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Governing equations

H(x , t) = h(t) + (x − xc)θ(t)− F (x);
H = Hx = 0 at x = x0(t).

In both gaps:

Ht + (uH)x = 0,

ut + uux = −px ;

u = ẋ0(t) at x = x0(t),

p +
1

2
u2 =

1

2
at x = 0,

in Gap I, but in Gap II

p = 0 at x = 1.

Mḧ(t) =

∫ 1

0
p(x , t) dx + N(t)−Mg+,

I θ̈(t) =

∫ 1

0
(x − xc)p(x , t) dx + (x0 − xc)N(t).
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Numerical solutions of small-t equations

Figure: Sinusoidal body F (x) = sin(πx).
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Figure: Elliptical body F (x) =
√
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Figure: Smooth-cornered body.
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Figure: Constant-curvature body F (x) = x(1− x).
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Figure: Constant-curvature body with x0(0) = 0.7.
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O(1) time, negligible fluid effects

Mass- and moment of inertia-dominated.

Mḧ(t) = N(t)−Mg+ ,

I θ̈(t) = (x0 − xc)N(t) ,

H(x , t) = h(t) + (x − xc)θ(t)− F (x) ,

H = Hx = 0 at x = x0(t) .

In subsequent analysis, a key equation:

αẍ0 + βẋ2
0 = (x0 − xc)g+.

Here, α, β depend on I ,M, and body shape.
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Evolution of contact position

Figure: Sinusoidal body, with g+ = 10, xc = 0.5, varying initial
contact point location, and zero initial contact point velocity.
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Figure: Elliptical body, with g+ = 10, xc = 0.5, varying initial
contact point location, and zero initial contact point velocity.
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Figure: Analytical prediction of rocking behaviour obtained by
asymptotic analysis. Sinusoidal body, conditions as before.
Unscaled on the right. Dots are numerical solutions.
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O(1) time, fluid effects

Figure: Sinusoidal body, M = I = 0.125, x0(0) = 0.33, ẋ0(0) = 0.
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Figure: Sinusoidal body, M = I = 0.125, ẋ0(0) = 0, and
x0(0) = 0.33 (solid lines) or x0(0) = 0.28 (dashed lines).
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O(1) time, fluid effects

Figure: Elliptical body, M = I = 0.08, x0(0) = 0.25, ẋ0(0) = 0.
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O(1) time, fluid effects

Figure: Elliptical body, M = I = 0.05, x0(0) = 0.25, ẋ0(0) = 0.
Lift off occurs at t ≈ 2 (subsequent results not physically
meaningful).
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O(1) time, fluid effects

Figure: Smooth body, M = I = 0.1, x0(0) = 0.25, ẋ0(0) = 0. Lift
off occurs at t ≈ 1.6 (subsequent results not physically
meaningful).
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Transition from rocking to lift off is smooth

With negligible flow, a key equation was:

αẍ0 + βẋ2
0 = (x0 − xc)g+,

where α, β depended on M, I , and body shape.

With fluid effects, the corresponding equation becomes:

αẍ0 + βẋ2
0 = (x0 − xc)g+ +

i2 − (x0 − xc)i1
M

,

where

i1 =

∫ 1

0
p(x , t) dx , i2 =

∫ 1

0
(x − xc)p(x , t) dx .
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Transition from rocking to lift off is smooth

� The integrated flow-pressure contributions i1, i2 move us
into a part of solution space unobtainable in no-flow case.

� For small times t → tLO−, consider the elliptical body
with x0 close to the leading edge, so that x = εX , ε� 1
(similar arguments hold at trailing edge).

� Analysis shows that u ∼ ε
5
4 leading to a pressure response

being an O(ε
5
2 ) perturbation from the value 1/2.

� Thus the lift-off generating mechanism of i1, i2 — an
effect of “added mass” and evolution in the fluid-body
interaction — is still dominated by the O(1) global
contributions.
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Discussion Smith & Wilson, J. Fluid Mech. (2013)

� Flow-dominated bodies tend to lift off immediately.

� Without flow, bodies tend to rock rather than lift off.

� Rocking is well-understood analytically.

� For full fluid-structure interaction problem, added-mass
effect and flow evolution lead to either rocking or lift off.

� The parameter space is subtle.
� Rocking transitions smoothly to lift off.

� A body is “light” and lifts off immediately, or is “heavy”
and needs a push from pressures in the narrowing gaps.

� Future work.

� Generalise upstream flow — shear, boundary layers, etc.
� Post-lift off: flow through gap equilibrates pressure.
� Irregular body shape, groups of bodies; body flex; surface

shape, curvature, roughness; surface fluid; 3D effects.
� Reptation and clashes, multiple bodies

— see also Smith & Wilson, Proc. Roy. Soc. A (2011).
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� Future work.
� Generalise upstream flow — shear, boundary layers, etc.
� Post-lift off: flow through gap equilibrates pressure.
� Irregular body shape, groups of bodies; body flex; surface

shape, curvature, roughness; surface fluid; 3D effects.
� Reptation and clashes, multiple bodies

— see also Smith & Wilson, Proc. Roy. Soc. A (2011).
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Discussion

Lift off on Mars

� Martian gravitational acceleration ∼ 0.38 that of Earth.

� Martian atmospheric density ∼ 0.0167 that of Earth.

� Dimensional threshold wind speed for lift-off on Mars is
2–3 times that on Earth.

� Threshold speed ∝
√

particle size.

� Both results consistent with Martian observations in
Wang, Int. J. Land Processes Arid Enviro. (2012).
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Figure: Elliptical body, M = I = 0.05, initially x0(0) = 0.25 and
ẋ0(0) is either −0.2, 0, or 0.2. Also shown: grid-independence.
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Figure: Elliptical body, M = I = 0.08, x0(0) = 0.25, ẋ0(0) = 0.
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Figure: The influence of the gravity parameter g+ (value in
parentheses in legend) on the behaviour of the constant-curvature
body. Here, M = I = 0.1, x0(0) = 0.7, ẋ0(0) = 0. Results
corresponding to values of x0 greater than unity are not physical,
but are still shown.
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