Body rocking or lift off in flow

Te Whare Wānanga o Waitaha CHRISTCHURCH NEW ZEALAND

Phillip L Wilson

30 January 2014

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Rock 'n' roll on Mars

HiRISE/MRO/LPL/NASA (Barchans $\sim 200m$)

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト …

э

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Rock 'n' roll on Mars

Carneiro *et al.*, Phys. Rev. Lett. (2013)

э

HiRISE/MRO/LPL/NASA (Barchans $\sim 200m$)

Small time properties

O(1) time, no

flow

Other motivations

Cox et al., J. Geol. (2012)

3

イロト イ理ト イヨト イヨト

Configuration

Small time properties

- O(1) time, no flow
- O(1) time, flow
- Lift off
- Discussion

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Governing equations

$$H(x, t) = h(t) + (x - x_c)\theta(t) - F(x);$$

$$H = H_x = 0 \text{ at } x = x_0(t).$$

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Governing equations

$$H(x, t) = h(t) + (x - x_c)\theta(t) - F(x);$$

$$H = H_x = 0 \text{ at } x = x_0(t).$$

・ロト ・個ト ・モト ・モト

€ 990

In both gaps:

$$\begin{aligned} H_t + (uH)_x &= 0, \\ u_t + uu_x &= -p_x; \\ u &= \dot{x}_0(t) \quad \text{at } x = x_0(t), \end{aligned}$$

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Governing equations

$$H(x, t) = h(t) + (x - x_c)\theta(t) - F(x);$$

$$H = H_x = 0 \text{ at } x = x_0(t).$$

In both gaps:

и

$$\begin{array}{ll} H_t + (uH)_x = 0, & p + \frac{1}{2}u^2 = \frac{1}{2} & \text{at } x = 0, \\ u_t + uu_x = -p_x; & \text{in Gap I, but in Gap II} \\ = \dot{x}_0(t) & \text{at } x = x_0(t), & p = 0 & \text{at } x = 1. \end{array}$$

1

1

イロト イ理ト イヨト イヨト

€ 990

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Governing equations

$$H(x, t) = h(t) + (x - x_c)\theta(t) - F(x);$$

$$H = H_x = 0 \text{ at } x = x_0(t).$$

In both gaps:

$$H_t + (uH)_x = 0,$$
 $p + \frac{1}{2}u^2 = \frac{1}{2}$ at $x = 0,$
 $u_t + uu_x = -p_x;$ in Gap I, but in Gap II
 $u = \dot{x}_0(t)$ at $x = x_0(t),$ $p = 0$ at $x = 1.$

-

-1

$$egin{aligned} & M\ddot{h}(t) = \int_{0}^{1} p(x,t) \, \mathrm{d}x + N(t) - Mg^{+}, \ & I\ddot{ heta}(t) = \int_{0}^{1} (x-x_{c})p(x,t) \, \mathrm{d}x + (x_{0}-x_{c})N(t). \end{aligned}$$

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Numerical solutions of small-t equations

Figure: Sinusoidal body $F(x) = \sin(\pi x)$.

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Numerical solutions of small-t equations

Figure: Elliptical body $F(x) = \sqrt{x - x^2}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Numerical solutions of small-t equations

Figure: Smooth-cornered body.

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Numerical solutions of small-t equations

Figure: Constant-curvature body F(x) = x(1 - x).

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Numerical solutions of small-t equations

Figure: Constant-curvature body with $x_0(0) = 0.7$.

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Numerical solutions of small-t equations

Figure: Constant-curvature body with $x_0(0) = 0.7$.

◆□ > ◆□ > ◆臣 > ◆臣 > □臣 = のへで

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

O(1) time, negligible fluid effects

Mass- and moment of inertia-dominated.

$$\begin{array}{rcl} M\ddot{h}(t) &=& N(t) - Mg^+ \ , \\ I\ddot{\theta}(t) &=& (x_0 - x_c)N(t) \ , \\ H(x,t) &=& h(t) + (x - x_c)\theta(t) - F(x) \ , \\ H &=& H_x = 0 \ \text{at} \ x = x_0(t) \ . \end{array}$$

In subsequent analysis, a key equation:

$$\alpha \ddot{x}_0 + \beta \dot{x}_0^2 = (x_0 - x_c)g^+.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Here, α , β depend on I, M, and body shape.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Evolution of contact position

Figure: Sinusoidal body, with $g^+ = 10$, $x_c = 0.5$, varying initial contact point location, and zero initial contact point velocity.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Evolution of contact position

Figure: Elliptical body, with $g^+ = 10$, $x_c = 0.5$, varying initial contact point location, and zero initial contact point velocity.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Figure: Analytical prediction of rocking behaviour obtained by asymptotic analysis. Sinusoidal body, conditions as before. Unscaled on the right. Dots are numerical solutions.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Evolution of contact position

Figure: Analytical prediction of rocking behaviour obtained by asymptotic analysis. Elliptical body, conditions as before. Unscaled on the right. Dots are numerical solutions.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift of

Discussion

O(1) time, fluid effects

Figure: Sinusoidal body, M = I = 0.125, $x_0(0) = 0.33$, $\dot{x}_0(0) = 0$.

▲ロト ▲園ト ▲臣ト ▲臣ト 三臣 - のへ⊙

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift of

Discussion

O(1) time, fluid effects

Figure: Sinusoidal body, M = I = 0.125, $x_0(0) = 0.33$, $\dot{x}_0(0) = 0$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - わへで

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

O(1) time, fluid effects

Figure: Sinusoidal body, M = I = 0.125, $\dot{x}_0(0) = 0$, and $x_0(0) = 0.33$ (solid lines) or $x_0(0) = 0.28$ (dashed lines).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

O(1) time, fluid effects

Figure: Elliptical body, M = I = 0.08, $x_0(0) = 0.25$, $\dot{x}_0(0) = 0$.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

O(1) time, fluid effects

Figure: Elliptical body, M = I = 0.05, $x_0(0) = 0.25$, $\dot{x}_0(0) = 0$. Lift off occurs at $t \approx 2$ (subsequent results not physically meaningful).

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

O(1) time, fluid effects

Figure: Smooth body, M = I = 0.1, $x_0(0) = 0.25$, $\dot{x}_0(0) = 0$. Lift off occurs at $t \approx 1.6$ (subsequent results not physically meaningful).

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Transition from rocking to lift off is smooth

With negligible flow, a key equation was:

$$\alpha \ddot{x}_0 + \beta \dot{x}_0^2 = (x_0 - x_c)g^+,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

where α, β depended on M, I, and body shape.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Transition from rocking to lift off is smooth

With negligible flow, a key equation was:

$$\alpha \ddot{x}_0 + \beta \dot{x}_0^2 = (x_0 - x_c)g^+,$$

where α, β depended on *M*, *I*, and body shape. With fluid effects, the corresponding equation becomes:

$$\alpha \ddot{x}_0 + \beta \dot{x}_0^2 = (x_0 - x_c)g^+ + \frac{i_2 - (x_0 - x_c)i_1}{M},$$

where

$$i_1 = \int_0^1 p(x,t) \, dx$$
, $i_2 = \int_0^1 (x-x_c)p(x,t) \, dx$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Transition from rocking to lift off is smooth

The integrated flow-pressure contributions i₁, i₂ move us into a part of solution space unobtainable in no-flow case.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Transition from rocking to lift off is smooth

- The integrated flow-pressure contributions i₁, i₂ move us into a part of solution space unobtainable in no-flow case.
- For small times $t \to t_{LO}-$, consider the elliptical body with x_0 close to the leading edge, so that $x = \epsilon X$, $\epsilon \ll 1$ (similar arguments hold at trailing edge).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Transition from rocking to lift off is smooth

- The integrated flow-pressure contributions i₁, i₂ move us into a part of solution space unobtainable in no-flow case.
- For small times $t \to t_{LO}-$, consider the elliptical body with x_0 close to the leading edge, so that $x = \epsilon X$, $\epsilon \ll 1$ (similar arguments hold at trailing edge).
- Analysis shows that u ~ e^{5/4} leading to a pressure response being an O(e^{5/2}) perturbation from the value 1/2.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Transition from rocking to lift off is smooth

- The integrated flow-pressure contributions i₁, i₂ move us into a part of solution space unobtainable in no-flow case.
- For small times $t \to t_{LO}-$, consider the elliptical body with x_0 close to the leading edge, so that $x = \epsilon X$, $\epsilon \ll 1$ (similar arguments hold at trailing edge).
- Analysis shows that u ~ e^{5/4} leading to a pressure response being an O(e^{5/2}) perturbation from the value 1/2.
- Thus the lift-off generating mechanism of i₁, i₂ an effect of "added mass" and evolution in the fluid-body interaction is still dominated by the O(1) global contributions.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Discussion Smith & Wilson, J. Fluid Mech. (2013)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

• Flow-dominated bodies tend to lift off immediately.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Discussion Smith & Wilson, J. Fluid Mech. (2013)

- Flow-dominated bodies tend to lift off immediately.
- Without flow, bodies tend to rock rather than lift off.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Discussion Smith & Wilson, J. Fluid Mech. (2013)

- Flow-dominated bodies tend to lift off immediately.
- Without flow, bodies tend to rock rather than lift off.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Rocking is well-understood analytically.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Discussion Smith & Wilson, J. Fluid Mech. (2013)

- Flow-dominated bodies tend to lift off immediately.
- Without flow, bodies tend to rock rather than lift off.
 Rocking is well-understood analytically.
- For full fluid-structure interaction problem, added-mass effect and flow evolution lead to either rocking or lift off.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Discussion Smith & Wilson, J. Fluid Mech. (2013)

- Flow-dominated bodies tend to lift off immediately.
- Without flow, bodies tend to rock rather than lift off.
 Rocking is well-understood analytically.
- For full fluid-structure interaction problem, added-mass effect and flow evolution lead to either rocking or lift off.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

□ The parameter space is subtle.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Discussion Smith & Wilson, J. Fluid Mech. (2013)

- Flow-dominated bodies tend to lift off immediately.
- Without flow, bodies tend to rock rather than lift off.
 Rocking is well-understood analytically.
- For full fluid-structure interaction problem, added-mass effect and flow evolution lead to either rocking or lift off.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- □ The parameter space is subtle.
- Rocking transitions smoothly to lift off.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Discussion Smith & Wilson, J. Fluid Mech. (2013)

- Flow-dominated bodies tend to lift off immediately.
- Without flow, bodies tend to rock rather than lift off.
 Rocking is well-understood analytically.
- For full fluid-structure interaction problem, added-mass effect and flow evolution lead to either rocking or lift off.
 - □ The parameter space is subtle.
 - Rocking transitions smoothly to lift off.
- A body is "light" and lifts off immediately, or is "heavy" and needs a push from pressures in the narrowing gaps.

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Discussion Smith & Wilson, J. Fluid Mech. (2013)

- Flow-dominated bodies tend to lift off immediately.
- Without flow, bodies tend to rock rather than lift off.
 Rocking is well-understood analytically.
- For full fluid-structure interaction problem, added-mass effect and flow evolution lead to either rocking or lift off.
 - □ The parameter space is subtle.
 - Rocking transitions smoothly to lift off.
- A body is "light" and lifts off immediately, or is "heavy" and needs a push from pressures in the narrowing gaps.

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Future work.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Discussion Smith & Wilson, J. Fluid Mech. (2013)

- Flow-dominated bodies tend to lift off immediately.
- Without flow, bodies tend to rock rather than lift off.
 Rocking is well-understood analytically.
- For full fluid-structure interaction problem, added-mass effect and flow evolution lead to either rocking or lift off.
 - □ The parameter space is subtle.
 - Rocking transitions smoothly to lift off.
- A body is "light" and lifts off immediately, or is "heavy" and needs a push from pressures in the narrowing gaps.
- Future work.
 - □ Generalise upstream flow shear, boundary layers, etc.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Discussion Smith & Wilson, J. Fluid Mech. (2013)

- Flow-dominated bodies tend to lift off immediately.
- Without flow, bodies tend to rock rather than lift off.
 Rocking is well-understood analytically.
- For full fluid-structure interaction problem, added-mass effect and flow evolution lead to either rocking or lift off.
 - □ The parameter space is subtle.
 - Rocking transitions smoothly to lift off.
- A body is "light" and lifts off immediately, or is "heavy" and needs a push from pressures in the narrowing gaps.
- Future work.
 - □ Generalise upstream flow shear, boundary layers, etc.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

□ Post-lift off: flow through gap equilibrates pressure.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Discussion Smith & Wilson, J. Fluid Mech. (2013)

- Flow-dominated bodies tend to lift off immediately.
- Without flow, bodies tend to rock rather than lift off.
 Rocking is well-understood analytically.
- For full fluid-structure interaction problem, added-mass effect and flow evolution lead to either rocking or lift off.
 - □ The parameter space is subtle.
 - Rocking transitions smoothly to lift off.
- A body is "light" and lifts off immediately, or is "heavy" and needs a push from pressures in the narrowing gaps.
- Future work.
 - □ Generalise upstream flow shear, boundary layers, etc.
 - □ Post-lift off: flow through gap equilibrates pressure.
 - Irregular body shape, groups of bodies; body flex; surface shape, curvature, roughness; surface fluid; 3D effects.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Discussion Smith & Wilson, J. Fluid Mech. (2013)

- Flow-dominated bodies tend to lift off immediately.
- Without flow, bodies tend to rock rather than lift off.
 Rocking is well-understood analytically.
- For full fluid-structure interaction problem, added-mass effect and flow evolution lead to either rocking or lift off.
 - □ The parameter space is subtle.
 - Rocking transitions smoothly to lift off.
- A body is "light" and lifts off immediately, or is "heavy" and needs a push from pressures in the narrowing gaps.
- Future work.
 - □ Generalise upstream flow shear, boundary layers, etc.
 - □ Post-lift off: flow through gap equilibrates pressure.
 - Irregular body shape, groups of bodies; body flex; surface shape, curvature, roughness; surface fluid; 3D effects.
 - Reptation and clashes, multiple bodies
 - see also Smith & Wilson, Proc. Roy. Soc. A (2011).

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Lift off on Mars

• Martian gravitational acceleration \sim 0.38 that of Earth.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Lift off on Mars

• Martian gravitational acceleration \sim 0.38 that of Earth.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• Martian atmospheric density \sim 0.0167 that of Earth.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Lift off on Mars

- Martian gravitational acceleration \sim 0.38 that of Earth.
- Martian atmospheric density \sim 0.0167 that of Earth.
 - Dimensional threshold wind speed for lift-off on Mars is 2–3 times that on Earth.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Lift off on Mars

- Martian gravitational acceleration \sim 0.38 that of Earth.
- Martian atmospheric density \sim 0.0167 that of Earth.
 - Dimensional threshold wind speed for lift-off on Mars is 2–3 times that on Earth.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• Threshold speed $\propto \sqrt{\text{particle size}}$.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

Lift off on Mars

- Martian gravitational acceleration \sim 0.38 that of Earth.
- Martian atmospheric density \sim 0.0167 that of Earth.
 - Dimensional threshold wind speed for lift-off on Mars is 2–3 times that on Earth.
 - Threshold speed $\propto \sqrt{\text{particle size}}$.
 - Both results consistent with Martian observations in Wang, Int. J. Land Processes Arid Enviro. (2012).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

O(1) time, fluid effects

Figure: Elliptical body, M = I = 0.05, initially $x_0(0) = 0.25$ and $\dot{x}_0(0)$ is either -0.2, 0, or 0.2. Also shown: grid-independence.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

O(1) time, fluid effects

Figure: Elliptical body, M = I = 0.08, $x_0(0) = 0.25$, $\dot{x}_0(0) = 0$.

Configuration

Small time properties

O(1) time, no flow

O(1) time, flow

Lift off

Discussion

O(1) time, fluid effects

Figure: The influence of the gravity parameter g^+ (value in parentheses in legend) on the behaviour of the constant-curvature body. Here, M = I = 0.1, $x_0(0) = 0.7$, $\dot{x}_0(0) = 0$. Results corresponding to values of x_0 greater than unity are not physical, but are still shown.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

