

3D Tree Mapping Rethinking the DBH Tape

Dr. Justin Morgenroth Dr. Christopher Gomez Mr. Jordan Miller

NZ School of Forestry

12.08.2015

The Need for Accurate Measurement

- Ecosystem services (carbon sequestration and storage, stormwater attenuation, temperature regulation)¹
- Resource assessment (value, biomass, volume, and size structure) depend on the ability to accurately determine tree size and structure¹
- We measure 2D tree metrics
 - Height
 - DBH
 - Crown depth
 - Crown spread
- We can measure, often estimate 3D tree metrics
 - Volume

 Nowak, D.J., Crane, D.E., Stevens, J.C., Hoehn, R.E., Walton, J.T., Bond, J., 2008. A ground-based method of assessing urban forest structure and ecosystem services. Arboriculture and Urban Forestry 34, 347-358

Current Measurement Techniques

- Diameter
 - Diameter tape
 - Caliper
- Height
 - Height pole
 - Clinometer
 - Hypsometer
 - Plumb line
- Volume
 - Xylometry (water displacement)

Error With Current Measurements

Height

- Hypsometers and clinometers assume that angles and distances are measured without error²
- User has correctly identified the highest part of the tree²
- Height error discrepancies can exceed 30%!²

2 - Bragg, D.C., 2008. An improved tree height measurement technique tested on mature southern pines. Southern Journal of Applied Forestry 32, 38-43.

Error With Current Measurements

DBH

- Simple instrument
- Measurement height depends on country
- Tricky for trees on slopes, with multiple stems, or abnormalities
- Repeatability becomes problematic³

3 - Kitahara, F., Mizoue, N., Yoshida, S., 2010. Effects of training for inexperienced surveyors on data quality of tree diameter and height measurements. Silva Fennica 44, 657-667.

3D Modelling from Remote Sensing

- LiDAR (terrestrial laser scanning)
 - Produces point cloud based 3D model
 - Highly accurate
 - Costly (\$5K 250K)
 - Specialist knowledge
- SfM-MVS (structure-from-motion multi-view stereophotogrammetry)
 - Produces point cloud based 3D model
 - Cheap (Free \$1K)
 - Intuitive with simple software
 - Not well tested

Research Question

 Can SfM-MVS produce accurate estimates of 2D/3D tree metrics?

Study Details

- Christchurch City Council nursery, NZ
- 30 trees in 25 L or 50 L plastic pots
 - 12 large-leaved linden (*Tilia platyphyllos*), 10 field maple (*Acer campestre*), 5 walnut (*Juglans regia*) and 3 red maple (*Acer rubrum*)
- Photographed before/after leaf fall

Ground Truth Data	Units	Mean	SD	Max	Min
Height	m	2.98	0.716	4.53	1.64
Average Crown Spread	m	1.14	0.446	3.06	0.52
DBH	mm	19.3	4.5	28	5

Methods – Photography

- Any camera will do
 - Body: Nikon D5000
 - Lens: AF-S NIKKOR 35 mm
 - Avoid distortion
 - Tradeoff between pixel density and processing speed
- 150-180 photos per tree
- Lots of overlap needed
- Red tape placed at measurement points

Methods – Processing

- Software: Agisoft
 Photoscan Professional
- Simple GUI
- 3 easy steps
 - Image alignment →
 sparse point cloud
 - Pixel matching
 - Dense point cloud
 - Mesh surface model

3D Model Measurements

Point markers created for 2D estimates

Water-tight model for 3D estimates

Aspatial 3D models need calibration

Result - Height

Result – Visible Crown Spread

Modelled Visible Crown Spread (cm)

Issue with Visible Crown Spread

- Visible crown spread in 3D model does not represent reality
- Measurements made based on visible extent of branches, not true extent
 - Hence the red tape to measure true crown spread

Result – True Crown Spread

Modelled True Crown Spread (cm)

Result – Stem Diameter

Result - Volume

Stem Volume		Branch Volume		
0.97		0.76		
173.72 cm ³ (12.3	%)	195.2 cm ³ (47.5%)		
-115.5 cm ³ (-8.2	%)	-138.6 cm ³ (-33.8%)		
0 0 0 0 0 0 0 0 0 0	Measured Branch Volume (cm) 200 600 1000			
Modelled Stem Volume (cm)	Mo	delled Branch Volume (cm)		
	Stem Volume 0.97 173.72 cm ³ (12.3 -115.5 cm ³ (-8.29) 0^{9}_{0} $0^{9}_{$	Stem Volume 0.97 173.72 cm ³ (12.3%) -115.5 cm ³ (-8.2%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

Result Summary

Metric	RMSE (%)	Bias (%)
Height	3.7	1.7
True Crown Spread (cm)	14.8	-3.5
Visible Crown Spread (cm)	21.1	-9.5
DBH (mm)	9.6	-4.5
Combined Stem Diameters (mm)	11.9	-0.9
Stem Volume (cm ³)	12.3	-8.2
Branch Volume (cm ³)	47.5	-33.8
Total Volume (cm ³)	18.5	-14.7

Known Issue – Slender Branches

- Slender branches not captured by a sufficient number of pixels
 - Tape impractical
- Less of an issue for larger trees

Known Issues – Light and Wind

- Shadow prevents pixel matching
- 3D model quality affected
- Volume most severely affected
- Shoot in diffuse light and over a short time period

• Wind creates blur prevents pixel matching

Conclusions

- Don't throw away that DBH tape yet
- But, don't bury your head in the sand
 - RS technologies are complementing and replacing traditional inventory in natural and plantation forest management

Acknowledgements

- We are grateful to the TREE Fund for funding this research through the John Z. Duling research grant.
- We thank the Christchurch City Council, namely Joe Cartman and Mike Smith for providing 30 trees to destructively sample and for allowing us to conduct research at their nursery.
- We appreciate the technical help of Mr. Lachlan Kirk and Mr. Paul Bealing who provided support throughout this research.