban areas. However, unsuitable sites were also incorrectly labelled as suitable, so

specificity was low. Higher precision in mapping unsuitable patches among highly suitable

urban areas slowed dispersal. When the actual dispersal maps are compared there is an

apparent delay in occupation of suitable areas when the first survival layer (Surv1) is used.

By 2020, for example, the model using the survival layer Surv2 predicted high-risk areas

of invasion (> 50%) that reached Renwick and Blenheim, and covered extensive areas

beyond the Wairau valley in the Marlborough district; in contrast, the model using the

survival layer Surv1 predicted only limited dispersal within the 10 − 50% envelope that

reached beyond Wairau valley (Figure 2.4). It is also notable, that by the end of 2025,

high-risk areas predicted by the model using the survival layer Surv2 covered extensive

areas in the bays, islands and peninsulas of Marlborough Sounds while these areas were

still not covered by the high percentage envelope generated by the model using the survival

layer Surv1 (Figure 2.4).

2.3.2 Impact of landscape structure on mean population size and mean

dispersal distances

MDiG enables a broad range of hypotheses related to single and interaction effects of

habitat change, spatio-temporal scale (spatial extent and resolution), propagule pressure,

demography and dispersal, on species abundance, spread and persistence, to be investi-

gated. In this section, we illustrate MDiG’s capability further by investigating how change

in habitat composition and configuration can affect population density and the dispersal

abilities of the Asian gypsy moth, L.dispsar.

L. dispar is a notorious insect defoliator, native to Europe and Asia, feeding on over

500 tree and shrub species. The European strain was accidentally introduced to North

America near Boston, USA, in 1869 and has subsequently invaded much of the susceptible

forests of north-eastern America (Tobin & Blackburn, 2007). We used the computer
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Figure 2.4: From Senay (2014), with permission. Dispersal coverage for the year 2015, 2020 and 2025
based on survival layer Surv1 (left panel) and survival layer Surv2 (Right panel)
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program Qrule 4.2 to generate binary (suitable, unsuitable) landscapes, in which habitat

configuration (described here as the degree of spatial autocorrelation, H = 0.3, 0.5, 0.7)

and habitat amount (described here as the percentage of suitable habitat cover, P =

35%, 55%, 75%) can be systematically and independently controlled (Gardner & Urban,

2007) (Figure 2.5). The extent of the study covered 128 × 128 raster grid cells (13, 384

km2). The cell resolution was set to 10 km to approximate the median distance of local

movements of L. dispar as shown in Johnson et al. (2006) and Liebhold et al. (1992). The

average frequency of long-dispersal events emerging from each occupied cell was drawn

from a Poisson process, while the median distance travelled was approximated by a Cauchy

distribution. The functions were fit based on a thorough review of dispersal abilities

of Jankovic & Petrovskii (2013). The initial dispersal site was arbitrarily set to the biggest

habitat patch in the landscape. Following Johnson et al. (2006) and Liebhold & Bascompte

(2003), the local density of L. dispar (population density per raster cell) was approximated

by a deterministic Allee logistic growth model. Further explanations about the datasets

and parametrization methods can be found in Appendix A.

P
 =

 3
5

P
 =

 5
5

P
 =

 7
5

H = 0.3 H = 0.5 H = 0.7

Figure 2.5: Example of survival layers used in L. dispar dispersal model. The landscapes were simulated

across a three-step gradient of habitat fragmentation (H) and a three-step gradient of habitat

amount (P ).
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For each landscape, the species was allowed to expand its range for 30 years and

simulations were replicated 10 times to account for dispersal stochasticity. Each landscape

was characterized by two commonly used landscape metrics: a measure of the percentage

of suitable habitat cover in the landscape (PLAND), that describe habitat composition,

and a measure of the degree of connectedness among suitable patches on a landscape

(CONNECT), that describes habitat configuration. These two metrics were calculated by

the software FRAGSTAT 4.2 (McGarigal et al., 2012). Finally, MDiG was used to quantify

the dependency of population density (d) and rate of spread (ROS) on the landscape

characteristics (PLAND and CONNECT), the population traits dispersal ability (dist)

and intrinsic rate of increase (r) (See details in Appendix A).

For a single introduction of five individuals into the landscape, the simulated average

population density (average no. individuals per raster cell) remains relatively low during

the first 10 years before the population density increases exponentially towards the habitat

carrying capacity (K = 100) (Figure 2.6). The rate of spread (average no. of new sites

occupied per time step) is characterised by an initial phase with a relatively low spread.

In particular, when population density is low, if a large proportion of available sites are

colonized (for example there is a large number of newly colonized sites at t = 5 and 6),

few empty sites can be colonized in the next time step (i.e., there are few newly colonized

sites at t = 6 and 7), and so spread is reduced. New sites are further colonized only after

the population locally grows in the newly invaded sites (t = 10) and starts to produce

new propagules that can sustain the wave of advancement (Figure 2.6). This sequence of

lower-higher rate of spread occurs throughout the invasion process. The existence of such

dynamics in rate of spread have long been reported and may occur for several reasons.

For example, individuals must overcome Allee effects that may constrain growth in newly

invaded sites before generating propagules for further invasion, potentially imposing limits

on totally unregulated spread. The dynamic was observed for both slow-fast reproducing

and dispersal species. However, the time lag before the rate of spread exponentially

increases, is longer for species with lower intrinsic rate of increase as expected (Figure 2.6).
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Figure 2.6: European gypsy moth, L. dispar, range expansion in changing environments. The first column

shows (A) the population density and (B) the rate of spread (no. of new occupied cells/year)

over a period of 30 years. Each time series depicts one of the 10 replicate runs for a different

combination of intrinsic rate of increase (r) of the species and the median distance (dist) of

long-distance dispersal event. In the middle, (C) the average population density (d) and (D)

rate of spread (ROS) for each combination of r and dist is represented as a function of the

percentage of suitable habitat in the landscapes (PLAND), while the column on the right

(E-F) represents the same output as a function of the connectivity index (CONNECT).

Increasing the percentage of suitable habitat cover in the landscape (PLAND) and

the degree of connectedness among suitable patches on a landscape (CONNECT) resulted,

on average, in a more prolific spread but reduced the local density of the population

(Figure 2.6). This asymmetry in the response to changes in the structure of the landscape

suggests that species that have limited dispersal opportunities tend to maximise their

populations locally but will be limited for establishing a population over a large area.

On the other hand, species that have high dispersal opportunities may spread but face

the added risk of not establishing or going extinct due to lower population density and

consequent Allee effects. Interestingly, the response of the species to change in habitat

structure was independent of the intrinsic dispersal abilities of the species. However,

species with a higher intrinsic rate of increase (r) systematically outperformed species

with a lower rate of intrinsic increase.
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2.4 Discussion

The MDiG dispersal framework introduced in this study, is a direct response to a call for

integrated dynamic models of establishment and spread of invasive species (Worner, 1994;

Huntley et al., 2010; Morales et al., 2010; Schurr et al., 2012; Thuiller et al., 2013). It

represents population dynamics and dispersal behaviours within a modelling framework

integrated in GRASS-GIS (Pitt, 2008). This simulation approach accommodates for in-

traspecific variability, spatio-temporal heterogeneity and is partially stochastic, addressing

three out of the eight important challenges in dispersal modelling suggested in Robledo-

Arnuncio et al. (2014). The spatially explicit spread simulator can easily be modified

for species with structurally different demographic and dispersal behaviours to generalize

the use of the framework to many different taxa. The framework also allows the ma-

nipulation of fragmented and/or anthropogenic landscapes to test predictions regarding

landscape modifications or regional climate changes for invasive species management and

conservation purposes.

In the first example, we illustrated the potential of MDiG for modelling the spatio-

temporal spread of a real system using P. brassicae as a model species and accounting

for habitat heterogeneity. A major challenge for establishment and spread modelling is to

decide the appropriate extent, spatio-temporal scale and the complexity of the study. In

this study, the effect of spatial resolution on the occupied area predicted was investigated.

Recoding the heterogeneity of the urban area to delimit unsuitable man-made structures

was necessary to gain accuracy and specificity of projections. Otherwise, the whole urban

area would have unrealistically facilitated dispersal by overestimating the dispersal rate.

The most important implication of such a result is that overestimating future dispersal

might incorrectly discourage an eradication attempt (Senay, 2014). There are many situa-

tions where selective recoding of the landscape could be applied. For example, if the target

species was a forest pest with a specific host in a diverse forest landscape, then, keeping

all other land cover data constant, and using a medium resolution but hyper-spectral im-

age of forest areas could be used to map the particular host species by giving host trees

higher survival probability than other tree species. Utilizing a modelling platform such as

MDiG, which can account for such spatial complexity, is crucial to assess the reliability of

projections at different spatio-temporal scales and as a basis for improved invasive species
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management planning.

The second example was illustrative of the many potential theoretical applications

of MDiG. We investigated how changes in landscape composition and configuration can

affect population density and the dispersal abilities of an invasive specie. Inferring the

relative role of habitat structure on the course of invasion relies on a judicious combina-

tion of methods, particularly the use of a landscape generator and landscape metrics that

can be combined in an iterative process. The analysis was approached from a case-specific

viewpoint, parametrising a population sub-model based on detailed demographic and dis-

persal attributes of the well studied European gypsy moth, L. dispar. In this way, our

model had sufficient biological details to reproduce realistic parameter ranges. MDiG was

then used to explore different ranges of demographic and dispersal behaviours in chang-

ing environments. This particular study exemplified the likely complexity of demographic

and dispersal responses to environmental changes and highlighted how a model such as

MDiG, with the capability of providing raster cell-based outputs at high spatio-temporal

resolution, can help in gain better understanding of these dynamics. The role of the land-

scape structure in biological invasions has not yet been formally incorporated into risk

analysis and management of biological invasions. Most efforts related to preventing and

controlling invasions are conducted at the local scale, where the influence of land-use on

invasion is seldom explored (Vilà & Ibáñez, 2011). In particular, understanding the in-

fluence of landscape composition, configuration, and their spatio-temporal dynamics on

ecosystem susceptibility to invasion, rests on broad generalization (Vilà & Ibáñez, 2011).

For example, it is well recognised that ecological corridors that facilitate dispersal increase

invasion risks or that anthropogenic ecosystems are generally more invaded than natural

ecosystems. However, there are differences in the abundance and rate of spread of invasive

species even within a particular land-use type, as growth and dispersal can be influenced

by small-grain landscape differences such as as man-made structures in urban areas (Vilà

& Ibáñez, 2011; González-Moreno et al., 2013a; Senay, 2014), habitat edges (Bartuszevige

& Gorchov, 2006), and habitat connectivity (Thiele et al., 2008) variables. Accurate ac-

counts of the invasion process and effective conservation programs will depend on such

considerations.

The design of MDiG exploits recent advances in population dynamics and dispersal
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theory of invasive species. Demography and dispersal processes are clearly key determi-

nants of species’ spatial dynamics and responses to rapid environmental changes. However,

insufficient representation of dispersal at the landscape scale is still a major limitation in

many approaches used for species distribution modelling (Baguette & Van Dyck, 2007;

Clobert et al., 2012; Travis et al., 2013). In contrast, MDiG allows demography and dis-

persal to be modelled explicitly to explore different context dependencies such as density

dependence, and responses to landscape structure. What is encouraging, the availability

of movement data is increasing in number rapidly, in particular long-distance dispersal

in heterogeneous landscapes as well as meaningful characterisation of average growth and

dispersal patterns across temporal scales (Cagnacci et al., 2010; Morales et al., 2010;

Robledo-Arnuncio et al., 2014). High-quality data on how multiple species grow and move

across complex landscapes will provide data to better parametrize the framework. In turn,

the MDiG framework can help to generate hypotheses to be tested empirically and deter-

mine how these hypothesis scale over time and space.
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Chapter 3

Towards more predictable and consistent landscape

metrics across spatial scales

Contribution of authors

This chapter describes a collaboration between the current author with Mariona Roigé,

who helped conceive the self-organising map (SOM) analysis and, Associate Professors

Daniel B. Stouffer and Susan P. Worner, who provided statistical advice and comments

on the manuscript.

The results of this chapter are published as: Lustig, A., Stouffer, D. B., Roigé, M. &

Worner, S. P. (2015). Towards more predictable and consistent landscape metrics across

spatial scales. Ecological Indicators, 57, 11-21.

Abstract

Habitat change and fragmentation are considered key drivers of environmental change

and biodiversity loss. To understand and mitigate the effects of such spatial disturbances

on biological systems, it is critical to quantify changes in landscape pattern. However,

the characterization of spatial patterns remains complicated in part because most widely

used landscape metrics vary with the amount of usable habitat available in the landscape,

and vary with the scale of the spatial data used to calculate them. In this study, we

investigate the nature of the relationship between intrinsic characteristics of spatial pattern

and extrinsic scale-dependent factors that affect the characterization of landscape patterns.

To do so, we used techniques from modern multivariate statistics to disentangle widely

used landscape metrics with respect to four landscape components: extent (E), resolution

(R), percentage of suitable habitat cover (P ), and spatial autocorrelation level (H). Our
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results highlight those metrics that are less sensitive to change in spatial scale and those

that are less correlated. We found, however, significant and complex interactions between

intrinsic and extrinsic characteristics of landscape patterns that will always complicate

researcher’s ability to isolate purely landscape pattern driven effects from the effects of

changing spatial scale. As such, our study illustrates the need for a more systematic

investigation of the relationship between intrinsic characteristics and extrinsic properties

to accurately characterize observed landscape patterns.

Keywords

Landscape patterns, landscape metrics, multi-scale analysis, PERMANOVA, SOM, inter-

actions

3.1 Introduction

Landscape pattern refers to discrete landscape features of an ecosystem (composition) and

their spatial arrangement (configuration) within the landscape. Biotic and abiotic determi-

nants, as well as human activities, have been shown as driving forces that shape landscape

patterns (Turner, 1990). Furthermore, the rate, extent and magnitude of human alteration

of the earth’s terrestrial surface is greater now than ever in history, driving unprecedented

change in ecosystem processes (Lambin et al., 2001). Such changes range from biodiver-

sity loss and climate change to important modification of ecosystem services (Foley et al.,

2005). Accurately quantifying and characterizing landscape pattern has therefore become

a major priority for addressing a wide range of spatial analysis applications (Turner, 2005).

In this regard, a plethora of quantitative metrics have been developed to ostensi-

bly provide simple quantitative measurements of the composition and configuration of a

landscape (Baker & Cai, 1992; McGarigal & Marks, 1995; O’Neill et al., 1988; Turner,

1990). In general, the calculation of these landscape metrics requires the use of a categor-

ical map, often indicating land-cover or land-use. Typically, these metrics are then used

to investigate the relationship between landscape pattern and ecological processes, or as

an indicator of ecological condition and risk (O’Neill et al., 1997; Uuemaa et al., 2013).
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They are also of key importance for identifying or detecting critical spatial and temporal

changes in landscape patterns to anticipate abrupt ecological transition (Johnson & Patil,

2007). The outcome of such spatial analyses, however, remains limited by constraints in

our ability to quantify the changes in landscape pattern (Turner, 2005; Uuemaa et al.,

2013). In particular, the characterization of landscape patterns depends not only on the

patterns themselves but also on the way they are represented (Wu, 2013).

Multiple scale-dependent factors can affect the characterization of a landscape pat-

tern. For example, most landscape metrics are sensitive to changes in the resolution (grain

size) of the spatial data (Wiens, 1989; He et al., 2000; Wickham & Rhtters, 1995; Wu, 2004;

Saura, 2004; Li et al., 2005; Frohn & Hao, 2006), the extent of the area under investiga-

tion (Frohn & Hao, 2006; Li et al., 2005; Saura & Martinez-Millan, 2001; Szabó et al., 2014;

Wu, 2004; Wu et al., 2002), or the classification scheme of categorical maps (Bailey et al.,

2007; Buyantuyev & Wu, 2007; Castilla et al., 2009; Li et al., 2005; Peng et al., 2010).

There are many examples of studies that have investigated the sensitivity of landscape

metrics to change in spatial scales (Saura & Martinez-Millan, 2001; Wu, 2004; Wu et al.,

2002). Such studies typically target a small set of landscape metrics and base conclusions

about the effect of spatial scale on landscape metrics on unique case studies, investigat-

ing a single or two scale-dependent factors in isolation (Lechner et al., 2013). Thus far,

limited consideration has been given to the vexing question of interaction between scale

dependent-factors and change in the landscape patterns (Lechner et al., 2013; Peng et al.,

2010).

Additionally, the use and application of landscape metrics is hampered by several

characteristics of the metrics themselves (Uuemaa et al., 2013). Many landscape metrics

are strongly correlated with the proportion of habitat cover on the landscape (Neel et al.,

2004). As a consequence, metrics used to characterize particular aspects of the configu-

ration of the landscape pattern cannot be easily interpreted if the proportion of habitat

cover on the landscape is different (Neel et al., 2004; Remmel & Csillag, 2003; Wang &

Cumming, 2011). Furthermore, no single metric can fully capture and describe intricate

landscape pattern. On the other hand, reducing the number of metrics by correlation

and ordination techniques has failed to render the ecological meaning of the latent metric

to the practitioner (Turner, 2005). Several suggestions have been made for a minimum
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set of metrics that capture independent elements of the variation in observed landscape

patterns while minimizing redundancy and capturing the desired qualities (Riitters et al.,

1995; Cushman et al., 2008). Nonetheless, no general framework exists that permits a par-

ticular component of landscape patterns to be unambiguously linked to specific landscape

metrics.

To address these persistent challenges, most previous research has been directed

toward developing a more rigorous statistical interpretation of landscape metrics. The

development of the neutral landscape model (Gardner et al., 1987; With et al., 1997) has

provided a framework for generating replicated landscape patterns with partially control-

lable spatial properties, particularly with respect to their composition and configuration

of components (Turner, 2005). Inspection of the relationships among landscape metrics

revealed that many were nonlinear and often not monotonic across composition and con-

figuration scenarios (Neel et al., 2004; Remmel & Csillag, 2003). However, most of these

studies were limited to maps of the same spatial extent and resolution to avoid the con-

founding effects of these extrinsic scale-dependent factors. There is a dearth of studies

that explicitly assess the relative importance of scale-dependent factors versus changes

in intrinsic characteristics of landscape patterns on the characterization of spatial pat-

terns (Estreguil et al., 2014; Lechner et al., 2013). Yet, it is critical to determine whether

a change in spatial scale has the same effect in all spatial patterns or whether particular

types of spatial patterns (e.g. those with high fragmentation level) are more sensitive to

a change in spatial scale than others.

The primary aim of this study was to investigate the nature of the relationship

between intrinsic characteristics of spatial patterns and extrinsic scale-dependent factors

that affect the characterization of landscape patterns. This research is motivated by the

need to identify a set of key generic landscape metrics that enable concise characterization

of independent aspects of spatial patterns regardless of the scale at which the patterns are

represented (Lindenmayer et al., 2008). In terms of scale-dependent factors affecting the

representation of landscape patterns, we investigated the role of spatial resolution (R) and

spatial extent (E). These scale-dependent factors were tested in relation to the intrinsic

characteristics of the landscape patterns themselves as described by the spatial autocorre-

lation (H) and the percentage of suitable habitat cover (P ). We first tested the statistical
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significance of the interaction between landscape pattern and scale-dependent factors to

assess the magnitude of these interactions and their statistical effect on landscape metrics.

Second, we showed how a self-organizing map (SOM) can be used to identify less corre-

lated subsets of landscape metrics thereby providing a robust alternative to traditional

ordination techniques.

3.2 Material and methods

3.2.1 Landscape patterns and landscape metrics generation

We used the computer program Qrule 4.2 to generate a wide range of landscape patterns, in

which fragmentation (measured as the degree of spatial autocorrelation) and proportion of

habitat cover can be systematically and independently controlled (Gardner, 1999; Gardner

& Urban, 2007). We considered a binary distinction between suitable and unsuitable

habitat type. Qrule uses a midpoint displacement algorithm (Saupe, 1988) to generate

multi-fractal maps in which the degree of spatial autocorrelation among adjacent cells (H)

can be controlled. We generated landscape patterns in a full factorial design across an

11-step gradient in spatial autocorrelation (H = 0−1 in increments of 0.1, 0 being close to

random and 1 being completely clustered) and a 10-step gradient in proportion of suitable

habitat habitat cover (P = 5− 95% in 10% increments) with 100 replicate landscapes for

each of the 110 factor combinations (Table 3.1). In order to analyse the influence of spatial

extent and resolution on landscape metrics, we generated binary landscape patterns for

40, 20 and 10 m cell size raster and three different extents of 640× 640, 1280× 1280, and

2560 × 2560 m2 (Table 3.1). We used independent realizations for each spatial scale to

assure the statistical independence of the estimates corresponding to different resolution

and extent.

For each sample landscape, we calculated 101 landscape metrics using the computer

program FRAGSTATS 4.2 (McGarigal et al., 2012). The metrics were defined for the

suitable habitat cover only and are commonly referred as class-level metrics. McGarigal

et al. (2012) categorized these metrics into five groups corresponding to the aspect of

landscape structure emphasized. These include area/edge/density, shape, core area, con-
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Predictor variables Measures
Intrinsic characteristic
Landscape spatial autocorrelation (Fragmentation) H = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
Percentage of suitable habitat cover in a binary scheme P = 5, 15, 25, 35, 45, 55, 65, 75, 85, 95%

Scale-dependent factor
Spatial extent E = 640, 1280, 2560m2

Spatial resolution or pixel size R = 10, 20, 40m

Table 3.1: Landscape patterns - list of predictor variables tested and their values.

trast and aggregation (Table 3.2). Metric calculation was based on a 80 m edge depth

affecting metrics related to core area, a 400 m search radius affecting metrics based on

the distribution of suitable habitat cells within a specified distance of a focal point and an

eight-neighbour rule.

3.2.2 Permutational multivariate analysis of variance

To test the null hypothesis of no statistical difference between landscape metrics for four

predictor variables, spatial extent (E), spatial resolution (R), percentage of suitable habi-

tat cover (P ), and spatial aggregation (H), we used the permutational multivariate anal-

ysis of variance (PERMANOVA) (Anderson, 2001). This method provides an alternative

to traditional analysis of variance (ANOVA/MANOVA) that is distribution free and in-

sensitive to the correlation among response variables (in our case, landscape metrics).

PERMANOVA involves the construction of a distance matrix which reflects the similar-

ity/dissimilarity of each pair of simulated landscape patterns with respect to their land-

scape metric values (Anderson, 2001). The PERMANOVA analysis is then based on par-

titioning the multivariate variation of the distance measures. We standardized landscape

metric values and used euclidean distances to model the relationships among simulated

landscape patterns. The final test statistic is a multivariate analogue to the traditional

parametric univariate Fisher’s F -ratio (Anderson, 2001). However, the hypothesis (H0)

of no difference among a priori defined groups of landscapes is evaluated using a Fisher’s

F -test based on sequential sums of squares from 999 unconstrained permutations that

randomized the observations (landscape samples) among classification levels.
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Response variables Measures Range Response variables Measures Range
Area/density/edge metrics Core metrics
Total suitable area CA/TA 1.78 - 624.03 Total core area TCA 0.00 - 531.55
Percentage of Landscape PLAND 4.34 - 96.01 Core area percentage of

landscape
CPLAND 0.00 - 81.11

Number of patches NP 1.0 - 1355.4 Number of disjunct core
areas

NDCA 0.00 - 35.97

Patch density PD 0.24 - 256.45 Disjunct core area density DCAD 0.00 - 531.12
Total edge TE 750 -

31.55×104
Core area distribution CORE MN 0.00 - 420.04

Edge density ED 3.76 - 540.04 CORE AM 0.00 - 531.41
Landscape shape index LSI 1.22 - 49.19 CORE MD 0.00 - 399.31
Normalized landscape shape index nLSI 0.01 - 0.75 CORE RA 0.00 - 511.58
Largest patch index LPI 0.62 - 95.98 CORE SD 0.00 - 198.35
Patch area distribution AREA MN 0.03 - 492.58 CORE CV 0.00 - 2869.97

AREA AM 0.18 - 623.65 Disjunct core area
distribution

DCORE MN 0.00 - 488.24

AREA MD 0.01 - 467.98 DCORE AM 0.00 - 531.12
AREA RA 0.00 - 622.48 DCORE MD 0.00 - 482.21
AREA SD 0.00 - 243.01 DCORE RA 0.00 - 421.25
AREA CV 0.00 - 2243.21 DCORE SD 0.00 - 180.97

Radius of gyration distribution GYRATE MN6.93 - 769.62 DCORE CV 0.00 - 374.41
GYRATE AM17.55 - 976.70 Core area index distribution CAI MN 0.00 - 67.33
GYRATE MD5.00 - 732.29 CAI AM 0.00 - 85.18
GYRATE RA 0.00 - 972.27 CAI MD 0.00 - 66.02
GYRATE SD 0.00 - 372.62 CAI RA 0.00 - 82.18
GYRATE CV 0.00 - 587.09 CAI SD 0.00 - 31.90

CAI CV 0.00 - 2858.56
Shape metrics
Perimeter-area ratio distribution PARA MN 79.36 - 3613.27 Aggregation metrics

PARA AM 21.55 - 2741.45 Percentage of like
adjacencies

PLADJ 17.88 - 99.41

PARA MD 79.36 - 4000.00 Clumpiness index CLUMPY 0.18 - 0.98
PARA RA 0.00 - 3972.13 Aggregation index AI 25.46 - 99.81
PARA SD 0.00 - 1521.89 Landscape division index DIVISION 0.08 - 10.99
PARA CV 0.00 - 65.28 Splitting index SPLIT 1.09 - 21343

Shape index distribution SHAPE MN 1.09 - 2.90 Effective mesh size MESH 0.01 - 593.82
SHAPE AM 1.18 - 28.58 Patch cohesion index COHESION 34.21 - 99.98
SHAPE MD 1.00 - 2.74 Connectance index CONNECT 0.00 - 88.76
SHAPE RA 0.00 - 30.24 Proximity index distribution PROX MN 0.00 - 12476
SHAPE SD 0.00 - 1.94 PROX AM 0.00 - 1255.84
SHAPE CV 0.00 - 131.17 PROX MD 0.00 - 1255.85

Fractal index distribution FRAC MN 1.02 - 1.15 PROX RA 0.00 - 14864
FRAC AM 1.03 - 1.43 PROX SD 0.00 - 15553
FRAC MD 1.00 - 1.14 PROX CV 0.00 - 5743.96
FRAC RA 0.00 - 0.46 Similarity index distribution SIMI MN 0.00 - 12476
FRAC SD 0.00 - 0.10 SIMI AM 0.00 - 1255.84
FRAC CV 0.00 - 9.19 SIMI MD 0.00 - 1255.85

Related circumscribing circle
distribution

CIRCLE MN 0.19 - 0.47 SIMI RA 0.00 - 14864

CIRCLE AM 0.38 - 0.71 SIMI SD 0.00 - 15553
CIRCLE MD 0.00 - 0.49 SIMI CV 0.00 - 5743.96
CIRCLE RA 0.00 - 0.87
CIRCLE SD 0.00 - 0.32
CIRCLE CV 0.00 - 151.29

Contiguity index distribution CONTIG MN 0.08 - 0.90
CONTIG AM 0.16 - 0.99
CONTIG MD 0.00 - 0.90
CONTIG RA 0.00 - 0.99
CONTIG SD 0.00 - 0.38
CONTIG CV 0.00 - 195.36

Contrast metrics
Contrast-weighted edge density CWED 6.76 - 540.04
Total edge contrast index TECI 23.31 - 99.01
Edge contrast index distribution ECON MN 23.31 - 99.25

ECON AM 23.31 - 98.80
ECON MD 32.31 - 100.00
ECON RA 0.00 - 57.71
ECON SD 0.00 - 23.01
ECON CV 0.00 - 28.14

Table 3.2: List of response variables tested and their ranges. A detailed description of each metric can
be found in McGarigal et al. (2012). Twelve metrics characterize the aggregation properties
of the patches (cells) belonging to the suitable area only. The first- and second-order statistics
are as follows: mean (MN), area-weighted mean (AM), median (MD), range (RA), standard
deviation (SD), and coefficient of variation (CV).
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First, we investigated the main effects of each predictor variable (E, R, P , and

H) independently on the joint response of landscape metrics. Second, we analysed the

significance of the two-, three-, and four-way interactions to quantify how E, R, P , and

H interact to affect the joint response of landscape metric values. Finally, we conducted

separate PERMANOVA analyses for each landscape metric separately. We carried out

the PERMANOVA using the function adonis in the package vegan (R Development Core

Team 2012).

We further assessed interactions between intrinsic and extrinsic characteristics of

landscape patterns using interaction plots. The interaction plots describe the mean of the

response variable for each level of one predictor variable (e.g. the percentage of suitable

habitat cover, P ) plotted over the levels of a second predictor variable (e.g. the spatial

autocorrelation, H). The Y axis is the dependent variable. Two-way interaction is indi-

cated by non-parallel lines in the resulting plots.

3.2.3 The self-organizing map clustering technique

To identify less correlated subsets of landscape metrics, we used a self-organizing map

(SOM) clustering technique. SOM is a heuristic statistical tool based on methods from

machine learning that explores large, complex data sets to detect linear and nonlinear pat-

terns. A detailed description of the SOM methodology can be found in Kohonen (1988).

Typically, a SOM is employed as a data reduction and visualisation technique that per-

forms a nonlinear projection of multidimensional data onto a map of nodes. The system

learns to represent the input data (landscape metrics) in a way that reflects the statisti-

cal structure of the overall collection of the input patterns. Highly correlated landscape

metrics are clustered together in specific nodes, whereby nodes that are close together in

the map are more alike than nodes that are farther away.

We standardized landscape metrics values. We chose the number of nodes in the

output map using the formula c = 5
√
N , where c is the number of nodes and N is the num-

ber of landscape metrics (Vesanto et al., 1999). We then displayed the U -matrix (unified

distance matrix) to visualize the local Euclidean pair-wise distances between neighbouring

nodes. To assess the reliability of the results of the SOM methods, we also estimated two
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commonly used quality measures. We used the quantization error to provide a measure

of how well the map reflects the statistical structure of the overall collection of landscape

metrics. The quantization error is equal to the average distance between each of the

landscape metrics and its best matching nodes (Kohonen, 2001). Second, we used the

topographic error to measure how well the topology is preserved by the map. It measures

the proportion of all landscape metrics for which first and second best matching node are

not adjacent units (Kohonen, 2001). We carried out the SOM analysis using the SOM

Toolbox for Matlab 5 computing environment (Vesanto et al., 1999).

3.3 Results

3.3.1 Multivariate response of landscape metrics

The PERMANOVA provided a novel statistical framework for testing the significance

of differences between landscapes. In particular it allowed us to consider the non-linear

and complex relations between predictor and response variables. According to the PER-

MANOVA results, both the extrinsic scale-dependent factors, spatial extent (E) and spa-

tial resolution (R), and the intrinsic characteristics of landscape patterns, percentage of

suitable habitat cover (P ) and spatial autocorrelation (H), significantly contributed to the

variation in the similarity/dissimilarity of landscape patterns (Table 3.3). We observed

the same results when testing the independent predictors individually. Overall, the multi-

way interactions were significant but showed a smaller contribution to the variation in

landscape metric values.

3.3.2 Univariate response of landscape metrics

The individual responses of landscape metrics to different combinations of the four pre-

dictor variables E, R, P , and H differed among landscape metrics (Figure 3.1). The main

effects of the percentage of suitable habitat cover, P , or the spatial autocorrelation, H,

were significant for all landscape metrics indicating that all the selected landscape metrics

in this study quantify spatial patterns effectively. In total, only four metrics, the landscape
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DF SS MS Pseudo-F R2 P(perm)
P 1 18792 18791.6 744.80 0.18812 0.001
H 1 10921 10921.1 432.86 0.10933 0.001
R 1 11229 11228.8 445.05 0.11241 0.001
E 1 15701 15700.5 622.29 0.15718 0.001
P ×H 1 2177 2176.6 86.27 0.02179 0.001
P ×R 1 2763 2763.0 109.51 0.02766 0.001
H ×R 1 1183 1183.2 46.90 0.01185 0.001
P × E 1 5940 5940.2 235.44 0.05947 0.001
H × E 1 1953 1953.3 77.42 0.01956 0.001
R× E 1 2210 2210.5 87.61 0.02213 0.001
P ×H ×R 1 266 266.2 10.55 0.00266 0.001
P ×H × E 1 578 578.1 22.91 0.00579 0.001
P ×R× E 1 1138 1137.9 45.10 0.01139 0.001
H ×R× E 1 353 353.3 14.00 0.00354 0.001
P ×H ×R× E 1 110 110.2 4.37 0.00110 0.003
Residuals 974 24574 25.2 0.25
Total 989 99889 1.0

Table 3.3: Results of the multivariate PERMANOVA based on an Euclidean similarity/dissimilarity of
spatial patterns in relation to four predictor variables P (percentage of suitable habitat cover),
H (spatial autocorrelation), R (resolution), and E (extent) and their interactions. Df is the
degrees of freedom; SS is the sum of squares; MS is the mean sum of squares; Pseudo - F
value by permutation based on 999 permutations and P(perm) is the P -value (lowest P -value
possible is 0.001).

division index (DIVISION), the largest patch index (LPI), the coefficient of variation of

the perimeter-area ratio index (PARA CV) and the splitting index (SPLIT), were not

significantly affected by the scale-dependent factors, H and P .

The metrics fell into three groups. First, eighteen of the 101 metrics were signifi-

cantly affected by spatial autocorrelation, H, but not significantly affected by the propor-

tion of suitable habitat cover, P . Examples include the clumpiness index (CLUMPY) or

the edge density (ED) that mainly quantify the spatial configuration of landscape patterns

as measured by spatial autocorrelation, H. However, with the exception of the standard

deviation of the perimeter-area ratio index (PARA SD), all metrics in this group were also

significantly affected by a change in both spatial resolution, R, and extent, E. Second,

fifteen of the 101 metrics were significantly affected by the proportion of suitable habitat

cover, P , but not significantly affected by spatial autocorrelation, H. Examples include

the effective mesh size (MESH) or the total core area (CA). These metrics mainly quantify

the spatial composition of landscape patterns as measured by the percentage of suitable

habitat cover, P . With the exception of the landscape division index (DIVISION), all

metrics in this group were also significantly affected by either a change in extent, E, only

or by a change in both spatial resolution, R, and extent, E. Third, sixty-eight of the 101
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metrics responded significantly to changing both the proportion of suitable habitat cover,

P , and spatial autocorrelation, H, indicating that the information content of each metric

is not a single spatial component, but a complex of several spatial components together.

In general, the highest F -ratios were reported for a change in extent, E, and percentage

of suitable habitat cover, P . In comparison the change in spatial autocorrelation, H, and

in spatial resolution, R, had a smaller effect on the response variables.

3.3.3 Interactions of E, R, P , and H on the univariate response of land-

scape metrics

The results of the PERMANOVA presented a range of two-, three- and four-way interac-

tions. Two metrics, the normalized shape index (nLSI) and the landscape division index

(DIVISION), did not respond significantly to factor interactions. Only a few metrics, such

as the edge density (ED) or the largest patch index (LPI), responded to a limited number

of two-way interactions. Most of the landscape metrics had larger interactions at two or

more levels. Generally, the combination of predictor variables P ×E, P ×R, and, P ×H

had greater effect than other combinations of predictor variables. The combination of

predictor variables H × R had on average the smallest two-way interaction effect. The

magnitudes of the three-way and four-way interactions were consistently smaller than the

two way interactions.

We further analysed the interaction plots for each of the landscape metrics in or-

der to examine the interactions in more detail. Here we found that the metrics fall into

three qualitative groups. (1) Metrics, such as the aggregation index (AI), that presented

simple monotonic interaction patterns (Figure 3.2). As an example, an increase in the

percentage of suitable habitat cover, P , is always associated with a decrease in AI value.

However, this change is more important at smaller extent and higher resolution. The in-

teraction trend remained consistent regardless of the level of the interaction (no cross-over

or shape bell were observed). (2) Metrics, such as the coefficient of variation of the related

circumscribing circle (CIRCLE CV), that presented complex interaction patterns (cross-

over/bell-shaped) associated with a change in intrinsic characteristics of the landscape, H

and P , only (Figure 3.3). While the spatial extent, E, and the spatial resolution, R, had
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a significant effect on the value of CIRCLE CV (Table 3.3), an increase in spatial extent

and spatial resolution was always associated with an increase in CIRCLE CV without

crossed-over in between spatial scale levels. (3) Metrics, such as the connectance index

(CONNECT), that showed significant complex two-way interactions associated with both

a change in intrinsic characteristics of the landscape, H and P , and scale-dependent fac-

tors, E and R (Figure 3.4).
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Figure 3.1: Summary table of the main effect, two-, three- and four-way interactions of the four predictor
variables P (percentage of suitable habitat cover), H (spatial autocorrelation), R (resolution),
and E (extent). Blank cells indicate no significant interactions (P -value ≥ 0.05), light and
dark grey and black cells indicate significant interactions. The highest F -ratio reported for
the combination of explanatory variables per response variable is denoted by the black cells.
The second and third highest F -ratio are respectively denoted by dark and light grey cells.
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Figure 3.2: Two-way interaction plot of the the aggregation index (AI) as a representative example of group 1. The profile plots of group 1 are characterized
by non-linear and non-parallel lines indicating possible interactions. However, no complex two-way interactions (bell-shaped curve or cross-over)
are observed. The value of the metrics is calculated for all combinations of the four predictor variables P (percentage of suitable habitat cover),
H (spatial autocorrelation), R (resolution) and E (extent).
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Figure 3.3: Two-way interaction plot for the related circumscribing circle metric as a representative example of group 2. The profile plots of group 2 are
characterized by non-linear and non-parallel lines indicating possible significant interactions. No complex two-way interactions are observed when
considering changes in R and E (two bottom lines). However, cross-over and a bell-shape curve are observed when considering changes in P and
H (two top lines). The value of the metrics is calculated for all combinations of the four predictor variables P (percentage of suitable habitat
cover), H (spatial autocorrelation), R (resolution) and E (extent).
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Figure 3.4: Two-way interaction plot for the connectance index as a representative example of group 3. The profile plots of the group 3 are characterized
by non-parallel and non-monotonic lines indicating complex interactions. Cross-overs are observed for most combinations of predictor variables.
The value of the metrics is calculated for all combination of the four predictor variables P (percentage of suitable habitat cover), H (spatial
autocorrelation), R (resolution) and E (extent).
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3.3.4 Extraction of landscape metric patterns

We used the SOM map of 4× 13 nodes to organise the metrics into fifty-two output units

identifying metrics with a similar response pattern associated with a change in landscape

intrinsic conditions and spatial scales (Figure 3.5). The clustering of landscape metrics in

the SOM analysis was supported by a negligible topographic error indicating a very good

preservation of the initial landscape metric topology.

To visualize the effect of the four predictor variables on the classification of the

landscape metrics in the SOM, we calculated, for each output node, the average F -ratio of

each predictor variables and their two-way interactions (Figure 3.6). Dark nodes represent

high values while light nodes represent low values. Globally, the average F -ratio associated

with a change in spatial autocorrelation, H, increases from left to right, and the average

F -ratio associated with a change in both scale-dependent factors, R and P , increases

from the top to the bottom. Looking more closely, the bottom left corner of the map

represented metrics strongly affected by spatial resolution, R, or the interaction factor

R × H (Figure 3.6). The bottom right corner of the map identified metrics strongly

affected by a change in spatial extent, E, or by the interaction factor R×E. In the upper

left, nodes represented metrics most affected by a change in spatial aggregation, H, or the

interaction factor H × P . Finally, the upper right identified metrics most affected by the

interaction factor P × E.

The U -matrix reveals that metrics strongly affected by a change in spatial scale

(bottom of the map) are closer together, in terms of response to change in predictor vari-

ables, than metrics located in the upper part of the map (Figure 3.5). The main effect

of the spatial extent (E), spatial resolution (R), percentage of suitable habitat cover (P ),

and spatial aggregation (H) and the two-way interaction factors P ×H, H×R and P ×E

showed the clearest gradient among predictor variables. This suggests that the two-way

interactions are important factors for the classification of landscape metrics, while the

effect of the three-way and four-way interaction have less importance.
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3.4 Discussion

3.4.1 Determining the significance of differences between spatial pat-

terns

This study provides clear evidence that the percentage of suitable habitat cover, P , and

spatial extent, E, accounted for the highest amount of variation of the landscape metrics

when compared to spatial autocorrelation, H, and spatial resolution, R. Variation in these

two predictors also tended to result in large main effects and large interactions. On the

other hand, each landscape metric appeared to have a unique behaviour in terms of the

main effect and interactions of the four predictor variables. As a consequence, results

are consistent with previous studies that observed high variability in landscape metric
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Figure 3.6: Visualization of the average F -ratio obtained in the PERMANOVA analysis on the SOM
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the four predictor variables and their two-way interactions. Dark nodes represent high values
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responses to change in spatial conditions (Lechner et al., 2013; Neel et al., 2004) or spa-
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tial scale (Wu et al., 2002; Wu, 2004; Š́ımová & Gdulová, 2012). More broadly, however,

the results of our analysis demonstrated that the way in which landscape metrics capture

spatial patterns is as much a property of that pattern intrinsic characteristics as it is of

scale-dependent factors.

3.4.2 The importance of interactions in clustering landscape metrics

Our SOM analysis helped identify relationships among metrics that more traditional sta-

tistical methods might overlook. It is worth pointing out that the resulting final set of

clusters was different than groups of landscape metrics based on conceptual similarity (Mc-

Garigal et al., 2012) according to the aspect of landscape they supposedly measure. It is

common for the practitioner to select metrics from each of these conceptual groups (patch

dominance, patch dispersion, nearest neighbour distance, aggregation, patch complexity,

edge, contrast, and neighbourhood similarity) to quantify different aspects of the land-

scape (Cushman et al., 2008; Estreguil et al., 2014). Our results confirmed those of a

previous study that emphasize the importance of also considering the behavioural group-

ing (responses to change in spatial patterns and scale) of landscape metrics (Neel et al.,

2004).

More importantly, landscape metrics constitute a highly redundant data-set. To

reduce this redundancy, much research focused on a priori selection of independent land-

scape metrics by evaluating landscape metric response to change of particular components

of the landscape (Estreguil et al., 2014; Neel et al., 2004; Turner, 2005). Our results here

suggest that landscape metrics present high-order correlations, indicating a need to con-

sider correlations that involve more than just two features. In particular, the two-way

interactions between intrinsic characteristics and scale-dependent factors are important

factors in patterning landscape metrics.

3.4.3 Multiple drivers and their interactions

Examination of the interaction plots showed only a small subset of landscape metrics with

a monotonic response to interaction factors. For these reduced set of metrics, as long as the
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final spatial scale is the same, only the magnitude of the difference between the landscapes

should change. For example, when comparing two spatial patterns, more heterogeneous

spatial patterns will always be characterized as more heterogeneous regardless of the scale

of the data. However, most of the metrics presented complex bell-shaped or crossed-

over interactions across spatial gradients and spatial scales. This makes extrapolation of

responses across spatial scales challenging at best and impossible at worst. The presence

of complex interactions indicates that it will be exceedingly difficult to isolate purely

landscape pattern driven effects from the effects of changing spatial scale when conducting

ecological analyses.

Most previous studies have focused on the main effect of scale-dependent factors

and intrinsic characteristics but the interactions among the varied explanatory factors

remain poorly understood. The presence of significant complex interactions highlights

the importance of considering multiple perspectives for characterizing landscape structure

using landscape metrics. For example, one could argue that some landscape metrics ex-

hibit power scaling relationships with change in spatial extent or spatial resolution (Wu,

2004), but this would ignore that numerically speaking, the two-way interactions of scale-

dependent factors and intrinsic characteristics are as important as the main effects. Thus,

it would be dangerous to conclude from such a biased interpretation about the predictabil-

ity of landscape metrics behaviour across spatial scale. Such statements are not a criticism

of the ability of ecologists to make general predictions about the behaviour of landscape

metrics across spatial scales. Rather, our results reaffirm the urgent need to consider the

complementary effects of intrinsic and extrinsic characteristics of landscape patterns to

conduct integrated landscape pattern assessment (Lechner et al., 2013; Turner, 2005).

3.5 Conclusion

In this study, we tested the adequacy of 101 landscape metrics to quantify concisely inde-

pendent aspects of spatial pattern regardless of the scale at which they are represented.

The findings highlight the sensitivity of landscape metrics to changes in the intrinsic char-

acteristics (spatial autocorrelation, H, and percentage of suitable habitat cover, P ), and

scale-dependent factors (spatial extent, E, and spatial resolution, R), individually but also
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to their interactions. Landscape metric classification essentially resulted from the main

effect of the predictor variables and their two-way interactions. The presence of significant

complex interactions between intrinsic and extrinsic characteristics of landscape patterns

makes it difficult to isolate purely landscape pattern driven effects from the effects of

changing spatial scale. As such, our study illustrates the need for more systematic inves-

tigation of the relationship between intrinsic characteristics and extrinsic properties when

accurate characterization of landscape pattern is a key input in spatially-explicit ecological

models.
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Chapter 4

A comprehensive synthesis of the effect of land-

scape structure on the spread of invasive species

Contribution of authors

This chapter describes a collaboration between the current author with Doctor Crile

Doscher and Associate Professors Daniel B. Stouffer and Susan P. Worner, who provided

statistical advice and comments on the manuscript. The results of this chapter are in-

tended to be submitted as follow:

Lustig, A., Stouffer D. B., Doscher C. & Worner, S. P. (2016) A comprehensive synthesis

of the effect of landscape structure on the spread of invasive species, Landscape Ecology.

Abstract

With accelerated land-use change and habitat fragmentation throughout the world, un-

derstanding the relative effects of landscape composition and configuration on biological

systems and bioinvasion in particular, is needed to design effective management strategies.

However, this topic is poorly understood in part because empirical studies often fail to

account for large gradients of habitat complexity and offer insufficient or even no replica-

tions across habitat. We construct and explore a spatially-explicit modelling framework

that allows for systematic investigation of the impact of changes in landscape composition

(i.e. amount of suitable habitat) and landscape configuration (e.g. patch size, shape, jux-

taposition, interpatch connectivity or habitat aggregation) on establishment and spread of

invasive species. Our results suggest that the presence of an Allee effect, the intrinsic rate

of increase, frequency of long-distance dispersal events and proportion of suitable habi-

tat are the primary factors influencing population growth and spread of invasive species.
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This research has shown that the presence of an Allee effect leads to a balance between

the effectiveness of spread and invasion success. Spread is maximized at an intermediate

dispersal level and inhibited at both low and high levels of dispersal. The configuration or

composition of the landscape, by either increasing or mitigating or the dispersal abilities

of a species, can lead to the rate of spread under a dispersal threshold for which density

and spread is at the highest. This study proposes the differences in landscape structure

as an additional explanation to the highly variable spread dynamics observed in natu-

ral and anthropogenic landscapes. A landscape-scale perspective, which systematically

analyses the effect of a core set of landscape structures (proportion of suitable habitat,

patch aggregation, patch shape, core area and edge density) on population growth and

spread could significantly improve spread risk assessment, impact assessment and control

or containment.

Keywords

Invasive insects, heterogeneous landscape, landscape metrics, population dynamics, inva-

sive spread, spatially-explicit individual centred models

4.1 Introduction

Throughout the world, habitat fragmentation and land-use change are among the most

critical threats to biodiversity and ecosystems services (Millennium Ecosystem Assessment,

2005; Cardinale et al., 2012). Both processes result in highly heterogeneous landscapes,

showing different composition (habitat types and proportion) and configuration (spatial

arrangement of habitat types) (Fahrig et al., 2011). Advances in theoretical and em-

pirical approaches to analysing range expansion of invasive species have highlighted the

importance of such spatial heterogeneity as a critical factor that can influence the invasion

process (e.g. Betts et al., 2014; Bradley, 2010; Hastings et al., 2005; Vilà & Ibáñez, 2011).

By interacting with the distribution of invasive species, levels of spatial heterogeneity can

either promote the establishment and spread of invasive species (La Morgia et al., 2011;

Thies et al., 2011; With, 2002) or, alternatively, can act as a barrier to spread (Jules et al.,
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2002; Mundt et al., 2011) or host colonization (Zhang & Schlyter, 2004). However, it is

not fully understood why some new populations spread rapidly across the landscape while

others spread slowly or not at all. Whether the variability observed in nature or in ex-

perimental ensembles might be accounted for by systematic differences between landscape

structures remains an open research question (Meier et al., 2014; Richter et al., 2013;

Sutherland et al., 2013).

Research on landscape-level effects on the establishment and spread of invasive

species has focused predominantly on the contribution of natural and semi-natural habi-

tat types surrounding urban, forest and agricultural ecosystems. Human based land-use

promotes habitat disturbance and human assisted dispersal that can increase propagule

pressure and promote invasive species establishment and spread (González-Moreno et al.,

2013b; Pyšek & Richardson, 2010). The urban landscape supports a diverse fauna rang-

ing from native species to opportunistic species (both native and invasive) which exploit

modified habitats (Garden et al., 2006). For example, exotic phytophagous insects may

find suitable hosts in urban gardens near an airport or port such as the exotic Queensland

fruit fly (Bactrocera tryoni) found in Whangerei and Auckland, New Zealand in 2011 and

2012. In agricultural and plantation forestry ecosystems, modern methods have gener-

ated monocultures that are continuous in their extent and dominated by few crop species,

leading to homogenized landscapes (Margosian et al., 2009). Landscape simplification

increases the concentration of suitable resources that are available to particular invasive

species (Jonsson et al., 2015; Tscharntke et al., 2012; Rigot et al., 2014) and can reduce the

number of habitat types that support invasive species’ natural enemies (Cardinale et al.,

2012; Chaplin-Kramer et al., 2011). Furthermore, the fragmentation of wild-land habi-

tat resulting from agricultural and urban development also affects the spread of invasive

species (Harper et al., 2005; González-Moreno et al., 2014; La Morgia et al., 2011). Urban

forests and parklands represent an increasing percentage of our remaining near-natural

habitats. Because of their proximity to sites of introduction and their (often) large ratio

of edge to interior habitat, they are prime habitat for introduced plant and animal species

which can then spread into less urbanised areas (Martin et al., 2008). Landscape distur-

bance features such as hiking trails or roads can also promote invasion spread, in part by

creating edges where invasive species can easily establish (Christen & Matlack, 2006);
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Syntheses of research across multiple taxa and habitat types offer strong evidence

for landscape composition shaping the establishment and spread of invasive species (e.g

Robledo-Arnuncio et al., 2014; Tscharntke et al., 2012). Empirical studies are strongly

supported by simulation models showing that the local density of invasive species is de-

termined not only by local habitat quality, but also by the spatial structure of the habitat

in the surrounding landscape (e.g. With, 2002, 2004). Management strategies for invasive

species that target different aspects of host/habitat patterns (e.g., abundance, aggre-

gation, isolation, quality) modified the composition and configuration of the landscape.

Understanding the spatially-explicit risks from land manipulation is therefore critical for

planning effective land management (Bradley, 2010) and especially strategies to eradicate

or contain an invasive species. The outcome of such spatial analysis, however, remains

limited by constraints on our ability to carry out a comprehensive quantitative synthesis

of landscape effects on the spread of invasive species. In particular, empirical studies often

fail to account for large gradients of habitat complexity (e.g. patch size, shape, juxtapo-

sition, inter-patch connectivity or habitat aggregation) and offer insufficient or even no

replications across habitat, in part because of an unavoidable trade-off between spatial

scope, sampling intensity and accuracy (Robledo-Arnuncio et al., 2014).

Spatially-explicit models, on the other hand, have provided a good basis for gener-

ating replicated landscape patterns with partially controllable spatial properties (With,

2004). These models traditionally focus on the effect of a limited number of landscape

attributes, such as habitat density or patch connectivity (e.g. Morel-Journel et al., 2015;

Sebert-Cuvillier et al., 2008; Smith et al., 2014; With, 2002), where connectivity is clas-

sically defined as the degree to which landscape features facilitate or impede the rate of

movement of species between habitat patches. Depending on the species considered, these

different landscape features have been shown to modify dispersal rates between habitat

patches (Calabrese & Fagan, 2004) or the pattern of dispersion (Jonsen & Taylor, 2000).

Theoretical studies, such as that by Hanski & Gaggiotti (2004) suggest that as connectivity

increases it facilitates the formation of a metapopulations which can increase the persis-

tence of local populations through the dynamics of source-sink population. On the other

hand, Smith et al. (2014) and Morel-Journel et al. (2015) suggested that increasing con-

nectivity during dispersal allows more effective spread, but simultaneously can decrease
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population density at the source, which can accentuate demographic stochasticity and

Allee effects. Morel-Journel et al. (2015) further suggested that increasing connectivity

during dispersal allows more effective spread, but simultaneously can decrease population

density at the source, which can accentuate demographic stochasticity and Allee effects.

Such results offer theoretical insights into how landscape structure influences spread and

survival and population persistence. However, we are far from having a complete picture

about which features of the landscape can affect population dynamics and invasive spread.

Furthermore, although there is a substantial literature on demographic analysis of invasive

population that helps shed light on specific life-history traits contributing to invasions, only

a minority of spatially-explicit models pose demographic processes as essential to a general

understanding of invasion. Nevertheless, many studies report that the magnitude and di-

rection of landscape effects on each species depends on that species life-history attributes,

sensitivities to environmental disturbances and dispersal abilities (e.g. Guisan & Thuiller,

2005; Huntley et al., 2010; Schurr et al., 2012; Robledo-Arnuncio et al., 2014). Clearly,

there is urgent need for more integrative approaches that link demographic processes and

dispersal strategies to the landscape to better understand the consequences of increasing

anthropogenically driven land-use change, and global environmental and climatic change

on species spread (Bocedi et al., 2014; Robledo-Arnuncio et al., 2014; Wang & Jackson,

2014).

The primary aim of this study was to disentangle the independent and interactive

effects of landscape composition and landscape configuration on the establishment and

spread of invasive species. Critical to this effort is the development of a spatially-explicit

model to forecast the spread of species in relation to landscape structure. We first tested

the relative importance of the quantity of suitable habitat, its configuration and their po-

tential interactions as predictors of density and rate of spread of gypsy moth as a model

invasive species. Second, using a multidimensional scaling ordination technique, we explore

the consistency of the effect of landscape composition and configuration on invasive species

establishment and spread across species with different life-strategies. This study allowed a

generic core of landscape features that significantly affect biological invasion success to be

identified. Such features are essential to inform recommendations in pest risk management.
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4.2 Material and methods

4.2.1 A spatially-explicit spread model of gypsy moth

The central part of the modelling framework is provided by a spatially-explicit model,

MDiG, that represent current understanding of the ecology of invasive insect spread and

establishment (Pitt et al., 2009). We used the gypsy moth (Lymantria dispar dispar) as

a model invasive species. The gypsy moth is native to the temperate forests of Europe

and Asia and is a notorious insect defoliator, occasionally causing extensive tree mortality.

A European strain was accidentally introduced to North America near Boston, USA in

1869 and has subsequently invaded much of the susceptible forest of north-eastern Amer-

ica (Tobin & Blackburn, 2007). As part of the campaign to slow the gypsy moth spread

across the United States, intensive monitoring efforts have been focused around the inva-

sion front. As a result, the spread of the gypsy moth across North America is, perhaps,

the most thoroughly studied biological invasion, providing a unique opportunity to explore

spatio-temporal variability in patterns and rates of spread (Tobin et al., 2015).

To initialize a simulation, individuals were located on a square lattice (simulation

arena) comprised of suitable and unsuitable habitat types. Following Johnson et al. (2006)

and Liebhold & Bascompte (2003), the local density of gypsy moth (density per raster

cell) was approximated by a deterministic Allee logistic growth model:

Nt+1 = Nt exp

[
r

(
1− Nt

K

)(
Nt − C
K

)]
(4.1)

where C is the Allee threshold, r the intrinsic growth rate and K the carrying capacity.

The values of these parameters were based on previous estimates reported in Johnson

et al. (2006) and Liebhold & Bascompte (2003) from capture-release data collected from

1988 to 2004 at the invasion front (Table 4.1).

Spatially-explicit rules determine the pattern of local dispersal and generic long dis-

tance dispersal spread. For every occupied raster cell (or habitat patch), a proportion of

the individuals spread evenly to the surrounding patches. In addition, a Poisson process

is used to generate how many long distance dispersal events originate from each habitat

patch (Pitt et al., 2009). The frequency of these long-distance dispersal events correspond

to the mean of the underlying Poisson distribution and was set to 0.05. The distance trav-
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elled by the individuals is approximated by a Cauchy probability distribution as it allows

for long, rare dispersal distances which may occur naturally (wind dispersal for example)

or which may represent human assisted dispersal (Hastings et al., 2005). Following John-

son et al. (2006), we fixed the median dispersal distances of long-distance dispersal events

(median of the Cauchy distribution) at 5 raster cells. The direction of dispersal was sam-

pled from a uniform distribution (Pitt et al., 2009).

4.2.2 Generating and quantifying landscape heterogeneity

We generated binary (suitable, unsuitable habitat) landscape patterns for 10 km cell size

raster grids of extents 1280 × 1280 km2 to approximate local movements of larvae and

male adults gypsy moths (Jankovic & Petrovskii, 2013). The computer program Qrule

4.2 (Gardner, 1999) was used to generate a gradient of landscape complexity, in which frag-

mentation (measured as the degree of spatial autocorrelation) and proportion of habitat

cover can be systematically and independently controlled (Gardner & Urban, 2007). Qrule

uses a midpoint displacement algorithm (Saupe, 1988) to generate multi-fractal maps in

which the degree of spatial autocorrelation among adjacent cells (H) can be controlled.

We generated landscape patterns in a full factorial design across a five-steps gradient in

spatial autocorrelation (H = 0.1 − 1 in increments of 0.2, 0 being close to random and

1 being completely clustered) and a six-steps gradient in proportion of suitable habitat

habitat cover (P = 5 − 95% in 10% increments) with 10 replicate landscapes for each of

the 35 factor combinations (Table 4.1).

For each sample landscape, we calculated landscape metrics using the computer

program FRAGSTATS (McGarigal et al., 2012). These metrics ostensibly provide simple

quantitative measurements of the composition and configuration of a landscape. The land-

scape metrics were defined for suitable habitat cover only and are commonly referred to as

class-level metrics. McGarigal et al. (2012) categorized these metrics into seven groups

corresponding to the aspect of landscape structure emphasized. These include patch

area/density/edge, shape, aggregation, contrast, core, isolation/proximity and connec-

tivity metrics (Table 4.2). In addition, the percentage of the suitable habitat (PLAND),

considered the most universal measure of landscape composition, was included in the
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Parameters Abbreviated code Parameter value

Population demography
Growth rate r 0.815, 1.223∗, 1.63 per capacity growth
Allee threshold C 0, 2∗, 5 individuals per raster cell
Carrying capacity K 30, 50∗, 100 individuals per raster cell
Propagule pressure nbp 5, 10∗, 15 individuals per raster cell

long-distance dispersal behaviour
Median distance λ 3, 5∗, 7 raster cells
Frequency f 0.01, 0.05∗, 0.09

Landscape structure
Landscape spatial autocorrelation (fragmentation) H H= 0,0.3,0.5,0.7,0.9
Percentage of suitable habitat patches in a binary scheme P P = 5,15,35,55,75,95

Table 4.1: Parameter values for the stochastic spatially-explicit spread model, MDiG. Parameters are
subdivided into the three main model ‘components’. Those parameters marked with ∗ indicate
the baseline parameter values for a spread model of gypsy moth.

analysis to enable a comparison between the relative effect of landscape configuration,

landscape composition and their potential interactions.

4.2.3 Species scenario testing

Insect species can be placed along a ‘slow-fast life-history continuum’, where changes in

population growth rate arise mainly from variability in reproductive rates in fast species

and in survival rates for slow species (Herrando-Pérez et al., 2012). The position of a

species along this continuum could also reflect the propensity of a species to invade a new

environment. Similarly, changes in dispersal distances, frequencies of dispersal events,

carrying capacity and Allee threshold are also expected among species. We used MdiG to

broadly capture this variation, by creating twenty-seven different combinations of species’

life-history attributes and dispersal abilities in a mono-factorial design (Table 4.1). The

main reason for doing this was to evaluate how change in the intrinsic growth rate, carrying

capacity, Allee effect threshold, and the frequency and median distance of long-distance

dispersal events affect the dynamics of spread, and to quantify a general relationship across

life-history attributes to changes to landscape variables. For each life-history scenario and

each sample landscape, we modelled the fate of a single release of 5 to 20 individuals

randomly localized in the largest suitable patch. We varied each parameter over three

values (Table 4.1) and studied the effects of these changes on the dynamics of the sim-

ulated invasion. For each landscape, the species was allowed to expand its range for 30
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years, one model time step represents one year, and simulations were replicated 25 times

to account for dispersal stochasticity. A number of response variables were recorded over

time: population density – d (number of individuals in the population), the occupied area

– OA (number of raster cells occupied/total number of raster cells), the rate of spread –

ROS (number of new cells occupied per simulation run), the average dispersal distance –

avDist, and the maximum dispersal distance – maxDist.

4.2.4 Statistical analysis

4.2.4.1 Quantifying the effect of landscape metrics as indicators of invasive

spread

To investigate the role of landscape metrics as indicators of invasive insect spread, we

used a multivariate regression model (Burnham & Anderson, 2002). A multiple model

analysis helps to improve inferential properties compared with traditional single model

approaches, by allowing an ensemble of plausible candidates to be ranked and integrated

using information theory. This approach accounts for the uncertainty associated with a

single model by providing confidence interval coverage of variable estimates.

The model outputs comprising average population density (d), occupied area (OA),

rate of spread (ROS), average dispersal distance (avDist), and, maximum distance dis-

persal (maxDist) for each species scenario and landscape structure scenario were anal-

ysed using generalized linear models (GLMs) with a Gaussian error distribution for the

species scenario as a random factor. The predictor variables included 84 metrics of land-

scape configuration and composition. Prior to conducting the multivariate regression,

the collinearity among landscape metrics was reduced by selecting independent groups of

metrics identified in Lustig et al. (2015). The degree of mulicollineraty among predictor

variables in each group was further assessed by calculating the generalized variance in-

flation factor (GVIF) for all predictors (Dormann et al., 2013). Predictors giving high

GVIF were identified by calculating the pair-wise correlation between all predictors using

a non-parametric Spearman’s rank correlation. Highly correlated variables were removed

from the analysis until all GVIF values were smaller than 10 (Table 4.2).
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Metrics Abbreviated
code

Range Description

Area/density/edge metrics
Percentage of suitable habitat PLAND 4.34 − 96.01
Edge density ED 3.76 − 540.04 Measure of edge length on a per unit area
Normalized shape index nLSI 0.01 − 0.75 Measure of total length of edge normalized by the

number of cell surface. It provides a simple measure of
class aggregation or clumpiness.

Radius of gyration distribution GYRATE CV 0.00 − 587.09 Measure of the variance in patch extent (mean
distance each cell in the patch). It is effected by both
patch size and patch compaction.

Shape metrics
Perimeter-area ration
distribution

PARA MD 79.36−4000.00 Median of perimeter-area ratio (simple measure of
shape complexity).

Shape index distribution SHAPE MD 1.00 − 2.74 Measure of the overall shape complexity.
Related circumscribing circle
distribution

CIRCLE AM 0.38 − 0.71 Average (AM), median (MA) and range (RA) of patch
elongation.CIRCLE RA 0.00 − 0.87

CIRCLE CV 0.00 − 151.29
Fractal index distribution FRAC MD 1.00 − 1.14 Measure that reflect shape complexity (median - MD

and coefficient of variation -CV of the fractal
dimension) across a range of spatial scale

FRAC CV 0.00 − 9.19

Aggregation metrics
Splitting index SPLIT 1.09 − 21343 Measure of the cumulative area distribution, SPLIT

= 1 when the landscape consist of one patch and
increases as the focal patch is subdivided into smaller
patch.

Percentage of like adjacencies PLADJ 17.88 − 99.41 Frequency with which different pairs of patch types
appear side-by-side.

Contrast metrics
Edge contrast index ECON RA 1.09 − 21343 Mediam (MD), standard deviation (SD) and range

(RA) of the amount of contrast along the patch
perimeter.

ECON MD 32.31 − 100.00
ECON SD 0.00 − 23.01

Core metrics
Disjunct core area density DCAD 0.00 − 531.12 Number of disjunct core area on a per unit area basis.
Core are distribution CORE MD 0.00 − 399.31 Median area in focal patch greater than a specified

depth-of-edge distance
Disjunct core area distribution DCORE MD 0.00 − 482.21 Median (MD) and standard deviation (SD) area in

disjunct patch greater than a specified depth-of-edge
distance C

DCORE SD 0.00 − 180.97

Core are index distribution CAI CV 0.00 − 2858.56 Coefficient of variation of patch core area as a
percentage of patch area.

Isolation/proximity
metrics
Proximity index distribution PROX AM 0.00 − 1255.84 Average (AM) and coefficient of variation (CV) o f the

proximity of all patches whose edges area within a
specified search radius

PROX CV 0.00 − 5743.96

Connectivity metrics
Connect index CONNECT 0.00 − 88.76 Number of functional joining between patches of the

corresponding patch type.PROX CV 0.00 − 5743.96

Table 4.2: List of landscape metrics considered as useful predictors of invasive spread. A detailed de-
scription of each metric can be found in McGarigal et al. (2012).

We then performed a forward-backward step-wise variable selection procedure based

on the Akaike information criterion (AICc) with a correction for finite sample sizes (Burn-

ham & Anderson, 2002). Landscape metrics were mean-centred to facilitate the interpre-

tation of the main effect and the outputs were log transformed to improve the normal

distribution of the models’ residuals. First, we identified the landscape variables that sig-

nificantly improved model performance (lowest AICc values). The models that accounted

for 95% of the cumulative sum of Akaike weights (Akaike weights represent the likelihood
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of a model) were retained. Second, we calculated the averaged parameter estimates of the

model, and their 95% confidence intervals, using a model averaging algorithm. The rela-

tive importance of each landscape metric as a predictor of invasive spread was determined,

based on the sum of Akaike weights, with 1 being the most important (the metric variable

is present in all model candidates for each species scenario) and 0 the least important.

Possible predictor variables were considered to contribute to improve model performance

if their AIC weight summation was relatively high (w > 0.7).

4.2.4.2 Rank similarities among landscape and species scenarios

Finally, we used the non-metric multidimensional scaling (nMDS) method, to identify

groupings in the response data. In essence, values of the response variables (average den-

sity, rate of spread, occupied area and dispersal distances) that are nearby in nMDS space

are more similar to each other than those further apart. This technique is flexible enough

to accommodate for non-linearity in the data. In addition, a ‘biplot’ was overlaid in the

NMDS space to show how the position of different simulation runs in the ordination space

are related to the selected landscape metrics and life-history traits. Statistical analyses

were performed using the R statistical system v 3.2.2 (R Development Core Team 2013).

Model selection for mixed models was conducted using ‘lme4’ package (Bates et al., 2015)

and ‘MuMIn’ package for model-averaging of coefficients (Bartoń, 2016). The ordination

analysis was conducted using the ‘vegan’ package (Oksanen et al., 2016).

4.3 Results

4.3.1 Aspects of landscape structure influencing the spread of invasive

insects

Reduction of collinearity among the landscape metrics that are considered useful predictors

of invasive spread, resulted in the selection of 23 metrics of landscape configuration and

composition (Table 4.2). These metrics had a pair-wise Spearman correlation lower that

0.8 and a variation inflation factor lower than 10. The selected set of metrics cover all
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seven pattern aspects identified in McGarigal et al. (2012), including area/density/edge,

shape, aggregation, contrast, core, isolation/proximity and connectivity metrics.

Across all scenarios, average population density (d), rate of spread (ROS), mean

dispersal distance (avDist) and maximum dispersal distance (maxDist) were best predicted

by three landscape metrics: proportion of suitable habitat in the landscape (PLAND) -

the most common measure of habitat composition; edge density (ED) and normalized

shape index (nLSI) – a simple measure of habitat patch shape and clumpiness. These

three landscape metrics collectively represent a gradient from areas with few, small and

clustered habitat patches towards an area with high inter-dispersion and covered by a

large amount of habitat with elongated patches. The effect of the proportion of suitable

habitat in the landscape was the most important variable affecting all aspects of spread

(Table 4.3). Increase in density, rate of spread, mean dispersal distance and maximum

dispersal distance were all positively related to PLAND, while these four components of

spread were negatively related to the normalized shape index. An increase in population

density, rate of spread and maximum dispersal distance were positively related to edge

density, while average dispersal distance was negatively related to edge density.

The percentage of like adjacencies (PLADJ) and the splitting index (SPLIT) are

both measures of patch aggregation that were found to significantly affect population

density and rate of spread. In addition, the mean circumscribing circle (CIRCLE AM,

a measure of patch elongation), the connectivity index (CONNECT), and the amount of

disjunct core areas (DCDA) also had a significant effect on population density and rate of

spread. Although the effects were significant, the actual effect size of these three landscape

metrics on population density were small, with lower summed Akaike weights (0.01, 0.01

and 0.02 respectively) and model partial slope coefficient near 0 (Table 4.3).

The core metrics, in particular, the median of the disjunct patch area DCORE MD,

only show a significant effect on the mean dispersal distance (avDist) and the maximum

dispersal distance (maxDist). A number of shape metrics (FRAC CV, SHAPE MD,

PARA MD), core metrics (CAI CV and DCAD) and aggregation/connectivity metrics

(CONNECT and SPLIT) were found to have a significant effect on dispersal distance.

However, the effect size of these configuration metrics were relatively small as shown by

lower summed Akaike weights and a model partial slope coefficient near 0 for all metrics
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Metrics
Insect density (d) Occupied area (OA) Rate of spread (ROS)

w β
Lower

CI
Upper

CI
w β

Lower
CI

Upper
CI

w β
Lower

CI
Upper

CI
PLAND 1 0.1745 0.161 0.188 1 0.018 0.0170 0.0191 1 0.2232 0.2053 0.2412
ED 0.62 0.0277 0.0146 0.0407 1 0.0279 0.0140 0.0419
nLSI 0.96 -0.0453 -0.057 -0.033 0.6 -0.001 -0.002 -0.0002 1 -0.0432 -0.0587 -0.0278
PLADJ 0.67 0.0647 0.0425 0.0869 0.4 0.001 0.0002 0.002 1 0.0488 0.0258 0.0720
SPLIT 0.59 0.0190 0.0083 0.0297 1 0.0200 0.0098 0.0303
CIRCLE AM 0.02 0.0149 0.0033 0.0266 0.82 0.0168 0.0057 0.0278
CONNECT 0.01 -0.0099 -0.020 -0.0003 1 -0.0121 -0.0215 -0.0028
DCDA 0.08 0.0129 0.0040 0.0219 0.17 0.0118 0.0034 0.0202
PLAND:SPLIT 1 -1.0682 -1.5140 -0.6223 1 -1.3602 -1.8091 -0.9112
PLAND:CIRCLE AM 0.08 0.0015 0.0066 0.0333 1 0.0297 0.0210 0.0385
PLAND:ED 0.04 -0.0014 -0.0456 -0.0160 1 -0.0389 -0.0508 -0.0269
PLAND:DCAD 0.03 -0.0003 -0.0212 -0.0008
PLAND:PLADJ 0.53 0.3554 0.02603 0.6848

Metrics

Mean dispersal
distance (AvDist)

Max dispersal
distance (MaxDist)

w β
Lower

CI
Upper

CI
w β

Lower
CI

Upper
CI

PLAND 1 0.0419 0.0384 0.0455 1 0.1948 0.1790 0.2106
ED 1 -0.0028 -0.0048 -0.001 0.99 0.0222 0.0106 0.0336
nLSI 1 -0.0084 -0.0105 -0.0064 1 -0.0486 -0.0640 -0.0333
PLADJ 0.45 0.0288 0.0109 0.0466
SPLIT 0.45 0.0126 0.0059 0.0193
CIRCLE AM 0.74 0.0138 0.0061 0.0214
CONNECT 0.45 -0.0100 -0.0159 -0.0040
DCDA 0.1 0.0087 0.0020 0.0153
DCORE MD 1 -0.0043 -0.0066 -0.002 0.85 -0.0148 -0.0226 -0.0070
DCORE SD 1 -0.0019 -0.0036 -0.0003
CAI CV 0.03 -0.0065 -0.0118 -0.0011
SHAPE MD 0.02 0.0046 0.0005 0.0088
PARA MD 0.02 -0.0045 -0.008 -0.0004
PLAND:SPLIT 1 -0.1669 -0.2224 -0.1114 1 -1.4083 -1.8890 -0.9275
PLAND:ED 1 -0.0395 -0.0538 -0.0252
PLAND:CIRCLE AM 0.73 0.0293 0.02013 0.0386
PLAND:DCORE SD 0.28 -0.0353 -0.0514 -0.0192
PLAND:DCORE MD 0.18 -0.0171 -0.0318 -0.0024
PLAND: DCDA 0.01 -0.0145 -0.0251 -0.0039
PLAND:CAI CV 0.01 0.0168 0.0039 0.0298

Table 4.3: Model-average partial regression coefficient (β) and unconditional 95% coefficient intervals
(CI) from models of total population density, occupied area, rate of spread, mean dispersal
distance and maximum dispersal distance in relation to landscape variation. Coefficients are
based on mean-centred data. AICc weights (w) indicate relative importance of variable j
based on summing weights across models were variable j occurs.

(Table 4.3).

Furthermore, there was some evidence of significant interactions between the pro-

portion of suitable habitat in the landscape and landscape configuration metrics, which

were stronger and better supported for rate of spread and dispersal distances than for

population density (Table 4.3). The average influence of the proportion of suitable habi-

tat (PLAND) on rate of spread, dispersal distance and population density decreased when

the degree of fragmentation in the landscape (SPLIT) and edge density (ED) - length of

borders between patches of different habitat type in a given area, increased. On the con-

trary, the average influence of the proportion of high-quality habitat (PLAND) on rate of

spread and dispersal distances was enhanced when the related circumscribing circle (CIR-

CLE AM) - a measure of patch elongation, increased. This last index may be particularly
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useful for distinguishing habitat patches that are both narrow and elongated. These inter-

actions predicted that the marginal increase of the proportion of suitable habitat within

a landscape is on average less when the habitat is highly fragmented.

We also found significant effects of the interactions between the proportion of high-

quality habitat (PLAND) and core metrics (DCORE MD, DCORE SD, CAI CV and

DCAD) on the maximum dispersal distance, and between the proportion of high-quality

habitat (PLAND) and measure of patch aggregation (PLADJ) on the rate of spread. How-

ever, the effect of these latest interaction were relatively weak, with lower summed Akaike

weights (Table 4.3).

4.3.2 Impact of landscape structure on model behaviour

We used non-metric multidimensional scaling (nMDS) to identify how values of the re-

sponse variables (average density, rate of spread, occupied area, dispersal distances) in

ordination space relates to landscape variation as represented by selected landscape met-

rics and variable life-history traits. We distinguish two distinct set of simulations: simu-

lations with an Allee effect present (Figure 4.1), and simulations without an Allee effect

(Figure 4.2).

Figure 4.1 suggests two broad categories of model dynamic when an Allee effect is

present. Axis 1 of the ordination space broadly represents the rate of spread (ROS), the

average dispersal distance (avDist), and the maximal dispersal distance (maxDist). These

three components of spread increased towards the right of the space with increasing Allee

effect and were strongly correlated with the frequency of dispersal events f . Axis 2 of the

ordination space broadly relates to population density (d). The diffuse cluster toward the

bottom of the ordination space represents ‘failed’ or less populated establishment, while

the cluster toward the top of the axis 2 represents the most successful invasion. The bi-

plot suggests that the most successful invasions (high density, high rate of spread and long

dispersal distances) were positively correlated with the rate of increase r and negatively

correlated with dispersal abilities dist and carrying capacity K. However, we observed

a high variability within the successful invasions in terms of density, the occupied area

and rate of increase, which are further correlated to the metrics of landscape structure.
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In particular, the realized average dispersal distance (avDist) and rate of spread (ROS)

are positively correlated with landscape metrics that decrease with habitat fragmenta-

tion (proportion of suitable habitat - PLAND, percentage of like adjacencies - PLADJ,

connectivity index - CONNECT, number of disjunct core areas - DCDA, and variation

in disjunct patch area - DCORE MD and DCORE SD). The realized average dispersal

distance (avDist) and rate of spread (ROS) are negatively correlated with metrics which

increase with fragmentation (edge density - ED, dplitting index - SPLIT, circumscribing

circle - CIRCLE AM).

In the absence of an Allee effect (Figure 4.2), the biplot suggests that landscape

structure has a higher impact on the course of invasion. In particular, the most successful

invasions are positively correlated to the proportion of suitable habitat (PLAND), the per-

centage of like adjacencies (PLADJ), the connectivity index (CONNECT), the number of

disjunct core areas (DCDA) and the disjunct patch area DCORE MD and DCORE SD,

while negatively correlated to the splitting index (SPLIT- a measure of fragmentation)

and a measure of patch elongation (CIRCLE AM). Both the rate of increase and the car-

rying capacity K are positively correlated with the most successful invasion, in particular

with the highest density d. The median dispersal abilities dist and average frequency of

dispersal events f are negatively correlated to the most successful invasion. Overall, in

both studies (with and without Allee effects), the rate of spread and the realised average

dispersal distance are the two factors most correlated to measures of landscape composi-

tion and configuration.
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Figure 4.1: Non-metric multidimensional scaling (nMDS) profiles of the dispersal experiments with Allee effects over a gradient of spatial heterogeneity.
Each point represents a dispersal experiment. The gradient of color indicates how the range of average population density (d), rate of spread
(ROS), mean dispersal distance (avDist) and maximum dispersal distance (maxDist) associated with each dispersal experiment are distributed
in the ordination space. The ‘biplot’ shows how the position of different dispersal experiments in the ordination space are related to the selected
landscape metrics and life-history traits.
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Figure 4.2: Non-metric multidimensional scaling (nMDS) profiles of the dispersal experiments without Allee effects over a gradient of spatial heterogeneity.
The gradient of color indicates how the range of average population density (d), rate of spread (ROS), mean dispersal distance (avDist) and
maximum dispersal distance (maxDist) associated with each dispersal experiment are distributed in the ordination space. The ‘biplot’ shows
how the position of different dispersal experiments in the ordination space are related to the selected landscape metrics and life-history traits.
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4.3.3 Balancing effectiveness of spread and invasion success

When an Allee effect was absent, an increase in the proportion of suitable habitat (PLAND)

results an increase in the mean dispersal distances, and subsequently to an increase in the

rate of spread and population density (Figure 4.3). The population may undergo spread

and growth regardless of the proportion of suitable habitat.

In the presence of an Allee effect, the range of dispersal distance that allow for

optimal spread was considerably reduced compared to the case without an Allee effect. At

lower realised mean dispersal distances (avDist), spread was limited as evidenced by a lower

realized mean rate of spread, but growth happened as indicated by a local maxima in the

population density curve (Figure 4.3). A two-fold increase in the mean dispersal distance

leads to the highest rate of spread and population density. The range of permissible

rate of spread and population density was dramatically reduced when the mean dispersal

distance went over a certain dispersal threshold (Figure 4.3). These results suggested that

invasive species subjected to an Allee effect may present two different growth patterns

when arriving to a new environment. On one hand, species that have limited dispersal

opportunities will maximise their populations locally but will fail to establish a population

over a large area. On the other hand, species that have high dispersal opportunities may

spread but face the added risk of not establishing or going extinct. Overall, population

density and rate of spread were maximised for intermediate dispersal abilities.

The results also showed that an increase in the proportion of suitable habitat

(PLAND) in the landscape resulted in an increase in the probability of observing a mean

dispersal distance higher than the dispersal threshold that can limit growth and spread

(Figure 4.3). In a landscape with more than 70% of suitable habitat, 5% of the simulations

resulted in a mean dispersal distance higher than the dispersal threshold. In a landscape

with more than 80% of suitable habitat, 10% of the simulations resulted in a mean disper-

sal distance higher than this dispersal threshold. Although a high proportion of suitable

habitat would lead to more successful spread (highest mean dispersal distances) when the

source population density is high enough, it may also reduce spread success and popula-

tion growth when the source population is too small. This result provides new insights

into the proportion of suitable habitat as an additional explanation to the highly variable

spread rate observed in both natural and anthropogenic landscapes.
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Strong Allee effect

Mean dispersal distance (avDist)
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Figure 4.3: Balancing effectiveness of spread and invasion success in heterogeneous landscapes. The top panels show how population density (d) and rate of
spread (ROS) respond to different ranges of mean dispersal distances for three different scenarios: without Allee effect, with weak Allee effect
and with strong Allee effect. Above a dispersal threshold (red dotted line), growth and rate of spread were considerably reduced or not observed.
The bottom panel represents the probability of observing a mean dispersal distance higher than the dispersal threshold that can limit growth
and spread as a function of the proportion of suitable habitat (PLAND).
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4.4 Discussion

The influence of landscape structure on the spread of invasive species is generally acknowl-

edged but is often difficult to quantify. In this study, we investigated the effect of landscape

structure as a predictor of patterns of spread of invasive insects. We found that both land-

scape composition and landscape configuration influenced population density and rate of

spread in significant and sometimes interactive ways. However, the particular effect of

landscape structure on invasive spread depends on several life-history characteristics such

as the intrinsic rate of increase, dispersal ability, and frequency of long dispersal events as

well as the presence or absence of an Allee effect.

4.4.1 Landscape metrics as indicators of spread

This research has shown that the density and rate of spread of invasive insects are more

impacted by the proportion of suitable habitat than by habitat configuration. This has

significant implications for the prediction and management of invasive species in general.

In all species scenarios studied here, the increase in density and rate of spread of the species

was positively related to an increasing proportion of suitable habitat in the landscape

(PLAND). The direct effect of the amount of suitable habitat on invasive species density

and spread has been reported in several studies, particularly in agroecosystems (Chaplin-

Kramer et al., 2011). Our results suggest that such an effect may be caused by a greater

aggregation of suitable habitat patches (as measured by nLSI, PLADJ, SPLIT) and a

slight decrease in edge density (ED). Different spread rates in different landscapes can

also be caused by variation in connectivity of habitat patches (CONNECT), in habitat

patch elongation (CIRCLE AM) and by variation in the ratio of edge-to-interior habitat

(DCORE MD and DCORE SD). In other words, landscapes containing larger patches of

suitable habitat with simple, circular or square shape are expected to be more conducive

to the rapid spread of invasive insects. Previous research also confirms that the metrics

identified in this study that characterize habitat density (Sebert-Cuvillier et al., 2008;

Tscharntke et al., 2012; With, 2002), connectivity (e.g. Morel-Journel et al., 2015; Sebert-

Cuvillier et al., 2008; With, 2002; Wang et al., 2011), path aggregation (Wang et al., 2011;

With & King, 1999b) and edge density (Radeloff et al., 2000; Tscharntke et al., 2012; With,
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2002) are important aspects of the landscape that can either influence or exacerbate the

spread of insects.

Overall, we found that the main effect of the configuration of habitats at a land-

scape scale had less impact on total density and rate of spread of the invasive species when

compared to the main effect of the amount of habitat. Such a finding is consistent with

and confirms the finding of many studies that habitat homogenisation is one of the key

drivers of global increase in pest and disease establishment and spread (Jonsson et al.,

2015). Nevertheless, it is recognized that population density and rate of spread of invasive

species can be significantly affected by complex interactions between the composition and

configuration of the landscape in the introduction area.

4.4.2 Fragmentation versus proportion of suitable habitat in the land-

scape

The results in this study show that density and spread of invasive insects were best

predicted by an interaction between the proportion of suitable habitat in the landscape

(PLAND) and the splitting index (SPLIT). Moreover, evidence was found of a significant

interaction between the proportion of suitable habitat in the landscape (PLAND) and re-

spectively, the effects of edge density (ED) and average patch elongation (CIRCLE AM)

on rate of spread and dispersal distances.

The splitting index is a measure of habitat fragmentation designed to quantify the ex-

tent to which habitat patches are aggregated in space (Jaeger, 2000). Our results contrast

with theoretical studies that suggest that suitable habitat connectivity at the introduction

site is a determining factor of patterns of spread (Morel-Journel et al., 2015). On the con-

trary, we found that invasive spread might be limited more by the size and distribution of

non-habitat gaps than by a measure of habitat connectivity (the degree to which landscape

features facilitate or impede the rate of movement of species between habitat patches).

Ultimately, the notion of patch aggregation is embedded within the notion of connectiv-

ity such that, when habitat patch aggregation increases, connectivity also increases. Our

results are in agreement with the results of With & King (1999a) and Wang et al. (2011)
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who also highlighted the critical role of non-habitat gaps in reducing the spread of species

over the landscape.

On the other hand, the effect of edge density (ED) and habitat patch elongation

(CIRCLE AM) was particularly challenging to assess. In this study, a decrease in edge

density led to a slight increase in population density and rate of spread of the gypsy moth,

but a slight decrease in density. Other studies have found that depending on whether

species are moving primarily within or between habitat types, the micro-environments

between habitat fragment may critically increase (Radeloff et al., 2000; Tscharntke et al.,

2012; With, 2002) or decrease (Tscharntke et al., 2012) the potential of spread. Ewers et al.

(2007) further demonstrated that an increase in habitat shape complexity is associated

with an increase in the amount of edge habitat that results in a higher edge density (ED).

Large patches are more likely to be of a complex shape. We found that as shape complexity

increases, patches become less circular (CIRCLE AM), and the probability of spread and

growth of invasive species decreases.

Overall, the results demonstrate that growth and spread of invasive species can

be significantly affected by the combined landscape based components: suitable habitat

amount, habitat patch aggregation and habitat shape complexity. We found that popu-

lation density and rate of spread were positively correlated with landscape metrics that

increase with decreasing habitat fragmentation, and negatively correlated with metrics

which increase with increasing habitat fragmentation. To our knowledge, most theoreti-

cal studies that have focused on the spread of invasive species at the colonization front

have also found a non negligible effect of the spatial arrangement of habitat on local

density and rate of spread (Morel-Journel et al., 2015; With, 2002). Fahrig et al. (2011)

and Tscharntke et al. (2012), however, proposed that species respond idiosyncratically to

habitat fragmentation versus habitat loss, which may suggest that highly mobile species

can tolerate habitat fragmentation as long as the amount of total habitat is sufficient.

Their finding suggest that the configuration of the landscape might not always be im-

portant for predicting the density and rate of spread of invasive species. Results from

this study might highlight the need for data on the foraging and movement patterns of

invasive insects in different habitat types and landscape contexts to validate mechanistic

predictions.
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4.4.3 Impact of landscape structure on population dynamics

Clearly, the overall outcome of spread critically depends on several life-history character-

istics, dispersal ability as well as landscape factors. The presence of an Allee effect, the

intrinsic rate of increase, the frequency of long-distance dispersal events and the propor-

tion of suitable habitat were the primary discriminants of successful establishment and

spread. As reflected by Figure 4.3, our results support two important hypothesis about

population spread and growth in a heterogeneous environment. First, in the absence of

an Allee effect, and in the absence of other influences (predation, for example), a popula-

tion can spread and grow regardless of the proportion of suitable habitat. Increasing the

proportion of suitable habitat in the landscape increases the overall population density

and rate of spread exponentially (Figure 4.3; Shigesada & Kawasaki (1997)). Second, in

the presence of an Allee effect, a population experiences a balancing effect between the

effectiveness of spread and invasion success (Figure 4.3; Smith et al. (2014)): growth and

spread are maximized at intermediate dispersal abilities but inhibited at high dispersal

abilities. Species that have a high intrinsic rate of increase quickly exceed the size of

population that is vulnerable to Allee effects, ensuring a higher probability of persistence

of the introduced propagule(s) (Figure 4.1, Morel-Journel et al. (2015)).

Furthermore, Smith et al. (2014) used a programmed Allee effect in bacteria to

demonstrate that an increase in the number of suitable habitat patches can result in more

prolific spread but simultaneously increases the chances that each population could fail

to establish due to Allee effect. Our simulations based on insect life-history parameters

are in broad agreement with these results. We found evidence of a dispersal threshold

above which population spread and growth can be inhibited (Section 4.3.3). Additionally,

the results of this study echo the ‘all or nothing’ strategy proposed by Heimpel & As-

plen (2011) and Morel-Journel et al. (2015), where they propose that a population would

either go extinct quickly or form a stable population expanding across highly connected

landscape. Therefore, species with an Allee effect follow unique dynamics of spread that

can be significantly affected by the structure of the landscape. This study further revealed

that by either allowing or preventing the dispersal of a species from the introduction site

(or effective containment) (Section 4.3.1) complex interactions between the composition

or configuration of the landscape may push these species into a range of dispersal that
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allows optimal spread and growth. Specifically, the results in this study showed that in

a landscape with more than 70% of suitable habitat, 5% of the simulations resulted in

a mean dispersal distance higher than a dispersal threshold that can limit growth and

spread. Such an observation may offer an additional explanation to the highly variable

spread dynamics observed in both natural and anthropogenic landscapes. It can also ex-

plain why, during an outbreak, spread can be initially slow manifesting itself as a time lag

followed by an increase over time. Species must establish a population density that can

exceed the size vulnerable to Allee effects before effective spread will occur.

4.5 Conclusion

This study offers new insights for a management programs that aim to limit the spread

of invasive species. Strong evidence was found for landscape composition and configura-

tion shaping the successful establishment and rate of spread of a species. Management

strategies targeting different aspects of the landscape, including barrier zones (natural,

anthropogenic, environmental barriers), modification of the host/habitat pattern (e.g.,

abundance, aggregation, isolation, quality), or regulation of the dispersal vector, modi-

fies the shape of the relationship. Adopting a strategy that systematically reduces the

dispersal ability of a new introduced species by reducing dispersal between suitable habi-

tat patches, for example (Brown et al., 2006), might inadvertently help them thrive by

pushing the species into a range of dispersal that allows optimal spread and growth. We

therefore recommend that management strategies for containment or eradication of inva-

sive species set spatial priorities of control at the landscape scale. These spatial priorities

should account for specific landscape characteristics, the stage of the invasion and the

life-history characteristics of the species. The analysis in this study provides a basis for

the development of a core set of structural landscape metrics as indicators of invasive in-

sect spread. It is proposed that the seven metrics identified in this study (PLAND, nLSI,

PLADJ, SPLIT, ED, CIRCLE AM, and DCORE MD) together include the majority of

the information provided by the other metrics. However, optimal choice of metrics will

require case specific exploration of their indicator values as there is no one-case-fits-all

strategy that can ensure optimal risk assessment and management control for all species

and landscapes. The overall outcome of this study is that strategic planning for manage-
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ment of invasive species must account for the effect of a core set of landscape features,

the stage of invasion and species traits, as there is no single control option that ensures

optimal risk assessment and management for all species and landscapes.
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Chapter 5

The relative effects of propagule pressure, habitat

structure and life-history traits on the establish-

ment and spread of invasive species

Contribution of authors

This chapter describes a collaboration between the current author with Doctor Crile

Doscher and Associate Professors Daniel B. Stouffer and Susan P. Worner, who provided

statistical advice and comments on the manuscript. The results of this chapter are in-

tended to be submitted as follow:

Lustig, A., Stouffer D. B., Doscher C. & Worner, S. P. (2016). The relative effects of

propagule pressure, habitat structure and life-history traits on the establishment and

spread of invasive species , Journal of Ecology.

Abstract

Propagule pressure, habitat structure of the introduction sites, and the demographic and

dispersal attributes of invasive species have all been shown to influence their establishment,

density and spread. Yet, their relative importance explaining invasive spread success and

failure and their generality determining invasion outcomes across different regions and for

different species have not been firmly established. Using a spatially-explicit model, we

performed an boosted regression tree analysis to explore the relative importance of these

factors on the density, rate of spread and mean dispersal distances of invasive insects.

Variables representing an Allee effect, the intrinsic rate of increase and propagule pres-

sure were found to be the three most influential variables in each model. Surprisingly,

we did not find a significant effect of intrinsic dispersal abilities on response to habitat
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changes. Our results rather suggested that the frequency of long-distance dispersal events

in combination with measures of suitable habitat amount and habitat aggregation was a

better indicator of population dynamics than the intrinsic abilities of a species to disperse

in fragmented landscapes. This implies that establishment and spread is most strongly

related to reproduction, which determines the total number of potential colonists, but can

be in turn exacerbated or mitigated by complex interactions between habitat structure

and long-distance dispersal events. This study highlighted how complex interactions be-

tween propagule pressure, species traits and habitat characteristics can determine patterns

of invasion across fragmented landscapes. Successful management of invasive species will

depend on understanding this context dependent effect across habitats.

Keywords

Invasive insect spread, spatially-explicit models, landscape structure, Allee effects, propag-

ule pressure, population dynamics

5.1 Introduction

A fundamental question in invasion biology is how the establishment, distribution and den-

sity of invasive organisms are influenced by various interacting factors, including propagule

pressure, habitat characteristics at the introduction sites and species life-history traits (Thomas

& Moloney, 2013). Although the influences of these different factors are well recognized,

their relative importance in the success or failure of establishment and spread of invasive

species remains unclear (Catford et al., 2011; Cassey et al., 2014; Robledo-Arnuncio et al.,

2014).

A predominant observation in a variety of taxonomic groups is that, as the number

of invasive organisms introduced into a new area and the frequency of these releases in-

crease, so does establishment and spread success (see, for example, the review of Lockwood

et al., 2005; Hayes & Barry, 2008; Lockwood et al., 2009; Blackburn et al., 2011). Intu-

itively, increasing the size and availability of propagules enables the incipient population

to overcome behavioural limitations, such as mate access, or other limitations associated
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with small populations, including Allee effects and demographic stochasticity. Yet, sev-

eral studies have questioned the generality of the positive propagule pressure – invasion

success relationship. In particular, empirical experiments on insects (Sagata & Lester,

2009), plants (Yeates et al., 2012), birds (Sol et al., 2012) and marine species (Chadwell &

Engelhardt, 2008; Haydar & Wolff, 2011) have found low or no statistical evidence for the

positive influence of propagule pressure on establishment success. Jerde & Lewis (2007)

discussed the fact that the initial introduction stage of most biological invasions is poorly

understood, in part because there is often no reliable records of the species that were intro-

duced but failed to establish. McGregor et al. (2012) further suggested that non-random

patterns of introductions may result in the pool of introduced species being a biased subset

with regard to key species attributes, potentially biasing perceptions of which factors are

important for determining establishment and spread success. Clearly, one must therefore

be cautious about assuming that reduced propagule pressure will lead to lower probability

of establishment and spread.

Invasion success is also determined by the ability of the arriving propagules to over-

come various pressures of the new host environment. At global scales, it is generally well

accepted that abiotic conditions and resource availability are the main drivers influenc-

ing species distributions. Clearly, a species will not be able to invade an area that has

abiotic conditions outside of its physiological tolerance levels (Petitpierre et al., 2012).

At a local scale, however, patterns of invasive species density and rate of spread differ

between invaded habitats (Vilà et al., 2007; Ibáñez et al., 2009). These differences have

been partly explained by the complex interplay of patterns and processes related to the

variation and influence of spatial, temporal, biotic and anthropogenic drivers (Catford

et al., 2009). Biotic interactions, and their variations in time and space, are known to

affect species’ spatial patterns through several mechanisms such as competition, preda-

tion, parasitism or symbiosis, that can ultimately impede or facilitate invasion by new

organisms (Mitchell et al., 2006; Tylianakis et al., 2008). In addition, human activities,

such as urbanization or agricultural and forestry activities, promote invasion by increasing

human-mediated propagule pressure and landscape disturbances (e.g. fluctuating resource

availability, habitat loss and fragmentation) that encourage a shift in biotic communities

and can benefit non-indigenous establishment (Hobbs, 2000). Across the globe, many na-
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tive ecosystems have now been replaced by human-dominated mosaic landscapes, wherein

a patchwork of sharply contrasted human land-use patterns has been superimposed on pre-

existing patterns of heterogeneity in environmental conditions. In this context, landscapes

are a composition of more or less isolated patches of suitable habitat within a matrix of less

suitable habitats (Hanski & Gaggiotti, 2004). From the perspective of a particular species,

this patchwork of various habitat types may offer different resources for foraging and re-

production, and different suitability for species dispersal, emphasizing movement among

distinct habitats as an essential facet of the ecology of many species (Fahrig & Nuttle,

2005). Understanding how landscape structure (i.e. composition and configuration) mod-

erates population growth and natural dispersal of invasive species is therefore crucial to

comprehending their dynamics in increasingly human-dominated landscapes (With, 2002;

Vilà & Ibáñez, 2011; González-Moreno et al., 2013a).

We understand from theory that there are two important aspects of the landscape

spatial structure with potential to impact invasive species density and spread: landscape

connectivity, defined as the combined effect of landscape elements that facilitate or dis-

rupt the movement of individuals between habitat patches, and environmental hetero-

geneity (i.e. variance and range of environmental conditions and their spatial autocorrela-

tion) (Fahrig & Nuttle, 2005; Fahrig et al., 2011; Fagan et al., 2013). More specifically, we

proposed in Chapter 4 the differences in landscape structure, which can ostensibly charac-

terized by a core set of eight landscape metrics, as an additional explanation to the highly

variable spread dynamics observed in natural and anthropogenic landscapes. However, an

understanding of these effects is still very limited, and it will be major challenge to derive

generalities across systems. In particular, perception of the environment and surrounding

landscape differs between species and the great range of dispersal and reproductive abili-

ties complicates the interpretation of interaction patterns. For example, Tscharntke et al.

(2012) suggested that species that are mobile enough should be less susceptible to habitat

structure than less mobile species. However, some empirical studies, such as León-Cortés

et al. (2003) and Van Houtan et al. (2007), have found the opposite, that more mobile

species are more sensitive to habitat structure.

Nevertheless, empirical and theoretical studies suggest that species susceptibility

to the interactive effects of propagule pressure and habitat structure depends on their
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demography. Sakai et al. (2001) observed that the possession of growth traits, which al-

low for fast intrinsic rates of increase, such as short generation time or high fecundity, is

common to many successful invaders across taxa. In particular, Grevstad (1999) found

that the consequences of an Allee effect and spatial heterogeneity on insect biocontrol

agents was exacerbated for populations with lower reproductive rates. Similarly, Holland

et al. (2005) found a negative association between reproductive rate and minimum habi-

tat amount required for presence across a group of woodboring beetles, while Vance et al.

(2003) described a similar relationship to explain the occurrence of forest bird species.

In a synthesis across taxa in wetland ecosystems, Quesnelle et al. (2014) suggested that

dispersal between habitat patches is less important than species’ reproductive rates for

population persistence in fragmented landscapes. On the other hand, Cassey et al. (2014)

have investigated the relative importance of life-history traits on influencing the probability

of invasion of exotic birds along with the combined effect of propagule pressure and envi-

ronmental stochasticity. The authors found that while propagule size and environmental

stochasticity undoubtedly influence establishment and spread success, demographic traits

have an equal or greater effect on invasion success of birds. All these studies predict that

species with lower reproductive rates are more sensitive to suitable habitat amount in the

landscape than species with higher reproductive rates. Yet, these studies did not investi-

gate, the relative importance of habitat structure and its influence on invasion success at

the introduction site in detail.

In consideration of the above, the main objective of this study was to determine the

relative importance of dispersal ability, reproductive rate, propagule pressure and habitat

structure for determining population establishment, growth and spread of invasive insects.

A spatially-explicit framework was used to explore a range of relationships between invasive

success and propagule pressure, habitat structure and life history traits. We expand on

previous studies by focusing on the response of a population model to change in landscape

composition and configuration at the introduction site. Developing a better understanding

of the relative effects of these different factors on establishment and spread of invasive

species is an essential step to inform more targeted management actions. Not only is

it intended that this study yield an improved understanding of the underlying invasion

processes, it should also facilitate the development of efficient predictors that are not
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species- or context-specific. For example, if the interplay between dispersal abilities and

habitat structure drives density and spread of invasive species, eradication programmes

should focus on limiting dispersal. In contrast, if reproductive rate drives the response,

the focus should be on limiting reproductive stages. To investigate these questions, we

performed an uncertainty analysis to explore the relative importance of different factors

on the density, rate of spread and mean dispersal distances of invasive insects.

5.2 Material and methods

5.2.1 MdiG simulations

Introductions of non invasive species were simulated using the spatially explicit model,

MdiG (Pitt et al., 2009). The model attempts to represent in great detail the complexity

of the ecology of invasive insects’ establishment and spread. At the population scale,

the model integrates a parameter set to simulate life history events of birth and death,

following a deterministic Allee logistic growth model. Environmental stochasticity (i.e.

spatial variation in population growth) is included by modifying mortality as a function

of local insect density and habitat quality. At the landscape level, spatially explicit rules

determine the pattern of local (random walk) and generic long distance dispersal spread

(Cauchy probability distribution). Additional details about the modelling framework and

the parametrization of the model can be found in Chapter 2 and Chapter 4, respectively.

We set the parameters of the models for a generic gypsy moth (Lymantria dispar

dispar) (Chapter 4). Invasion by gypsy moth across North America is one of the most

thoroughly studied biological invasions, providing a unique opportunity to explore spatio-

temporal variability in patterns and rates of spread (Jankovic & Petrovskii, 2013). The

landscape, or simulation arena, consists of a binary distinction between suitable and un-

suitable habitat types. As described in Chapter 2, we generated landscape patterns in a

full factorial design across a gradient in spatial autocorrelation and gradient in the pro-

portion of suitable habitat cover. We used a core set of eight structural landscape metrics

(PLAND, nLSI, PLADJ, SPLIT, ED, CIRCLE AM, DCORE MD, and CONNECT), that

enable a quantitative comparison of landscape structure, and have been shown to be useful

indicators of invasive insect density and spread (Chapter 4).
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Parameters Abbreviated code Parameter value

Population demography
Growth rate r 0.815, 1.223∗, 1.63 per capacity growth
Allee threshold C 0, 2∗, 5 individuals per raster cell
Carrying capacity K 30, 50∗, 100 individuals per raster cell
Propagule pressure nbp 5, 10∗, 15 individuals per raster cell

long-distance dispersal behaviour
Median distance λ 3, 5∗, 7 raster cells
Frequency f 0.01, 0.05∗, 0.09

Landscape structure
Landscape spatial autocorrelation (fragmentation) H H= 0,0.3,0.5,0.7,0.9
Percentage of suitable habitat patches in a binary scheme P P = 5,15,35,55,75,95

Table 5.1: Parameter values for the stochastic spatially-explicit spread model, MDiG. Parameters are
subdivided into the three main model ‘components’. Those parameters marked with ∗ indicate
the baseline parameter values for a spread model of gypsy moth.

We used MdiG to broadly capture twenty-seven different combinations of species’

life-history attributes and dispersal abilities in a mono-factorial design (Table 5.1). The

main reason for doing this was to evaluate how change in intrinsic growth rate, carrying

capacity, Allee effect threshold, and the frequency and median distance of long-distance

dispersal events affect the dynamics of spread, and to quantify a general relationship across

life-history attributes to changes to landscape variables. For each life-history scenario and

each sample landscape, we modelled the fate of a single release of 5 to 20 individuals

randomly localized in the largest suitable patch. We varied each parameter over three

values (Table 5.1) and studied the effects of these changes on the dynamics of the simulated

invasion. For each landscape, the species was allowed to expand its range for 30 years, one

model time step represents one year and simulations were replicated 25 times to account

for dispersal stochasticity. Population density – d (number of individuals per raster cell),

the rate of spread - ROS (number of new cell occupied per simulation run), and the average

dispersal distance – avDist were recorded over time.

5.2.2 Boosted regression trees

To evaluate the relative importance of dispersal ability, reproductive rate, propagule pres-

sure and habitat structure for determining population establishment, growth and spread

of invasive insects, we used generalized boosted regression trees models (BRTs). BRTs

are a type of machine-learning statistical tool that have been increasingly used to analyse

multivariate simulation data that have complex non-linear interaction effects on response
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data (Elith et al., 2009). The BRT analysis allows quantification of the relative importance

of each predictor in explaining variation in the response variables under study.

Boosting works by building a sequence of regression models (the boosting algo-

rithm), each fitted to the residuals of the previous model with larger residuals given more

weight (Elith et al., 2009). Predictions are then combined into a final ensemble prediction.

The idea behind this method is to partition the space of response variables into homo-

geneous groups based on a series of binary rules (splits) constructed from the predictor

variables. The contribution (or importance) of a variable is based on the number of times

the variable is selected for splitting. Model performance was assessed using the predictive

deviance expressed as a percentage of the null deviance, and, the cross-validated correla-

tion which evaluates the accuracy with which the model fits the response variables (Elith

et al., 2009). Visualization of fitted functions is achieved using partial dependence plots,

which show the relationship between a focal predictor and a response variable controlling

for the average effect of all other variables in the model. Advantages offered by BRT

models include their ability to accommodate different types of predictor values and its

immunity to the effects of extreme outliers. BRT also facilitate the study of interactions

among predictor variables, by varying the number of splits (size) of the individual re-

gression trees. The interaction strength among variables is assessed using residual-based

statistics defined by Friedman & Popescu (2008), where larger values indicate stronger

dependencies.

In this study we considered two different models for each of the response variables: a

model without interactions among predictor variables (interaction depth = 1) and a model

that accounted for up to 5-way interactions between predictor variables (interaction depth

= 5). Prior to conducting regression analysis, predictor variables were centred and normal-

ized, while the response variables were log transformed. To calibrate the models a 10-fold

cross-validation (CV) was initially performed, for which 50% of the simulated data were

withheld from the model-building process (bag fraction of 0.5) and subsequently used for

testing (Elith et al., 2009). We tried different learning rates ranging from 0.0005 to 0.1,

interaction depths ranging from 1 to 10 and the number of trees ranging from 50 to 10000.

A learning rate of 0.001, 1000 trees and a Gaussian error structure were found to achieve

the smallest predictive deviance while still being computationally feasible. All BRTs were
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Model Complexity No.
regression

tree

No.
splits

Cross-validated
mean residual

deviance (±SE)

Cross-validated
correlation

(±SE)

Density (d)

1 2490 4 1.340 0.957
(±6.63× 10−3) (±3.24× 10−4)

5 1390 16 0.247 0.992
(±2.57× 10−3) (±7.60× 10−5)

Rate of spread (ROS)
1 2380 4 0.446 0.951

(±4.69× 10−4) (±6.64× 10−5)
5 1390 16 0.078 0.992

(±2.34× 10−4) (±3.09× 10−5)

Mean dispersal distance (avDist)
1 3430 4 0.008 0.930

(±1.28× 10−5) (±1.46× 10−4)
5 1840 16 0.002 0.980

(±5.42× 10−6) (±5.10× 10−5)

Table 5.2: Boosted regression tree model performance relating population density and spread of invasive
species to propagule pressure, demography, dispersal and landscape structure metrics. Table
values indicate, 1) the complexity or maximum number of interactions that can be captured
by the statistical model, 2) the number of trees fitted, 3) the number of partition or splits used
to partition the space of the response variable, 4) the cross-validated deviance and correlation,
to evaluate the accuracy with which, the model calibrated on a training data set, fits the
sampled response variables, based on a 10-fold cross validation (Elith et al., 2009).

fitted in R (R Development Core Team) using the gbm package (Ridgeway, 2015).

5.3 Results

5.3.1 Non-interaction regression models for population density and spread

The three non-interaction models (Table 5.2, model complexity = 1) yielded good agree-

ment between the training dataset and the remaining data used for testing (Table 5.2,

deviance < 1.5), indicating that the predicted relationships between the response and pre-

dictor variables were reliable. The BRT model related to mean dispersal distance (avDist)

produced the lowest deviance, while the BRT model related to density (d) the highest. All

models showed a cross-validated correlation higher than 0.9 (Table 5.2).

The Allee effect threshold had the highest explanatory power for all models account-

ing for more than 84.14% of the variation in population density (d), 82.73% of the variation

in rate of spread (ROS), and 49.94% of variation in mean dispersal distance (avDist) (Fig-

ure 5.1). As the Allee threshold decreases, population density and the rate of spread

increase (Figure B.1). Moreover, all response variables were also linked to population

growth and dispersal ability, propagule pressure and landscape structure. In particular,
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relative influence metrics revealed that the propagule size(nbp), the intrinsic rate of in-

crease (r), the carrying capacity of the environment (K), together with Allee threshold

accounted for more than 95% of model performance when forecasting population density

(d) (Figure 5.1). Rate of spread (ROS), however, was better predicted by considering the

percentage of suitable habitat in the landscape (PLAND), the intrinsic rate of increase

(r), and the propagule size (nbp), together with the Allee threshold. Finally, the Allee

threshold and the frequency of long-distance dispersal events were of primary importance

explaining variation in mean dispersal distance (avDist), while the intrinsic rate (r) of

increase and the splitting index (SPLIT) exerted lesser influence (Figure 5.1). Similar

patterns were observed in the simulations with an Allee effect alone (Allee threshold > 0)

(Figure B.2). As shown previously the model predicted higher population density and

rate of spread when propagule pressure increases, the intrinsic rate of increase increases

and the Allee threshold decreases. The importance of the Allee threshold, however, was

lower confirming the importance of propagule pressure and rate of increase as key factors

in determining invasion success.
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Figure 5.1: Relative influence (%) of propagule pressure, demography, dispersal and landscape structure

on log transformed population density (d), rate of of spread (ROS) and average dispersal

distance (avDist) of invasive insects (Non-interaction regression models).

It is notable that the average distance of long-distance dispersal events (dist), in

other words, the intrinsic dispersal abilities of the species under study, was only retained

in the model considering the realized mean dispersal distance (avDist) (Figure 5.1). More-

over, among the eight metrics of landscape structure considered in this study, only the

percentage of suitable habitat in the landscape (PLAND) and a measure of patch aggre-

gation (SPLIT) contributed significantly to the performance of all three models. Core

area metrics (DCORE MD, CIRCLE AM), patch adjacency (PLADJ) accounted for less

than 2% of model performance, while the edge density index (ED), the connectivity in-

dex (CONNECT) and the standard deviation of core area (DCORE SD) were omitted by

the sequential boosted learning models related to population density (d) and the rate of

spread (ROS), assigning them a zero coefficient and thus discarding them from the result-

ing formula. This result suggests that a relatively simple measure of habitat configuration
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(SPLIT) and composition (PLAND) can account for most of the explanatory power of

landscape structure as a driver of spread rate (ROS) and population density (d).

5.3.2 Interaction regression models for population density and spread

The addition of simple interaction terms improved the mean deviance explained and the

mean root square correlation of all three BRT models, indicating the importance of in-

teractions between predictor variables in explaining population density (d), rate of spread

(ROS) and mean dispersal distance (avDist) (Table 5.2). Table 5.3 shows that there are

some significant interactions between parameters that are particularly strong in models

for population density (d) and rate of spread (ROS).

Rank Interaction terms Int. strength

Population density (d)
1 Intrinsic rate of increase (r) × Allee threshold (Allee) 151.34
2 Propagule size (nbp) × Allee threshold (Allee) 151.34
3 Frequency of long-distance dispersal events (f) × Allee threshold (Allee) 55.42
4 Intrinsic rate of increase (r) × Propagule size (nbp) 44.02
5 Splitting Index (SPLIT) × Allee threshold (Allee) 22.69

Rate of spread (ROS)
1 Intrinsic rate of increase (r) × Allee threshold (Allee) 71.69
2 Percentage of suitable habitat (PLAND) × Allee threshold (Allee) 51.82
3 Intrinsic rate of increase (r) × Propagule size (nbp) 18.76
4 Propagule size (nbp) × Allee threshold (Allee) 14.55
5 Carrying capacity (K) × Allee threshold (Allee) 7.11

Average dispersal distance (avDist)
1 Intrinsic rate of increase (r) × Allee threshold (Allee) 0.76
2 Splitting Index (SPLIT) × Frequency of long-distance dispersal events (f) 0.46
3 Propagule size (nbp) × Allee threshold (Allee) 0.20
4 Frequency of long-distance dispersal events (f) × Intrinsic rate of increase

(r)
0.17

5 Intrinsic rate of increase (r) × Propagule size (nbp) 0.14

Table 5.3: Interaction strength between the most important parameters for log-transformed population
density (d), rate of of spread (ROS) and average dispersal distance (avDist). Interaction
strength (Int. strength) is quantified using the residual-based methods outlined in Elith et al.
(2009) and quantifies the excess of residual variance explained under the null hypothesis of no
interaction effects. The interaction rank was used to compare interaction strength between
one model and another.

The interaction between the intrinsic rate of increase (r) and the Allee threshold

(Allee) was identified as the strongest interaction for all thee BRT models. In each case,

the intrinsic rate of increase (r) and propagule size (nbp) appear to have little influence
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on model outputs when the parameters are considered in isolation (relative contribution

< 5%), however, together with the Allee threshold (Allee) or with each other, they fea-

ture among the strongest interactions. Intuitively, population density and rate of spread

increase with increasing intrinsic rate of increase, increasing propagule size and lowering

the Allee effect.

Overall, the interactions between predictor variables showed a simple monotonic in-

teraction pattern (Figure B.3). However, it is worth noting that the effect of propagule

size (nbp) and intrinsic rate of increase (r), on both population density (d) and rate of

spread (ROS), appear to be more important for simulations with a weak or strong Allee

effect (Allee equal to 0 or 1 respectively), than for simulations where the Allee effect was

absent (Allee equal to -1). In contrast, the effect of the percentage of suitable habitat

cover (PLAND) on rate of spread (ROS) appears to be more important for simulations

without Allee effect (Allee equal to -1), than for simulations with a weak or strong Allee

effect. Surprisingly, population density (d) was positively related to the frequency of long-

distance dispersal events (f) in simulations without Allee effect, but negatively related to

this same parameter for simulation with weak or strong Allee effect (Figure B.3). This

suggests that an increase in the frequency of long-distance dispersal events (f) can result

in more prolific spread by increasing the chance to find suitable habitat patches but can

simultaneously increase the chance that each population could fail to establish due to

Allee effect or dispersal mortality. Finally, when the value of the splitting index (SPLIT,

a measure of patch aggregation) decreases, population density (d) increases particularly

at low value of SPLIT. In this scenario, it is at a higher degree of patch aggregation, that

population growth is clearly enhanced. The average dispersal distance (avDist) was also

enhanced at higher levels of patch aggregation, probably due to better success in the local

spread of individuals.

5.4 Discussion

One of the factors currently limiting our understanding of biological invasion is the rela-

tively limited taxonomic and geographic scope of current research (Catford et al., 2011).

It is acknowledged that for many, if not all invasive species, multiple drivers contribute to

103



their successful establishment and dispersal, but their combined effects are rarely investi-

gated (Catford et al., 2009; Thomas & Moloney, 2013; Catford et al., 2009; Cassey et al.,

2014). This study has demonstrated that it is possible to take a general approach which

is not species or habitat specific to help identify general predictors of invasion. Particular

attention was given to the challenge of accounting for the relative contribution of multiple

drivers of invasion that form the key basis for explaining and predicting spatial patterns

of spread in changing ecosystems (Thuiller et al., 2008; Catford et al., 2011; Robledo-

Arnuncio et al., 2014).

5.4.1 Primary importance of the Allee threshold, propagule size and

rate of increase

Virtually every animal or plant species that requires sexual recombination for reproduction

may be expected to exhibit some form of Allee effect on population growth, particularly

in fragmented landscapes. In a thorough review of the consequences of an Allee effect in

biological invasion, Taylor & Hastings (2005) reported how an Allee effect can influence

many aspects of population dynamics including the probability of successful invasion, the

rate of spread and even the final range distribution, and genetic diversity of the invasive

species. They proposed the Allee effect as a central dynamic of biological invasions, that

can influence optimal control decisions, costs of control and the estimation of the risk

posed by potentially invasive species. The results in this study reaffirm the critical role

of an Allee effect for determining population density and spread of invasive species, as we

found the Allee threshold to be the primary determinant of simulation outcomes.

More importantly, strong interactions between the Allee threshold, intrinsic pop-

ulation rate of increase, and propagule size were the three most influential variables in

each model. While initial founder size was undoubtedly an important factor for ensuring

population growth and spread, we found the population intrinsic rate of increase to have

an equal or greater influence on population density and invasive spread. These results run

contrary to the well-established empirical prediction that propagule pressure is the most

influential factor determining invasion success (see for example the review by Lockwood

et al., 2005). Possible reasons could be that empirical studies focus on a limited subset
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of life-history traits as generally little or no information on invasion failures are readily

available, biasing our perception of which factors are important for determining invasion

success. This suggestion also supports the recent study by Cassey et al. (2014) which also

identified demographic traits to be the most important factor influencing the probabil-

ity of invasion of exotic birds. However, unlike our study, Cassey et al. (2014) found no

evidence of the influence of an Allee effect in their model. They suggested that environ-

mental stochasticity, that can also lead to extinction of low-density populations, appears

to matter more than Allee dynamics. Environmental stochasticity was not explicitly con-

sidered in our study. Theoretical and empirical studies that have investigated the relative

role of Allee dynamics, environmental stochasticity, and even demographic stochasticity in

invasive species within different habitats are still rare and suggests a direction for future

research.

Interestingly, our study found a greater effect of growth traits than movement-related

traits on both population growth and rate of spread in fragmented landscapes. Such a

result is consistent with and confirms the finding of several studies that have identified

species’ reproductive rate as one of the major factors affecting habitat-amount require-

ments for species persistence. For example, With & King (1999a) found that reproductive

rate has a much larger effect on the amount of habitat required for invasive establish-

ment and spread than the species’ dispersal abilities. In line with these results, a recent

meta-analysis of habitat loss effects across wetland vertebrates species by Quesnelle et al.

(2014) suggested that dispersal traits are less important than species’ reproductive rates

for population persistence in fragmented landscapes. A possible explanation is that higher

reproductive rates compensate for increased dispersal mortality in fragmented landscapes

and reduce local extinction risk Fahrig & Nuttle (2005). Overall, while dispersal abilities,

environmental stochasticity and propagule pressure can all be important for determining

population growth and spread of an invasive species, this study confirms that demographic

traits, such as the intrinsic rate of increase, are of critical importance.
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5.4.2 The contribution of long-distance dispersal events

Our results suggested that the intrinsic dispersal abilities of a species is not a useful

predictor of invasive spread. Indeed, we found no evidence to support the prediction

that species with greater dispersal abilities were better invaders than species with lower

dispersal abilities. A possible explanation for the apparent lack of influence of natural

dispersal ability of a species on invasion success could be that the ability of each species

to move in the landscape varies widely among landscape structures, such that their ability

changes as the landscape structure changes. In particular, in Chapter 4 the realized

average dispersal distance was shown to be a product of both species traits and landscape

structure. Similar to that result, Ferraz et al. (2007) found no effect of dispersal ability on

patch occupancy for 55 non-indigenous birds. Additionally, Andrew & Ustin (2010) found

no effect of dispersal ability on the spread of a perennial peperweed, Lepidium latifolium,

in anthropogenic landscapes throughout California, while Quesnelle et al. (2014) found

no influence of dispersal ability on wetland vertebrates response to habitat loss. Fahrig

(2007) further suggested that species dispersal ability cannot be estimated independently

of landscape structure and that to test the relative importance of dispersal ability, the

landscape context should match the location where the data were collected.

Nevertheless, it is worth noting the critical role of long-distance dispersal events

for determining the realized average dispersal distance in the landscape and population

density. Long-distance dispersal has been shown to be central to many key population

processes, such as metapopulation dynamics, diversity and dynamics in species commu-

nities, especially in fragmented landscapes (Cain et al., 2000; Trakhtenbrot et al., 2005).

Most importantly, long-distance dispersal events can determine to a large extent the rate

of spread and the final range distribution of invasive species, and therefore is fundamental

to species responses to rapid climate and habitat changes (Hill et al., 2011). Neubert &

Caswell (2000) and Woolcock & Cousens (2000), using integro-difference models of spread

in heterogeneous landscapes, found that the average distance of long-distance dispersal

events define invasion rates, which were remarkably insensitive to the frequency of long-

distance dispersal. However, our simulation results, which accounted for a more complex

representation of landscape structure, suggested that the frequency of long-distance disper-

sal events could be a better indicator of population dynamics than the intrinsic dispersal
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ability of a species. We found that, in the absence of an Allee effect, population growth

and average dispersal distance increased as the frequency of long-distance dispersal in-

creased. In the presence of an Allee effect, however, average dispersal distance increased

with the frequency of long-distance dispersal events, while population density decreased

with the frequency of long-distance dispersal events. This counterintuitive finding can be

explained by the fact that repeated dispersal events of small populations may be insuffi-

cient to establish growth in the recipient area, but collectively can reduce the size of the

source population at the introduction site. In Chapter 4, the magnitude of this effect was

shown to be dependent on the landscape structure and the species reproductive ability.

Despite this explanation being plausible, there is no experimental support. Long-distance

dispersal events are inherently hard to measure, and there are only a few data sets that

can be used to describe the tails of a long-distance dispersal kernel (Robledo-Arnuncio

et al., 2014). Furthermore, because estimating the relative contribution of diverse vari-

ables to dispersal and their variation in time and space, is very difficult, few studies even

try to do so (Robledo-Arnuncio et al., 2014). Results from this study reaffirm the need

for more data on movement patterns, particularly on long-distance movement, of invasive

species in different habitat types and landscape contexts, to provide a better understand-

ing the ecological consequences of long-distance dispersal events in changing environments.

5.4.3 The role of landscape structure

Measures of habitat amount (PLAND) and habitat aggregation (SPLIT) were shown to be

the most important landscape factors for determining, population density, rate of spread,

and the realized dispersal distance. Habitat amount has been shown to be very important

to spread dynamics and to mediate the effects of landscape configuration on population

density and spread. In particular, With (2002) demonstrated that spread rate increased

with increasing habitat availability above a certain threshold after which habitat config-

uration becomes unimportant. Our simulations based on insect life history strategies are

in broad agreement with this result, as we found the rate of spread to be higher when the

percentage of suitable habitat in the landscape was higher, and the measures of habitat

configuration had a relatively weak effect on simulation outcomes. However, the variability
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in dispersal success in the landscape was best accounted for by differences in the aggrega-

tion of habitat patches as measure by the splitting index (SPLIT), with closer and larger

patches having significantly greater exchange of dispersing organisms, with subsequent

impact on population density.

Of the parameters tested in this analysis, the measure of edge density (ED) and

connectivity (CONNECT) had the weakest effect on spread rate and population density.

We suggested in Chapter 4 that population growth and spread might be limited more by

the size and distribution of non-habitat gaps than by a measure of habitat connectivity.

That observation would explain the relative high influence of the splitting index and

relatively weak effect of the connectivity index. The weak effect of edge density is more

surprising as habitat edges are often thought to give invasive species a foothold in the

landscape (Vilà & Ibáñez, 2011). It could be that edge density, when measured at the

landscape level, is a relatively ineffective predictor of rate of spread. Alternatively, edges

may be most effective when they actively and directly enhance dispersal, for example by

higher wind disturbance at habitat edges enhancing long-distance dispersal events, rather

than simply providing access to habitat. Such mechanisms were not considered in this

study.

Finally, conservation studies have often stressed the importance of a habitat core

zone for the persistence of native species. In this context, management of invasive species

is continually undermined by re-invasion at the periphery of the treated area, so that ben-

efits for eradication or biodiversity maintenance in the case of conservation, are realized

only within a smaller core near the center of the treated area (see the study by Glen

et al., 2013, for more details). Our study showed that core area metrics (DOCRE MD,

CIRCLE AM and DCORE SD) accounted for less than 2% of model performance, sug-

gesting that any conservation strategy should consider more than a critical core habitat for

invasive species management. In particular, management of invasive species should also

consider the landscape adjacent to these core areas (aggregation to other suitable areas)

because propagule pressure or successful traits are likely to be different depending on the

surrounding landscape.
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5.5 Conclusion

Elucidating the factors that determine establishment and spread success of invasive species

involves disentangling the influence of characteristics of the species and the environment,

and the idiosyncrasies of specific introduction events. A wide range of organisms with

differing demographic and dispersal abilities, and different introduction scenarios, can be

simulated using the approach presented in this study to increase our understanding of

how landscape structure affects organism dispersal. From the array of predictor variables

considered in this study, strong interactions between an Allee effect, rate of increase and

propagule size are emerging as consistent correlates of establishment and spread success.

All three processes controlled the local population density at the introduction site. The

primary importance of an Allee effect suggests that any eradication strategy should con-

sider the extent to which life histories of the species contribute to the Allee effect and

examine how eradication programmes can exploit such dynamics by maintaining popula-

tion densities under Allee threshold.

Surprisingly, we found no evidence that the intrinsic dispersal ability influences

species establishment or spread. This implies that spread rate is more strongly related to

reproduction, which determines the total number of organisms participating in dispersal,

than it is to a species’ intrinsic dispersal ability. From an invasive species management

perspective, our results suggest that priority should be placed on species with high in-

trinsic rate of increase and that the eradication programmes focus should be on limiting

reproductive stages as a priority. Population density and rate of spread were linked, to a

lesser extent, to three main landscape processes, including the frequency of long-distance

dispersal events, a measure of habitat amount and a measure of habitat aggregation. All

three parameters influenced the ability of the species to create new founder populations

that resulted in more prolific spread by increasing the chance to find suitable habitat

patches. However, this result simultaneously increases the chances that each population

could fail to establish due to an Allee effect or high mortality during dispersal. Just at it

is necessary to move from site/species-specific to landscape level and multi-taxon analy-

ses to understand the ecological relationship between the population growth and spread

of invasive species within their environments, it is also necessary to base risk assessment

and management strategies on the characteristics of the landscape matrix of the recipi-
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ent region. It is important to recognize that establishment and spread will always be a

stochastic process and like most things cannot be predicted with absolute certainty, how-

ever, our understanding of invasive risk will increase by understanding context-dependent

effects across habitats at the different stages of the invasion process.
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Chapter 6

Sources of uncertainty when modelling invasive species

establishment and spread

Abstract

Estimates of establishment, spread, and impacts of invasive species, as well as future pre-

diction about the effect of anthropogenic land-use and climate change, rely on projections

from a broad range of models. Uncertainties associated with such estimates have often

limited the prevention, report, and control of biological invasions, particularly at local

scales. In this study, I review the sources of uncertainty associated with the development

of an establishment and spread model, and discuss a set of methods for quantifying model

predictive performance as well as uncertainty. Part of this uncertainty is irreducible be-

cause of the internal variability of natural systems. However, uncertainty associated with

data, model parametrization and model structures can potentially be reduced. Six proce-

dures emerged as important for reducing or eliminated uncertainty in establishment and

spread modelling. I discuss how understanding the errors and uncertainties that occur

during the process of modelling the establishment and spread of invasive species, along

with accurate estimation and communication of the information content of any models, is

key to improving the value of predictive models for practitioners.

Keywords

Uncertainty, biosecurity, forecasting, expert judgement, scientific error, model averaging
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6.1 Introduction

The increasing economic, social and environmental losses caused by invasive species in-

tensify the need to identify and implement optimal management strategies to prevent,

detect, and control them (Funk, 2015). Invasive species distribution maps and prediction

of spread are important for assessing the risk of invasive species. Such maps and predic-

tions help illustrate the probability of invasion by an alien species and how the potential

consequences of that invasion vary temporally and spatially. Such maps are powerful tools

that can be used to assist policymakers make decisions with respect to biosecurity surveil-

lance (Cacho et al., 2010; Demon et al., 2011; Epanchin-Niell et al., 2012) and invasive

species incursion responses (Coutts et al., 2011; Venette, 2015). However, uncertainty is an

inevitable component of assessing risk, particularly for spatially explicit spread forecasts.

Such uncertainty is a challenge for invasive species risk managers to incorporate in their

decision-making process (Carrasco et al., 2012; Liu et al., 2010; Yemshanov et al., 2010).

One of the biggest impediments to the incorporation of uncertainty into risk assessment

and the prioritization of risks, has been the lack of techniques to effectively represent and

communicate uncertainty, whatever its source (Benke et al., 2011).

Projecting the potential spread and impact of newly introduced species requires the

use of a population spread model. Since the seminal work of Fisher (1937) and Skellam

(1951), the focus in general ecology has been mainly the development of species spread

models, to understand the mechanisms of spread or to forecast the rate, direction and

success of future dispersal events (reviewed in Hastings et al., 2005; Higgins et al., 1996).

In the area of invasive species risk assessment, spread models help to identify the role

of different pathways of spread (Robinet et al., 2009, 2011, 2012a) and have been used

to assess the value of the adoption of a strategic control zones to slow the spread of

invasive species (Buckley et al., 2005; Sharov & Liebhold, 1998; Sharov, 2004). The most

recent spread modelling approaches incorporate different levels of complexity such as the

dynamics of population growth, stratified dispersal, propagule pressure, Allee effects, as

well as realistic habitat landscape heterogeneity using a geographic information systems

(GIS) framework, climatic variability or host diversity (see for example Carrasco et al.,

2010; Keesing et al., 2006; Keith et al., 2008; Meentemeyer et al., 2011; Parry et al., 2013;

Pitt et al., 2009). Methods that integrate invasive species spread and climate suitability
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with economic factors have been developed to assess the degree to which economic policies

or control strategies can be used to optimize management decisions of invasive species

invasions (Barbier & Shogren, 2004; Cook et al., 2007b; McDermott et al., 2013; Richards

et al., 2010). At the very least, initial investigations suggest that invasive species risk maps

can narrow the set of geographical locations that would need to be targeted, thus reducing

costly inspections and public outreach activities, while the incorporation of uncertainty

analysis would add to their credibility (Venette, 2015).

Along with the increasing application of such approaches, criticism has been raised

concerning the usefulness of such models for guiding effective management of invasive

species at a regional scale (Robinet et al., 2012a). Spatially explicit spread models are

considered to be biologically and technically complex, and require too many poorly known

parameters for their projections to be reliable in practice (Hartig et al., 2011). In par-

ticular, complex spatially explicit spread models might not provide credible quantitative

estimates of where a species might establish and spread, particularly at local scales (Ca-

ley et al., 2008; Robinet et al., 2012a). Despite this, new analytical methods are being

developed to provide formal quantitative measurements of uncertainty and to address the

perceived aversion to the concept of model uncertainty of some biosecurity decision-makers,

but they are not yet routine (Cook et al., 2012; Venette, 2015). However, Venette et al.

(2010) called for substantial improvement in visual decision-support model documenta-

tion, communication of uncertainty, and improved training with respect to invasive species

spread modelling. There is a large body of literature that has increased our understanding

of the propagation of error arising from model inputs, to output and predictions, as well

as methods that aim to make the best decision in the face of extreme uncertainty (Gould

et al., 2014; Kriticos et al., 2013; Matott et al., 2009; McGeoch et al., 2012; Regan et al.,

2002; Yemshanov et al., 2010). Nonetheless, no general guidelines exist that permit a

specific invasive species spread map to be unambiguously linked to uncertainty analysis

and therefore provide guidance for decision makers with respect to their interpretation.

The primary aim of this study was to, 1) review the sources of uncertainty associ-

ated with the development of a spread model, and, 2) discuss a selected set of methods

for gauging spatially-explicit, individual-based spread model performance and uncertainty.

I argue that a clearly defined role of science in the decision-making process, along with
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accurate estimation and communication of the information content of any spread model,

will determine the success of a spread forecast initiative. I review current good practice

and the research that is required to develop an improved future capability.

6.2 Sources of uncertainty in invasive species spread models

6.2.1 Typologies and sources of uncertainty

Uncertainties are intrinsic to all risk map analyses of invasive species and is unavoidable,

even if some forms of uncertainty can be reduced (Cook et al., 2012). The question is

therefore not how to remove uncertainty, but how to most appropriately represent it in

a model to evaluate it in a way that is reproducible (Haefner, 2005; Matott et al., 2009;

O’Sullivan & Perry, 2013; Refsgaard et al., 2007). In other words, the challenge is to

demonstrate that a particular model forecasts the course of invasion spread better than

could be obtained by chance alone (Venette, 2015).

To better understand the sources of uncertainty associated with models in ecol-

ogy Regan et al. (2002), Matott et al. (2009) and Drescher et al. (2013) categorized

uncertainty as inherent uncertainty that is associated with the natural variability of the

studied system, or epistemic uncertainty that is derived from incomplete knowledge about

the system of interest. While inherent uncertainty, which results particularly from strong

nonlinearities and stochasticity in the modelled system, is irreducible; epistemic uncer-

tainty can, in theory, be reduced through additional data or empirical research. Among

the main sources of uncertainty in biological modelling, McMahon et al. (2009) include:

process error (the way constructs are structured, formulated and used to represent ob-

served processes), measurement error, intraspecific variability, spatial and temporal het-

erogeneity, uncertainty about initial conditions, and even user uncertainty and software

implementation uncertainty (Table C.1). Walker et al. (2003) described epistemic uncer-

tainty as anything which ‘provides a deviation from the unachievable ideal of completely

deterministic knowledge of the relevant system’. They attempt to classify uncertainty fur-

ther, to develop a clear understanding of the various types of uncertainty, how each arises

and how different types might be best dealt with. Such classification relies on the location
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of the uncertainties (for example with respect to the original question, parametrization of

the model, model structure, etc.), the level of uncertainty (from epistemic knowledge to

complete ignorance) and the nature of uncertainty (natural variability as opposed to mea-

surement error). Ascough et al. (2008) considered three additional types of uncertainty:

variability uncertainty, that is generated by the inherent variability in natural and human

system (e.g. institutional and social context dependency, human factor uncertainty), lin-

guistic uncertainty, that arises because our natural language is vague and ambiguous, and

decision-making uncertainty, that emerges whenever there is conflict or ambiguity about

how to quantify and compare economic, societal and environmental objectives.

6.2.2 Uncertainty and models of species spread

With respect to spread models in particular, McGeoch et al. (2012) provided a comprehen-

sive review of the sources of uncertainty when identifying and prioritizing invasive species.

This study concluded that most error associated with species occurrence and environmen-

tal data are epistemic in nature, and in most cases, resulted from a fundamental lack of

knowledge of risk elements or measurement error. For example, parameters such as rate of

increase, Allee threshold, and dispersal rate, are notoriously difficult to infer. The public

and decision-makers often need swift action when a new invasive species is detected in a

given area. Such urgency often does not allow time to acquire the necessary knowledge

to unambiguously characterize the potential spread and impact of the species (Venette,

2015). In addition, the relative role of spatial and temporal heterogeneity, as well as pro-

cesses such as intraspecific variation, biotic interaction, and/or rapid evolution in shaping

the establishment and spread of invasive species may be relatively unknown (Gould et al.,

2014).

Systematic characterization of uncertainty in a spatially-explicit model of spread,

is further complicated by uncertainties associated with spatial data (O’Sullivan & Perry,

2013). Such uncertainties include, locational error (uncertainty about where an invasive

species is in space), classification error (error associated with the nature of the entity,

such as mis-classification of habitat or climate suitability), and errors related to scales

(grain/resolution and extent of the spatial data). Spatial or locational uncertainties in
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spatial data have been thoroughly reviewed in Zhang & Goodchild (2002) and Lu &

Weng (2007). Furthermore, Gould et al. (2014) provided a review of different sources

of uncertainty in species distribution modelling and provided a conceptual framework for

understanding and communicating the impact of uncertainty on such models. Importantly,

uncertainty in models of spread represents a cumulative measure that may arise from a

variety of sources that can be spatially structured (i.e. spatially autocorrelated), and

that propagates in complex ways through spatial simulation (Ascough et al., 2008). The

different sources of uncertainty with respect to spread models are summarized in Table C.1.

While the relevance of characterizing uncertainty when characterizing or communi-

cating spread risk is widely acknowledged, in practice, it is often overlooked (Cook et al.,

2012). In addition, the prediction of spread traditionally focuses on a single-species ap-

proach leading to conclusions that are most applicable to the specific conditions under

which the model has been developed, and are therefore not readily be transferred to an-

other situation (Robinet et al., 2012a). This lack of generality is a major impediment

to the development of a coherent invasive species risk assessment that would represent

an understanding of when and why a particular set of factors is required to explain the

dynamics of invasive spread (Venette, 2015). Overcoming this impediment requires a new

culture of analysis and presentation of spread models (Matott et al., 2009). Instead of

focusing on making sure that a model appears to correctly represent the set of processes

to explain certain observations, modellers should more often discuss or demonstrate, when

and why a particular model is not appropriate (Hartig et al., 2011; O’Sullivan & Perry,

2013; Parry et al., 2013).

Furthermore, there exists a wide array of analytical approaches to evaluate model

performance, ranging from various ways of comparing model output against observed

patterns of spread, to more qualitative approaches. Basically, the purpose of all such

methods is to identify uncertainty in the model, and assess which uncertainty matters the

most (O’Sullivan & Perry, 2013). Despite that there is substantial analytical capacity to

evaluate model performance, most software packages for species distribution modelling or

risk map analyses lack good methods to represent uncertainty (Hartig et al., 2011; Matott

et al., 2009). A special challenge for species distribution model outputs (usually a map)

is that their reliability may need to be judged at multiple scales, such as the entire map,
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particular regions, or perhaps, most critically, for individual and sometimes very specific

geographic locations (O’Sullivan & Perry, 2013). The ways to deal with these uncertainty

will be further discussed below. The ways to deal with uncertainty in spatially explicit

spread models of invasive species will be further discussed below.

6.3 Identifying and quantifying uncertainty in invasive spread

forecasts

A plethora of methods have been proposed to evaluate model performance or error, and

therefore indirectly quantify uncertainties in ecological models. Haefner (2005), Matott

et al. (2009) and Hartig et al. (2011) have provided a thorough overview of concepts and

methods for model evaluation as well as a catalogue of software tools available to facilitate

the process. In addition, Jager & King (2004) and Lu & Weng (2007) proposed a taxonomy

of approaches for specifically evaluating uncertainties in the particular context of spatial

modelling. Similarly, Evans (2011) and O’Sullivan & Perry (2013) reviewed the issues in-

volved with understanding error in spatially stochastic (agent-based) modelling, covering

a broad range of methodologies and viewpoints from across spatial modelling science (see

Table 6.1). In the following sections, I briefly summarize a few of the methodologies that

have been applied to spatially-explicit models of spread and/or to forecast the spread of

invasive species in heterogeneous landscapes.

6.3.1 Model based-uncertainty

6.3.1.1 Error analysis (EA)

EA aims to quantify the influence of different sources of input estimation error on a given

model’s dynamics and output (Haefner, 2005; Jager & King, 2004; Matott et al., 2009).

EA also helps to understand how errors combine within the system (error amplification or

compensation). Parysow et al. (2000) and Mcgwire & Fisher (2001) describe error analysis

and, in particular, spatial error budget analysis, as a method to systematically parti-

tion the contribution of different sources of error introduced by each parameter in the
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Methods Description Selected references

Model based-uncertainty
Error analysis (EA) Identification of the sources of error that cause the

largest variation in model forecast
Haefner (2005); Hartig
et al. (2011); Evans
(2011); Jager & King
(2004); Matott et al.
(2009)

Sensitivity analysis (SA) Identification of model output components most
sensitive to local (spatially distributed) input
variables

Crosetto et al. (2000);
Haefner (2005); Jager &
King (2004); Matott
et al. (2009)

Uncertainty analysis (UA) Identification of how uncertainty in multiple
(interacting) parameters and their representation
influence uncertainty in model forecast

Hartig et al. (2011);
Jager & King (2004);
Matott et al. (2009)

Bayesian networks (BNs) Combine prior distributions of uncertainty to yield
an updated (posterior) set of distributions

O’Sullivan & Perry
(2013); Matott et al.
(2009); Railsback &
Grimm (2011)

Spatial data analysis (SDA) Detecting and quantifying characteristics of
geographical data and, specifically, on spatial
autocorrelation, spatial heterogeneity and
scale-dependence structure

Dormann et al. (2013);
Evans (2011); Jager &
King (2004)

Robustness analysis (RA) Analysis of the extent to which different
representational decision influence model dynamics

Evans (2011); Matott
et al. (2009)

Confrontational methods
Visualization and difference measure Visual comparison of empirical observations and

model predictions (non-spatial and spatial measures)
Fox & Hendler (2011);
Grimm (2002);
Spiegelhalter et al.
(2011)

Statistical methods Quantitative comparison and analysis of predictions
and observations (via linear regression models,
correlation, etc.)

Mayer & Butler (1993)

Exploratory/heuristics
Pattern oriented modelling (POM) Use of multiple observed patterns to evaluate and

refine models and select between alternate
representation

Grimm & Railsback
(2012b); Railsback &
Grimm (2011)

Multi-Model Analysis (MMA) Generate ensemble predictions via consideration of
multiple plausible models

Burnham et al. (2011);
Burnham & Anderson
(2002)

Participatory modelling (PM) Methods involving expert opinion into model design
and evaluation

Krueger et al. (2012);
Martin et al. (2012);
Millington et al. (2011)

Table 6.1: Selected approaches and tools for the evaluation of spatially-explicit models (modified from
O’Sullivan & Perry, 2013)

spread model. A clear detailing of the technique from the point of view of tracking input

errors can be found in the Joint Committee for Guides in Metrology report, JCGM (2008).

6.3.1.2 Sensitivity analysis (SA)

SA is among the most widely used methodologies for assessing uncertainty. SA seeks

to rank input parameters by their relative influence on variation and uncertainty in the

target output variable. SA involves systematic alteration of model parameter values and
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evaluating their effect on model outputs. In the case of a spread model, this might involve

the population rate of increase, Allee threshold, mean long-distance dispersal and/or the

classification of habitat suitability. In its traditional form, SA is often conducted using

a ‘local’ approach where the parameters of interest are systematically varied one-at-a-

time (no interaction considered) by some small amount. Among others, Fassò & Perri

(2006), Saltelli et al. (2008) and Zajac (2010) reviewed a large variety of methods and

tools available for sensitivity testing, but only a few are well suited for spatial models.

Some headway has been made developing tools for evaluating uncertainties in the spatial

context (see for example Congalton & Green, 1993; Crosetto et al., 2000; Kocabas & Drag-

icevic, 2006; Pontius, 2002), but rigorous evaluation for spatially explicit models remains

a real challenge due to the large number of factors and interactions between components

of the models at different spatial scales (Jager & King, 2004; O’Sullivan & Perry, 2013).

6.3.1.3 Uncertainty analysis (UA)

UA is a more general approach that seeks to quantify the variation in model predic-

tion caused by uncertainty in multiple, potentially interacting input parameters (Jager

& King, 2004; Matott et al., 2009; Railsback & Grimm, 2011). UA involves generating

a probability density function for each parameter of interest, and quantifying the impact

of input uncertainties on the empirical distribution of the model output. Many different

approaches for conducting UA have been developed and reviewed in Matott et al. (2009)

and Hartig et al. (2011). Among them, the Monte Carlo approach, which does not require

assumptions about model structure, has been the most widely applied to spatially-explicit

data (Crosetto et al., 2000). A good introduction to Monte Carlo techniques in a spatial

context can be found in Walker et al. (2003), along with a wide range of references to

studies of sensitivity testing. A more generic study of uncertainty testing, concentrating

on statistical summaries, can be found in Bobashev & Morris (2010).However, as empha-

sized in Railsback & Grimm (2011) and O’Sullivan & Perry (2013), the computational cost

of covering the parameter space of complex models such as most spread models, rapidly

becomes impractical.
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To reduce the computational cost of global UA, two different approaches have been

developed: the approximation and sampling methods (Evans, 2011; Matott et al., 2009).

Approximation methods characterize model output uncertainty by propagating one or

more statistical moments (e.g., mean, variance, skewness, and kurtosis) of the various

input distributions through the modelling system. Examples include error propagation

equations (Gertner, 1987), point estimate methods (Tsai & Franceschini, 2005), and vari-

ous reliability methods (Hamed et al., 1996; Portielje et al., 2000; Skaggs & Barry, 1996).

On the other hand, sampling methods guide the selection of a structured parameter space

that allows the extraction of a large amount of uncertainty with a relatively small in-

put sample size. Helton et al. (2006) and Helton (2008) provided a thorough survey of

sampling-based methods for uncertainty and sensitivity analysis. Among them, Latin

hypercube sampling or quasi-random sampling have been the most widely used. With

respect to estimating risks for emerging invasive species threats, probability models may

be inadequately formulated because of the very high importance of rare events (i.e., events

associated with the extreme tails of the distribution), which most probability models do

not describe well (Kriticos et al., 2013).

6.3.1.4 Bayesian Networks (BN)

BNs are probabilistic graphical models that combine prior distributions of input errors

with general knowledge and site specific data to yield an updated (posterior) set of distri-

butions. BNs can simultaneously represent uncertainty in input data and response data,

as well as in model parameter distributions, model code, structure and resolution (Clark,

2005; Clark & Gelfand, 2006). Developing a BN involves, 1) defining a directed acyclic

graph that specifies the conditional probability dependencies in the data, 2) defining prior

probability distributions for all graph nodes (i.e. sources of uncertainty), and, 3) defining

a likelihood function and sampling strategy (e.g. Markov chain Monte Carlo - MCMC)

for inducing a posterior distribution based on prior distributions. Credal networks are

regarded as an extension of BNs, where credal sets replace probability mass functions

in the specification of the network variables (Cozman, 2000). These credals are groups

of probability distribution that represent uncertainty about the probability model that
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should be used. Therefore credal networks allow the representation and manipulation of

uncertainty in graphic models, where probability values may be imprecise or indeterminate.

6.3.1.5 Spatial Data analysis (SDA)

SDA refers to analytical, statistical and graphical procedures for evaluating and sum-

marizing spatial input data. It typically comprises characterization of the spatial and

temporal structure of input data. A key difficulty with spatial data is the presence of scale-

dependent spatio-temporal correlation structures. Spatial and temporal autocorrelation

can have a significant effect on the apparent sample size by introducing redundancy (Getis,

2007). These issues become particularly important when datasets for validating models

are drawn from the same area by sample splitting (Araújo et al., 2005), resulting in, for

example, positive autocorrelation between sample units that can falsely reduce error lev-

els. An overview of challenges arising from cross-scale analysis is provided by Fekete et al.

(2010) and implications for the prioritization of intervention areas in the context of climate

change can be found in Hagenlocher et al. (2014). The development of neutral landscape

models by Gardner et al. (1987) and With et al. (1997) has also provided a new framework

for generating replicated landscape patterns with partially controlled spatial properties.

Neutral models allow hypothesis testing about how variation in spatial structure can affect

model forecasts. Neutral models are used for generating alternative categorical landscapes

such as in error analysis, with the exception that the generated spatial patterns do not

represent deviations from a reference map.

6.3.1.6 Robustness analysis (RA)

As well as errors and uncertainty associated with input data, there are also epistemic

uncertainties associated with model structure, in particular, with respect to the choice of

the functional structure of the model and the choice of variables. The RA replaces the

‘entire’ model or submodel components with a different representation (or construct) to

identify how the model behaves under different functional forms (Beven & Binley, 1992;

Weisberg, 2006). Assessing model uncertainty has become the subject of considerable at-

tention within the context of statistics (Burnham & Anderson, 2002; Johnson & Omland,
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2004; Link & Barker, 2009; Lukacs et al., 2010) and is currently an area of rapid develop-

ment for assessing stochastic spatial simulation models (Grimm et al., 2005; Hartig et al.,

2011; Schurr et al., 2012; Wood, 2010; Thiele & Grimm, 2015)

Robustness analysis of stochastic models is particularly challenging, in part because

their likelihood functions cannot usually be calculated explicitly. It is therefore difficult

to couple such models to well-established statistical theory such as maximum likelihood

or Bayesian statistics. A number of new methods, among them, genetic programming,

approximate Bayesian computing (ABC), Metropolis-Hasting Markov chain Monte Carlo

(MCMC), pattern-oriented modelling (POM), and synthetic likelihood, bypass that limi-

tation (Clark, 2005; Clark & Gelfand, 2006; Matott et al., 2009; Poli et al., 2008). These

methods share three main principles, 1) aggregation of simulated and observed data via

summary statistics, 2) likelihood approximation based on the summary statistics, and, 3)

efficient sampling.. Bolker et al. (2009) and Hartig et al. (2011) provide thorough overviews

of RA techniques.

6.3.2 Visualization and confrontational approaches

6.3.2.1 Visualization techniques

Explanation and communication of uncertainty to an audience with a wide range of

scientific knowledge presents a particularly significant challenge. As noted in Grimm

(2002), MacEachren et al. (2005), Fox & Hendler (2011), Rocchini et al. (2011) and

Spiegelhalter et al. (2011), visualization of a model’s output and uncertainties should

play a vital role in evaluating and communicating model-based science. Visualizing data

and their uncertainties appeals to intuition and emotion. The ways different types of

visualizations are processed and understood clearly depends on factors such as the per-

sonality and numeracy of members of the audience. Fortunately, increasing availability of

data and public interest has led to a golden age of interactive visualizations and multiple

types of representation (infographics) that can be adjusted to the need of the audience

(see for example, the New York Times and the Guardian, as well as IBM’s Many Eyes

– http://www.boostlabs.com/)-, and plotly – http://plot.ly/ that allows visitors to

create their own visualization). New approaches, however, are needed to determine how
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best to visualize particular kinds of scientific data. A significant contribution in this di-

rection can be seen in the “Periodic table of Visualization Methods” (Lengler and Epler,

www.visual-literacy.org) which associates a number of visualization techniques, cou-

pled with emerging Web-based technologies, organized by type of data they apply to and

the complexity of their application.

6.3.2.2 Difference measures

Visualization techniques can be supported by difference measures that summarise and

quantify the predictive accuracy of a model. Such metrics quantify the ‘distance’ between

a set of observations and the corresponding model predictions. In a spatial context, a

simple comparison of categorical maps comprises cross tabulated predicated and observed

values to form an error or confusion matrix such that the diagonal elements of the matrix

correspond to the correct predications, while the off-diagonal elements represent incorrect

predictions (Allouche et al., 2006; Fielding & Bell, 1997). From such a matrix a number

of model performance measures can be derived, including:

• the sensitivity index – proportion of correctly predicted positive observations (Al-

louche et al., 2006; Fielding & Bell, 1997)

• the specificity index - proportion of correctly predicted negative observations (Al-

louche et al., 2006; Fielding & Bell, 1997)

• the AUC - area under the receiver operating characteristic curve (ROC) plot that

measures the discriminatory capacity of classification models (Fielding & Bell, 1997;

Jiménez-Valverde, 2012; Lobo et al., 2008)

• the kappa statistic – the proportion of correctly classified locations after accounting

for the probability of chance agreement (Cohen, 1960)

• the precision index - calculated by both bootstrapping (re-sampling of the data)

and cross validation (partitioning data) to test the model’s ability to generalize or

predict new data (Worner et al., 2010)

123

www.visual-literacy.org


A thorough review of these methods can be found in Freeman & Moisen (2008) and Senay

(2014). The main issue with such approaches is that they tend to confuse errors in quan-

tification with those in location. For spatial modellers, it is key to understand the distri-

bution of uncertainty in space and time. Uncertainty can, therefore, be usefully displayed

on maps. Therefore, efforts have been made to develop metrics such as fuzzy set map

comparison (Hagen, 2003) or hierarchical fuzzy pattern matching (Power et al., 2001),

and have been reviewed in Pontius (2000, 2002), Visser & De Nijs (2006) and Hartley

et al. (2006). In the specific case of biological invasion, long-term observational data sets

documenting range expansion are rare, therefore there have been few direct comparisons

of predictive accuracy from spatially-explicit models to long-term records of spread (Fitz-

patrick et al., 2012; Pitt et al., 2009).

6.3.2.3 Formal statistical tests

Alongside visualization techniques and difference measures, frequentist statistical tests

have been used to evaluate models against observations, including (non-linear) principal

component analysis, linear and non-linear regression, (hierarchical) variance partitioning

and (permutational) univariate and multivariate analysis of variance (Bolker et al., 2009;

Haefner, 2005; Matott et al., 2009). As McCarthy et al. (2001) commented, the use of

statistical tests of model performance can lead to a view of a model as being ‘certain’

once it has passed sufficient conditions. In other word, a modeller can simply increase the

sample size of his data until he/she gets the desired p-value. To prevent that, O’Sullivan

& Perry (2013) concluded that in the evaluation of any model, a pluralist approach that

combines careful visualization and appropriate quantitative tools, that can be adjusted to

the need of the audience, is likely to be the most successful.

6.3.3 Exploratory/heuristic approaches

6.3.3.1 Multi-Model Analysis (MMA)

Commonly, multiple runs of the same model using different initial conditions, parameters,

as well as structural forms allow for an assessment of the variation in the model outputs
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by quantification of output error (Evans, 2011). It allows statistical summaries to be

generated, along with confidence statistics (e.g. Pitt et al., 2009; Senay et al., 2013).

Quantitative MMA assigns performance scores to each candidate model (see section 6.3.1

and 6.3.2) (Burnham & Anderson, 2002; Ye et al., 2008; Senay, 2014). The difference

between model outputs can be used to make statements about the observed data and to

make forecasts based on model averaging or a consensus approach (ensemble forecasting).

Ensemble forecast systems address, at least in part, uncertainties due to model

structure (Burnham et al., 2011). The potential of combining different models using a

frequentist approach has been reviewed in Anderson (2008) and Burnham et al. (2011),

while Link & Barker (2009) provided an overview from a Bayesian perspective. Hartig

et al. (2011) extended previous work by considering methods for comparing dynamic sim-

ulation models. Furthermore, Collins (2007) gave an insight into the state of the art of

ensemble modelling in much of the field of complex systems modelling. A good starting

point is the generalized likelihood uncertainty (GLUE) framework, developed in Beven

(2006), which provides a means of weighting models in ensembles based on their likeli-

hood. Alternatively, Piou et al. (2009) outlined an approach derived from the deviance

information criterion (DIC) for comparing simulation models in a multi-model framework.

Finally, Araújo & New (2007) provided an overview of ensemble forecasting to the anal-

ysis of bioclimatic ensembles and discuss their uses and limitations for supporting policy

decisions in biodiversity conservation. In general, combining multiple outputs improves

forecast reliability (Johnson & Omland, 2004). In addition, the combination of predic-

tions allows forecast sharpness (the closeness of forecasts) to be assessed as an additional

uncertainty measure (Gneiting & Raftery, 2005).

These techniques, nevertheless, require observational data or at least knowledge of

the structure of uncertainty, which for new invasive pests is typically lacking. Therefore,

quantitative MMA in the context of forecast of spread for invasive species is more likely

to rely on expert elicitation and assurance or quality control procedures (rather than on

quantitative measures) to assess the relative merits of alternative models. An alternative

approach, that aims to overcome the lack of data, consists in using models to conduct ex-

periments in a ‘virtual (in silico) laboratory’ (O’Sullivan & Perry, 2013). Pattern-oriented

modelling proposed by Grimm & Railsback (2012a) fits well within this approach.

125



6.3.3.2 Pattern-oriented modelling (POM)

Grimm & Railsback (2012a) defined POM as ‘the multi-criteria design, selection and cal-

ibration of models of complex systems’. POM is intended to make use of a set of patterns

observed at multiple scales and levels of organization to inform the design, testing, and

evaluation of detailed simulations (Wiegand et al., 2003; Grimm & Railsback, 2012a).

These multiple patterns are used to guide three key phases of the modelling process, 1)

determining the scales, variables and processes to be included in the model, 2) choos-

ing between different representations of key low-level processes, and, 3) calibrating the

model. A formal likelihood based, or Bayesian framework can be used for step two (see

section 6.3.3.1), but it could be equally a more informal procedure in which different hy-

potheses are tested. For example, different population models can be developed with or

without considering an Allee effect. As Wood (2010) noticed, an important decision in

this process is the choice of appropriate summary statistics that will be used to describe

the observed patterns. He further recommended the use of more than one statistic to limit

information loss and provide a brief overview of the types of measures that can be used.

POM formalizes the use of multiple patterns for developing and testing stochastic models

that helps to communicate models more effectively (Grimm et al., 2005).

6.3.3.3 Participatory modelling

There exists a wide range of methodologies for involving expert knowledge in model design

and assessment. At the simplest level, it involves (formal or informal) expert validation

of parameters and processes. For example, expert knowledge can be used to constrain

parameter values and ranges (Janssen et al., 2010) or to develop priors for Bayesian treat-

ments of uncertainty (Clark, 2005; Kavetski et al., 2006; Kuhnert et al., 2010). More

sophisticated approaches formally incorporate expert opinion into automated procedures.

For example, Martin et al. (2012) and Krueger et al. (2012) provided a critical review of

the role of expert opinion in environmental modelling. They conclude that ‘participation’

of experts is a key element of contemporary approaches in complex environmental mod-
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elling. However, the use of domain experts in modelling will strongly benefit from ‘formal,

systematic and transparent procedures’. Krueger et al. (2012) called for ‘a paradigmatic

shift from traditional unbiased and impartial experts towards unbiased processes of expert

elicitation and a plurality of expertise and eventually models’. They further highlight the

role for science to maintain and enhance general procedures that will improve accuracy

and information content and ensure uncertainty is captured accurately. Just as the reli-

ability of empirical data depends on the rigour with which it was acquired, so too does

that of expert knowledge.

6.4 Model uncertainty in relation to risk assessment

There has been considerable progress in recognizing and communicating the limitations

and uncertainties associated with invasive species distribution and spread modelling fore-

casts. Buisson et al. (2010), Hartley et al. (2006), Gould et al. (2014), Pitt et al.

(2009), Marmion et al. (2009), Senay (2014) and Thuiller et al. (2006) have identified

sources of uncertainty in invasive pest or insect species distribution models. Their ap-

proaches use a multi-model inference to generate confidence intervals that incorporate both

the uncertainty involved in model selection as well as the error associated with model fit-

ting. Hartley et al. (2006) further quantified the costs of making false negative versus false

positive assessments in order to directly connect modelling to decision-making. Alterna-

tively, Heikkinen et al. (2006), Latimer et al. (2006), Marion et al. (2012) formulated and

fitted species distribution models into a Bayesian framework to incorporate uncertainty

about dynamic processes such as reproduction, mortality and dispersal into spatial and

temporal projections of species distribution and abundances. Cook et al. (2007a) and Bier-

man et al. (2010) developed a Bayesian approach to parameter estimation in a stochastic

spatio-temporal model of the spread of invasive species. The methods were used to account

for critical spatial heterogeneity. Along the same line, Eiswerth & Van Kooten (2002) de-

veloped a stochastic model for invasive weed fuzzy sets that recognizes several sources

of uncertainty, including lack of data, measurement error, variability in rate of spread,

and impact of management measures. Finally, Ben-Haim (2006), Carrasco et al. (2012),

Moilanen & Wintle (2006) and Yemshanov et al. (2010) applied information-gap theory to
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invasive pest distribution models. Information-gap theory aims to make the ‘best’ decision

in the face of extreme uncertainty. It accommodates non-statistical uncertainties, such as

the subjective choice of candidate variables and the structural assumptions embedded in

spatial analysis, to account for unknown levels of potentially extreme uncertainty.

Assuming that pest risk modellers integrate their public role into decision-making

process by acknowledging their responsibility to communicate limitations and uncertain-

ties, a second, more difficult challenge then is to consider how to display or show uncer-

tainty to policy makers and the general public (Evans, 2011; Mouquet et al., 2015). This

is a contentious area that challenges the relationship between scientists, decision-makers,

and the public (see for review Brown, 2010). Unfortunately, scientific uncertainty can be

converted into policy reticence, even when the science points strongly to action. If poli-

cymakers fail to act because they think the possibility of harm too uncertain – and they

are wrong – then the failure to act could be catastrophic. Equally, if policymakers assume

the possibility of harm near certain, and they act to mitigate it, they may turn out to

be wrong and have committed costly resources and investment in a wasteful fashion. In

contrast with scientific goals, the central goal of policy makers is not necessarily to un-

derstand the sources of uncertainty per se, but rather to understand the acceptability of

random uncertainties with respect to the acceptability of the risks associated with them.

However, determining the acceptability of risks is a complex process where a number of

factors, for example, economic, societal, and environmental needs and constraints, may

influence whether or not a risk is judged acceptable. Given this goal, the question then

becomes, how should uncertainty be treated in risk assessment modelling?

Shackley & Wynne (1996) and McCarthy et al. (2001) discussed briefly some of the

mechanisms by which scientists mitigate the effects of uncertainty. Walker et al. (2003)

proposed a taxonomy to communicate uncertainties to decision-makers. For example, they

identified scenario uncertainty, in which it is not clear what scenario is going to occur.

Such taxonomy helps to overcome linguistic uncertainty (as described in sectionn 6.2.1

and Table C.1) and facilitate the communication of uncertainty with results to decision-

makers. Along the same lines, Cornélis & Brunet (2002) examined spatial uncertainties

from the point of view of decision-makers. Morss et al. (2008) discussed how the public

understand uncertainty and want it displayed, while Dewulf et al. (2005), Mouquet et al.
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(2015) and Refsgaard et al. (2007) provided a detailed discussion on the weight of scien-

tific methodology and decision-makers engagement in the decision-making process. On the

other hand, Brown (2010) and Couclelis (2003) provided useful discussions on the place of

uncertainty in science as a social process, and uncertainty’s place in scientific self-reflection

and knowledge production. Most of these studies concluded by stating that the diversity

of tools and approaches, as well as the complexity of the interactions between scientific,

decision-makers, and the public at large, has lead to a clear and on-going lack of consistent

standards and tools that limit our ability to deal with uncertainty and effectively commu-

nicate uncertainties to decision makers.

6.5 Discussion

Currently, there is considerable interest in uncertainty within the context of environmental

and ecological decision-making (Mouquet et al., 2015; Schindler & Hilborn, 2015). This is

motivated by a recognition that there is a pressing need for reliable forecasts of ecosystem

state, ecosystem services, and natural capital (Clark et al., 2001). Within the broad

areas that are now ‘environmental and ecological modelling’, there has been considerable

progress in data availability, computation and statistics, which means that the purpose for

which models are designed are much more diverse than they were a few decades ago. This

diversity of uses and the recognition of fundamental problems in seeing models in terms

of robust forecasts, has lead to the diversification of approaches to evaluate models and

uncertainties (Hartig et al., 2011; Matott et al., 2009). In this study I briefly reviewed the

sources of uncertainty about species distribution and spread risk modelling, methods of

representing them, and how these different approaches have been applied to one important

contemporary policy question — biological invasion. Although we are constantly making

incremental progress to understand, characterize, and forecast the invasion process, it is

clear that uncertainty, whatever its source, is here to stay. Uncertainty must therefore

be addressed in any comprehensive risk assessment and decision-making situation. Initial

investigations suggest that the incorporation of uncertainty analysis and the appropriate

communication of the limits associated with an invasive species spread risk forecast adds to

the credibility of an invasive species or risk map (Venette, 2015). Despite these sentiments,
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considerably more could be done to effectively characterize and communicate uncertainty

about spread risk forecasts and consequences for policymakers.

There has already been an increasing focus on errors associated with input data

and processes, and how these can have an overwhelming effect on model uncertainty and

can alter the treatment decision. Measures appropriate for many sources of uncertainty

are already available, both for quantifying uncertainty, through, for example, sensitivity

analysis, uncertainty analysis and performance measures and for incorporating uncertainty

into the modelling effort, for example, Bayesian approaches. However, prediction of spread

traditionally focuses on a single-species and environment approach, using a single class of

spread models, leading to conclusions most applicable to the specific conditions under

which the model has been developed. Structural uncertainty, or uncertainty associated

with the choice of the functional structure of the model and variables, tends to be over-

looked. Consideration of a combination of different models can be seen as an opportunity

to make forecasts at different spatio-temporal scales and organisational levels. Combined

models can facilitate correct interpretation of spread, where differences and similarities

between different classes of distribution model can be identified pointing to when and why

a particular set of factors should be considered for accurate forecast. However, projections

by alternative models can give highly variable forecasts that can lead to policy reticence. A

solution to communicating/representing inter-model variation is the development of meth-

ods that combine several separate forecasts together; such as by consensus, averaging or

bounded forecasts (Araújo & New, 2007; Hartig et al., 2011). If used appropriately these

approaches can enable more robust decision making in the face of uncertainty. Combining

forecasts, however, remains dependent on individual predictions thus improved individual

forecasts will yield a better combined forecast.

Essential to the concept of robust forecasting is also the need for data to test and

validate models. Ecology is undergoing a major transformation with the accumulation of

large data sets. There is therefore an urgent need to create standards for data acquisition,

storage and sharing, but also standards to communicate uncertainty associated with these

data. A good starting point is the eXtensible Markup Language schemata that promises

to take uncertainty recording and manipulation from the current level of the dataset down

to the specific datum, storing detailed uncertainty information with each data point. A
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notable example for spatial modellers is UncertML (http://www.uncertml.org/) which

has the potential to be used with the Geographical Markup Language, along with the

web-based framework supplied to aid in its more general use, UncertWeb (http://www.

uncertweb.org/).

But more importantly, the development of formal approaches to uncertainty that

engages scientists and decision-makers will increase our ability to communicate forecasts.

As in Evans (2011) uncertainty representation could be embedded within the demands

of quality assurance (QA) guidelines. See, for example, Refsgaard et al. (2007) and Joint

Committee for Guides in Metrology report, JCGM (2008) who described schemes designed

under the ISO 9000 standards family. Such guidelines should also include detailed frame-

works for decision-making under uncertainty. Interactions with other researchers in other

disciplines, including statistics and social scientists will help decide the most appropriate

analytical tools. Any decision must be a pragmatic component of the infrastructure and

dynamics of the decision-making process. Such goals and efforts will encourage enhanced

tool interoperability and facilitate the communication of uncertainty with results. As

models (whatever their form) are used more often to support and develop policy, I believe

that methods that encourage the participation of stakeholders - so called participatory

modelling - will facilitate the communication of uncertainty around models. Additionally,

such methods will also facilitate the development processes such as adaptive management

and improved evaluation methods.

6.6 Conclusion

The growing societal need for predictions of current and future biological invasions has

led to the development of new modelling approaches to more closely link science, decision

makers and the public. Although we are constantly making incremental progress to under-

stand, characterize, and forecast the invasion process, it is clear that uncertainty, whatever

its source, is here to stay. Uncertainty must therefore be addressed in any comprehensive

invasive species risk assessment and decision-making situation. Any species distribution

model or spread model used for decision support should include

• Development of standardized measures for evaluating model performance that are
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understood and accepted by the risk assessors and decision makers (e.g. type I/type

II/type III errors or false positive/true positive measures)

• Development of standardized methods for assessing uncertainty in species distribu-

tion models and spread risk forecasts (e.g. data analysis to characterize input and

response data, sensitivity analysis to determine the most important set of parameters

and uncertainty analysis to establish the range of predicted outcome)

• Development of standardized datasets to allow inter-model comparison of uncer-

tainty and development of appropriate open-source software for increasing compu-

tational efficiency and optimization

• Development of standardized methods for showing and communicating uncertainty

(e.g. ensemble modelling, taxonomy of uncertainty, participatory modelling)

• Improvement of methods that incorporate assessment of uncertainty, whatever its

source, into risk models through the use of fuzzy-rule based model or Bayesian

probability approaches

• Incorporation of adaptive management practices which will help risk assessor and

decision makers maintain flexibility in their decisions, knowing that uncertainties

exist and so provides the latitude to adjust direction to improve progress towards

desired outcomes (e.g. participatory modelling).
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Chapter 7

General discussion

In this chapter, the major findings from the previous chapters are discussed in relation

to the aims and objectives of the thesis. In addition, a number of recommendations are

given for future research regarding the effect of landscape structure on the establishment

and spread of invasive species. Finally, concluding remarks are given.

7.1 Research context and objectives

Chapter 1 provided a broad review of the factors governing the establishment and spread of

invasive species in changing environments and of the existing modelling approaches used

to describe and predict rate of spread and local population density of invasive species.

Given that so many ecosystems face rapid and major environmental changes that can

be conductive to the establishment and spread of invasive species, there is a growing

awareness of the need to adopt proactive management strategies that attempt to forecast

species responses to future environments (Guisan & Thuiller, 2005; Thuiller et al., 2008;

Mouquet et al., 2015). Few of the models most used to predict future distribution of

invasive species explicitly integrate dispersal processes or characteristics of species popu-

lation dynamics. In particular, little attention has been given to simulating demographic

and dispersal processes at the leading edge of the distribution where range expansion oc-

curs (see, for example, the review by Thuiller et al., 2008; Sexton et al., 2009). In addition,

most efforts related to the prevention and control of invasions are conducted at the local

scale, where the influence of the landscape structure on the process of invasion is seldom

explored (Vilà & Ibáñez, 2011). Understanding the influence of landscape composition,

configuration, and their spatio-temporal interactions on ecosystem susceptibility to in-

vasion, is currently confined to broad generalization. For example, it is well recognised

that while ecological corridors facilitate dispersal, they can also increase invasion risks and
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that anthropogenic ecosystems are generally more invaded than natural ecosystems (Vilà

& Ibáñez, 2011; González-Moreno et al., 2014). Such generalisation ignores the differences

in the population density and rate of spread of invasive species within a particular land-use

type, as growth and dispersal can be fine-tuned by small-grain landscape differences such

as habitat size, habitat edge, and habitat connectivity variables (With, 2002). Accurate

accounts of the invasion process and effective eradication or conservation programs will

depend on such considerations (With, 2002; Vilà & Ibáñez, 2011). Assessing the effect

of landscape structure on species spread poses a great challenge to distribution modelling

because characterising the effects requires quantitative information on the relationship

between demography, dispersal and the environment in which these processes occur.

In this thesis, I proposed four main avenues to progress the understanding and

prediction of the establishment and spread of invasive species in changing environments.

First, based on an existing model described by Pitt (2008), I developed a simulation

framework that allows for systematic investigation of changes in landscape structure on

population density and spread of invasive species (Chapter 2). Second, I identified a set of

key generic landscape metrics that allow a concise characterization of independent aspects

of the landscape structure, regardless of the scale and resolution at which the patterns are

represented (Chapter 3). Third, I investigated the independent and interactive effects of

the different aspects of the landscape structure on the establishment and spread of invasive

species (Chapter 4). Finally, I determined the relative importance of the effect of land-

scape structure in relation to dispersal ability, reproductive rate and propagule pressure

on population growth and spread of invasive species (Chapter 5).

7.2 The importance of a general spatially-explicit model of

spread

The dispersal modular framework, MDiG, introduced in Chapter 2, was developed in

response to a call for explicitly accounting for population dynamics and dispersal be-

haviours within a modelling framework integrated in geographic information systems
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(GIS) (Worner, 1994; Guisan & Thuiller, 2005). MDiG accommodates for spatio-temporal

heterogeneity and is partially stochastic (Pitt, 2008).

The framework is very flexible in that it could be applied at multiple spatial scales

and can easily be modified for species with structurally different demographic and dis-

persal behaviours to generalize the use of the framework to many plant, insect or other

invertebrate species (Pitt, 2008). It provides a means of synthesising all our available

knowledge to predict establishment, spread and impacts of invasive species. In Chapter 2,

the great white butterfly, Pieris brassicae, was used to illustrate some of the capability of

MDiG for modelling dynamic range expansion at a regional scale. Accurately estimating

the distribution of an invading organism at any time in the future, including the time it

takes to reach an equilibrium within its new environment, is of paramount importance

for planning eradication strategies or even to decide whether any eradication effort is

necessary or possible.

In addition to incorporating realistic landscapes, the MDiG framework allows the

manipulation of fragmented and/or anthropogenic landscapes to test predictions regard-

ing landscape modification or regional climate change for invasive species management

purposes. The challenge to distribution modelling lies in predicting how demographic and

dispersal responses will be modified by environmental conditions (Thuiller et al., 2008). In

this study, the MDiG framework was integrated and extended to further illustrate MDiG’s

capability by investigating the effect of change in landscape composition and configuration

on population density and the dispersal of an invasive species, using the European gypsy

moth, Lymantria dispar, as a case study. Inferring the relative role of habitat structure on

the course of invasion relied on a judicious combination of methods, particularly the use of

a landscape generator and landscape metrics that can be combined in an iterative process,

to provide quantitative information on the relationship between demography, dispersal

and the environment in which these processes occur. A model such as MDiG, with the ca-

pability of providing individual-based or raster cell-based outputs at high spatio-temporal

resolution, can result in better understanding of these dynamics.

MDiG as a modelling framework integrates several components recognised as fun-

damental for tackling species establishment and spread under environmental change (Pitt,

2008). The framework was developed as a modular, open source project, facilitating col-
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laboration and providing a solid foundation on which additional components can be easily

added. Suggestions for future development of the framework are given in Section 7.7.

7.3 Detecting and quantifying landscape structure changes

The ability to quantitatively describe landscape structure is a prerequisite to detect

changes and to investigate the relationship between landscape structure and, demographic

and dispersal processes. In this regard, a plethora of quantitative metrics have been devel-

oped to provide simple quantitative measurements of the composition and configuration

of a landscape (McGarigal et al., 2012). However, the general perception is that there

are three basic problems with using landscape metrics. They are, 1) a high degree of

correlation between the metrics themselves, 2) ambiguous responses to different spatial

processes, and, 3) sensitivity to change in spatial scale (resolution and extent) (Leitão &

Ahern, 2002). Quantifying the specific effect of habitat configuration on establishment and

spread success, for example, is difficult because many configuration metrics are correlated

with habitat amount (Kupfer, 2012). Such limitations can often be addressed, or put in

perspective, through careful data manipulation, analysis and interpretation.

In Chapter 3, the adequacy of widely used landscape metrics was tested to quantify

concisely, independent aspects of spatial pattern, regardless of the scale at which they are

represented. The findings highlight the sensitivity of landscape metrics to changes in the

intrinsic characteristics of a landscape (spatial autocorrelation and percentage of suitable

habitat cover), and scale-dependent factors (spatial extent and spatial resolution), indi-

vidually but also to their interactions. The presence of significant complex interactions

between intrinsic and extrinsic characteristics of landscape pattern makes it difficult to

isolate purely landscape pattern driven effects from the effects of changing spatial scale. As

such, this research illustrated the need for more systematic investigation of the relationship

between intrinsic characteristics and extrinsic properties when accurate characterization

of landscape pattern is a key input within spatially explicit ecological models. The self-

organising map (SOM) clustering approach is proposed as an efficient way to identify

relationships among metrics that more traditional statistical methods might overlook, by

accounting for linear and non-linear interactions among predictors. Efficient analytical
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tools, such as SOM, may thus help to identify key generic landscape metrics to be used for

quantifying the relationship between landscape structure and ecological processes, such as

demographic and dispersal processes.

7.4 The importance of habitat amount and patch aggrega-

tion

In both Chapter 4 and Chapter 5, the effect of landscape composition and configuration

on population density and spread of a invasive species was investigated. First, I used a

multi-model averaging approach to explicitly test the degree to which different landscape

elements such as suitable habitat amount, habitat patch size, isolation and quality, can

explain population density and spread of invasive insects. Second, I used a boosted re-

gression tree analysis to identify the relative importance of landscape processes in relation

to dispersal ability, reproductive rate and propagule pressure. Both analyses were case-

specific, where the MDiG modelling framework (Chapter 2) was parametrized on detailed

demographic and dispersal attributes of the well studied European gypsy moth, L. dispar.

In this way, the model had sufficient biological detail to reproduce realistic parameter

ranges for a large flying insect. MDiG was then used to explore different ranges of de-

mographic rates, dispersal behaviours and propagule pressure in changing environments.

A patch based, binary view of the landscape, comprising suitable and unsuitable areas,

was adopted. In these landscapes, habitat configuration, described as the degree of spatial

autocorrelation, and habitat amount, described as the percentage of suitable habitat in

the landscape, were systematically controlled.

The multi-model averaging approach used in Chapter 4 provided a basis for the

development of a core set of structural metrics as indicators of invasive insect establishment

and spread. Both population density and spread of invasive species can be affected in

significant, and sometimes interactive ways, by the landscape based components: suitable

habitat amount, habitat patch aggregation, core area, edge density and habitat shape

complexity. In particular, the interaction between the percentage of suitable habitat in

the landscape (PLAND) and a measure of habitat patch aggregation (SPLIT) had the
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greatest effect on both population density and rate of spread. To my knowledge, only a

handful of studies have tested for the significance of interactions between the landscape

variables (see for example Ewers et al., 2007). As such, the research has illustrated the

need for a more systematic investigation of the relationship between multiple landscape

processes on the process of invasion.

The importance of suitable habitat amount and habitat patch aggregation in deter-

mining population density and spread was also highlighted by the boosted regression tree

analysis used in Chapter 5. Contrary to expectations, both statistical approaches indi-

cated a relatively weak effect of habitat patch connectivity (CONNECT)and edge density

(ED) on population density and spread rate. This result reaffirms that population growth

and spread might be limited more by the size and distribution of non-habitat gaps than

by a measure of habitat connectivity as suggested in With & King (1999b) and Wang

& Cumming (2011). The weak effect of edge density is more surprising as habitat edges

are often thought to give invasive species a foothold in the landscape. For example, in

a review of the landscape effects on the local population density and richness of invasive

plants, Vilà & Ibáñez (2011) found that invasive plants are more abundant at habitat edges

than in the interior of habitat. Edge density may be more important when habitat edge

has a direct effect on growth and dispersal. For example, micro-climate variations at the

habitat edge may enhance growth or higher wind disturbance may enhance long-distance

dispersal events, rather than simply providing access to habitat. Such mechanisms were

not considered in this research but could be easily integrating using buffering technique

in GRASS-GIS to attribute a higher degree of suitability to the edge of the habitat patch

than the inner core area when building a survival layer.

This work confirms the possibility that by quantifying the elements of the landscape

that influence the population density and spread of invasive species, areas that are vul-

nerable to invasion can be better predicted. Subsequently, such analyses can be used to

prioritize surveillance and control strategies. Furthermore, landscape metrics can be useful

for proactive land-use planning to help establish the capacity of the landscape to main-

tain ecological processes, as discussed in Leitão & Ahern (2002) and Leitão et al. (2012).

However, the capacity to generalise and compare findings from a range of ecosystems and

range of taxa will help progress the identification of consistent landscape predictors.
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Interestingly, it was found in both Chapters 4 and 5 that the particular effect of

landscape structure on invasive spread depends on several life history characteristics of

the species, such as the intrinsic rate of increase, and frequency of long-distance dispersal

events as well as the presence or absence of an Allee effect. Therefore choice of an ap-

propriate set of landscape metrics will require case specific exploration of their indicator

values as it is unlikely that all species will respond to landscape structure in a similar way.

Besides, variation across taxa would be useful for generating hypotheses and testing the

degree to which various life-history and ecological traits influence sensitivity to landscape

structure.

7.5 Ecology of invasion and implications for management

strategies

The boosted regression tree analysis used in Chapter 5 indicated dominant processes shap-

ing population density and spread of invasive species that can be prioritized as well as those

that are of secondary importance. This simplification is needed in the context of pressing

invasive species management, where simple yet effective advice is needed. Variables indi-

cating Allee threshold, intrinsic rate of increase and propagule size were rated in as three

most influential variables in each model. The collective influence of these three factors, as

well as the effect of suitable habitat amount and habitat patch aggregation, is consistent

with previous studies (see, for example, the review by Catford et al., 2009). Despite these

findings, this research offers new insights for management programs that aim to limit the

establishment and spread of invasive species.

First, while propagule size was undoubtedly an important factor for ensuring pop-

ulation growth and spread in a new environment, demographic traits had an equal or

greater influence on population density and invasive spread. These results are well in line

with a recent discussion around the role of propagule pressure in determining invasion suc-

cess. In particular, a predominant observation in a variety of taxonomic groups is that, as

propagule pressure increases, so does establishment and spread success (Lockwood et al.,

2005, 2009). Intuitively, increasing the size and number of propagules enables the incipient
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population to overcome limitations associated with small populations, such as Allee ef-

fects, environmental stochasticity and demographic stochasticity. However modelling has

shown that propagule pressure supplements demography, dispersal and life-history more

generally (Cassey et al., 2014). Possible reasons could be that because little or no infor-

mation on invasion failure is readily available because empirical studies focus on a limited

subset of life-history traits, biasing our perception of which factors are important for de-

termining invasion success (McGregor et al., 2012). Clearly, one must be cautious about

assuming that reduced propagule pressure will lead to lower probability of establishment

and spread, thereby lowering the assessment of risk.

Second, the primary importance of an Allee effect suggests that any eradication

strategy should examine how eradication programmes can exploit such dynamics by main-

taining population density under an Allee threshold (Chapter 5; Johnson et al., 2006;

Liebhold & Tobin, 2010). It is likely that management of invasive populations with Allee

effects should be different from those without Allee effects. In particular, it was shown

in Chapter 4 that in the absence of an Allee effect, population density and rate of spread

is positively correlated with the proportion of suitable habitat, reproductive rate, disper-

sal ability and propagule pressure. In the presence of an Allee effect, however, spread is

maximized at an intermediate dispersal level and inhibited at both low and high levels of

dispersal. This result also highlights the existence of a dispersal threshold above which,

both population spread and growth can be inhibited. This is a non-trivial result for man-

agement purposes. Adopting a strategy that systematically reduces the dispersal ability

of an invading species that is occurring close to its dispersal threshold, may result in over-

compensation leading to a very high rate of spread. However, the analysis undertaken in

this research accounted for only three Allee threshold values (no Allee effect, weak versus

strong Allee effect), and would benefit from further investigation of different threshold

values to investigate how important Allee effects are in invasive species.

Third, a greater effect of growth-related traits than dispersal-related traits in both

population density and rate of spread in heterogeneous landscapes, was found (Chapter 5).

This result implies that spread rate is more strongly related to intrinsic rate of increase,

which determines the total number of individuals participating in dispersal, than it is to

a species’ intrinsic dispersal ability. From an invasive species management perspective,
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this result suggests that priority should be placed on species with high intrinsic rate of

increase and that eradication programmes should focus on limiting reproductive stages as

a priority.

Fourth, no evidence was found to support the prediction that species with greater

dispersal abilities have a higher rate of spread than species with lower dispersal abilities

(Chapter 5). This result suggests that the intrinsic dispersal ability of a species is not a

useful predictor of invasive spread. Indeed, analyses conducted in Chapters 4 and 5 showed

that the realised dispersal distance in a landscape is a product of both species dispersal

traits and landscape structure. The research reaffirms, as suggested in Fahrig (2007),

that species dispersal ability cannot be estimated independently of landscape structure

and that to test the relative importance of dispersal ability, the landscape context should

match the location where the data were collected. It is further suggested that simple mea-

sures of landscape structure, characterising the percentage of suitable habitat and habitat

patch aggregation in the landscape, may encapsulate the effect of landscape structure on

population density and rate of spread of invasive species.

Finally, the frequency of long-distance dispersal events were a better indicator of

population dynamics than the intrinsic dispersal abilities. However, in the absence of an

Allee effect, population growth and average dispersal distance increased as the frequency

of long-distance dispersal increased. However, in the presence of an Allee effect, while

average dispersal distance increased with the frequency of long-distance dispersal events,

population density decreased with the frequency of such events. This counter-intuitive

finding can be explained by the fact that repeated dispersal events of small populations

may be insufficient to establish growth in the recipient area, and collectively, can reduce

the size of the source population at the introduction site. Despite that this explanation

is plausible, there is no experimental support available in the literature. Long-distance

dispersal events are inherently hard to measure, and there are only a few data sets that can

be used to describe the tails of a long-distance dispersal kernel. Results from this study

reaffirms there is a need for more data on movement patterns, particularly on long-distance

movement, of invasive species in different habitat types and landscape contexts (Robledo-

Arnuncio et al., 2014).
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7.6 Uncertainty in establishment and spread modelling

The modular dispersal framework MDiG was initially developed to support strategic fore-

casts of spatio-temporal invasive species distribution and management options (Chapter 2).

When used for spread forecast purposes, the modelling framework integrates specific char-

acteristics of the studied species, for example, specific dispersal strategies or habitat re-

quirements, to obtain ‘realism’. But the result of the simulations remain closely linked to

the choice of the parameters rather than providing any insight into general principles. In

this research, however, a more holistic approach was adopted where the pattern of invasion

generated by multiple species scenarios within different landscape structure, was used to

infer key drivers of population density and spread that are not taxon- or region-specific

(Chapters 2, 3, 4 and 5). One key aspect of this assessment was to identify which pa-

rameter uncertainties were likely to have a large impact on population density and spread

estimates. The analyses were built around a series of relatively simple assumptions re-

garding the characteristics of the species and the environment, such as a random walk for

approximating local diffusion of the insects, a single Cauchy distribution for approximating

long-distance dispersal events or a binary distinction of suitable and unsuitable habitat.

Despite this simplicity, the model as a whole is structurally complex and produced a rich

variety of plausible range expansion dynamics that remain to be tested empirically.

As discussed in Chapter 6, uncertainty is an inevitable component of any spread

modelling exercise. Models typically carry substantial error margins due to structural

(model specification) uncertainty and parameter (data) uncertainty as well as inherent

(natural) stochasticity of ecological dynamics. These uncertainties need to be quantified

to draw inferences about the robustness of model results and subsequent ecological hy-

potheses. In this research, I have largely side-stepped model structural analysis. Such

uncertainty is likely to be high. For example, major differences regarding the effect of

landscape structure on population density and spread were found when considering simu-

lations with an Allee effect and those without an Allee effect (Chapters 2, 4 and 5). Some

discrepancy between the results of this present study and those from Cassey et al. (2014)

were also highlighted in Chapter 5. Using a competitive modelling framework (VOR-

TEX, Lacy 2000) for simulating establishment success of exotic birds, Cassey et al. (2014)

found evidence for a greater effect of growth-related traits than propagule pressure and
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dispersal-related traits, indicating consistency with this study. However, unlike the results

in this research, Cassey et al. (2014) found no evidence of the influence of an Allee effect

in their model. The authors suggested that environmental stochasticity, that can also lead

to extinction of low-density populations, appears to matter more than Allee dynamics.

Environmental stochasticity was not explicitly considered in this thesis. Whether explic-

itly integrating environmental stochasticity in the MDiG modelling framework will result

in a decrease influence of an Allee effect or whether such inconsistency emerges because

of others structural differences in the two models (MDiG and VORTEX) remains an open

question.

Choosing the appropriate degree of abstraction of species demography, dispersal,

propagule pressure and ecosystem characteristics to keep a balance between maintaining

reality and reducing model complexity, is a fundamental challenge to establishment and

spread modelling. It was suggested in Chapter 6 that methods such as pattern-oriented

modelling (POM) can help to decide how structurally complex models such as MDiG

need to be, to increase its predictive power. Thuiller et al. (2008) suggested that such

a decision is scale-dependent. Complex models are likely to be more accurate at finer

resolutions, whereas simple models are likely to offer useful and parsimonious solutions

at broader scales. Yet, the development of complex models remain necessary not only to

help understand the relative importance of different drivers and their interactions on the

population density and spread of invasive species, but also as an aid to optimising the

trade-off between precision and model complexity. Suggestions for future development of

the MDiG modelling framework are given in Section 7.7.

7.7 Perspectives

Based on the recent review of research frontiers in species distribution modelling by Thuiller

et al. (2008) and in plant dispersal by Robledo-Arnuncio et al. (2014), I discuss a set of

research questions for which a modelling framework such as MDiG could be used to help

progress our understanding of the establishment and spread of invasive species in hetero-

geneous landscapes.
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7.7.1 What is the appropriate model resolution, extent or habitat com-

plexity to use?

A challenge for establishment and dispersal modelling is to decide the appropriate extent,

resolution and complexity of the study. The resolution and the extent over which disper-

sal studies are carried out can affect the accuracy of results. For example, the level of

landscape detail (complexity) depends on the spatial resolution of the study, and subse-

quently affect estimation of dispersal rate and population density. A good example from

this research was that recoding high-resolution data of an urban area to delimit unsuitable

man-made structures was necessary to gain accuracy and specificity in the projections of

P. brassicae in South Island, New Zealand (Chapter 2). Otherwise the model would have

enhanced spread estimates by overestimating the dispersal rate in a uniform urban area

generated from larger resolution data. Increasing the spatial resolution also increases the

relative habitat amount and habitat patch isolation in the landscape (Chapter 3), which

was found to have a significant effect on population density and spread rate (Chapters 4).

A modelling framework such as MDiG can be used to investigate how the relation

between attributes of the landscape and population dynamics scale across spatial reso-

lution and extent. While selective re-coding of certain areas of the landscape based on

species attributes as demonstrated in Chapter 2 could greatly benefit studies case by case,

a generalized and exhaustive study that could elucidate a possible relationship between

species attributes and mode of dispersal with optimum landscape resolution, configuration

and composition is greatly needed. An example of such procedure can be found in Skelsey

& Garrett (2013). As there is no one optimum spatial extent and resolution that can be

used for all cases, each of these parameters have to be determined based on the charac-

teristics of the species studied (Senay, 2014).

7.7.2 What is the contribution of different dispersal vectors to rate of

spread?

It is acknowledged that for many plants, insects and other invertebrate species, multiple

vectors contribute to long-distance dispersal (Bowler & Benton, 2005). For example,

natural dispersal of the European gypsy moth L. dispar, used as case study, is primarily by
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the wind-borne dispersal of the first instar larvae and adult flight by males (CABI database

- http://www.cabi.org/). A number of anthropogenic-driven dispersal vectors have also

been reported including clothing/footwear and possessions, land vehicles, wood containers

and packaging and plant trade (CABI database). These different vectors may fluctuate

over different spatial and temporal scales and may respond differently to environmental

change (Bowler & Benton, 2005). As discussed in Chapter 2, MDiG currently does not

explicitly allow the contribution of multiple vectors to particular dispersal pathways to be

simulated. While a mechanistic approach that simulates long-distance dispersal along a

transport network is possible, it is usually very difficult to find such detailed information.

Alternatively, dispersal kernels characterised by mixed probability distributions could be

used to investigate the contribution of different dispersal vectors on population density

and spread of invasive species (Gilbert et al., 2004).

The main difficulty accounting for different dispersal dynamics in MDiG is that mul-

tiple temporal and spatial scales are forced to use the same spatial resolution. While this

results in efficient alogrithms, it can potentially impact simulation outputs (Pitt, 2008).

Methods for encoding raster data, such as the quadtree data structure used in Cole &

Albrecht (1999), can be used to improve data storage requirements and access speeds.

In the Cole & Albrecht (1999) study, the authors encoded long distance dispersal on a

large-scale coarse resolution grid, with fine grids within each coarse grid cell to model more

complex interactions and finer-scale processes when necessary. As such, MDiG could be

used to identify the critical vectors of long-distance dispersal with disproportionate im-

pact on population density and rate of spread of invasive species. The model can also be

used to better understand how the interplay between long-distance dispersal and dynamic

heterogeneous environments determines the spread of invasive species under climate and

land-use change scenarios.

7.7.3 What is the implication of landscape-dependent variation on de-

mography and dispersal ability?

Dispersal, as integrated in MDiG, is regarded as an unconditional process, with a unique

Poisson distribution indicating the numbers of the population dispersing at each generation
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from each occupied raster cells. However, dispersal processes are clearly dependent on a

range of factors such as habitat quality, density-dependence or habitat patch size (Clobert

et al., 2009, 2012). Gathering empirical information on such factors is an essential step

that will contribute to the construction of more realistic assumptions regarding different

dispersal processes. The MDiG framework already integrates a suitability map in the form

of survival probability map ranging from 0-1 reflecting the difficulty that populations have

establishing in each raster cell. An additional layer could be used in the form of dispersal

probability map ranging from 0-1 reflecting the difficulty that populations have to disperse

in each raster cell. As such, MDiG could be used to investigate the key environmental

factors that have a disproportionate impact on the population density and/or spread of

an invasive species.

7.7.4 What are the implications of demographic and environmental stochas-

ticity on rate of spread?

A further step toward the realism representing dispersal and demographic processes in

MDiG would be to account for demographic and environmental stochasticity. Four types

of stochastic effects are generally recognised. First, demographic stochasticity arises from

intra-specific variation in individual probability of reproduction and death. The com-

bined influence of an Allee effect and demographic stochasticity contribute to popula-

tion extinction when populations are at very low densities, therefore strongly influencing

the successful establishment of invasive species (Liebhold & Bascompte, 2003). Second,

stochastic genetic differences between source populations may lead to lag-time in invasion

that are independent of population density and landscape structure. Third, empirical ev-

idence suggests that intra-specific variation in dispersal ability (dispersal stochasticity),

that is associated with other key life history traits such as morphological or behavioural

traits (Clobert et al., 2009, 2012), can have consequences on both spatial dynamics and dis-

persal evolution (Baguette et al., 2012, 2014). Fourth, environmental stochasticity arises

from random spatial variations that similarly affect birth, death and dispersal rates of all

individuals in the populations.
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Technically, it is not complicated to see how MDiG could simulate the reproduc-

tion, dispersal and death event for every single organism in the landscape to account

for intraspecific variability in demographic, genetic and dispersal ability, yet some costs

would be incurred with respect to uncertainty and interpretability. On the other hand,

accounting for environmental stochasticity simply requires including the effects of additive

environmental noise that affects the population density and dispersal events in each raster

cell (see, for example, Liebhold & Bascompte, 2003). As such, MDiG could be used to

investigate how the relative role of environmental stochasticity and Allee dynamics may

influence population and spread of invasive species in heterogeneous environments.

7.7.5 What is the implication of temporal variation in demographic and

dispersal ability on species spread?

Dispersal and demographic processes not only vary over space and among individuals of

the same population (see Section 7.7.3 and 7.7.4), but also over time. Temporal variation

in endogenous factors, such as life-stages, and exogenous factors such as seasonal variation

in climate, influence reproduction, death and dispersal rates (see for example Robledo-

Arnuncio et al., 2014). Temporal characterization of propagule dispersal, which examines

variation in fecundity, death, dispersal rates and their association with local environment

characteristics, can be an enormous task. In its simple form, MdiG already integrates

different dispersal modes that can be assigned to each life-stage. Phenological maps could

also be used to indicate the timing of propagule recruitment and life stage associated

dispersal. A good starting point is the model to predict the phenology of Gypsy moth,

L. dispar (Régnière & Sharov, 1999), in which maps of life stage timing in New Zealand

were used to time the occurrence of peak adult moth flight, when individuals are actively

dispersing (Pitt et al., 2007).

In addition, the suitability of a region does not remain constant from year to year due

to gradual change in land-use or rapid changes in temperature, for example. The possibil-

ity of using stochastic potential suitability that changes in value through time (Moilanen

& Cabeza, 2002) may mean spread models could allow for such variation. However, in

my opinion, understanding variation in demography and dispersal and their consequences

on population dynamics in heterogeneous landscapes will probably require conceptual and
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methodological advances to establish a clear partition into temporal, spatial and environ-

mental components over different spatial and temporal scales.

General modular framework, MdiG and future development

Limiting climatic factors
(temperature, humidity, elevation)

Phenology
(Growing degree days)

Population factors
(life-stage, intraspecific variability)

Population sub-model
population density (raster cells)

Dispersal sub-model
Short and long-distance dispersal

Dispersal factors
(dispersal vectors, pathways, barriers, history)

Resource factors
(land-use suitability, micro-climate variations, 

species interactions, disturbance)

life-stages dependency
density dependency

Landscape composition/configuration
Competitors, facilitators, prey, 
predators

Habitat suitability
Potential distribution based on 

bioclimatic data 

MDiG modelling framework

landscape dependency

landscape dependency

Figure 7.1: General modular dispersal framework, MDiG.

7.8 Concluding remarks

Advances modelling the establishment and spread of invasive species will be determined

by the ability to surmount the challenges of spatial scale and heterogeneity, temporal

variation, and system complexity (Robledo-Arnuncio et al., 2014). New inferential and

predictive methods, such as the MDiG modelling framework, will be applied to better

represent population growth, density, rate of spread and trajectories of invasive species

over different taxonomic groups and spatial scales, in environmentally and demographic

explicit contexts. Such approaches rely on a judicious combination of techniques that

provide information useful for decision-makers to explore often uncontrollable, irreducible

uncertainty about the future. Such information offers resource managers, a method for de-

veloping more resilient conservation or management strategies, especially at the landscape
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level, which can integrate key climate change, land use change, invasive species ecology

and landscape-ecological linkages.

Although we are constantly making incremental progress to understand, charac-

terize, and forecast the invasion process in heterogeneous environment, it is clear that

uncertainty, is here to stay no matter what information is used to make decisions (Chap-

ter 6). Criticism has been raised concerning the usefulness of such complex models for

guiding effective management of invasive species at a regional scale (Robinet et al., 2012b;

Venette, 2015). However, models are often most useful for challenging what we think

we understand. Investigating the use of different modelling approaches (different model

structures and parameters) and the impact on projections performance could help iden-

tify the optimal trade-offs between precision and complexity. Such development is in its

infancy, and further research to correctly and consistently assess as well as communicate

uncertainty around spread modelling is needed, so that end-users can make more informed

decisions about the potential for invasive species establishment and spread into new areas.
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Richardson, D. M. (2011). A proposed unified framework for biological invasions. Trends in Ecology
and Evolution, 26 (7), 333–339.

Blackwood, J., Hastings, A., & Costello, C. (2010). Cost-effective management of invasive species using
linear-quadratic control. Ecological Economics, 69 (3), 519–527.
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Crespo-Pérez, V., Rebaudo, F., Silvain, J.-F., & Dangles, O. (2011). Modeling invasive species spread in
complex landscapes: the case of potato moth in ecuador. Landscape Ecology , 26 (10), 1447–1461.

Crosetto, M., Tarantola, S., & Saltelli, A. (2000). Sensitivity and uncertainty analysis in spatial modelling
based on gis. Agriculture, Ecosystems and Environment , 81 (1), 71–79.

Cushman, S. A., McGarigal, K., & Neel, M. C. (2008). Parsimony in landscape metrics: strength, univer-
sality, and consistency. Ecological Indicators, 8 (5), 691–703.

Davies, C., & Gilbert, N. (1985). A comparative study of the egg-laying behaviour and larval development
of Pieris rapae L. and P. brassicae L. on the same host plants. Oecologia, 67 (2), 278–281.

Day, J. R., & Possingham, H. P. (1995). A stochastic metapopulation model with variability in patch size
and position. Theoretical Population Biology , 48 (3), 333–360.

De Poorter, M., Pagad, S., & Ullah, I. M. (2007). Invasive alien species and protected areas - Part I:
scoping the scale and nature of invasive alien species threats to protected areas, impediments to IAS
management and means to address those impediments. Tech. rep., World Bank Report, The global
Invasive Species Programme (GISP).

Delatte, H., Duyck, P.-F., Triboire, A., David, P., Becker, N., Bonato, O., & Reynaud, B. (2009). Differ-
ential invasion success among biotypes: case of Bemisia tabaci . Biological Invasions, 11 (4), 1059–1070.

Demon, I., Cunniffe, N., Marchant, B., Gilligan, C., & van den Bosch, F. (2011). Spatial sampling to
detect an invasive pathogen outside of an eradication zone. Phytopathology , 101 (6), 725–731.

155



Dewhirst, S., & Lutscher, F. (2009). Dispersal in heterogeneous habitats: thresholds, spatial scales, and
approximate rates of spread. Ecology , 90 (5), 1338–1345.

Dewulf, A., Craps, M., Bouwen, R., Taillieu, T., & Pahl-Wostl, C. (2005). Integrated management of
natural resources: dealing with ambiguous issues, multiple actors and diverging frames. Water Science
and Technology , 52 (6), 115–124.

Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A., & Ewers, R. M. (2007). Interactive effects
of habitat modification and species invasion on native species decline. Trends in Ecology and Evolution,
22 (9), 489–496.

Didham, R. K., Tylianakis, J. M., Hutchison, M. A., Ewers, R. M., & Gemmell, N. J. (2005). Are invasive
species the drivers of ecological change? Trends in Ecology and Evolution, 20 (9), 470–474.

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber,
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Gimenez, O., Huneman, P., Jabot, F., Jarne, P., Joly, D., Julliard, R., Kéfi, S., Kergoat, G. J., Lavorel,
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complexity in plant dispersal ecology. Movement Ecology , 2 (1), 16.

Rocchini, D., Delucchi, L., Bacaro, G., Cavallini, P., Feilhauer, H., Foody, G. M., He, K. S., Nagendra, H.,
Porta, C., & Ricotta, C. (2013). Calculating landscape diversity with information-theory based indices:
A GRASS GIS solution. Ecological Informatics, 17 , 82–93.

Rocchini, D., Hortal, J., Lengyel, S., Lobo, J. M., Jimenez-Valverde, A., Ricotta, C., Bacaro, G., &
Chiarucci, A. (2011). Accounting for uncertainty when mapping species distributions: the need for
maps of ignorance. Progress in Physical Geography , 35 (2), 211–226.
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Appendix A

Supplement to Chapter 2

A.1 Modelling dynamic range expansion of P. brassicae

A.1.1 Economy, biology and ecology of P. brassicae

P. brassicae, a butterfly originating from Europe and Asia, was first introduced in Nelson

city, New Zealand in May 2010, where it is considered as Unwanted Organism under the

Hazardous Substances and New Organisms Act 1996. In 2010, the Ministry of Primary

Industry (MPI), New Zealand responded to P. brassicae incursion with a monitoring

programme that aimed to slow its spread. In 2012, the Department of Conservation

(DOC), New Zealand, initiated an eradication attempt due to the risk it posed to New

Zealand native Brassicaceae, collecting presence records through both passive and active

surveillance (Phillips et al., 2014). By this time, P. brassicae was firmly established in

Nelson area and spreading in a South-Western direction. The Department of Conservation

(DOC), New Zealand, estimated the damage costs associated with P. brassicae and their

control - if the species spread throughout New Zealand - to be approximately NZD 7.4

million/annum.

P. brassicae has two generations per year with four main life-stages: egg, larva

(caterpillar), pupa, and adult. P. brassicae is naturally nomadic. It does not live in per-

manent colonies but breeds wherever suitable conditions are encountered, showing prefer-

ences for cultivated areas where species of Brassicaceae are cultivated and urban gardens.

Under optimum conditions, enormous numbers of eggs can build up (laid upright in clus-

ters of 40-100) which then explode outwards in strong migrations. Reason for migration

in P. brassicae is unclear (Holland et al., 2006) but it seems to be an obligate behaviour

of the butterfly to leave its hatching site within 2–3 days (Blunck, 1954). P. brassicae

exhibits both local and long-distance dispersal. Feltwell (1982) concluded that the aver-
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age local dispersal distances differed from a mere 7 m/year to a worrying 350 m/year,

reported as the average distance P. brassicae larvae cover while looking for pupation sites.

Unlike long distance dispersal, there is no evidence that P. brassicae exhibits directional

bias during local dispersal (Davies & Gilbert, 1985). Previous reports of long-distance,

mass migrations revealed that P. brassicae tend to fly in one direction, showing a pro-

portional (1:1) sex ratio during migratory long flights, reducing Allee effects on migrating

groups (Spieth & Cordes, 2012). Topographic barrier can force migrating butterflies to

drastically redirect their flight. Spieth & Cordes (2012) reported that mountains ranges

may be crossed using mountain passes that provide access to the preferred flight direction,

however coastal barriers hindering access pose a much greater threat to survival. Wind

currents can assist insects in their long flights. Nevertheless P. brassicae has been ob-

served flying upwind (Blunck, 1954; Roer, 1959), suggesting that wind is not necessarily

the cause for P. brassicae long distance dispersal. Long-range movement is most often

due to anthropogenic transportation, such as cars, cargo containers or host plants, of di-

apausing eggs and pupaes providing a second mode of spread (Feltwell, 1982).

A.1.2 Study area

The extent of the study covers the five administrative districts in the South Island, New

Zealand, that were either in contact with- or nearby the locations invaded by P. brassicae.

These districts were Buller, Tasman, Nelson City, Marlborough and Kaikoura (12, 466 sq.

ha).

A.1.3 Parametrizing the local dispersal sub-model for P. brassicae

A Von Neumann shape with range = 1 was chosen to represent the uniform, local neigh-

bourhood for spread of P. brassicae within one time step. We chose a cell resolution of 100

m to approximate the median distance of local movements of larvae and adults reviewed

in Feltwell (1982). The initial dispersal site was set in a cell close to Nelson port which is

suspected to be the site of P. brassicae introduction.
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A.1.4 Parametrizing the long-distance dispersal sub-model for P. bras-

sicae

Estimate of the median distance and average frequency of long-dispersal events were built

from the dispersal history of P. brassicae in the United Kingdom for which, well referenced

temporal data were found in Feltwell (1982), Heath et al. (1984) and the Global Biodi-

versity Information Facility (GBIF) database. First, a map of P. brassicae distribution in

the United Kingdom Feltwell (1982) was scanned and rectified using the ArcGIS software

according to the UTM Zone 30 projection information. The provisional version of the

original atlas of Heath et al. (1984) described the sampling scheme used to collect the

distribution data and indicated that each occurrence point represented a 10 km sq. grid

on the map. Accordingly, a cell size of 10 km was used as the standard data processing res-

olution for dispersal parameter estimation. Second, the GBIF data were resampled using

10 km sq. intervals, and were projected into the British national grid coordinate system.

The resampled GBIF P. brassicae occurrence data (n = 505) along with the points digi-

tized from Heath et al. (1984) (n = 351) were used to estimate dispersal parameters for P.

brassicae. Information on dates of records of P. brassicae occurrences from Feltwell (1982)

and GBIF database was used to characterise the 856 points with a year of introduction

into their respective localities.

The Cauchy distribution, commonly used to account for the fat-tailed characteris-

tics of the distribution of rare long distance events (Kot et al., 1996; Cain et al., 2000;

Higgins et al., 2000), was chosen to approximate the long-distance dispersal behaviour of

P. brassicae. The Cauchy probability density function is given below.

f(x|x0, γ) =
1

π

[
γ

(x− x0)2 + γ2

]
(A.1)

where x0 is the location parameter, specifying the location of the peak of the distribution

and is used as a proxy of the median distance of long-distance dispersal events, and γ is

the scale parameter of the Cauchy distribution.

The median distance of long-distance dispersal events for P. brassicae was parametrized

by producing the nearest neighbour distance vector between occurrence points for each

time period as described in Robinet et al. (2009). A random uniform noise within a range
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of [-146 m, 146 m] was applied to the nearest neighbour distance vector extracted from

the occurrence points with several replications (n = 1000) to account for uncertainty from

the digitized points (Pitt et al., 2011). Parameters were estimated by fitting the noised

distance data (n = 1000) to the Cauchy distribution using the maximum likelihood es-

timator with the trust-region-reflective optimization algorithm (Conn et al., 2000) using

MatLab software. The mean and standard deviation of the parameter estimates over the

1000 replicates was used to assess the stability of the estimated Cauchy location and scale

parameters.

The frequency of the dispersal events was estimated from the United Kingdom

temporal occurrence data. The historical P. brassicae presence data was first classed

into time periods. The ratio of the number of new P. brassicae sites to the number of

existing sites was calculated for each period. The resulting vectors of ratios, R, reflect the

minimum number of dispersal events that needed to be generated from each cell to achieve

the number of occupied cells in the next time period. These vector were then weighted by

the number of sites for each period as described by Pitt et al. (2011) as following:

R =

∑T
t=t0+1Nt −Nt−1∑T

t=t0+1Nt−1

(A.2)

R is the vector of average weighted ratios calculated by dividing the number of newly

invaded cells to the number of existing cells, t0 is the first year with occurrence data, T

is the last year, and Nt is the number of cells that are occupied within time t (Pitt et al.,

2011).

The resulting vector was fitted to the Poisson distribution, where the expected mean

frequency of the distribution (λ) was estimated from Equation A.3.

f(k|λ) =
λke−λ

k!
(A.3)

k is a vector of discrete integers [0, 1, 2, . . . ] and λ is the expected mean of the Poisson

distribution, with λ > 0 condition.
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A.1.5 Building a survival layer for P. brassicae

Two survival layers were developed to investigate the effect of landscape on invasive species

spread. The first survival layer (Surv1) included four data sources: climate suitability,

degree days, land cover, and high resolution remotely sensed data. The second survival

layer (Surv2) included all components used in Surv1, except the high resolution remotely

sensed data. Brief explanations of these datasets are given below.

The dataset included 35 bioclimatic variables downloaded from the CLIMOND web-

site (Kriticos et al., 2012) and four topographic variables derived from the SRTM global

digital elevation model dataset (NASA-GSFC, 2000) accessed through the WORLDCLIM

data portal (http://www.worldclim.org/), were used to generate the climate suitabil-

ity layer. First, the selection of relevant environmental variables was performed using a

random forest classifier. Second, the multi-model framework developed by Worner et al.

(2014) was used to predict the potential distribution of P. brassicae for the study area.

The data were projected to New Zealand Geographic Datum 2000 coordinate system and

re-sampled at 100 m, which was the raster resolution set for the dispersal model.

A 30 years daily temperature data obtained from NIWA (https://www.niwa.co.nz)

was used to generate the growing degree days (GDD) layer for the study area. The lower

temperature threshold for the development of a P. brassicae pupae, i.e. 10 ◦C (Kean &

Phillips, 2013) was selected as a base temperature to generate the GDD value for two

main reasons: 1) the pupae had the highest temperature development threshold of all the

life-stages (Kean & Phillips, 2013), therefore it is impossible for P. brassicae to complete

its life cycle unless temperatures exceed this threshold, 2) the pupae stage is a stationary

stage therefore do not move to more suitable locations. To calculate the GDD value, we

used the Barlow method (Barlow & Dixon, 1980) as it is expected to give the least error

when validated with real data Kean (2013). The degree day data calculated for 509 points

was interpolated into a raster surface using spline interpolation.

The New Zealand Land Cover Dataset, LCBD2 (Koordinates.com) was used to

generate the land cover data layer for the study area. The land cover data was produced

by Landcare Research based on SPOT imagery (resolution 15 m) and the pan-sharpened

Landsat 7 ETM+ imagery (resolution 15 m). The dataset has 43 types of land covers.

The probability scheme used in Senay (2014) to assign survival percentages according to

E
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Land cover name ID Description

Built-up area (urban areas or settlements) 1 Very high suitability
Orchard and other perennial crops 1 Very high suitability
Short-rotation cropland 1 Very high suitability
Urban parkland/ open space 1 Very high suitability
Alpine grass/ herbfield 2 High suitability
Depleted tussock grassland 2 High suitability
High producing exotic grassland 2 High suitability
Low producing grassland 2 High suitability
Tall tussock grassland 2 High suitability
Broadleaved indigenous hardwood 3 Moderate suitability
Deciduous hardwoods 3 Moderate suitability
Manuka or kanuka 3 Moderate suitability
Matagouri 3 Moderate suitability
Gorse and broom 4 Low suitability
Herbaceous freshwater vegetation 4 Low suitability
Herbaceous saline vegetation 4 Low suitability
Indigenous forest 4 Low suitability
Major shelterbelts 4 Low suitability
Mixed exotic shrubland 4 Low suitability
Sub alpine shrubland 4 Low suitability
Vineyard 4 Low suitability
Afforestation (imaged post LCDB 1) 5 Very low suitability
Fernland 5 Very low suitability
Flaxland 5 Very low suitability
Grey scrub 5 Very low suitability
Other exotic forest 5 Very low suitability
Pine forest - closed canopy 5 Very low suitability
Pine forest - open canopy 5 Very low suitability
Alpine gravel and rock 6 Not suitable
Coastal sand and gravel 6 Not suitable
Dump 6 Not suitable
Estuarine open water 6 Not suitable
Lake and pond 6 Not suitable
Landslide 6 Not suitable
Permanent snow and ice 6 Not suitable
River 6 Not suitable
River and lakeshore gravel and rock 6 Not suitable
Surface mine 6 Not suitable
Transport infrastructure 6 Not suitable

Table A.1: Land-cover re-classification schemes to characterize habitat suitability for P. brassicae.

the land cover classes were applied to grouped and re-classed the land cover types into

six classes according to their suitability for P. brassicae (Table A.1). The re-classed ESRI

polygon dataset was then converted to raster using 100 m resolution.

P. brassicae is know to be spreading in Nelson city by breeding in home gardens

that are available in residential blocks. The land-cover layer, that classified urban area as

built-up and homogeneous landscape, is likely to over-estimate the initial dispersal of P.

brassicae. High resolution remotely sensed data based on SPOT33 Maps 2.5 m resolution

satellite imagery was used to characterise the geographical detail in urban areas of the

survival layer, Surv1. A single layer labelled ’man-made structures’ was generated from

the satellite image to update the homogeneous ’built-up’ class in the land cover data.

The landscape components were rescaled to produce a 0 − 1 survival probability

layer. The land cover data was used as the base on which extra values from the climatic,

GDD layers were added. The values in the land cover data layer were rescaled between the
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ranges 1− 0, where high local variation is given low survival probability. For the growing

degree day dataset the layer was rescaled between 0.5−1. The minimum probability of 0.5

was given to the GDD dataset as it requires 471.6 cumulative growing degree days for P.

brassicae to complete its life cycle at least once. The first survival layer (Surv1) was also

recoded with the man-made structures data identified from the SPOT image classification

where all areas that were overlaid by the man-made structure data were set to a survival

of zero probability (Figure A.1).

A.1.6 Model evaluation and performance measures

The New Zealand data set of P. brassicae detections and absences obtained from the

Department of Conservation (Phillips et al., 2014) were used to compare the first three

years of the dispersal occupancy envelopes of both Surv1 and Surv2 dispersal model out-

puts with field data. We used cross tabulated predicated and observed values to form a

confusion matrix such that the diagonal elements of the matrix correspond to the cor-

rect predications of absence/presence locations, while the off-diagonal elements represent

incorrect predictions (Allouche et al., 2006; Fielding & Bell, 1997). From such a matrix

a three performance measures were used to estimate the mean performance of the two

dispersal models:

• the accuracy index, TP+TN
TP+TN+FP+FN , is the proportion of correctly predicted presence

and absence locations to the total number of locations

• the sensitivity index, TP
TP+FN , proportion of correctly predicted presence locations

to the total number of presence locations

• the specificity index, TN
TN+FP , proportion of correctly predicted absence locations to

the total number of absence locations

where, TP stands for true positive, TN for true negative, FP for false positive and FN

for False negative. A thorough review of these methods can be found in Freeman & Moisen

(2008) and Senay (2014).
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Parameters Abbreviated code Parameters value

Population sub-model
Presence/absence model

Local dispersal sub-model (uniform)
Mean distance of local dispersal events R 100 meters

Long-distance dispersal sub-model (Cauchy distribution)
Median distance of long dispersal events x0 154.22 meters
Cauchy scale λ 99.43
Frequency of long dispersal events f 0.48

Propagule pressure
Propagule size nbp 1 presence cell

Landscape structure
Survival layer including high resolution remotely sensed data Surv1
Survival layer excluding high resolution remotely sensed data Surv2

Table A.2: Baseline values for parameters of a spatially-explicit, individual based model of P. brassicae

A.1.7 Parameter summary for P. brassicae

The MDiG parameters used in this study are given in Table A.2. Sixteen years of simula-

tions were undertaken representing dispersal from the year 2010 to 2025. The simulation

was replicated 1000 times to account for dispersal stochasticity. Replicated maps were

merged into an occupancy envelope (an average maps for each time steps) using three

threshold values [5%, 10%, 50%] that corresponded to the number of times a cell was

occupied during dispersal.
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Figure A.1: From Senay (2014), with permission. Survival layers used in P. brassicae dispersal model.

(A) Survival layer Surv1 including climate, land cover, growing degree day and high reso-

lution man-made structure layer to increased the detail of urban areas. (B) Survival layer

Surv2 composed of all suitable layers included in Surv1 except the man-made structure

layer. (C) and (D) show a zoom on Nelson city for Surv1 and Surv2 respectively, and (E)

and (F) show a zoom on Blenheim town for Surv1 and Surv2.
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Figure A.2: From Senay (2014), with permission. Dispersal maps overlaid with P. brassicae presences

from field survey data
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A.2 Modelling dynamic range expansion of L. dispar

A.2.1 Economy, biology and ecology of L. dispar

L. dispar, commonly know as the Asian Gypsy moth, is considered internationally to be

among the most serious of all forest insect pests (Liebhold et al., 1992). Their presence

can destroy the aesthetic beauty of an area by causing large-scale defoliation and occasion-

ally intense tree mortality, and covering the area with their waste products and silk. The

species originally evolved in the temperate forests of Europe and Asia but was accidentally

introduced to North America outside of Boston, Massachusetts, USA, in 1869. Since then

it has subsequently invaded much of the susceptible forest of north-eastern North America,

from Ontario to North Carolina and Nova Scotia to Wisconsin (Liebhold & Mastro, 1989;

Morin et al., 2005). An extensive containment programme - named Slow-the-Spread, for

which more than $194 million was spent on management and monitoring between 1985 and

2004 alone (Johnson et al., 2006; Mayo et al., 2003), has dramatically reduce the spread of

the species (Tobin & Blackburn, 2007). However, gypsy moth invasion continues and, still

threatens to establish throughout most North America (Tobin et al., 2015). The spread

of the gypsy moth across eastern North America is, one of the most thoroughly studied

biological invasion, providing a unique opportunity to explore spatio-temporal variability

in rates of spread (Johnson et al., 2006). Each year, around 150,000 pheromone-baited

traps are deployed in the transition zone that separate well established population and

areas in which the gypsy moth is still absent (Tobin & Blackburn, 2007). In this transi-

tion zone, populations are low and somewhat discontinuous. Traps are typically placed

at 2-, 3- or 8-km inter-trap distances up to 150 km from the leading edge of the gypsy

moth distribution, which has been shown to be sufficient to detect low-density isolated

colonies (Tobin & Blackburn, 2007).

The gypsy moth has one generation per year with four main life-stages: egg, larva

(caterpillar), pupa, and adult. In spring the eggs hatch into larvae, which crawl up to

the tree tops, then suspend themselves on silk threads and are passively dispersed by

the wind (Liebhold et al., 1992). It is at this stage that they feed on more than 300

hundreds species of trees and shrub. 4–6 weeks later in early summer, they enter a pupal
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stage. 10 to 14 days later, adult gypsy moths emerge and are present in July and August.

Adult female gypsy moths are flightless, and ballooning of 1st instars usually occurs only

over short distances. Soon after emergence, adult females mate and lay their eggs, which

overwinter. Egg masses can be found on the branches or trunk of trees, fences, buildings,

and vehicles and contains around 100-1000 eggs (Liebhold et al., 1992).

Long-range movement is most often due to anthropogenic transportation of life-

stages, providing a second mode of spread (Liebhold & Tobin, 2010). This leads to strati-

fied diffusion. Whilst natural dispersal is limited to early instars, artificial dispersal affects

all life-stages but most frequently involves egg masses. Long distance dispersal leads to

the formation of isolated colonies ahead of the initially infested area, which may grow and

coalesce thereby increasing the rate of spread. By analysing available historical country

level quarantine data on gypsy moth invasion, (Liebhold et al., 1992) concluded that the

spread rates differed, throughout the past century, from a mere 2.82 km/year to a worry-

ing 20.78 km/year. More recently, the value of 0.003 km2/generation was referred to by

several authors (e.g. Liebhold & Tobin, 2006; Robinet et al., 2008) sparking an inconsis-

tency in terms of units. Finally, Tobin et al. (2007), using various spread rate estimation

techniques, came up with even a broader range of spread rates as 2.6–28.6 km/year.

Another factor shown to affect the gypsy moth spread is the Allee effect (e.g. Lieb-

hold & Bascompte, 2003; Vercken et al., 2011). New isolated colonies of gypsy moth

ahead of the initially infested area, are of low abundance and highly prone to Allee effects

and extinction (Liebhold & Bascompte, 2003). However, estimates of the Allee thresh-

old are usually approximate: high observation error and demographic stochasticities are

inevitable consequences of low abundance (Johnson et al., 2006; Vercken et al., 2011).

The current gypsy moth containment programme offers an exception because of its exten-

sive grids of pheromone-baited traps, which are sensitive to extremely low moth densities

along the invasion front. In Wisconsin, Allee effect threshold value was estimated at 2.2

moths/trap (Vercken et al., 2011). A much higher value of 20.7 moths/trap was established

in West Virginia and North Carolina. Johnson et al. (2006) provided overall estimates of

17 moths/trap for the Allee threshold.

The programme also allows to estimate habitat carrying capacity. Tobin et al. (2007)

pinpoint the carrying capacity at around 283 moths/trap in Wisconsin and 673 moths/trap
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in West Virginia and North Carolina. In earlier studies, Dwyer & Elkinton (1993) esti-

mated the Allee threshold as 500 larvae/m2 and Sharov & Liebhold (1998) as 200,000 egg

masses/km2. The latest values were difficult to compare with the estimates mentioned

above as it refers to a different life-stage. Johnson et al. (2006) provided overall esti-

mates of 687 moths/trap for the carrying capacity. In a similar study, having analysed

pheromone trapping data from a large-scale field study in Washington, Liebhold & Bas-

compte (2003) estimated the Allee threshold as 106.7 moths/colony, which is much higher

than the estimate by Johnson et al. (2006).

Propagule pressure has long be suggested as one of the most important factor for

determining both the scale of invasion extent and impact. Although the US Department

of Agriculture’s Animal and Plant Health Inspection Service (APHIS) does not have a

regulation prohibiting the entry of vessels that are high risk for L. dispar infestation, its

Plant Pest and Quarantine (PPQ) division has requested that the shipping industry not

bring ships into US ports that have been in Far East Russian ports between July 15 and

September 30 of the previous year or high-risk Japanese ports during the high-risk hatch-

ing period (i.e., when the propagule number of L. dispar is likely to be highest) (Reaser

et al., 2008). In order to estimate the propagule pressure, a list of all phytophagous in-

sect species intercepted from 1993 to 1999 at the New Zealand border was complied from

interception data held by the Ministry of Agriculture and Forestry, New Zealand (Pea-

cock & Worner, 2008). From this list, 238 interceptions corresponded to the discovery

of gypsy moth eggs/larvae/pupae in between August 1998 and March 2002. Most of the

eggs/larvae/pupae were found at the border security in vehicles (tyres) imported from

Japan. Among the 238 interceptions, 37 introductions consisted of the introduction of

alive individuals (9 larvae, 3 pupae and 97 alive egg mass). On average 3 to 4 introduc-

tions were reported each year (min-max: 1-25). More than half of the propagule consisted

of 2 egg mass (100-1000 eggs).

Prof. A. Liebhold suggested that the considerable variation reported for Allee

thresholds, population dynamics and dispersal abilities can reflect geographical variation

in the habitat that affects growth rates, dispersal rates and carrying capacity (personal

communication). Dispersal probably is important because it affects the year-to-year vari-
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Parameter name Parameter estimates References

Dispersal abilities, λ 0.003 km2 Liebhold & Tobin (2006)
0.1 ha/year Robinet et al. (2008)
2.82 - 20.78 km/year Liebhold et al. (1992)
2.6 - 28.6 km/year Johnson et al. (2006)

Carrying capacity, K 283 moths/trap Tobin et al. (2007)
673 moths/trap Tobin et al. (2007)
687 moths/trap Johnson et al. (2006)

500 larvae/m2 Dwyer & Elkinton (1993)

200,000 egg masses/km2 Sharov & Liebhold (1998)

Allee threshold, C 2.2 moths/trap Tobin et al. (2007)
20.7 moths/trap Tobin et al. (2007)
17 moths/trap Johnson et al. (2006)
106.7 moths/colony Liebhold & Bascompte (2003)

Intrinsic growth rate, r 100-1000 eggs/female Petrovskii & McKay (2010)
700 egg/female Tobin et al. (2007)
1.65-4.6 per capacity growth Johnson et al. (2006)

Propagule pressure (size and number) 1-25 introductions/years (median 3) NZ interception data (unpublished)
1-9 eggs mass intercepted (median 2) NZ interception data (unpublished)

Table A.3: Review of parameter estimates for a population model of gypsy moth, L. dispar

ation in trap capture. Gypsy moth females are flightless, so dispersal is only by males.

However, at the expanding population front, population growth is limited by mate-finding

and thus the local abundance of males limits mating and thus population growth. For

analysing the spread of the Asian gypsy moth, Prof. A. Liebhold further suggested to use

the range of value given in Johnson et al. (2006). These parameters were estimated using

the data from the expanding gypsy moth population front - the so-called transition zone.

Most of the other values were estimated from the state of Washington which is far from

the gypsy moth invasion front, but where the insect is occasionally accidentally introduced

and forms isolated colonies that must be eradicated.

A.2.2 Building a survival layer for L. dispar

We used the computer program Qrule 4.2 to generate binary (suitable, unsuitable) land-

scapes, in which fragmentation (measured as the degree of spatial autocorrelation) and pro-

portion of suitable habitat cover can be systematically and independently controlled (Gard-

ner & Urban, 2007). Qrule uses a midpoint displacement algorithm (Saupe, 1988) to gen-

erate multi-fractal maps in which the degree of spatial autocorrelation among adjacent

cells (H) can be controlled. We generated landscape across a three-step gradient in spatial

autocorrelation (H = 0.3, 0.5, 0.7) and a three-step gradient in the proportion of suitable
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habitat cover (P = 35, 50, 75), with 10 replicate landscapes for each factor combinations.

The extent of the study covers 128 times 128 raster grid cells (13,384 sq.).

Each sample landscape was characterized by two commonly used landscape met-

rics generated by the computer program FRAGSTATS 4.2 (McGarigal et al., 2012). The

percentage of suitable habitat cover (PLAND) was used to quantify the proportional abun-

dance of each patch type in the landscape (measure of habitat composition), while the

connectance index (CONNECT) was used to measure the connectivity between suitable

patches. In this study, the connectance was calculated using the average Euclidean dis-

tance from cell centre to cell centre.

A.2.3 Parametrizing the local dispersal sub-model for L. dispar

A Von Neumann shape with range = 1 was chosen to represent the uniform, local neigh-

bourhood for spread of L. dispar within one time step. We chose a cell resolution of 10

km/year to approximate the median distance of local movements of larvae and adults as

shown in in Johnson et al. (2006) and (Liebhold et al., 1992).

A.2.4 Parametrizing the long-distance dispersal sub-model for L. dispar

Long-distance dispersal events were approximated by a Cauchy probability distribution.

Each colony (occupied cell) was assumed to give rise to a Poisson number of offspring

colonies that were initiated with a random fraction of the parent’s abundance (stochastic

long-distance jumps). Based on the study of Johnson et al. (2006), we fixed the median

of long-dispersal distance at 50 km and frequency of long dispersal at 0.01.

A.2.5 Parametrizing the population sub-model for L. dispar

Following Johnson et al. (2006) and Liebhold & Bascompte (2003), the abundance of gypsy

moth was approximated by a deterministic Allee logistic growth model:

Nt+1 = Nt exp

[
r

(
1− Nt

K

)(
Nt − C
K

)]
(A.4)
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where N is the number of individuals at time t, C is the Allee threshold, r the intrinsic

growth rate and K the carrying capacity. The values of these parameters were based on

previous estimates reported in Johnson et al. (2006) and Liebhold & Bascompte (2003)

to fit release -capture data collected from 1988 to 2004.

Intrinsic growth rate, r Allee threshold, C Carrying capacity, K
References (per capacity growth) (number of individuals) (number of individuals)

Liebhold & Bascompte (2003) r ∗ C/K = 1.740 ± 0.122 106.7 r/K = 0.0163 ± 0.0163
Johnson et al. (2006) 1.5 0.01 (virtually no Allee effect) 100

2 (high Allee threshold)

Table A.4: Estimates of intrinsic growth rate, Allee threshold and carrying capacity for a population
model for gypsy moth, L. dispar

A.2.6 Parameter summary for L. dispar

The MDiG parameters used in this study are given in Table A.5. The analysis was ap-

proached from a case-specific view point, parametrising a population sub-model based on

detailed demographic and dispersal attributes of the well studied European gypsy moth,

L. dispar. In this way, our model had sufficient biological details to reproduce realistic

parameter ranges. MDiG was then used to explore four different scenarios of demographic

and dispersal behaviours in changing environments (TableTable A.5): a specie with 1) slow

reproducing and short dispersal abilities, 2) slow reproducing and long dispersal abilities,

3) fast reproducing and short dispersal abilities and, 4) fast reproducing and short disper-

sal abilities. The main reason for doing this was to evaluate how changes in the intrinsic

growth rate, median distance of long-distance dispersal events and landscape structure

affect the population density – d (number of individuals per raster cells) and the rate of

spread – ROS (number of new cells occupied per simulation run). Thirty years of simu-

lations were undertaken representing dispersal, one model time step represents one year.

Simulations were replicated 10 times to account for dispersal stochasticity.
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Parameters Abbreviated code Parameters value

Population sub-model (logistic model wit Allee effect - Equation A.4)
Growth rate r 0.815 (slow) per capacity growth

1.223 (fast) per capacity growth
Allee threshold C 2 individuals per raster cell
Carrying capacity K 50 individuals per raster cell

Local dispersal sub-model (uniform)
Mean distance of local dispersal events R 1 raster cell (10 km)

Long-distance dispersal sub-model (Cauchy distribution)
Median distance of long dispersal events λ 3 (short) raster cells

5 (long) raster cells
Frequency of long dispersal events f 0.05

Propagule pressure
Propagule size nbp 5 individuals

Landscape structure (binary landscapes)
Spatial autocorrelation (fragmentation) H 0, 0.5, 1
Percentage of suitable habitat cover P 25, 50, 75

Table A.5: Baseline value of MDiG parameters for modelling the spread of gypsy moth, L.dispar, in
computer generated landscapes.
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Appendix B

Supplement to Chapter 5

B.1 Partial dependence plots for population abundance and

rate of spread
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Figure B.1: Partial dependence plot showing the marginal effect of the three most important variables

(centred and normalized) that determine the log transformed density (d), rate of of spread

(ROS) and average dispersal distance (avDist) of invasive insects.
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B.2 Variable importance for simulations including an Allee

effect
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Figure B.2: Relative influence (%) of propagule pressure, demography, dispersal and landscape structure

on log transformed density (d), rate of of spread (ROS) and average dispersal distance

(avDist) for simulations with an Allee effect).
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B.3 Variable interactions for simulations including an Allee

effect

Rank Interaction terms Int. strength

Population density (d)
1 Intrinsic rate of increase (r) × Allee threshold (Allee) 94.13
2 Propagule size (nbp) × Carrying capacity (K) 66.68
3 Propagule size (nbp) × Allee threshold (Allee) 46.89
4 Intrinsic rate of increase (r) × Propagule size (nbp) 26.89
5 Carrying capacity (K) × Allee threshold (Allee) 26.30

Rate of spread (ROS)
1 Intrinsic rate of increase (r) × Allee threshold (Allee) 28.58
2 Intrinsic rate of increase (r) × Propagule size (nbp) 23.64
3 Carrying capacity (K) × Propagule size (nbp) 23.25
4 Carrying capacity (K) × Intrinsic rate of increase (r) 21.65
5 Carrying capacity (K) × Allee threshold (Allee) 1.71

Average dispersal distance (avDist)
1 Intrinsic rate of increase (r) × Allee threshold (Allee) 0.44
2 Splitting Index (SPLIT) × Frequency of long-dispersal events (f) 0.37
3 Propagule size (nbp) × Intrinsic rate of increase (r) 0.33
4 Frequency of long-dispersal events (f) × Intrinsic rate of increase (r) 0.17
5 Carrying capacity (K) × Allee threshold (Allee) 0.17

Table B.1: Interaction strength between the most important parameters assessed in the non-interaction
models log-transformed population density (d), rate of of spread (ROS) and average dispersal
distance (avDist) when only simulations accounting for an Allee effect were considered. Inter-
action strength (Int. strength) is quantified using the residual-base methods outlined in Elith
et al. (2009).
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B.4 Pair-wise interactions effects on population abundance
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Figure B.3: Interaction plots showing the interactive effect of the three most important variables (centred

and normalized) for determining the log transformed density (d), rate of of spread (ROS)

and average dispersal distance (avDist) of invasive insects.
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Appendix C

Supplement to Chapter 6

C.1 Potential sources of uncertainties in invasive species es-

tablishment and spread modelling

Source of uncertainty Description References

1. Knowledge uncertainties (Epistemic or Reducible)

1.1 Process understanding
(related to structure uncertainty)

Disciplinary history and attendant form of
available scientific knowledge (incomplete
understanding of species’ ecology or
inability to reflect ecological complexity)

It reflects on a lack of knowledge of which factors
constrain the distribution of species. Examples
include: missing environmental covariate,
physiological requirements at different life stages,
knowledge about dispersal behaviour and pathways,
knowledge about the relative species and biotic
interaction

Ascough et al. (2008);
Gould et al. (2014)

Temporal variation in species’ ecology Identifying factors that constrain the distribution of
species is further complicated by temporal
heterogeneity: development of non-analogous
environmental conditions, altered outcome of species
interactions, adaptation and evolutionary change,
phenotypic plasticity, niche shifts

Gould et al. (2014)

Spatial variation in species’ ecology Identifying factors that constrain the distribution of
species is further complicated by spatial
heterogeneity: population specific local optima and
variation in limiting factors across species range

Gould et al. (2014)

Spatial and temporal scales at which data
knowledge applies

Spatial and temporal mismatch between input data
and species’ ecology

Ascough et al. (2008);
Gould et al. (2014)

Precision Qualitative versus quantitative nature of
understanding across different temporal and spatial
scales and level of organization

Ascough et al. (2008)

Availability of data to construct, calibrate
and test predictive models

A major issue is related to a lack of false positive
(absence occurrence data) that lead to inaccurate
identification of the attributes of unsuitable sites

Ascough et al. (2008);
Gould et al. (2014);
McGeoch et al. (2012)

1.2 Model uncertainty
1.2.1 Parametric/Data uncertainty
Species occurrence data and listening
Human error (reliability) Erroneous information in lists and databases,

resulting from error entry
McGeoch et al. (2012)

Incomplete information (completeness) Searches of data sources are not comprehensive,
resulting in incomplete information

Gould et al. (2014);
McGeoch et al. (2012)

Species identification (reliability) Misidentification of alien species resulting from
taxonomic uncertainty

Gould et al. (2014);
McGeoch et al. (2012)

Insufficient survey Insufficient survey data resulting in failure to
recognize invasive species or uncertainty about
where a invasive species is in space and time

McGeoch et al. (2012)
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Source of uncertainty Description References

Measurement error Imperfect measurements or technique produce
random error in estimation of species traits and
characteristics (e.g. propagule pressure, initial
densities, rate of increase, Allee threshold, dispersal
rate and distance driven by rare, long dispersal
events)

Gould et al. (2014)

Scale of the data (geographical and
temporal correlation)

Overestimation due to the coarse resolution of
species distribution maps (spatial correlation).
Extralimital species species are often not recognized
as invasive species. Lack of absence data also limit
the creation of models

McGeoch et al. (2012)

Data and knowledge not documented
(completeness)

Data are not available in the form of publications McGeoch et al. (2012)

Data not accessible (transferability) Language barriers to information and data transfer.
There is often no single comprehensive data source
that encompasses either a broad range of taxa
and/or region

Elith et al. (2002)

Lack of baseline information (vagueness) Inadequate indigenous range information, such as
cryptogenic or translocated species, resulting in
subjective interpretation of species being either alien
of not. There is a need for clarifying meaning

Elith et al. (2002);
McGeoch et al. (2012)

Environmental data
Measurement error Imperfect measurements or techniques produce

random variation in results. Examples include
available equipment that may not record location
precisely

Barry & Elith (2006)

Systematic error Methods produce biased data, e.g. sampling is close
to roads(edge effect)

Elith et al. (2002)

Human error or entry error Data can be miscoded during entry to GIS Lu & Weng (2007)

Spatial classification error (class
generalization)

Error in the nature of the spatial entity, such as
misclassification of habitat or climate habitat
suitability and details to include (road, edges)

Beale & Lennon (2012);
Barry & Elith (2006)

Spatial error interpolation Generalization of the cartographic representation of
the object before digitizing, including displacement,
simplification

Elith et al. (2002)

Temporal differences The object changes character between the time of
data collection and of database usage In the course
of data processing (such as rasterizing vector data)
and error arises because of rounding or algorithm
error

Fisher (1999)

Data processing In the course of data processing (such as rasterizing
vector data) and error arises because of rounding or
algorithm error

Fisher (1999)

Future climate data Climatic variability, GCM model differences or
emissions scenarios differences

Gould et al. (2014)

1.2.1 Parametric/Data uncertainty
Modelling method including model
parametrization and fitting

Among other, variable selection and model structure
(from approximation and functional forms,
equations, and mathematical expression to model
fitting and parametrization) are often a key source
of uncertainty as model projection vary according to
the variables including in the model and the way
there are related

Gould et al. (2014);
Hartig et al. (2011);
Matott et al. (2009)

Model selection and evaluation Model selection and evaluation is particularly
problematic in the case of spatial projection of
species distribution and spread, as no independent
data are available for future conditions and the
likelihood of complex model can usual not be
expressed

Burnham et al. (2011);
Gould et al. (2014);
Hartig et al. (2011);
Matott et al. (2009);
Railsback & Grimm
(2011)

Technical uncertainty Uncertainty generated by software or hardware
errors

Ascough et al. (2008)

2. Variability uncertainty (Aleatory or irreducible)
Natural variability Uncertainty related to the inherent randomness/

stochasticity of natural and anthropogenic systems
(chaotic and unpredictable)

Ascough et al. (2008)
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Source of uncertainty Description References

Human variability (subjective judgement) Uncertainty associated with human input, such as
the level of knowledge, education, cultural bias,
moral beliefs, concerns and interests of the invasive
species risk analysis manager/decision-maker,
stakeholder and lobby group can have a significant
impact at all stages of the decision-making process.
Even the ‘technical aspect’ of the modelling exercise
vary significantly when different modellers are
presented with the same data and context
(experience and preferences of the modellers)

Ascough et al. (2008)

Institutional variability Uncertainty due to the current social, economic,
cultural and political climate

Ascough et al. (2008)

3. Linguistic uncertainty (reducible)
Vagueness Sharp boundaries and homogeneous classes do not

represent reality
Elith et al. (2002);
Regan et al. (2002)

Ambiguity Words can have several meaning. For example, a
wide range of alternative definition exist for alien
and invasive species, and the adoption of alternative
definitions results in differences in IAS listening

Elith et al. (2002);
McGeoch et al. (2012);
Regan et al. (2002)

Underspecificity Quantitative and qualitative data may have
unwanted generality, e.g. location not precisely
reported

Elith et al. (2002);
Regan et al. (2002)

4. Decision uncertainty
Uncertainty in the acceptability of risk Uncertainty due to frequent trade-offs between

complex and often competing economic, societal and
environmental needs and constraints that may
influence whether or not a risk is judged acceptable

Ascough et al. (2008)

Table C.1: Potential sources of uncertainty in spatially explicit models of spread (modified from Ascough
et al., 2008; Elith et al., 2002; Fisher, 1999; Gould et al., 2014; McGeoch et al., 2012)
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