
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/3897

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.



1 
 

PhD Thesis 

Department of Biological sciences 

University of Warwick 

 

 

Fabrication and use of D-serine 

biosensors for characterising D-

serine signalling in rat brain 

 

 

By 

 

Shakila Bibi 

 

 

 

 

Supervisor: Professor Nicholas Dale 

Date submitted: June 2010 



2 
 

Content 

Content ............................................................................................................................. 2 

Figures .............................................................................................................................. 7 

Tables ............................................................................................................................. 11 

Acknowledgements ....................................................................................................... 12 

Declaration .................................................................................................................... 13 

Abstract .......................................................................................................................... 14 

Abbreviations ................................................................................................................ 15 

Chapter 1: Introduction .............................................................................................. 17 

1.1 Glutamate receptors and the brain ..................................................................... 18 

1.1.1 Ionotropic glutamate receptors ....................................................................... 18 

1.1.2 NMDA receptor Subunits and pharmacological differences ............................ 19 

1.1.2.1 NR1 subunit ............................................................................................................... 19 

1.1.2.2 NR2 subunit ............................................................................................................... 20 

1.1.2.3 NR3 subunit ............................................................................................................... 21 

1.1.3 Summary ....................................................................................................... 22 

1.2 NMDA receptor co-agonist site and D-serine................................................... 23 

1.2.1 The NMDA receptor co-agonists .................................................................... 23 

1.2.2 Co-agonist localisation ................................................................................... 28 

1.2.3 Co-agonist site affinity and specificity............................................................ 30 

1.2.4 Is the co-agonist site saturated? ...................................................................... 31 

1.3 D-serine metabolism in the central nervous system ......................................... 32 

1.3.1 D-serine synthesis .......................................................................................... 32 

1.3.2 D-serine synthesis in neurones and glia .......................................................... 34 

1.3.3 D-serine release ............................................................................................. 35 

1.3.4 D-serine removal/metabolism......................................................................... 36 

1.3.4.1 DAAO ........................................................................................................................ 36 

1.3.4.2 Serine Racemase ........................................................................................................ 37 

1.3.4.3 D-serine transporters .................................................................................................. 37 

1.4 D-serine function in the CNS ............................................................................. 38 

1.4.1 Role of D-serine in cell migration .................................................................. 38 



3 
 

1.4.2 Role of D-serine plasticity .............................................................................. 38 

1.4.3 D-serine and Schizophrenia ............................................................................ 39 

1.4.4 Alzheimer’s disease ....................................................................................... 40 

1.4.5 DAAO in brain physiology ............................................................................ 41 

1.5 Techniques used to study D-serine in the brain ................................................ 41 

1.5.1 Chromatography ............................................................................................ 41 

1.5.2 Antibody staining: where is D-serine localised in the brain? ........................... 43 

1.5.3 Enzymatic tools and capillary dialysis ............................................................ 44 

1.5.4 Enzyme biosensors ........................................................................................ 45 

1.6 Brain Models used to study D-serine ................................................................ 46 

1.6.1 Acutely isolated cells ..................................................................................... 46 

1.6.2 Organotypic brain slices ................................................................................. 48 

1.6.3 In vitro brain slices ........................................................................................ 48 

1.6.4 In vivo brain ................................................................................................... 49 

1.6.5 Humans ......................................................................................................... 50 

1.6.6 The future in brain D-serine study: D-serine biosensors .................................. 51 

1.7 D-serine biosensor fabrication ........................................................................... 53 

1.7.1 Detection principles ....................................................................................... 53 

1.7.1.1 H2O2 ........................................................................................................................... 53 

1.7.1.2 Oxygen detection ....................................................................................................... 53 

1.7.1.3 Ammonium ions ......................................................................................................... 54 

1.7.2 Source of D-amino acid oxidase ..................................................................... 54 

1.7.3 Enzyme entrapment techniques ...................................................................... 56 

1.7.3.1 Adsorption and cross-linking ..................................................................................... 56 

1.7.3.2 Electropolymers ......................................................................................................... 57 

1.7.3.3 Sol-gel methods.......................................................................................................... 58 

1.7.4 Assembly material ......................................................................................... 58 

1.7.4.1 Carbon/graphite based biosensors .............................................................................. 58 

1.7.4.2 Platinum biosensors ................................................................................................... 59 

1.8 Aims ..................................................................................................................... 59 

 



4 
 

Chapter 2: Fabrication and characterization of D-serine biosensors .................. 60 

2.1 Abstract................................................................................................................ 61 

2.2 Introduction ......................................................................................................... 62 

2.3 Methods ............................................................................................................... 63 

2.3.1 Synthetic Gene expression and DAAO purification ........................................ 63 

2.3.2 Determination of protein concentration .......................................................... 66 

2.3.3 Enzymatic assay............................................................................................. 67 

2.3.4 Protein storage ............................................................................................... 68 

2.3.5 D-serine Biosensor fabrication ....................................................................... 68 

2.4 Results ................................................................................................................. 71 

2.4.1 Sensitivity ...................................................................................................... 73 

2.4.2 pH ................................................................................................................. 76 

2.4.3 Selectivity ...................................................................................................... 77 

2.4.4 Stability ......................................................................................................... 79 

2.5 Discussions .......................................................................................................... 79 

Chapter 3: Use of D-serine biosensors to investigate extracellular D-serine tone 

in vitro ............................................................................................................................. 83 

3.1 Abstract................................................................................................................ 84 

3.2 Introduction ......................................................................................................... 85 

3.3 Methods ............................................................................................................... 87 

3.3.1 Biosensor fabrications .................................................................................... 87 

3.3.2 Slice preparations........................................................................................... 88 

3.3.3 Determining extracellular basal D-serine levels in the brain............................ 89 

3.3.4 Statistical analysis .......................................................................................... 90 

3.4 Results ................................................................................................................. 90 

3.4.1 Extracellular D-serine levels in the hippocampus............................................ 90 

3.4.2 Extracellular D-serine levels in the cerebellum ............................................... 91 

3.4.3 Extracellular D-serine levels in the cortex ...................................................... 94 

3.4.4 PAR1 induced D-serine release ...................................................................... 95 

3.5 Discussion ........................................................................................................... 96 



5 
 

3.5.1 Exploration of the saturation state of NMDA receptor co-agonist site in the 

hippocampus ................................................................................................................. 98 

3.5.2 Co-agonist site occupancy in the Cerebellum ............................................... 100 

Chapter 4: Use of D-serine biosensors in vivo ........................................................ 103 

4.1 Introduction ....................................................................................................... 104 

4.2 Method ............................................................................................................... 104 

4.3 Results ............................................................................................................... 105 

4.1 Discussion ......................................................................................................... 108 

Chapter 5: Activity dependent modulation of D-serine release in rat brain .... 110 

5.1 Abstract.............................................................................................................. 111 

5.2 Introduction ....................................................................................................... 112 

5.3 Methods ............................................................................................................. 114 

5.3.1 In vitro slice preparation .............................................................................. 114 

5.3.2 Regions of interest: hippocampus and cortex ................................................ 114 

5.3.3 Ionotropic glutamate receptor agonist concentrations ................................... 114 

5.3.4 Analysis of recordings ................................................................................. 116 

5.4 Results ............................................................................................................... 117 

5.4.1 Does acute AMPA receptor activation alter D-serine levels? ........................ 117 

5.4.2 Does acute NMDA receptor activation alter D-serine levels? ........................ 122 

5.4.3 Does acute kainate receptor activation alter extracellular D-serine levels? .... 124 

5.4.4 Influence of Ca2+ ions on D-serine signalling mechanisms ............................ 126 

5.4.5 D-serine and LTP ......................................................................................... 129 

5.5 Discussion ......................................................................................................... 130 

5.5.1 Ionotropic glutamate receptors influence D-serine concentration .................. 130 

5.5.2 Acute AMPA receptor activation can alter NMDA receptor activity. ............ 132 

5.5.3 Acute NMDA receptor activation can alter NMDA receptor activity ............ 134 

5.5.4 Acute kainate receptor activation may alter NMDA receptor activity ............ 135 

5.5.5 Calcium alters D-serine signalling mechanisms ............................................ 137 

5.5.6 D-serine and LTP ......................................................................................... 137 

 



6 
 

Chapter 6: The role of D-serine in excitotoxic cell damage ................................. 139 

6.1 Abstract.............................................................................................................. 140 

6.2 Introduction ....................................................................................................... 141 

6.3 Methods ............................................................................................................. 142 

6.3.1 Slice preparations......................................................................................... 142 

6.3.2 Induction of hypoxia and ischemia ............................................................... 143 

6.3.3 D-serine sensors ........................................................................................... 143 

6.4 Results ............................................................................................................... 143 

6.4.1 Extracellular changes in D-serine during hypoxia and ischemia .................... 143 

6.4.2 Isolating the NMDA receptor component ..................................................... 147 

6.4.3 fEPSPN and hypoxia..................................................................................... 148 

6.4.4 fEPSPN and hypoxia in the presence of D-serine........................................... 150 

6.5 Discussion ......................................................................................................... 151 

Chapter 7: Discussion ................................................................................................ 154 

7.1 D-serine biosensors provide novel insight .................................................... 155 

7.2 Factors contributing to D-serine tone ............................................................ 158 

7.3 Activity dependent D-serine regulation ........................................................ 160 

7.4 D-serine reduction as a novel neuro-protective pathway ............................... 166 

7.5 Diagnostic applications for D-serine biosensors............................................ 169 

7.5.1 Schizophrenia and low D-serine levels ........................................................................ 169 

7.5.2 Alzheimer’s disease and increased D-serine levels ...................................................... 170 

7.6 D-amino acid content and bacterial contamination........................................ 170 

7.7 Summary ..................................................................................................... 171 

Bibliography ................................................................................................................. 172 

 

 

 



7 
 

Figures  
Chapter 1: Introduction 

Figure 1: NMDA and AMPA receptors at the synapse    18 

Figure 2: Structure of the NR1 subunit      20 

Figure 3:  Activation of NMDA receptors      23 

Figure 4: Glycine can potentiate NMDA receptor whole cell current  24 

Figure 5: Removal of D-serine reduces NMDA-receptor responses   27 

Figure 6: D-serine localisation patterns      30 

Figure 7: Affinity of glycine and D-serine for NMDARs    31 

Figure 8: Glycine and D-serine do not potentiate EPSCs    31 

Figure 9: Serine racemase activity       33 

Figure 10: Reaction scheme for serine racemase.     34 

Chapter 2: 

Figure 1: Affinity chromatography trace of DAAORg    64 

Figure 2: SDS gel of proteins eluted by Nickel-chromatography   65 

Figure 3: Assay to determine DAAORg enzyme activity    67 

Figure 4: Screening of platinum surface to reduce interference   69 

Figure 5: Electrochemical deposition of DAAORg     70 

Figure 6: Enzymatic rate and kinetics of free-DAAORg    71 

Figure 7: Response curves of D-serine biosensor     72 

Figure 8: Linear response of a 0.5mm D-serine biosensor    73 

Figure 9: Limits of detection for D-serine biosensors    73 

Figure 10: Oxygen sensivity of D-serine biosensors     74 



8 
 

Figure 11: Sensitivity graph of D-serine biosensors     75 

Figure 12: Response of D-serine biosensors to varying pH levels   76 

Figure 13: D-serine biosensor selectivity against potential interference  77 

Figure 14: D-serine biosensor stability      78 

Chapter 3 

Figure 1: D-serine biosensor and null sensor placements     87 

Figure 2: Determining the basal D-serine concentrations    88 

Figure 3: Basal D-serine levels in the hippocampus     90 

Figure 4: Basal D-serine levels in the cerebellum of rat brain   91 

Figure 5: Scatter distribution of age Vs. D-serine tone in the cerebellum  92 

Figure 6: Granule cell layer: two distributions     93 

Figure 7: D-serine levels in the cortex of rat brain     94 

Figure 8: PAR1 activation can cause D-serine release in S. pyramidale  95 

Figure 9: Activation of PAR-1 receptors can cause D-serine in S. radiatum  95 

Figure 10: Saturation of the co-agonist site of NMDA receptors   96 

Figure 11: NMDA receptor co-agonist site saturation in the hippocampus  98 

Figure 12: Glycine site saturation in the cerebellum and cortex            100 

Figure 13: Serine racemase mRNA distribution in the brain             101 

Figure 14: Factors contributing to extracellular D-serine basal levels            101 

Chapter 4 

Figure 1: Placement of D-serine biosensors in vivo              104 

Figure 2: Progression of D-serine biosensor into the hippocampus            104 

Figure 3: In vivo measurements of D-serine tone              105 



9 
 

Figure 4: Total D-serine in the hippocampus and cortex             106 

Chapter 5 

Figure 1: 10µm AMPA and 25µM kainate is toxic to the slice in vitro           114 

Figure 2: Determining D-serine release and reduction             115 

Figure 3: Kinetics of changes observed in D-serine              116 

Figure 4: AMPA triggers D-serine release and loss              118 

Figure 5: AMPA receptor mediated release follows Ca
2+

 influx            119 

Figure 6: Ionophore A23187 does not alter D-serine levels             120 

Figure 7: NMDA receptor activation can modulate D-serine levels            122 

Figure 8: Kainate receptor activation can modulate D-serine levels            124 

Figure 9: AMPA response in calcium-free aCSF               126 

Figure 10: D-serine modulation by AMPA is calcium-sensitive            127 

Figure 11: D-serine modulation by NMDA is calcium-sensitive            127 

Figure 12: LTP can be achieved with high frequency stimulation            128 

Figure 13: During LTP D-serine is released in the hippocampus            129 

Figure 14: D-serine changes induced by ionotropic GluR agonists            130 

Figure 15: Functional significance of the changes induced by AMPA            132 

Figure 16: Functional significance of the changes induced by NMDA            134 

Figure 17: Functional significance of the changes induced by kainate            135 

Chapter 6 

Figure 1: D-serine levels are reduced under hypoxic conditions            143 

Figure 2: D-serine and glutamate levels are reduced under ischemia           143 

Figure 3: Patterns of change under Ischemic conditions             144 



10 
 

Figure 4: fEPSPN can be isolated from fEPSP pharmacologically            146 

Figure 5: fEPSPN is reduced under hypoxic conditions             147 

Figure 6: fEPSPN reduction occurs in the presence of 8-CPT            148 

Figure 7: fEPSPN reduction is less in the presence of D-serine            149 

Chapter 7: Discussion 

Figure 1: Total D-serine content of brain regions is misleading            154 

Figure 2: D-serine enhances NMDA receptor current in s. radiatum            155 

Figure 3: Majority of synapses are in low D-serine regions             158 

Figure 4: D-serine release mechanisms in the cortex              161 

Figure 5: D-serine loss mechanisms in the hippocampus             163 

Figure 6: Adenosine release during ischemia               165 

Figure 7: Low resolution of transmitter release by capillary dialysis            166 

 

 

 

 

 

 

 

 

 

 



11 
 

 

Tables 
Table 1.1: Glycine and D-serine binding affects glutamate binding  25 

Table 2.1: D-serine biosensors are available in various sizes   68 

Table 2.2: Km of DAAO enzymes for D-serine     71 

Table 2.3: Selective response of D-serine biosensors    77 

Table 2.4: Properties of current D-serine biosensors    78 

Table 3.1: D-serine concentrations in various rat brain regions.  94 

Table 4.1: In vivo D-serine measurements in the brain   107 

Table 5.1: D-serine regulatory mechanisms are calcium sensitive  128 

Table 5.2: AMPA, NMDA and kainate modulation of D-serine   131 

Table 6.1: Changes in D-serine and glutamate levels during ischemia 145 

Table 7.1:  Activity dependent regulation of D-serine    159 

Table 7.2: Positive and Negative modulators of SR and DAAO  160 

 

 

 

 

 



12 
 

 

Acknowledgements 
 

It is not often that one has the opportunity to be self-involved so completely for such 

a long period. I take courage that I have survived such a test and seek pardon from 

my family and friends for my self-absorbed ways. Most especially my mother and 

father- all their hardships have borne fruit. It is for their eyes I shine. 

I am indebted to my excellent Supervisor Nick- a source of encouragement, support 

and inexhaustible patience, without whom life would have indeed been wretched. I 

would like to thank Professor Collin Murrel, Dr. Matthew Jones and Dr. David 

Roper for generously allowing me use of their laboratories and teaching me all 

manner of new skills and Professor David Spanswick for sharing his data. I am 

grateful to the University of Warwick for funding this research and the entire 

Neuroscience group at Warwick for assistance and entertainment. 

 

 

 

 

 

 



13 
 

Declaration  
 

 

 

I hereby declare that this thesis is my own work and effort and that it has not been 

submitted anywhere for any award. Where other sources of information have been 

used, they have been acknowledged.  

 

 

 

 

 

 

Signature:………………………….............................. 

Date:…………………………………………………... 

 

 

 

 

 

 

 

 

 

 



14 
 

Abstract 
 

D-serine is a co-agonist at NMDA receptors in the brain but the study of this amino 

acid is restricted by current techniques. I have designed highly sensitive D-serine 

biosensors that permit accurate real-time recordings of D-serine in the brain in a 

selective manner. I demonstrate that these tools are ideal for investigating factors 

involved in the regulation of this amino acid and the role that D-serine plays in 

excitotoxic cell death mediated via NMDA receptors.  

I have established that the extracellular basal concentrations of D-serine in the rat 

brain are heterogeneous and vary even within brain structures. This suggests that D-

serine is an important regulatory constraint for NMDA receptor activation, as 

receptor response can only be potentiated in regions with low D-serine content. 

Additionally, I show that these microelectrode biosensors have the potential to be 

used in vivo to detected extracellular D-serine levels. 

In addition I have observed real-time activity dependent regulation (both loss and 

release) of D-serine by ionotropic glutamate receptor agonists AMPA, NMDA and 

kainate, PAR1-agonist TFFLLRNH2 and high frequency stimulation in vitro in a 

number of brain areas. A decrease in D-serine concentration is potentially 

neuroprotective as it suggests a reduction in NMDA receptor activation. However, 

D-serine release can be observed in regions where the co-agonist site of the NMDA 

receptor is likely to be already saturated implying an alternative function of D-serine 

in the brain. These findings indicate multifaceted regulation of this amino acid that is 

brain-region specific.  

Finally, I have investigated the role of D-serine release during models of stroke 

(hypoxia and ischemia) and found that D-serine levels are reduced in brain regions 

deprived of oxygen. This is ultimately neuroprotective as it will reduce over-

excitation at the NMDA receptor during these insults. In the more profound model of 

stroke, oxygen-glucose deprivation, D-serine is eventually released. This release 

precedes anoxic depolarisation and could therefore contribute to its initiation via 

enhanced activation of the NMDA receptor. 
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1.1 Glutamate receptors and the brain 

1.1.1 Ionotropic glutamate receptors 

Glutamate receptors are essential for excitatory neurotransmission in the brain. 

These are sub-categorised into two groups: the ionotropic glutamate channels that 

participate in fast synaptic transmission and the metabotropic glutamate receptors, 

which mediate slower, long-lasting and more diverse post-synaptic actions. The 

NMDA receptor is a subtype of the ionotropic glutamate receptor family; other 

members include AMPA and kainate receptors. Often NMDA and AMPA receptors 

co-exist at the synapse and mediate the bulk of fast excitatory synaptic transmission 

(figure 1). Kainate receptors also exist throughout the brain but their function is not 

clearly understood. 

AMPA-gated channels are permeable to monovalent cations and evoke 

depolarisation in the post-synaptic membrane. NMDA receptors are also cation-

selective but they differ from AMPA receptors in a number of ways. At the resting 

potential (-70mV), a voltage-dependent blockade by extracellular Mg
2+

 prevents ion 

permeation. Depolarisation removes the Mg
2+

 -block so that the NMDA channel is 

permeable to Na
+
 and Ca

2+
. It is through this Ca

2+
 influx that NMDA receptors 

mediate a number of important secondary events including synaptic events 

associated with development, cognitive function, alcohol dependence and 

excitotoxicity.  

Figure 1: NMDA and AMPA receptors are often co-expressed at the synapse 

and both channels participate in synaptic transmission. AMPA receptors 

mediate fast synaptic transmission while NMDA receptors have a slower 

kinetics. 
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1.1.2 NMDA receptor Subunits and pharmacological differences 

Identified by a unique set of pharmacological and functional properties, NMDA 

receptors exist as tetramers composed of NR1, NR2 and/or NR3 subunits 

(Dingledine et al., 1999). There are 8 variants of the NR1 subunit generated by 

alternative splicing from a single gene. Four genes encode for known NR2 subunits 

(NR2A-D) and two genes have been identified that expressed the NR3 subunits (A 

and B). Co-expression of at least one NR1subunit, (where usually glycine/D-serine 

binds) and one NR2 subtypes (containing the glutamate binding site) is required for a 

functional NMDA receptor complex. Although the consensus is that receptors exist 

as tetramers incorporating two NR1 and two NR2 subunits of the same or different 

subtypes (Dingledine et al., 1999), cells expressing NR3 are thought to express 

ternary NR1/NR2/NR3 tetrameric complexes (Sasaki et al., 2002).   

The subunit composition (especially NR2 and NR3 subunit variance) endows 

distinct pharmacological characteristics in the NMDA receptor complex. Thus 

NMDA channels differ in their kinetic properties, sensitivity to ligands, permeability 

to divalent ions and their interactions with intracellular proteins (Cull-Candy et al., 

2001; Chen & Roche, 2007). Since different subunit compositions of NMDA 

receptors have distinctive localisation and expression patterns, the functional 

regulation and role of this channel has been attributed to numerous central nervous 

system events.  It may be that heterogeneity in NMDA receptor subunit composition 

is the basis for regulation of NMDA receptor function (Laurie et al., 1997). 

1.1.2.1 NR1 subunit 

The NR1 subunit is an essential subunit, found ubiquitously throughout the brain and 

during development. Splicing of a single gene at exons 5, 21, and 22 generates 8 

NR1 protein variants. The extracellular N-terminal domain (encoded by exon 5) can 

modulate the pharmacological properties of NMDA receptors and is the site of 

binding for the co-agonist, shown in the figure 2 (Traynelis et al., 1998; Rumbaugh 

et al., 2000). The intracellular C-terminal domain (encoded by exon 21 and 22) 

regulates protein-protein interactions, receptor trafficking, and NR1 phosphorylation 

(Ehlers et al., 1996; Ehlers et al., 1998; Standley et al., 2000).  For example, Tingley 

et al (1997) show that phosphorylation within exon 21 by PKC at residues S890 and 

S896 has differing consequence.  Phosphorylation of S890 disrupts the clustering of 
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the NR1 subunit (Tingley et al., 1997) while phosphorylation of  S896 alone has no 

effect on NR1 clustering, instead phosphorylation of S896 together with PKA 

phosphorylation of S897 are required to increase NMDA receptor surface expression 

(Scott et al., 2001).  

 

Figure 2: Structure of the NR1 subunit. D-serine/glycine (blue circle) bind in a 

binding pocket encoded by exon 5, while exons 21 and 22 encode an 

intracellular binding site. 

 

Hence, the different splice variants of the NR1 subunits may all have distinct 

features endowed by particular sequence sites. These then contribute to the range of 

physiological function that NMDA receptors participate in.  In addition, binding by a 

ligand (D-serine or glycine) on this subunit, does alter the affinity of glutamate 

binding on the NR2 subunit (Fadda et al., 1988). 

 

1.1.2.2 NR2 subunit 

 

Although NR2 subunits are also necessary components of NMDA receptor 

complexes, unlike NR1, each NR2 subunit confers distinct channel properties that 

differentially affect synaptic NMDA receptor function. The expression pattern of the 

NR2 subunit is developmentally regulated; for instance the expression pattern of 

NR2A is up-regulated and NR2B expression is down-regulated with age. This shows 

concurrent decrease in NR2B and increase in NR2A expression as neurons mature 

(Cull-Candy et al., 2001).  This may be a critical regulation of the central nervous 
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system since the NR2A subunit containing receptors display fast kinetics with 

100 ms deactivation time constant while receptors with NR2B subunits show slower  

deactivation time constant, approximately 250 ms (Cull-Candy & Leszkiewicz, 

2004). The outcome of this will be a decrease in decay time of the NMDA receptor-

mediated currents, with increased levels of NR2A expressions.  NR2A containing 

NMDA receptors are generally confined to synaptic sites while NR2B containing 

NMDA receptors are found most at extrasynaptic sites (Li et al., 1998; Stocca & 

Vicini, 1998; Tovar & Westbrook, 1999; Li et al., 2002). This confers functional 

differences between NMDA receptors containing the NR2A and NR2B subunits 

include noticeable increases in endocytosis by NR2A-containg receptors and higher 

surface mobility in NR2B-containing receptors (Roche et al., 2001; Lavezzari et al., 

2004; Scott et al., 2004). 

The NR2C subunit is restricted primarily to the cerebellum and is expressed later in 

development. Channels possessing this subunit show low conductance openings 

exhibiting specific kinetics and low sensitivity to magnesium. This receptor contains 

phosphorylation sites targeted by a variety of kinases: PKA, PKB and PKC (Cheng 

et al., 2005; Chen et al., 2006). 

NR2D is predominantly expressed early in development and is localised mainly in 

thalamic and hypothalamic nuclei, hippocampus and in the brain stem, suggesting a 

role of this subunit only in early development (Monyer et al., 1994). NR2D-

containing NMDA receptors are restricted to the thalamus and sub-thalamic nuclei in 

adult brain, indicating some functional relevance here (Williams, 1995; Wenzel et 

al., 1996).  In particular increased expression of this subunit after LTP events on the 

postsynaptic membrane has been described; with suggestions that there is a NR2A 

and NR2D subunit switch (Erreger et al., 2007; Harney et al., 2008). 

1.1.2.3 NR3 subunit 

The NR3A subunit is widely distributed early in development whereas NR3B is 

restricted primarily to motor neurones (Ciabarra et al., 1995; Sucher et al., 1995). 

The NR3A-containing NMDA receptor shows low conductance, modest 

permeability to Ca
2+

 and can pass current at hyperpolarised potentials in the presence 

of Mg
2+

-blockade (Tong et al., 2008; Henson et al., 2010). There is some evidence 

that the NR3A subunit is neuroprotective due to the low conductance to Ca
2+

; 
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cultured neurones prepared from NR3A-knockout mice displayed greater sensitivity 

to excitotoxic stress applied under ischemic, hypoxic and acute NMDA receptor 

activation. Over-expressions of the NR3A subunit by mutagenesis showed increased 

resistance to cell damage under these conditions (Nakanishi et al., 2009). 

Interestingly, while glutamate activates triheteromeric NMDA receptors composed 

of NR1/NR2/NR3A subunits, glycine is sufficient to activate diheteromeric 

NR1/NR3A-containing receptors (Henson et al., 2010). At these channels D-serine 

acts as a partial antagonist rather than a full agonist. 

Nishi and colleagues described a novel protein that showed highest similarity (51%) 

to the NR3A subunit, consisting of 1003 amino acids encoded by at least 9 exons. 

This was termed NR3B. NMDA-receptors containing this subunit also showed 

suppression of glutamate induced current (similar to NR3A) with evidence that it is 

an important regulatory subunit controlling NMDA receptor transmission in 

motoneurons (Nishi et al., 2001). The phenomenon of excitatory glycine channels 

(usually this is an inhibitory neurotransmitter) is seen with co-assembly of either of 

the NR3 subunits with NR1, these channels that are unaffected by NMDA or 

glutamate and inhibited by D-serine. These receptors are permeable to calcium and 

resistant to Mg
2+

 as well as other known NMDA receptor antagonists (Chatterton et 

al., 2002). 

1.1.3 Summary  

The subunit composition alone communicates the complexity and variation that 

exists in NMDA receptors and their properties. Properties of this channel determine 

the site of expression, the stage in development in which these are expressed and 

signalling events partaken in. Additional complexity is conveyed by the postsynaptic 

protein interactions and signalling cascades associated with the activation of this 

channel: the postsynaptic density, figure 3.  Numerous proteins contribute to an 

NMDA receptor event, many of which have yet to be fully described. Its activity 

potentially has vast consequences through signalling cascades in adjacent cells 

(figure 3). It is a wonder that any CNS event can be attributed to ‘the NMDA 

receptor’ since such diversity exists in its composition, performance and behaviour. 
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Figure 3:  Activation of NMDA receptors can potentially regulate numerous 

signalling cascades and events; the subunit composition contributes the 

different pathways regulated by the NMDA receptors (Feng & Zhang, 2009).  

 

1.2 NMDA receptor co-agonist site and D-serine 

The co-agonist site is essential for NMDA receptor function. This is emphasised in 

studies using transgenic mice that have reduced affinity for glycine/D-serine on the 

NR1 subunit. Severe reductions in affinity for a co-agonist (86-fold, K483Q) cause 

the animals to die within a few days after birth (due to failure to feed). Mice with a 

less serious (5-fold, D481N) reduction in affinity survive but show deficits in spatial 

learning and altered anxiety-related behaviour (Kew et al., 2000; Ballard et al., 

2002).  

1.2.1 The NMDA receptor co-agonists 

The excitatory effects of D-serine had been established as early as 1961. While 

investigating the actions of amino-acids related to GABA and glutamate on the 

spinal cord of toad, Curtis et al report that D-forms of optically active excitants (or 

depressants) were always stronger than the corresponding L form and this was true 

for serine also (Curtis et al., 1961).  However, it has taken near 40 years to show that 

this excitatory effect of D-serine occurs through the NMDA receptor. The slowness 
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in recognising the role of D-serine was partly due the lack of understanding of the 

dual-agonist requirements of NMDA receptor (initially) and then more so because 

D-amino acids were not believed to participate in CNS processes.  

The requirement of an agonist, in addition to glutamate, at the NMDA receptors was 

first discovered in the late 1980s. Johnson and Ascher (1987) demonstrated that 

NMDA receptor response could be potentiated by a small, heat stable factor: glycine 

(Johnson & Ascher, 1987). Figure 4 illustrates that glycine and glutamate together 

potentiate NMDA receptor activity much more than as single agonists. A number of 

other amino acids were also analysed, including alanine and serine, (though it is not 

mentioned whether D-isomers were tested); these were found to have little effect on 

NMDA receptor whole cell current.  

 

Figure 4: Glycine can potentiate NMDA receptor whole cell current in cortical 

mouse embryos (Johnson & Ascher, 1987). 

Later that year it was confirmed that glycine did not bind the site targeted by NMDA 

and glutamate on this receptor, though it could regulate binding kinetics of this site. 

Reynolds et al used 3H-labeled MK-801 (which binds a site in the channel), to show 

that glycine binding increased the affinity of the glutamate binding site but that D-

serine was more effective at this (Reynolds et al., 1987).  Also NMDA-dependent 

increase in Ca
2+

 influx was higher with (30µm) D-serine compared with the same 

concentration of glycine in primary cultures of mouse straital neurons as measured 

by a Ca2+-sensitive fluorescent dye fura-2. This is can be an indirect measure for 

NMDA receptor potentiation and is supported by in vivo reports of intracerebellar 

injections of D-serine eliciting cycling GMP increase in a dose-dependent manner in 

mice (through changes in intracellular Ca
2+

 and NOS activation) (Wood et al., 1989). 
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Fadda et al (1988) report valuable evidence, that co-agonist binding directly 

modulates the glutamate recognition site in membranes preparations from rat 

forebrain. The result of glycine binding to the co-agonist site caused an increase in 

the affinity of glutamate binding without affecting the density of the binding site. D-

serine was found to induce a similar effect, however, with a higher affinity than that 

of glycine, table 1.1 (Fadda et al., 1988). 

 Kd  (nM) Bmax (pmol/mg)  

Control 140 ± 12 3.2 ± 0.21  n=14 

Glycine (5µM) 99 ± 10 3.1 ± 0.19 n=7 

D-serine (5µM) 72 ± 11 3.2 ± 0.26 n=6 

 

Table 1.1: Glycine and D-serine receptor binding kinetics carried out in rat 

brain; control was 1mM NMDA and data is given as mean ±SEM (Fadda et al., 

1988). 

Kleckner and Dingledine (1988) confirmed the unique requirement of two agonists 

(supposedly glycine and glutamate) for ion influx to occur in NMDA receptors 

expressed in Xenopus oocytes (Kleckner & Dingledine, 1988). The term ‘glycine 

site’ of the NMDA receptor was coined, with half-maximal response reached with 

670nM glycine. But in contrast to the findings of Johnson and Ascher, it was noted 

that ‘D-serine was nearly as effective as glycine (90± 5.9%) when compared at 3 

mM and 98% as effective at higher concentrations. 

 

In hindsight, it is difficult to perceive how the role of D-serine at the NMDA 

receptor could have been overlooked. Although, collectively, some of the earliest 

studies supporting the actions of glycine also provide strong evidence for the actions 

of D-serine in the same function. Since D-amino acids were considered ‘unnatural’ 

these physiological observations were ignored, in fact it is fortunate that D-serine 

was considered a glycine mimic and used at all. Paradoxically, these earlier studies 

now form the basis for the excitatory functions of D-serine in the brain.  

In the 1990s the presence of D-serine in the brain was slowly realised. It was the 

enzyme involved in the breakdown of D-serine, which provided the first clues for the 

presence of D-serine in brain tissue (Nagata et al., 1989; Nagata, 1992). D-amino 
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acid oxidase knockout mice showed 3 times the amount of D-serine compared to 

controls (32.7±9.5, n=5; knockout: 96.9±10.7noml/g, n=7). The likelihood of these 

significantly high levels of D-serine in the brain resulting from ingestion of bacteria 

were low, since mice isolated in a ‘germ-free’ environment showed the same levels 

of brain D-serine. Furthermore, crossover through the blood-brain-barrier is 

relatively poor, since levels of D-serine in plasma were lower compared to some 

regions of the brain (Man & Bada, 1987; Nagata et al., 1994; Dunlop & Neidle, 

1997). Hashimoto et al detected free D-serine content of the body using HPLC in 

rats and found the vast majority this was localised to the brain. Additionally there 

was heterogeneous distribution of this amino acid, with highest levels detected in the 

cortex, straitum and hippocampus. D-serine concentrations persisted from birth to 86 

postnatal weeks (Hashimoto et al., 1993b). Localisation and postnatal changes in D-

serine expression in the brain were found to closely resemble the NMDA receptor 

(Schell et al., 1997). But there was still strong scepticism about the function of a D-

amino acid at such a crucial receptor in the brain. There was as yet no direct 

evidence for the role of D-serine as a co-agonist; perplexing questions about its 

synthesis, breakdown and release remained unanswered; while glycine had long been 

established as a NMDA receptor ‘co-agonist’.  

An endogenous source of D-serine was soon discovered in the brain in the form of a 

racemase (Wolosker et al., 1999a; Wolosker et al., 1999b). Serine racemase was able 

to synthesise D-serine from the L-isomer and was found to be expressed most highly 

in astrocytes, highlighting a new point of controversy. Glial cells were ‘ennobled’ 

with the task of regulating neurotransmission and synaptic activity through the 

release of this amino acid. But the most direct evidence for the role of D-serine as a 

NMDA receptor co-agonist came from studies using DAAO to deplete D-serine 

levels in cells or in vitro and monitoring the effect of this on channel activity 

(Mothet et al., 2000; Yang et al., 2003; Panatier et al., 2006). Mothet et al (2000) 

show that the removal of D-serine reduces NMDA receptor mediated transmission, 

using whole cell patch-clamp recordings, while exogenous applications allow 

complete recovery (Mothet et al., 2000). Since DAAO is not thought to act on 

glycine, only the reduction in D-serine levels caused a reduced NMDA receptor 

activity. When glycine levels were reduced (using glycine oxidase) in the 

hypothalamus of rats, it had little effect NMDA receptor activity (figure 5). 
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Figure 5: Removal of D-serine reduced NMDA-receptor mediated transmission, 

but this fully recovers with applications of D-serine (Mothet et al., 2000). 

Glycine oxidase application on the other hand has little effect on the NMDA 

receptor mediated current (Panatier et al., 2006).   

This strategy has been criticised due to the low affinity of DAAO (Km= 30mM) and 

poor activity of the commercially available DAAO. Improvements in this have led to 

the use of D-serine deaminase, which is highly selective for D-serine (Km=0.1mM). 

The removal of D–serine with this enzyme hindered D-serine associated 

neurotoxicity and cell death (Shleper et al., 2005; Kartvelishvily et al., 2006). D-

serine transporters were also discovered, which provided a mechanism by which D-

serine action at the postsynaptic neurone could be terminated, in regions of low 

DAAO expression. 

D-serine is now recognised as physiological ligand at the NMDA receptor co-agonist 

site, mediating several NMDA receptor-dependent processes. It increases the 

receptors affinity for glutamate, decreases its desensitisation and promotes NMDA 

receptor turnover by internalisation (Fadda et al., 1988; Lerma et al., 1990). Recent 

studies have implicated D-serine signalling in cognitive function, cell migration and 

neurotoxicity (Wolosker, 2007). But glycine can also act as a NMDA receptor co-

agonist and has been implicated in a number of NMDA-receptor related functions. 

Whether the co-agonist site has specific brain functions has not been fully explored, 

but localisation studies have shown region-specific expression of D-serine and 

glycine, co-agonist preference also varies depending on NMDA receptor 

composition, as discussed previously and in some rare cases opposing roles of 

glycine and D-serine are observed in the same channels (eg. NR1-NR3A/B receptor).  
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1.2.2 Co-agonist localisation 

The co-agonist site is found on the NR1 subunit of NMDA receptors, the expression 

of which is ubiquitous throughout the brain since this subunit is required for all 

functionally active receptors. Glycine and D-serine localisation studies on the other 

hand have revealed distinct patterns. But glycine does not have a specific role at the 

NMDA receptor in the brain, unlike D-serine. So that high glycine content may not 

be an indicator of NMDA receptor associated function. However, D-serine is not 

thought to have any other function in the brain apart from its co-agonist role hence, it 

may be expected that this amino acid is found highest in regions of high NMDA 

receptor expression. 

Schell et al (1995) were the first to use specific antibodies for D-serine conjugated to 

glutaraldehyde to investigate D-serine localisation. Highest immunoreactivity was 

found in gray matter of the cortex, hippocampus and amygdala, this correlated 

closely with immunoreactivity of the glycine co-agonist site as visualised by 

autoradiography and are inversely correlated to the presence of D-amino acid 

oxidase (Schell et al., 1995). D-serine studies found that its distribution in the brain 

was heterogeneous, highest levels were found in the developing cerebellum while in 

adult most D-serine was found in the forebrain and cerebellum, at 8 weeks 

(Hashimoto et al., 1993b; Schell et al., 1997). However, substantial variation in D-

serine concentration is seen during development. In the rat prefrontal cortex, D-

serine levels peak at gestational week 14 and then decline rapidly, suggesting 

involvement in the regulation of NMDA receptors during development (Hashimoto 

et al., 1993b). Similarly in the periphery D-serine levels are high on the day of birth 

but shortly thereafter fall to very low levels (Hashimoto & Oka, 1997). 
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Figure 6: D-serine localisation patterns closely resemble the NR2A and NR2B 

subunits, with highest expression in the cortex and the hippocampus; while 

glycine localisation is highest in the hypothalamus in the rat brain (Schell et al., 

1997). 

By contrast glycine is found in high concentrations in the hindbrain, the adult 

cerebellum and olfactory bulb, with some similarity to NR2A/B subunit distribution 

(Schell et al., 1995). In the cerebellum, dense staining is associated with the deep 

cerebella nuclei, whereas the granular and molecular layers are only moderately 

stained  (Baer et al., 2009). Only slight overlap is observed between glycine and D-

serine, with expression patterns of the NR2A/B subunits matching expression of D-

serine more closely (figure 6). This localisation maybe an indicator specific function, 

for example, in the cerebellum D-serine is involved in cell migration, a function 

which occurs very early in development, this may explain the high levels of D-serine 

observed in young animals, while in the adult cerebellum, higher levels of glycine 

are seen. This change in co-agonist expression may also be an indicator of a change 

in NMDA receptor subunit composition, since subunit expression is modified with 

maturity.  
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1.2.3 Co-agonist site affinity and specificity  

While investigating agonist-induced current response of cloned NMDA receptors  in 

Xenospus oocytes, Matsui et al show D-serine has three to four times higher affinity 

than glycine for the NMDA receptor glycine site (Matsui et al., 1995) while Chen et 

al (2008) do not find significant difference in the affinity for either of the co-agonists 

(Chen et al., 2008). Although the affinity of glycine and D-serine vary for different 

NMDA receptor subunits, as shown in figure 7, the general preference order is 

NR2D>NR2C>NR2B>NR2A for both co-agonists (Matsui et al., 1995; Woodward 

et al., 1995). But generally glycine levels in the brain are higher than D-serine levels, 

although the two distinct agonists have a specific expression patterns that are not 

similar. Additionally, glycine in the synaptic cleft is subject to a powerful uptake 

system: the glycine transporters GlyT1 and 2 (Chen et al., 2003; Betz et al., 2006; 

Betz & Laube, 2006). D-serine which is also a potent agonist at this site is not taken 

up by glycine transporters and only low affinity transporters of this amino acid are 

known (Javitt et al., 2002; Ribeiro et al., 2002), so there may even be higher levels 

of D-serine in the extracellular space than glycine.  

 NR2A NR2B NR2C NR2D 

Matsui 

et al  

D-ser (0.32µM) 

Gly (0.97µM) 

D-ser (0.26 µM) 

Gly (0.84 µM) 

D-ser (0.21 µM) 

Gly (0.76 µM) 

D-ser (0.17 µM) 

Gly (0.56 µM) 

Chen 

et al 

D-ser (1.27µM) 

Gly (1.31µM) 

D-ser (0.65 µM) 

Gly (0.72 µM) 

D-ser (0.32 µM) 

Gly (0.34 µM) 

D-ser (0.16 µM) 

Gly (0.13 µM) 

 

Figure 7: The affinity of glycine and D-serine for different NMDA receptors 

differs with subunit composition. The highest potency of D-serine and glycine is 

seen at the NR2D-containing and the lowest at the NR2A-containing NMDA 

receptors. Brackets contain the EC50 values for recombinantly expressed 

NMDA receptors in Xenopus oocytes (Matsui et al., 1995; Chen et al., 2008).    

Additionally since agonist binding at the NR1 subunit is dependent on a series of 

hydrogen bonds to side-chain and main-chain atoms as well as water molecules, it 

has been suggested that D-serine binds more tightly to the ligand-binding pocket in 

comparison with glycine as a result of 3 additional hydrogen bonds (at Thr518, 

Asp732 and Ser688) and displacement of a water molecule (Furukawa & Gouaux, 

2003).  
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This may be linked to increased affinity for glutamate by receptors binding to D-

serine described earlier and higher influx of Ca
2+ 

ion compared to glycine, while 

little difference in maximal strength was observed in NMDA receptor response using 

3mM D-serine and glycine. 

1.2.4 Is the co-agonist site saturated? 

For a long time it was believed that the glycine binding site was constantly saturated 

as a result of very high concentrations of glycine (and D-serine) found in 

cerebrospinal fluid (Ferraro & Hare, 1985) and a number of studies showed that 

exogenous applications of (up to 100µM) glycine/D-serine had no modulatory effect 

on NMDA receptor function, as shown in figure 8 (Ahmadi et al., 2003; Billups & 

Attwell, 2003). Contradictory to this, other researchers show that application of 

exogenous glycine/D-serine does increase NMDA-receptor response (Thiels et al., 

1992; Mothet et al., 2000; Hayashi et al., 2006). In fact in vitro studies in cultured 

neurones (Johnson & Ascher, 1987), hippocampus slices and in vivo studies in rat 

cerebellum by Salt et al all argue in favour of the glycine site not being fully 

saturated (Salt, 1989; Furukawa & Gouaux, 2003; Furukawa et al., 2005). 

 

Figure 8: Glycine and D-serine do not potentiate EPSC at the mossy fibre to 

granule cell synapses in rat brain; NMDA receptor current amplitude was 

measured 20ms after the peak of the EPSC (Billups & Attwell, 2003). 

The grounds for this rigorous interest in determining the extent of saturation of the 

glycine site is to determine the physiological importance of the co-agonist site. The 

extent of saturation is a measure of NMDA receptor activity i.e. the level of Ca
2+

 

influx and subsequent triggering of signalling cascades. If the co-agonist site is fully 

saturated then maximum channel potentiation occurs at all times, and significant 
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alterations in co-agonist concentration will be required to alter signalling cascades or 

CNS events. But if the site is not fully saturated then the co-agonist concentration is 

a rate-limiting factor in NMDA receptor activity hence modulatory mechanisms 

must be in place to augment co-agonist concentration as required. At non-saturating 

levels, potentially small changes in co-agonist concentration can alter NMDA 

receptor events significantly, this may be important in cases of abnormal NMDA 

receptor activity. Also there may be a link between the co-agonist saturation state 

and its participation in a particular function in the brain. For example, it has been 

noted that there is a difference in saturation states between pre- and posysynaptic 

NMDA receptors (Kew et al., 1998). The majority of post-synaptic NMDA receptors 

are composed of NR1-NR2A while presynaptic receptors are NR1-NR2B (Sjostrom 

et al. 2003; Woodhall et al. 2001; Yang et
 
al. 2006). The EC50 of glycine and of D-

serine for NR1-NR2A
 
receptors are known to be higher than those for NR1-NR2B. 

Thus
 
a concentration of glycine or D-serine will be saturating for the (presynaptic)

 

NR2B-containing receptors and not saturating for the (postsynaptic)
 

NR2A-

containing receptors.  

1.3 D-serine metabolism in the central nervous system 

 

1.3.1 D-serine synthesis 

D-serine synthesis, release and breakdown mechanisms in the brain have yet to be 

fully described. Following the discovery of large amount of D-serine in the brain, a 

search began for a plausible mechanism by which it could be generated, especially 

since levels of D-serine in the brain were higher than kidney and liver. This search 

was pacified by the discovery of a racemase able to synthesise D-serine from L-

serine the mammalian brain (Wolosker et al., 1999a; Wolosker et al., 1999b). 

Immunostaining experiments localised this 340amino acid protein to regions of high 

D-serine content: the cortex, hippocampus and amygdala (Wolosker et al., 1999a; 

Stevens et al., 2003; Xia et al., 2004). SR is thought to contribute to 90% of brain D-

serine in vivo, as detected from SR knockout mice, suggesting this enzyme is the 

major source of D-serine in the brain (Inoue et al., 2008). 

Further study of SR revealed that racemisation of L-serine is influenced by divalent 

cations (Mg
2+

 and Ca
2+)

, co-factors GRIP (proteins glutamate receptor interacting 

protein), PICK1, and PLP (pyridoxal 5′-phosphate) and cell energy metabolism, 
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especially ATP levels (figure 9). Increased SR activity results in D-serine release by 

mechanisms not fully understood (Cook et al., 2002; De Miranda et al., 2002; Neidle 

& Dunlop, 2002; Foltyn et al., 2005; Kim, PM et al., 2005) .  

But the regulators of SR also partake in central physiological events not directly 

related to D-serine, in the brain. PICK1 for example interacts with a number of 

glutamate receptors including GluA2 and GluA3 AMPA receptor subunits, the 

GluK1 and GluK2 subunits of kainate receptors and the mGlu7 receptor via their C-

terminal PDZ binding domains (Dev et al., 1999; Dev et al., 2000; Hirbec et al., 

2003). Unsurprisingly then, PICK1 has multiple effects in neurones including roles 

in the insertion of AMPA receptors, internalisation of kainate receptors and 

regulation of AMPA receptor subunit composition (Daw et al., 2000; Terashima et 

al., 2004). 

 

Figure 9: Serine racemase activity is regulated by many different signalling 

molecules and cascades including positive regulators GRIP, PICK1 and down-

regulators such as PIP2 and NO. A  (Pollegioni & Sacchi, 2010). 

Intriguingly, D-serine synthesis is coupled with pyruvate generation: as many as 3 

molecules for every D-serine molecule, as shown in figure 10 (Panizzutti et al., 

2001; De Miranda et al., 2002). Pyruvate can be utilised in energy metabolism and 

also acts as a neuro-protectant in animal models of stroke, also protecting cells 

against oxidative damage and zinc neurotoxicity (Desagher et al., 1997). Thus SR-

derived pyruvate is likely to play important roles in astrocytes. 
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Figure 10: Reaction scheme for serine 

racemase. Both D-serine and pyruvate are 

made from L-serine but D-serine can also 

act as a substrate for SR, to make L-serine. 

 

It is not clear whether SR-derived pyruvate is eventually exported to neurones and 

capable of altering their ability to deal with NMDA receptor activation promoted by 

SR-derived D-serine (De Miranda et al., 2002). Pyruvate can enter the krebs cycle 

via different pathways, promoting ATP synthesis or being converted into lactate by 

the enzyme lactate dehydrogenase (LDH). If pyruvate gains access to the Krebs 

cycle, the ATP obtained closes a positive metabolic cycle, stimulating SR, which 

originally synthesized the pyruvate.  

1.3.2 D-serine synthesis in neurones and glia 

The growing interest in the role of D-serine at the NMDA receptor formed the basis 

for the tripartite synapse model, which suggests the function of astrocytic processes 

at the synapses, in addition to the pre- and postsynaptic neurones (Araque et al., 

1999). SR was initially only localised to astrocytes. Restricted to type-II 

protoplasmic astrocytes found in close proximity to synapses, SR provided a ready-

source of D-serine at the post-synaptic neurone (and the NMDA receptor). D-serine 

and other gliotransmitters (chemical transmitters synthesised by glia; ATP and 

glutamate included) are thought to be involved in glial regulation of synaptic 

transmission and neuronal activity (Araque et al., 1999; Haydon, 2001; Haydon et 

al., 2009). That is to say glia, a ‘house-keeping’ cell type largely ignored for decades 

have a vital function in processes of the CNS (Fellin et al., 2006a; Fellin et al., 

2006b).  
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However, like glutamate and ATP, it has now been suggested that D-serine can also 

be synthesised by neurones. Sensitive immunohistochemical methods with specific 

antibodies showed that SR was contained in astrocytes as well as some neurone 

populations such as pyramidal neurones in the cerebral cortex and some 

glutamatergic neurons (Yasuda et al., 2001; Williams et al., 2006). Puyal et al 

(2006) provide further evidence of presence of SR in neurones and further changes 

in D-serine levels and distribution during postnatal development. In particular, 

evidence for a glial-to-neuronal switch in the vestibular nuclei was described. This 

may explain the apparent contradiction seen in the initial studies localising SR to 

only glial cells (Puyal et al., 2006). Significant levels of SR mRNA and protein were 

also found in primary neuronal cultures in the cerebral cortex, striatum and 

hippocampus, with suggestions that neuronally derived D-serine could contribute to 

NMDA receptor activation in cortical neuronal cultures (Kartvelishvily et al., 2006; 

Yoshikawa et al., 2007). But Miya et al 2008, while investigating SR distribution in 

the brain showed that SR expression predominates in many types of neurones in the 

cerebral cortex, hippocampal CA1 region and cerebeller Purkinje cells. Double 

immunoflourescent staining revealed that SR signals co-localised with a neuron-

specific nuclear protein but not with the astrocytic markers glial fibrillary acid 

protein and 3-phosphoglycerate dehydrogenase (Miya et al., 2008).  

1.3.3 D-serine release 

SR appears to be intrinsically involved in the control of D-serine levels in the brain. 

It is influenced by a number of co-factors and co-enzymes that may also be utilised 

in the metabolism of D-serine in the brain. Glial cells contain the enzyme SR and 

these cells use changes in intracellular levels of calcium to communicate with 

neighbouring cells or to perform any action. Furthermore, calcium is required for full 

activity of SR and D-serine release. Release of D-serine has been detected in the 

brain with a number of stimuli including non-ionotropic receptor agonists AMPA 

and kainate, as well as with compounds that augment intracellular calcium such as 

ionophore A123187 (Cook et al., 2002; Kim, PM et al., 2005; Mothet et al., 2005). 

In this context, it has been suggested that synaptically released glutamate might 

stimulate glia to release D-serine, which in turn enhances NMDA responses. 



36 
 

The underlying signalling events involved in D-serine release have yet to be fully 

ascertained. Mothet et al (2005) suggest that D-serine release is dependent on 

intracellular calcium changes as well as extracellular calcium, the removal of which 

inhibited release. Interestingly, D-serine release also was markedly reduced by 

concanamycin A, a vacuolar-type H(+)-ATPase inhibitor, indicating a role for the 

vesicular proton gradient in the transmitter storage/release (Mothet et al., 2005). 

Although Wako et al find little evidence for vesicular storage of D-serine, based on 

the lack of structural evidence for D-serine containing vesicles (Wako et al., 1995). 

D-serine may also be released into the extracellular space by known amino acid 

transporters in the brain. A glial-expressed Na
+
-dependent transporter, with low 

affinity and low specificity for D-serine (ASCT-2) has been described. Transport is 

coupled with movement of neutral amino acids, so that D-serine transport is 

inhibited by L-amino acids and addition of D-serine to cell cultures elicited robust 

efflux of pre-loaded D-serine (Ribeiro et al., 2002).  

1.3.4 D-serine removal/metabolism 

 

1.3.4.1 DAAO 

D-amino acid oxidase (DAAO) is able to metabolise D-serine as follows: D-serine + 

H2O hydroxypyruvate + H2O2 + NH3 and is found in highest concentrations in 

liver and kidney but is also abundant in the brain (Huynh et al., 1985). Early studies 

localised DAAO to Bergmann glial cells and other astrocytes but not neurones or 

oligiodendrytes (Horiike et al., 1987; Hashimoto & Oka, 1997) where it is thought 

contribute to the removal of D-serine from the extracellular space and hence the 

termination of the electrophysiological function of D-serine at the NMDA receptor. 

D-serine has a half-life of approximately 16 hours (Foltyn et al., 2005), to which 

DAAO is likely to be a contributing factor at least in hindbrain areas and the 

cerebellum where highest levels of this enzyme are found, even in neuronal 

populations (Moreno et al., 1999). The highest D-serine concentration was also 

found in these areas in DAAO knockout mice, while D-serine levels in forebrain 

regions remained unchanged (Hamase et al., 2005). The CNS concentration of D-

serine seems to be inversely correlated with the distribution of DAAO (Nagata, 

1992). This distribution appears 3 weeks after birth in rats and is likely to be a 
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consequence of brain-structure specific increases in DAAO expression (Hashimoto 

et al., 1993a). It is unclear what factor(s) trigger DAAO activity in the brain, but 

interestingly nitric oxide (NO) can increase activity of this enzyme while also 

inhibiting SR activity. If both DAAO and SR exist in the same cell, it is likely that 

NO released as a result of ionotropic glutamate receptor activity could reduce D-

serine synthesis and release, while at the same time increasing its oxidation.  

1.3.4.2 Serine Racemase 

D-serine may also be removed by SR, which is expressed in the brain with a similar 

distribution to that of D-serine. Either pharmacological inhibition of this enzyme, 

which lead to reduced extracellular D-serine by an unknown mechanism or through 

SR-αβ-eliminase activity of SR, where D-serine is metabolised to L-serine 

(Panizzutti et al., 2001; Foltyn et al., 2005).  

1.3.4.3 D-serine transporters 

Transporters of D-serine are also likely to play an active role in its removal from the 

synaptic cleft. To date,
 
the transport system most associated with serine has been 

reported
 
to be system ASC, although uptake of D-serine may also occur

 
through 

system L (Sershen & Lajtha, 1979). In C6 cells, the D-serine uptake system
 
showed 

broad substrate specificity and higher affinity for L-serine
 
than for D-serine (Hayashi 

et al., 1997).  This is expressed in glia and serine transport is Na
+
-dependent 

transporter, with low affinity and low specificity for D-serine (ASCT-1). Transport is 

coupled with movement of neutral amino acids, so that D-serine transport is 

inhibited by L-amino acids and addition of D-serine to cell cultures elicited robust 

efflux of pre-loaded D-serine (Ribeiro et al., 2002). A neutral amino acid transporter 

with much higher affinity for D-serine (and L-serine) has since been discovered 

which is expressed at the pre-synaptic terminals, dendrites and somata of neurones in 

cortex, cerebellum and hippocampus (Asc-1) (Javitt et al., 2002; Matsuo et al., 

2004). Due to such high expression in the brain, and higher affinity for D-serine, the 

Asc-1 transporter may be an alternative mechanism for enzymatic removal of D-

serine in regions where DAAO is absent. 
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1.4 D-serine function in the CNS 

As a NMDA receptor co-agonist D-serine has been associated with a number of 

brain functions as well as neuropatholgies.  

1.4.1 Role of D-serine in cell migration 

NMDA receptors are essential in granule cell migration in the developing cerebellum 

(Hatten, 1999). It is thought that glutamate release by Bergmann glia promotes the 

mobility of granule cells through stimulation of NMDA receptors. These cells also 

express SR during cerebellar development and the highest levels of D-serine release 

correspond to the most intense cell migration period, p14, after which a reduced D-

serine release is observed (Boehning & Snyder, 2003). Inhibition of SR or DAAO 

treatment of mice cerebellar slices blocks cell migration, by reducing calcium influx 

from NMDA receptor activation. DAAO treatment reduces granule cell migration by 

60%; this is reversible with D-serine applications, which restores cell migration. An 

inhibitor of DAAO (sodium benzoate) also reverses the effects of DAAO on cell 

migration. Inhibitors of SR (Et-phan and Met-phan) also markedly inhibited granule 

cell migration as a result of reduced intracellular calcium (Kim, PM et al., 2005). 

1.4.2 Role of D-serine plasticity 

The ability of excitatory synapses to undergo long lasting changes in the efficacy of 

basal synaptic transmission is thought to be the underlying mechanism for learning 

and memory (Bliss & Collingridge, 1993). NMDA receptor activation is necessary 

for the formation and consolidation of LTP (Collingridge et al., 1983). Ca
2+

 influx 

via the NMDA receptor triggers the subsequent and persistent changes in the 

expression of AMPA receptors (this is expressed as long term potentiation (LTP) or 

long term depression (LTD). The degree of activity of NMDA receptors is 

determined in part by extracellular Mg
2+

 and the co-agonist, D-serine and glycine 

(Liu, L et al., 2004). Yang et al showed that the removal of D-serine from the 

extracellular space markedly compromised the induction of LTP, an effect that could 

be reversed with supplements of D-serine (Yang et al., 2003).  
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1.4.3 D-serine and Schizophrenia 

Schizophrenia is a complex mental disorder that has also been linked to 

dysfunctional NMDA receptor activity. Blocking NMDA receptors (e.g. with 

ketamine) caused schizophrenia-like symptoms in primates, as a result of 

hypofunction in this channel (Lahti & Tamminga, 1995). Additional studies of 

transgenic mice with reduced NMDA receptor expression also show correlative 

social and sexual behaviour to that seen in patients with schizophrenia. 

Pharmacological approaches targeted the modulatory glycine site, to boost NMDA 

receptor activity in a selective manner in the brain. Oral administration of D-serine 

was found to be most effective at lower doses (30mg/day compared to 800mg of 

glycine/day), as it crosses the blood brain barrier easier than glycine. Additionally, 

glycine can also affect inhibitory synapses of the brain stem and spinal cord by 

activating strychnine sensitive receptors. D-serine was well tolerated by patients and 

efficient in improving schizophrenic symptoms (Levy et al., 2005).  

Recently some studies have even suggested a genetic link between D-serine and 

schizophrenia. Gene G72 was found on chromosome 13, located between q24 and 

q34 has been associated with schizophrenia (Lin et al., 1997; Blouin et al., 1998; 

Shaw et al., 1998). The translational product of this is able to interact with DAAO 

by protein-protein interactions, increasing the activity of the enzyme three-fold in 

vitro (Chumakov et al., 2002). This increased metabolism of D-serine supposedly 

reduced its availability at the NMDA receptor. Librie et al (2010) studied two 

mutagenic mice lines to find evidence for this model. A mouse with a mutation in 

the NR1 subunit (D481N) showed deficits in sociability, prolonged latent inhibition, 

enhanced startle reactivity and impaired spatial memory but a mouse with 

hypofunctional DAAO (G181R) mutation had elevated brain levels of D-serine, but 

alone it did not affect performance in the behavioural measures. Mice containing 

both of these mutations displayed improvement in social approach and spatial 

memory retention, as well as a partial normalisation of startle responses; hence 

increased D-serine availability resulting from reduced DAAO activity corrects the 

performance of mice with deficient NMDA receptor glycine site activation (Labrie et 

al., 2010).  
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These observations would suggest that glutamate neurotransmission via the NMDA 

receptor may be decreased in Schizophrenia, as a result of reduce availability of D-

serine at the modulatory glycine site but no direct evidence of this has so far been 

uncovered. D-serine concentrations in the post-mortem brain tissue from 

schizophrenia patients are significantly altered for example. However, gene 

expression and biochemical activities of the enzyme DAAO were found to be 

elevated in cerebellum (Kapoor et al., 2006). 

1.4.4 Alzheimer’s disease 

A study using D-serine deaminase demonstrated that D-serine, but not glycine 

mediates NMDA receptor-elicited cell death in hippocampal slices (Shleper et al., 

2005). In Alzheimer’s disease, a neurodegenerative disorder, pathogenesis is 

recognised by the formation of neurotic plaques, the major component of which is 

the inflammatory activation of microglia due amyloid β-peptide (αβ) (Barger & 

Basile, 2001; Butterfield & Boyd-Kimball, 2004). This leads to neuronal death, as a 

result of over-excitation of the NMDA receptor.  Increased NMDA receptor activity 

has been found in the brain of individuals affected by AD and blockers of NMDA 

(eg. Memantine) are neuroprotective (Lipton, 2004). The stimulant of NMDA 

receptor-mediated neurodegeneration may be D-serine, which has been shown to be 

released by αβ in cultured microglia cells (Wu et al., 2004).  

Increased expression of both SR protein and mRNA has been found in microglia 

exposed to αβ, as well as increased D-serine concentrations, indicating a dual-action 

of this peptide. A susceptible region, the activator protein-1 (AP-1) binding sequence 

located in the first intron of the SR gene, may be targeted by αβ, where binding 

increases its transcription rate (Wu & Barger, 2004). Additionally αβ can regulate 

SR post-transcriptionally by causing increases in the microglial Ca
2+

 levels which 

up-regulates the enzymatic activity (Cook et al., 2002). Additional supporting 

evidence has been found in patients with AD, showing increased levels of SR 

activity in the hippocampus (Wu et al., 2004). Interestingly, while examining AD 

patients with high anxiety and low anxiety symptoms, it was found that binding 

affinity to the modulatory glycine site was significantly higher in high anxiety 

patients, and these showed reduced NR2A density (Tsang et al., 2008).   
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1.4.5 DAAO in brain physiology 

DAAO activity has been identified in a number of organisms and most recently in 

human brain. As early as 1987, before even the localisation of D-serine the brain, 

DAAO was localised in rat cerebellum, particularly to astrocytes and Bergmann glia 

cells (Horiike et al., 1987). Moreno et al set out to investigate this localisation 

further with affinity-purified polyclonal antibody (Moreno et al., 1999). They 

confirmed earlier investigations and found highest staining in hindbrain regions, with 

highest levels in Bergmann glia of rat brain but also found expression in forebrain 

regions, in cerebral cortical and hippocampal neurones. Physiological importance in 

brain D-serine metabolism was investigated once this D-serine was localised to the 

brain. Knockout mice showed increased levels of D-serine in hind brain regions 

(Almond et al., 2006; Hamase et al., 2006).  

In cultured cells over-expressing DAAO, D-serine treatment led to apoptosis (by 

hydrogen peroxide production); cell death was partially blocked by DAAO inhibitors 

(Park et al., 2006). Taking advantage of the fact that H2O2 is a strong oxidant that 

induces apoptosis of tumour cells in vitro, Fang et al conjugated DAAO with 

polyethylene glycol (DAAO-PEG) and administered this to tumour-bearing mice. 

The administration of D-proline resulted in significant suppression of tumour 

growth, by generating H2O2 (Fang et al., 2002). Attempts to use DAAO as an 

evaluative assay for tumour activity found highest activity in rat kidney, 8 times 

higher compared to rat liver while in tumour cells, activity was considerably less 

(Sasamura et al., 2002).  

1.5 Techniques used to study D-serine in the brain 

 

1.5.1 Chromatography 

D-serine had been shown to potentiate the NMDA receptor-mediated response 

(Fadda et al., 1988; Kleckner & Dingledine, 1988; Wood et al., 1989). This may 

have motivated researchers to look for D-serine in the brain at a time when the 

overwhelming attitudes confined D-amino acids to bacteria and lower organisms. 

The earliest investigations focused on enantioselective techniques to determine D-

serine (and other free D-amino acids) which rely on high-performance liquid 
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chromatography (HPLC). Total amino acid content of brain tissue is extracted and 

samples are derivatized to fluorescent diastereomers with o-phthalaldehyde and a 

chiral thiol (e.g. N-acetylcysteine) and subjected to HPLC. Gas chromatography–

mass spectrometry analysis and capillary electrophoresis are also used for the 

determination of D- and L-amino acids. Although these methods are exceptionally 

sensitive and can be used for the quantitative determination of various D- and L-

amino acids simultaneously, they are time consuming, and require proficiency and 

expensive equipment.  

Hashimoto et al were the first to detect significant levels of D-serine in rat brain 

using both HPLC and gas chromatography (Hashimoto et al., 1992a; Hashimoto et 

al., 1992b). The D-serine levels were a third of L-serine levels, and the highest of 

any D-amino acid found in the CNS. Hamase et al (1997) used a similar technique, 

involving flourogenic derivatization of each amino acid, isolation of each amino acid 

by reverse HPLC, followed by enantiomeric separation with Pirkle-type chiral 

stationary phases (Hamase et al., 1997). It was established that D-serine was found 

in various regions of the brain, in a non-uniform manner, with highest D-serine 

levels in forebrain and trace amounts in the cerebellum. As well as looking at D-

serine, they found that D-alanine was only found in the pituitary gland of both male 

and female rats, while D-leucine was detected in trace amounts in the pineal glands 

and hippocampus (Zhao et al., 2004; Miyoshi et al., 2009).  

The most recent developments in this method include linkage of liquid 

chromatography with tandem mass spectrometry (Song et al., 2008). D-serine levels 

were determined as a peak and percentage D-serine was calculated as D-serine/ (L-

serine + D-serine). Changes in D-serine concentrations were followed during 

development, to determine involvement of D-serine in CNS maturation. Song et al 

showed that D-serine levels increase from 5% in prenatal rats to 14% in a 90-day old 

rat. Highest levels were found in the cortex, striatum and hippocampus, confirming 

earlier results.  

While the presence of D-serine in the brain can be confirmed by these techniques, 

and developmental changes followed; the localisation patterns, metabolism and 

functional significance at the NMDA receptor is impossible to determine. Perhaps 

the major problem with this technique is the need to homogenise the brain cells for 
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further analysis; this disrupts all cellular networks so that differentiation between 

extracellular and intracellular brain D-serine content is impossible.  Also the 

localisation pattern is lost completely, which may have provided clues about site of 

D-serine synthesis, function and metabolism. Confining brain D-serine to neurones 

or glia identifies the site of its synthesis, so that investigations for endogenous 

sources of D-serine can be focused and factors influencing its metabolism 

ascertained. Hence, chromatography techniques although very useful in confirming 

the presence of D-serine in the brain, are not practical for exploration of the 

functional role of D-serine in the brain; with added drawbacks in high running costs, 

excessive consumption of samples and time-consuming nature of this system. 

1.5.2 Antibody staining: where is D-serine localised in the brain? 

Perhaps realising the limits of HPLC and gas chromatography in investigating D-

serine function in the brain Schell et al developed a stereo-selective antibody for D-

serine, which overcomes at least two difficulties (Schell et al., 1995). First, the 

localisation patters in the brain can be clarified: D-serine was enriched in the rostral 

cerebral cortex, hippocampus, anterior olfactory nuclei, corpus striatum, and 

amygdala; much less was apparent in the caudal part of the brain, including the adult 

cerebellum, where glycine immunostaining is more prevalent (Schell et al., 1995; 

Schell et al., 1997). This confirmed earlier studies using chromatography techniques 

described above. In fact the localisation pattern of D-serine when compared to 

localisation of the NR2A/B subunits of the NMDA receptor was found to correlate 

significantly. This study is a recognised landmark in changing the prevailing 

attitudes towards acceptance of D-serine as a co-agonist at the NMDA receptor, 

though not without recognition of past pioneers, upon whose efforts this work was 

built. 

Secondly, and somewhat controversially, D-serine was localised to glia cells. In 

particular protoplasmic astrocytes, which ensheathe synapses signifying a role of 

glial in NMDA receptor-mediated neurotransmission (Schell et al., 1997). This 

formed the basis of the tripartite synapse models, that suggests glia are activate 

players in neurotransmission and synaptic activity (Araque et al., 1999). Moreover, it 

was assumed that the source of D-serine in the brain was also glia, a point confirmed 
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by the discovery of SR in astrocytes (Wolosker et al., 1999a; Wolosker et al., 

1999b).  

However, recent studies show that in fact D-serine and SR was also present in 

neurones as well as glia, though some studies confined SR only to neurones (Yasuda 

et al., 2001; Williams et al., 2006; Yoshikawa et al., 2007). Williams et al raised 

antibodies optimised to formaldehyde-fixation, to show that D-serine was 

concentrated into vesicle-like compartments, rather than distributed uniformly across 

the cytoplasm. Subsequent dual immunofluorescence for glutamate and D-serine 

revealed D-serine in a subset of glutamatergic neurons, particularly in brainstem 

regions and in the olfactory bulbs (Williams et al., 2006). While Yoshikawa et al 

(2007) used in situ hybridization based on tyramide signal amplification for 

detection SR mRNA, showing its presence in cortical and hippocampal neurones 

(Yoshikawa et al., 2007). Considerations have been given to a glia to neuron switch 

of the SR enzyme, which may overcome the supposed contradiction in the results of 

these studies (Puyal et al., 2006). But two contradictory outcomes are seen with 

antibody staining suggesting poor selectivity of antibody. Earlier antibodies (Schell 

et al., 1995) showed some response to L-serine and glycine also while Williams et al 

show only D-serine is detected (Williams et al., 2006). 

Nevertheless the spatial localisation of D-serine by immunohistochemical studies 

greatly advanced our understanding of the role of this amino acid in the CNS. A 

physical relationship between NMDA receptors and D-serine was recognized with 

insight into the source of brain D-serine. However, as with HPLC, antibody 

techniques are time-consuming, expensive and do not allow study of living brain 

tissue. Additionally, monitoring changes in D-serine levels in real-time is still not 

feasible, hindering progress in determining likely factors that control D-serine 

signalling. This technique also doesn’t allow extracellular brain D-serine 

concentrations to be examined, so the saturation state of the modulatory glycine site 

of NMDA receptors remains unexplored.  

1.5.3 Enzymatic tools and capillary dialysis 

An enzymatic assay involving DAAO allowed quantitative monitoring of D-serine in 

the brain. The enzyme breaks down D-serine to hydroxyl pyruvate, which when 

coupled with lactate dehydrogenase or amplex red, allows indirect monitoring of 
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changes in D-serine using a spectrometer. Hence, study in living brain tissue is 

possible. The use of this enzymatic assay with capillary electrophoresis, overcomes 

another milestone in D-serine research. In particular it allows extracellular D-serine 

levels to be defined and activity-dependent changes to be monitored from dialysate.  

Capillary electrophoresis has advantages not associated with HPLC and 

immunohistochemical studies, it has high separation efficiency, instrument 

simplicity, minimal operation costs and compatibility with a small sample volume 

(Layu, A 1999). Bowser et al monitored dialysate collected from the rat striatum 

using micro-dialysis capillary electrophoresis (Ciriacks & Bowser, 2004; O'Brien & 

Bowser, 2006). Dialysate was analyzed every 12.5 seconds using the online 

instrument. This system allowed not only basal concentrations to be ascertained (8 ± 

2µM) but D-serine release was also observed (with aCSF containing high-K
+
 and 

kainic acid). The microdialysis-CE-LIF instrument was able to monitor this 

enzymatic reaction as it proceeded over a period of 60 min, in vitro. 

More recently a D-serine dehydratase was purified from Saccharomyces cerevisiae, 

Dsd1p specifically acts on D-serine. D-Threonine also serves as a substrate, but the 

efficiency is 3% of that with D-serine. The D-serine content is determined using a 

lactate dehydrogenase coupling method, and a change in absorbance at 340nm 

wavelength was measured as a measure of D-serine change. The urinary D-serine 

concentration of a lab member was found to be 243 ± 7.0 l µM (mean ± SD), similar 

to that observed by HPLC analyses (239 ± 9.8 µM)(Ito et al., 2007).  

1.5.4 Enzyme biosensors 

Enzyme based systems and biosensors are becoming increasingly important as 

analytical devices for use in the central nervous system, as they allow transient 

events occurring in the second to second time frame, to be captured. Current 

directions in D-serine study point towards biosensor systems incorporating DAAO, 

as a biological sensing element on a microelectrode probe. This probe can be directly 

inserted into tissue both in vitro and in vivo allowing detection of D-serine with a 

high resolution, accuracy and stability.  

To summarise then, current tools allow localisation of brain D-serine (antibody 

staining), quantitative measurements of this amino acid (HPLC and enzymatic 
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assays), and activity-dependent changes can be monitored in living tissue (capillary 

dialysis and enzymatic assays). But these techniques are often difficult, expensive 

and time-consuming to use. In light of this an ideal tool for studying D-serine may 

be defined as one which allows quantitative D-serine measurements, directly in brain 

tissue, while allowing manipulations with pharmacological drugs to be observed in 

real-time. It also needs to be cheap, easy to use and allows fast detection of D-serine 

in various models of the brain. The aim of this study is to create such a tool.   

1.6 Brain Models used to study D-serine 

1.6.1 Acutely isolated cells 

Cultured cells are an incredibly versatile model for exploring cellular processing and 

signalling in neurones and these have been utilised to determine signalling 

mechanism of D-serine in NMDA receptor-associated pathologies, factors 

influencing D-serine enzymes (SR and DAAO) and role of D-serine transporters. 

However this model does have disadvantages: the preparation process is long, 

typically 12-15 days, therefore there is increased chance of morphological and 

genetic changes occurring, which may not be representative of brain physiology. 

Also the tightly packed network structure of neurones and glia as seen in in vitro or 

in vivo models is completely lost, so signalling mechanisms may differ from the in 

vivo brain.  

Nevertheless, cultured cells are oft-used as a first step towards investigating a 

principle. Since cultured cells can be segregated into neuronal or glial populations, a 

number of researchers have used single cell-type populations to localise D-serine, SR 

and D-serine release to neurones or glial cell types (Schell et al., 1995; Cook et al., 

2002; Mothet et al., 2005). One of the earliest example of this is the rat cortical glial 

culture based experiment used by Schell et al, which were pre-loaded with radio-

labelled D-[
3
H]serine. Exposure to glutamate-related drugs caused release of 

radioactivity into the medium, D-[
3
H]serine could be released by non-NMDA 

agonist AMPA and kainate (Schell et al., 1995). The presence and release of D-

serine from glia was supported by immunohistochemical studies and repeated by a 

number of groups (Schell et al., 1997; Mothet et al., 2000). But Kartvelishvily et al 

use the same conception to challenge this hypothesis; showing that D-serine can also 

be released from neuronal cultures, by the agonists AMPA, NMDA and kainate 
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(Kartvelishvily et al., 2006). The presence of SR mRNA and protein was also 

localised to hippocampal and cortical neurones (Yoshikawa et al., 2007; Miya et al., 

2008).  

Cultured cell studies have also allowed for detailed investigations of factors 

influencing SR activity; these are numerous and display complex regulation of basal 

D-serine levels (Panizzutti et al., 2001; De Miranda et al., 2002; Neidle & Dunlop, 

2002). Balan et al (2009) isolated membrane-bound SR from rat brain and used 

cultured neurone to investigate regulatory dynamics of this. They found that 

translocation was blocked by a palmitoylation inhibitor indicating that membrane 

binding is mediated by fatty acid acylation of SR (Balan et al., 2009). This 

exemplifies the ease with which the environment of cultured cells can be 

manipulated to explore brain mechanisms. In a brain slice for example, this process 

would have been much more complex, with the need to break up cells and isolate 

neurones specifically after drug application.  

Ribeiro et al (2002) investigated the presence of ASCT type transporter in primary 

astrocyte cultures, which can uptake D-serine in a sodium-dependent manner, though 

with low affinity and specificity. Several small amino acids were able to inhibit D-

serine uptake and addition of D-serine to cells elicited robust efflux of intracellular 

L-serine (Ribeiro et al., 2002). Again the same problem as above is faced; the need 

to isolate astrocytes.  

The role of D-serine in cell migration was investigated using cultured cells, where 

the removal of D-serine by degradation and pharmacological inhibition of SR, both 

impede migration, while D-serine activates this process (Kim, PM et al., 2005). Here 

cultured cells were used to investigate the principle while further detailed study was 

carried out in vitro to confirm these findings. Similarly, many other functional roles 

were attributed to D-serine through investigations employing cultured cells as a brain 

model. Mothet et al (2002) showed that degradation of D-serine from hippocampal 

neurones by DAAO treatment reduces NMDA-mediated currents (Mothet et al., 

2000). Hence this amino acid may be of import in the many NMDA receptor 

mediated functions in the brain. Evidence for its role in learning and memory was 

investigated in cultured neurones, which showed diminished LTP when treated with 

DAAO (Yang et al., 2003). While the role of D-serine in cell death and neurotoxicity 
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has also been implicated, in neuropathological models of Alzheimer’s  (Wu et al., 

2004).  

1.6.2 Organotypic brain slices 

A step up from using cultured cells is to use brain slices grown as slice cultures; 

these have the advantage of fairly intact neuronal morphology and network 

connections lacking in cell cultures (Zimmer & Gahwiler, 1984). But structural and 

physiological changes can still occur as a result of long incubation periods in 

artificial buffers (12-15 days). Shleper et al investigated neurotoxic effects of both 

glycine and D-serine using organotypic hippocampal slices. D-serine was found to 

play a dominant role and its removal by D-serine deaminase, abolished NMDA-

elicited neurotoxicity (Shleper et al., 2005). This study is very difficult to carry out 

in vitro, since slices were cultured in media containing D-serine, its subsequent 

enzymatic removal indicated a role of D-serine in neurotoxicity. The only way to 

achieve similar down-regulation of D-serine would be to use SR-knockout mice or to 

use pharmacological inhibitors of SR. Although SR-knockout mice are available, 

some D-serine may still be present in the tissue as a result of its transport across the 

blood brain barrier and often the SR-down regulation is rarely complete.  

1.6.3 In vitro brain slices 

The in vitro brain slice allows some of the flexibility in experiment that cultured 

cells and slices have while structurally being a much closer representation of the 

brain. The vast majority of the neuronal and glial networks remain intact, and 

neurotransmission can be monitored to determine the state of a slice. Additionally, 

brain slices are typically prepared on the day of use, so any physical changes or 

artefacts that can occur in cultured cells/ organotypic slices maybe largely avoided. 

O’Brien used a microdialysis probe in mouse cortical brain slices, to investigate 

conditions under which D-serine can be released. Analyte measurements were made 

every 20-27s. Stimulation with high potassium induced increased release of D-

serine. Kainic acid (KA) induced D-serine release, but this release was not blocked 

by CNQX, suggesting that AMPA/KA receptors do not mediate D-serine release. 

Application of L-serine, the precursor of D-serine, resulted in increased extracellular 

D-serine concentrations (O'Brien & Bowser, 2006). Although, this tool for 
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measuring D-serine change is slow, the use of the in vitro model potentially allows 

factors controlling brain D-serine signalling to be identified.  

1.6.4 In vivo brain  

Very few examples exist for D-serine investigations in vivo, perhaps because of the 

many hindrances in using this model including strict licensing laws and regulations, 

and presence of anaesthetics that may alter electrophysiology. But this is considered 

the best brain model because complete intact cell structure is maintained along with 

natural milieu of circulating hormones and factors.  

Surprisingly, many examples of in vivo study of D-serine were carried out at a time 

before the role of D-serine in the brain was established. In the late 1980s in vivo 

experiments showed that D-serine, acting via the NMDA modulatory glycine site 

potentiated the ongoing neuronal activity through the NMDA receptor complex 

(Wood et al., 1989; Rao et al., 1990). Direct cerebellar injections of D-serine elicited 

dose-dependent increases in cerebellar cyclic GMP (levels were monitored via a 

radioimmunoassay), in mice. This is a well-characterised secondary messenger 

modulated by the NMDA receptor complex and reflects the ongoing stimulation of 

NOS and NO activity resulting from channel activation. Glycine was also found to 

increase cGMP levels, though with a shorter-time course, possibly resulting from 

active uptake mechanisms. These studies provide strong evidence that the co-agonist 

site of NMDA receptors is not saturated in vivo. 

 

Thiels et el (1992) set out to investigate the role of the modulatory glycine site in 

LTP at the commissural-CA1 synapses in anesthetized rats. Administration of the 

specific glycine site antagonist 7-chlorokynurenic acid and a general NMDA 

receptor antagonist (D-2-amino-5-phosphonovaleric acid), significantly attenuated or 

completely blocked the development of long-term potentiation. However, when 7-

chlorokynurenic acid was infused together with D-serine (1 mM), long-term 

potentiation developed that was comparable to that observed in control animals. 

Intrahippocampal administration of D-serine alone was associated with slightly 

greater magnitude of long-term potentiation than observed in control animals (Thiels 

et al., 1992). When published this study was taken as evidence for the importance for 

glycine in LTP, since D-serine was commonly used as an inert glycine analogue. 

Now that endogenous brain D-serine is well recognized, these experiments highlight 
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an important role of D-serine in LTP, which is supported by many recent studies 

(Yang et al., 2003; Zhang et al., 2008). 

 

More recent explorations of brain D-serine in vivo have examined basal 

concentrations of this amino acid, through microdialysis, to determine the saturation 

of the modulatory glycine site (Hashimoto et al., 1995; Matsui et al., 1995). SR KO 

mice also allow the study of D-serine in in vivo. Inoue et al (2008) show that 

NMDA-induced excitotoxic lesions were significantly smaller in SR KO mice 

(which had 10% of normal D-serine content) than in controls (Inoue et al., 2008). 

 

1.6.5 Humans 

D-serine in humans has been studied in association with the neuropathalogical 

disease schizophrenia which affects approximately 1% of the world’s population, 

with close to 10% of patients committing suicide. NMDA receptor hypofunction (as 

a result of reduced D-serine levels) is thought to be a contributing factor to the 

pathophysiology of this disease. Studies have shown NMDA receptor antagonists 

(phencyclidine and ketamine) induce SZ-like symptoms in healthy volunteers and 

exacerbate psychosis in SZ patients.  

A small study (n=132) found that D-serine (and glycine) is effective in reducing 

negative symptoms of schizophrenia, but little change is observed in positive 

symptoms (Tuominen et al., 2005). Bendikov et al investigated the amino acid 

content of cerebrospinal fluid in SZ patients and normal volunteers (n=12), a 25% 

decrease in D-serine levels and D/L-serine ratio was observed; in serum also D-

serine levels were reduced, although in post mortem CSF from SZ patients, little 

change was observed (Bendikov et al., 2007). Tsai et al analysed 26 studies with a 

total of 800 subjects revealing that D-serine (glycine and partial co-agonist 

sarcosine) significantly improved negative, positive and general psychopathological 

symptoms, concurring with studies by Heresco-Levy et al (2005), although not in 

conjunction with clozapine treatment (Tsai et al., 1998; Heresco-Levy et al., 2005; 

Lane et al., 2005). But Lane et al carried out a 6-week double-blind, placebo-

controlled trial of add on treatment with D-serine in 60 patients with chronic 

schizophrenia, finding little significant difference between this and placebo (Lane et 

al., 2005). 
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A number of investigations have used post-mortem tissue to study the significance of 

D-serine in schizophrenia. Normal DAAO immunoreactivity was abundant in glia, 

especially Bergmann glia, of the cerebellum, whereas in the cortex, hippocampus 

and substantia nigra, it is predominantly neuronal (Verrall et al., 2007). This is 

altered in SZ, higher level of DAO expression was observed in schizophrenic 

choroid plexus epithelial cells than that in non-schizophrenic cases (Ono et al., 

2009). Elevated DAAO protein and mRNA expression was found in the cerebellum 

of SZ brain, with a two-fold increase in the activity of this enzyme seen the cortex 

(study group size, n=15) (Kapoor et al., 2006; Madeira et al., 2008). 

 Steffek et al (used Western blot analysis) find increased expression of astrocytic SR, 

in the hippocampus of SZ patients but not in the cortex  using Western blot analysis 

(Steffek et al., 2006). Conversely, reduced SR protein expression is seen in the 

cortex (39%) and hippocampus (21%) but no change was seen in the cerebellum 

(Bendikov et al., 2007; Verrall et al., 2007). 

There are obvious limitations to using humans as test subjects. Where useful 

information has been found is through post-mortem study of diseased brain. The aim 

of studies in cell culture, in vitro and in vivo brain is to ultimately find a means for 

correcting dysfunctional events in the human brain. In the case of D-serine and 

NMDA-associated neuropathologies, only in the last two decades has D-serine 

function in the brain been considered and its innovative use for treatments is praise-

worthy.  

To summarise, although various models for studying D-serine events in the brain 

have been employed, the ultimate aim of each researcher has been to study this 

molecule in an environment closely resembling the human brain. Various acceptable 

models do exist and these have been employed to gather tremendous knowledge 

about D-serine signalling events in the brain, which has pioneered treatment of 

schizophrenia for example.  

1.6.6 The future in brain D-serine study: D-serine biosensors 

Enzyme based amperometric biosensors are becoming increasingly important 

analytical devices for use in the central nervous system. They have major advantages 

over traditional analytical tools including ease of use, fast response time, 
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exceptionally selective response for an analyte, (thereby removing the need for prior 

separation by HPLC) and these biosensors are often small in size which minimises 

tissue damage in vitro and in vivo. Upon detection of the analyte, an electrochemical 

signal is recorded at the electrode surface as a change in current at either fixed or 

varying potentials, allowing transient events occurring in the second to second time 

frame, to be captured in real-time.  

But there are potential problems in using enzyme based sensors. Enzymes removed 

from their natural environment tend to lose their activity, and thus limit the lifetime 

of a sensor. Furthermore, enzyme stability is reduced by the harsh environment of 

the matrices encompassing the enzyme and the very toxic environment of the brain 

itself. Selectivity issues may also arise; although the enzyme may be specific, many 

species in the brain are electro-active (for example serotonin and ascorbic acid) and 

can be oxidized at the electrode surface at low potentials (amperometric sensors are 

used at +500mV) giving false-positive signals. Continuing research aims to 

overcome these factors with stabilising matrices and use of screening layers against 

interferences.  

There is an increasing trend towards the development of sensors for a number of 

brain neurotransmitters and in particular D-serine. Biosensors for D-serine have 

always used DAAO, as a biological sensing element on a microelectrode probe. The 

performance criterion for such a device for direct use in tissue both in vitro and in 

vivo includes selective detection of D-serine with a high resolution, and with 

accuracy. The stability is also an important factor, since an experiment may last 

anywhere between an hour (in vitro) to days (in vivo). Although, the basic materials 

for biosensor technology have been available for over a decade, initial advances in 

making a sensor for D-serine were slow. Some of the earliest D-serine sensors were 

in fact biosensors of all D-amino acids (Guilbault & Hrabankova, 1971). There was 

great interest by the food and beverage industry for an easy, cheap and reliable 

method for detection of D-amino acids, as these indicated the presence of bacterial 

contamination (Gandolfi et al 1992; Gandalfi et al 1994). This launched interested in 

fabrication of a D-amino acid biosensors, which forms the basis for current 

techniques used to make D-serine sensors. Two factors in particular have been 

central to limiting initial enthusiasms for this tool: the deposition techniques which 
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are used to immobilise the DAAO enzyme and the source of DAAO, which differ in 

stability and affinity for D-serine as a substrate. 

 

1.7 D-serine biosensor fabrication 

1.7.1 Detection principles 

 

Biosensors formed from DAAO are based on a variety of detection principles. As 

can be seen from the equation, the deaminiation of an amino acid, in this case D-

serine, results in the production of NH3, and H2O2 while O2 is required for a reaction 

to occur. Indirect measurements of D-amino acid concentrations and DAAO activity 

have been based on the change in detection in all three of these factors. 

1.7.1.1 H2O2 

 

The vast majority of D-serine and D-amino acid biosensors detect H2O2, which is a 

by-product of metabolism of D-amino acids, as indirect measure of activity or amino 

acid concentration (Mikkelsen & Rechnitz, 1989; Wcislo et al., 2007; Pernot et al., 

2008; Zain et al., 2010). The hydrogen peroxide can then be detected 

amperometrically by a (platinum, gold or carbon) electrode polarized to 500–

700 mV relative to an Ag/AgCl reference. O2 is involved in electron transfer to the 

electrode surface in the form of H2O2. At the surface, peroxide is oxidized to 

regenerate O2. Because the oxidation of peroxide requires high potentials, at which 

many molecules will oxidize such as ascorbate, 5HT, dopamine and urate.  

1.7.1.2  Oxygen detection 

Inaba et al (2003) combined DAAO with pyruvate oxidase to make a sensor which 

indirectly measured the fermentation rate, by detecting the amount of oxygen 

consumed. An oxygen electrode consisting of a platinum cathode, a lead anode, an 

alkaline electrolyte (KOH) and an oxygen permeable Teflon membrane was used. 

Since DAAO action on D-alanine releases pyruvate, which is subsequently oxidised 
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by pyruvate oxidase, D-alanine was taken as an indirect measure of the amount of 

oxygen consumed in the second enzyme reaction, calculated as a difference in signal 

between two oxygen electrodes (Inaba et al., 2003).  

1.7.1.3 Ammonium ions 

 A thin layer of DAAO was placed on top of a monovalent cationic electrode, which 

detected ammonium ions. The probe was found to be a suitable assay for a number 

of D-amino acids including D-phenylalanine, D-alanine, D-valine, D-methionine, D-

leucine, D-norleucine, D-isoleucine and asparagines (Guilbault & Hrabankova, 

1971).  

1.7.2 Source of D-amino acid oxidase 

Hans Krebs noted that D-amino acids could be rapidly deaminated when incubated 

with fresh slices of rat kidney and liver, while naturally occurring l-isomers were 

also catalysed. He showed that the factor involved in action on non-naturally 

occurring amino acids could be extracted from fresh or dry tissue (while the enzyme 

acting on l-isomers was inhibited by the purification steps). This was the D-amino 

acid oxidase (Krebs, 1935). A prototype of the oxidase class of flavoproteins, DAAO 

was found to catalyse the oxidative deamination of non-acidic D-amino acids to their 

corresponding α-ketoacids. The most preferred substrates of this enzyme include 

amino acids with small hydrophobic side chains, followed by those bearing polar, 

aromatic and basic groups (Pollegioni et al., 1992). As a stable homodimer with 

tightly bound flavin adenine nucleotide (FAD) molecule, this 40kDa protein, can be 

used as a means to analyse D-amino acids in various body regions. In the brain this 

enzyme becomes more selective due to the narrow expression of D-amino acids here. 

To date only one amino acid is shown to be present in significant amounts in brain 

tissue, upon which the DAAO acts: D-serine. Thus this enzyme can be used to make 

a biosensor which will selectivity detect D-serine.  

DAAO from a number of sources has since been discovered including humans, 

porcine kidney, Trigonopsis variabilis, Rhodotorula gracilis, Candida boidinii and 

Fusarium solani. These enzymes differ in stability, substrate preference and 

specificity as well as in binding site kinetics. Unfortunately, direct comparisons of 

the kinetic parameters among these DAAOs is not feasible since published data has 
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been collected using different techniques and under different experimental 

conditions. However, only the mammalian source of the enzyme is commercially 

available, and easy methods for expression and purification of other DAAOs have 

only in the last 5-10years become available. Some of the earliest protocols for 

example, for DAAORg purification lasted 4-5 days, with native expression of the 

protein in yeast, followed by separation with ammonium sulphate, DEAE-sepharose 

and Mono S columns. As seen with native protein purifications, the yield was poor 

(Pilone Simonetta et al., 1989a; Pollegioni & Pilone, 1992). This purification step 

was greatly improved by the purification of cDNA from the yeast, which was 

inserted into a plasmid to be expressed in E. coli. The protein was found to 

catalytically active and soluble, with much greater yield of protein (Pollegioni et al., 

1997). But the greatest advancement came in the form a histidine tag, which could be 

encoded onto the protein C-terminal, allowing a single-step purification using a 

nickel column (Molla et al., 1998). 

DAAORg has a number of unique qualities, including highly efficient catalysis and 

tight binding with the coenzyme FAD, that make it more efficient at oxidising D-

amino acids (and D-serine) compared to other sources of the enzyme (Pilone 

Simonetta et al., 1989b; Pollegioni et al., 2002). Unsurprisingly, the turnover 

numbers (with D-Ala as substrate) determined are highest for DAAORg 345 s-1, 

compared to DAAOTv and DAAOPk, 52.5  and 12.7 s-1 respectively (Porter et al., 

1977; Pollegioni et al., 1992; Tishkov & Khoronenkova, 2005). Furthermore, it is 

more stable in an immobilised form and can best withstand changes in temperature 

and pH when compared to enzyme from T. variabilis and porcine kidney (Pilone 

Simonetta et al., 1989b; Pollegioni et al., 2002; Pollegioni et al., 2004).  It is 

believed that the specific presence of a 23-residue C-terminal loop (βF5-βF6), is 

responsible for correct dimeric formation, that is accounts for higher stability of 

DAAORg (Pollegioni et al., 2002). A further peculiar feature of the DAAORg 

structure is the absence of a loop acting as an active site ‘lid’. In fact, in the 

mammalian enzyme, the conformational change of this ‘lid’ ( loop βI5-βI6) allows 

the substrate/product exchange at the active site: Indeed, the dissociation of the 

product from the enzyme is the rate-limiting step in catalysis (Porter et al., 1977). In 

DAAORg, the active site entrance is only partially hindered by the flexible side 

chain of a tyrosine (Tyr238), resulting in a faster exchange and a more efficient 

enzyme (see above).  
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The commercially available DAAOPk was widely used in assays and for fabrications 

of biosensors, but it showed low stability, and a low turnover number. D-serine 

biosensors formed from this enzyme were not sensitive enough for used in the brain 

due to the low detection limits, in the 100µM range; slow response and poor stability 

(Johansson et al., 1993; Jianzhong et al., 1994). But a surprising paper published 

recently has utilised this enzyme to make a sensor that is by far the most 

sophisticated biosensor made using DAAOpk. Sensitivity was reported to be 61± 

7µA mM
-1

 cm
-2

, LOD of 20nM and very fast response (Zain et al., 2010), suggesting 

that although the enzyme is a contributing factor to the features of a biosensor, other 

dynamics are also involved. But a biosensor made using the same cross-linking 

method and DAAORg enzyme shows enhanced features, including a LOD of 16µM 

(theoretical) and sensitivity of 89± 33µA mM
-1

 cm
-2 

(Pernot et al., 2008).  

Conclusively, then, a limiting factor in making a D-serine biosensor sensitive enough 

for use in the brain has been the availability of a more stable and active form of 

DAAO. Although, even now, no other source of DAAO is commercially available, 

the advances in expression and purification technology make other sources of 

DAAOs more accessible, leading to better D-serine biosensors.  

1.7.3 Enzyme entrapment techniques 

The early 1990s saw an increase in reports on the development of biosensors using 

DAAO coupled to electrochemical transducers for the direct, rapid detection of D-

amino acids in solution.  These were based on a variety of detection methods, 

enzyme entrapment protocols and assembly materials. The deposition is often 

responsible for the micro-environment surrounding the enzyme, so it is important for 

biosensor stability and hence its uses; the assembly material can determine the shape 

of a biosensor while certain electrochemical method are limited to specific uses.  

1.7.3.1 Adsorption and cross-linking 

Enzyme layers on an electrode surface can be made by mixing the DAAO enzyme 

with carrier proteins such as BSA. Exposure to glutaraldehyde causes cross-linking 

to occur which entraps the enzyme to form a working biosensor. Disadvantages of 

this technique are that coating is not uniform, and often difficult on small surface as 

with microelectrodes and glutaraldehyde often diminishes enzyme activity. 
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Nevertheless the vast majority of D-serine biosensors to date have used this 

technique (Mikkelsen & Rechnitz, 1989; Pernot et al., 2008; Zain et al., 2010). 

Jianzhong et al (1994) designed a fibre optic system which selectively detected 

H2O2. HRP was immobilised on bovine albumin matrix with glutaraldehyde. 

Although there is a long delay in response (5minutes), DAAO was incorporated into 

this system to detect D-amino acids successfully (Jianzhong et al., 1994). 

Additionally the enzyme DAAO and LAAO were immobilised with glutaraldehyde 

on a three-electrode biosensor for the purpose of detecting total L- and D-amino acid 

concentration in dairy products. This device successfully some D-amino acids, with 

an LOD of 0.15mM and results compared favourably with a standard photometric 

amino acid test and was used to monitor milk ageing effects (Sarkar et al., 1999). 

Improvement to this design were made later, which saw immobilisation of DAAO on 

a graphite working electrode of a screen-printed strip modified with Prussian blue 

and nafion layers, with an extra polymer layer for screening against interferences. 

Cross-linking of DAAO was achieved the same way, using glutaraldehyde /BSA; the 

LOD however as greatly improved: 1µM, with linear range of 5-200µM for D-

alanine (Wcislo et al., 2007). These sensors were useful in monitoring D-amino acid 

contents of milk, fruit juices and other foods but they did not meet the specifications 

for use in the brain, to monitor D-serine. 

But Pernot et al (2008) and Zain et al (2010) utilise this very technique to fabrication 

of D-serine biosensors which are sensitive, with fast response times and relatively 

stable. Some recordings have also been made in the brain, showing increased D-

serine levels with intraveneous injections of D-serine (Pernot et al., 2008; Zain et al., 

2010). This suggests that glutaraldehyde/BSA cross-linking methods can be utilised 

to make useable biosensors. 

1.7.3.2 Electropolymers 

The use of electropolymers for biosensor fabrication has advantages over the above 

technique in that the formation of a layer can be controlled by the duration and 

magnitude of the applied voltage. Thin uniform layers can be achieved with self-

limiting polymers such as polyphenol and polytyramine. Polypyrrole and 

polythiophen allow formation of thicker layers, allowing greater amounts of protein 

to be entrapped. Pernot et al (2008) use poly-m-phenylenediamine for deposition and 



58 
 

as a screening layer, which ensures that electro active species do not interfere with 

the biosensor response. 87% selective response for D-serine was observed (Pernot et 

al., 2008). 

Zain et al (2010) also use this method to provide a screening layer with poly-ortho-

phenylenediamine with subsequent glutaraldehyde/BSA technique for entrapment of 

DAAOpk (Zain et al., 2010). Although this method can be used in the fabrication of 

biosensors, to date, D-serine or D-amino acid biosensors have not been made this 

way. Generally biosensors made this way have poor sensitivity due to the severe 

chemical environment of electropolymers. Also the polymerisation technique itself 

may result in free radicals, which can degrade the enzyme. 

1.7.3.3 Sol-gel methods  

The sol-gel process is a chemical technique for synthesising a silicate matrix around 

a biomolecule. Ellerby et al (1992) have shown that sol-gels can be used to entrap 

enzymes in a porous glass layer, the micro-environment within which can be easily 

controlled (Ellerby et al., 1992). The process of making silicate matrix requires a 

number of steps including hydrolysis of sol-gels under acidic conditions, with 

subsequent water and alcohol condensation that forms a 3D matrix. Entrapment of 

multiple enzymes and co-factors is permitted with the enzyme remaining relatively 

stable, with full retention of catalytic activity. This process has been fully utilised by 

Dale et el to fabricate biosensors for number of brain signalling molecules including 

ATP, Glutamate, Adenosine, Acetylcholine and lactate (Llaudet et al., 2003; Dale et 

al., 2005; Llaudet et al., 2005; Tian et al., 2009). This method has not been 

employed for the purpose of D-serine biosensor fabrication so far but has great 

potential. This project aims to utilise this method for the fabrication of D-serine 

biosensors encompassing DAAORg.  

1.7.4 Assembly material 

1.7.4.1 Carbon/graphite based biosensors 

Carbon paste was often preferred over ordinary solid electrodes, as it allowed easy 

modification of the entire bulk of material, detection surface can be renewed with 

sanding and many options are available as to the required shape or size. This is also a 

cheap material with relatively good conductivity for amperometric biosensors. Of the 
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earliest attempts to immobilise DAAO with HRP in carbon paste showed restricted 

sensitivity and stability (Kacanikil et al 1993, 1994), slight improvements were made 

by Johansson et al, who showed made a sensor with the detection limit of 5µM for 

hydrogen peroxide (Johansson et al., 1993). This sensor was active for a number of 

D-amino acids including D-serine.  

But for a D-serine biosensor for use in the brain, an assembly small in size, perhaps 

with a pin tip is required, which minimises damage with insertion into tissue. 

Carbon/graphite based sensors are disadvantaged in that they do not allow this. 

However, for large electrodes, for use in D-amino acid detection for example, these 

may be more useful. 

1.7.4.2 Platinum biosensors 

Platinum microelectrodes offer the most conductive surface for biosensors and can 

be shaped to form electrodes with small diameters and length. For example Pernot et 

al use a microelectrode that is 25micron in diameter and 125µm in length (Pernot et 

al., 2008). Certainly for the purpose of use in the brain, this is the most suitable 

material, although it can be costly. 

1.8 Aims 

 The aim of this study is to design a D-serine biosensor and characterise its 

performance against current devices. 

 To use D-serine biosensors in vitro and in vivo brain models to investigate 

extracellular D-serine levels in regions of the brain to determine NMDA 

receptor co-agonist site occupancy. 

 D-serine biosensors will be used to analyse activity dependent changes in 

extracellular D-serine levels in the rat brain as a result of:  

 Ionotropic glutamate receptor activity 

 Glial-specific activation 

 High frequency stimulation 

 D-serine biosensors will be used to assess the role of D-serine in NMDA-

receptor mediated cell damage during hypoxia and ischemia, as models of 

stroke. 
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2.1 Abstract 

The amino acid D-serine is vital in the central nervous system because of its role as a 

co-agonist at the NMDA (N-methyl D-aspartate) receptor. This signalling molecule 

has been linked to many physiological functions in the brain as well as pathological 

states including Alzheimer’s and Schizophrenia. The study of D-serine is a specific 

way to examine NMDA receptor function in the brain, indirectly. But current tools to 

sense this amino acid are limited by high running costs, excessive consumption of 

samples and the time-consuming nature of the systems. 

Biosensors for D-serine offer an alternative approach. Highly sensitive and selective 

real-time measurements of D-serine can be made in the second-to-second time frame 

in intact brain tissue. We have designed and made D-serine biosensors using a 

unique sol-gel electrochemical deposition method, entrapping D-amino acid oxidase 

(from Rhodotorula gracilis) within a porous biolayer on a platinum surface. These 

micoelectrodes have a sensitivity of 200± 15µA mM
-1

 cm
-2 and a lower detection 

limit of 25nM, with a working stability of 40 days. Response upon D-serine 

detection is within seconds and use of a poly-1, 3 phenylenediamine screen ensures 

over 90% selective response for D-serine, which is improved further with the use of 

a null sensor. This novel tool provides an exciting way to study the functional role of 

D-serine in the CNS.  
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2.2 Introduction 

Significant levels of D-serine were localised to the brain in the 1990s showing D-

serine distribution paralleled that of NMDA receptors (Hashimoto et al., 1993a; 

Schell et al., 1995; Schell et al., 1997). Over the next decade the role of D-serine as a 

co-agonist of this channel came to be recognised and dysfunctional D-serine 

signalling is associated with a number of neuropathies including schizophrenia and 

Alzheimer’s (Krystal & D'Souza, 1998; Wu et al., 2004). However, the tools for 

studying this amino-acid remain limited, with antibody staining being the main 

technique used for determining D-serine distribution in the brain and HPLC and 

capillary based assay systems used to measure the concentrations of this signalling 

molecule (Ciriacks & Bowser, 2004; O'Brien & Bowser, 2006). Biosensors for D-

serine combine both of these features; offering real-time output combined with good 

spatial and temporal resolution, without the draw backs of complex procedures and 

high running cost of traditional methods. Continuous real-time measurements of D-

serine can be made in the second-by-second time frame which has the potential to 

revolutionise the way in which D-serine signalling is studied.   

D-serine microelectrode biosensors are made using the enzyme D-amino acid 

oxidase (DAAO), which oxidises D-serine to form hydroxypyruvate, and by-

products H2O2 and NH3, as shown the scheme below. DAAO activity is ubiquitous 

in microorganisms where it is involved in catabolic utilisation of exogenous D-

amino acids for growth and detoxification. But it is now thought to be present in 

many species including humans where it is localised to kidney, liver and brain 

(Neims et al., 1966; Kawazoe et al., 2007). 

 

Scheme 1: D-amino acid oxidase reaction scheme with D-serine as a substrate 

Enzyme biosensor systems may suffer from limited operational lifetimes. Both the 

properties of the enzyme and method of biosensor fabrication influence the 

operational stability. In this study DAAO from the yeast R. gracilis (DAAORg) was 

selected due to highly efficient catalysis rate and tight binding of the FAD cofactor, 

which confers stability and faster turnover rate compared to other sources of DAAO 

(Pilone Simonetta et al., 1989b; Pollegioni et al., 2002). Furthermore, DAAORg is 
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more stable in an immobilised form and can best withstand changes in temperature 

and pH when compared to enzyme from T. variabilis and porcine kidney (Pilone 

Simonetta et al., 1989b; Pollegioni et al., 2002; Pollegioni et al., 2004). However, 

DAAORg is not commercially available but a simple expression and purification 

protocol is available that gives high enzyme yield (Pollegioni et al., 1997). For D-

serine biosensor fabrication the sol-gel electrochemical deposition technique was 

employed; this is a highly favourable method for forming stable enzyme biolayers 

(Dale et al., 2005; Llaudet et al., 2005). It is the H2O2 generated in the enzyme 

reaction (scheme 1) which can be detected electrochemically through oxidisation of 

the platinum microelectrode. The potentiostatic detection of enzymatically generated 

H2O2 thus acts as a measure of D-serine. The microelectrode biosensor gives a 

quantifiable measurement of D-serine in different brain regions, allowing temporal 

and spatial properties of this signalling molecule to be established.   

2.3 Methods 

2.3.1 Synthetic Gene expression and DAAO purification 

The pET system provides a very powerful technique for the cloning and expression 

of recombinant enzymes in E. coli and was selected because of its ease of use, 

versatility and rapid expression. The DAAORg gene was ordered from Genscript in 

a pET28 vector conferring kanamycin resistance and a 6 x histidine tail. The cDNA 

codon sequence was optimised for expression in bacteria but the amino acid 

sequence remained unchanged. The optimisation process ensured that protein 

synthesis was not limited by rare amino acid codons, which may not exist in large 

amounts in bacteria but may be abundant in the native yeast.  

The DAAORg vector insert and subsequent protein synthesis provided an 

uncomplicated means of purifying this enzyme which was commercially unavailable.  

Temperature and growth conditions were optimised to yield high expression of 

protein and purification of DAAORg was facilitated by the presence of a histidine 

tag that was utilised by way of affinity chromatography purification technology 

using a 5ml nickel-column.  

The DAAORg/pET 28 construct was used to transform BL21 (DE3) Rosetta cells 

which were cultured overnight in Luria broth medium (1L contained 10g bacto-
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tryptone, 5g yeast extract and 10g NaCl) at 37ºC supplemented with 50mg ml-1 

kanamycin, and 35mg ml-1 chloroamphenicol to confer selectivity for cells 

containing the DAAORg plasmid insert (Bertani, 1951). Cells were cultured for 

8hours before induction with 1mM isopropylthiogalactoside (IPTG), in order to 

begin protein synthesis overnight at 293 K at 30
o
C; prior to harvesting the cells by 

centrifugation at 6000g for 20min. The cell pellet was then re-suspended in 50mM 

Tris/HCl pH 8.0, 2µM FAD, 2 µM pepstatin, 0.2mM PMSF and 5% glycerol before 

sonication and clarification of the extract by centrifugation at 50 000g for 45min.  

The clarified extract was applied to a 5 ml HisTrap Hp column (using a GE 

Pharmacia AKTA purifier), pre-equilibrated with 50mM Tris/HCl pH 8.0, 0.3M 

NaCl, 5% glycerol, 2.5mM imidazole (buffer A). Plots of A254nm against volume 

provide a useful elution profile for a column, since nearly all proteins absorb light at 

wavelength because of their content of the aromatic amino acids tryptophan and 

tyrosine. The column was washed again extensively with buffer A, to remove weakly 

bound protein and bound-enzyme was eluted with a linear increasing gradient of 

imidazole from 2.5 to 50mM (Buffer B). Under these conditions, the DAAORg 

protein bound with strong affinity and this single step yielded only one peak 

(Marked X, on figure 1) implying purification of a single protein. The Ni-column is 

loaded with clarified extract (mixture of all native E. coli proteins and DAAORg) 

and non-histidine-tagged proteins are washed away. Only bound protein with a 

strong affinity for the column (i.e. a 6 histidine-tag) remains on the column until the 

linkage is broken by the presence of imidazole. 
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Figure 1: Affinity chromatography trace of DAAORg. Protein is loaded onto the 

column, a rise in wavelength 254nm is observed (blue line, only histidine tagged 

protein remains bound and DAAORg is eluted (X) with increasing imidazole  

concentration (red line) up to 200mM, with protein eluted at 60-70%.   

A SDS-gel confirmed the presence of a 40kDA protein eluted from the nickel-

column with imidazole as shown in figure 2 (although DAAORg is known to exist as 

a dimer in the native form, only a monomer is detected by the SDS-gel). 
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Figure 2: SDS gel of proteins eluted by Nickel-chromatography. SDS-gel of 

DAAORg purified using a 5ml Nickel column; lanes A-C show unbound protein 

being washed off before the imidazole elution step; lanes E-I (Peak marked  X in 

figure 1) indicate relatively pure DAAORg enzyme eluted upon application of 

200mM imidazole. 

2.3.2 Determination of protein concentration 

In order to determine the concentration of the protein purified, using nickel-column 

chromatography, a BioRad assay system was used, 10µl of protein solution was 

added to 790µl H2O and 200µl BioRad reagent in a cuvette, mixed and the 

absorbance measured at 595nm using Pharmacia Biotech UltraSpec 2000. For 

protein solutions that gave a reading outside of the linear range of the assay (above 

0.6 at 595nm), solutions were diluted and the reading repeated. Protein concentration 

was calculated to be 114mg mL
-1

 with an extinction coefficient assumed to be 1.0 

cm
-1

 mg
-1

 mL. 
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2.3.3 Enzymatic assay 

To further confirm the presence of D-amino acid oxidase, an enzyme assay was 

devised; DAAORg is able to oxidise D-serine into hydroxypropionate with by 

products, ammonia and H2O2, as shown in the scheme 2 below. In the presence of 

horseradish peroxidise, H2O2 reacts with amplex red in a 1:1 stoichiometry to 

produce the red-fluorescent oxidation compound resorufin which can be detected at 

wavelength 555nm (Zhou et al 1997). 

 

Scheme 2: Enzymatic reaction scheme to determine DAAORg activity 

The spectrometer trace of figure 3 shows an increase in absorbance upon D-serine 

detection (an indirect measure of D-serine oxidised by DAAORg and H2O2 

production) confirming the successful expression and purification of DAAORg. This 

change in absorbance can be converted into µMols/min of enzyme activity (or units) 

with resorufin extinction coefficient of 54000 M
-1

. With further concentration by 

centrifugation, the total activity per mL was calculated as 800 µMols/min or 800 

units, with a specific activity of 7units/mg. Specific activity was determined by 

dividing the total enzyme activity (800µMols/min) by the total amount of protein 

(114mg/mL).  



68 
 

Figure 3: Assay to determine DAAORg enzyme activity. Change in absorbance at 

555nm wavelength is used to determine enzyme activity (scheme 2). The rate at 

which DAAORg oxidises D-serine is determined with the addition of 0.2mM 

(black); 10mM (blue); 15mM (red); and 30mM (purple) D-serine. It is the formation 

of resorufin that is observed as an increase in absorbance in this trace.      

2.3.4 Protein storage 

DAAORg protein was stored at -20
o
C and stability was analysed using the amplex 

red assay for activity (mentioned in section 2.3.3). Protein was stored in 50mM 

Tris/HCl pH 7.5, 50mM lactitol, 10% glycerol, 5mM EDTA and 5µM FAD. The 

presence of exogenous FAD is known to protect against enzyme inactivation 

(Pollegioni et al., 2004). Aliquots were made and stored -20
o
C, and regularly tested 

for activity using the assay mentioned above. The enzyme is stable under these 

conditions for over 10months and can also be freeze-dried and stored at -20
o
C for up 

to 2 month without enzyme activity being affected. 

2.3.5 D-serine Biosensor fabrication 

The chemical technique used to make D-serine biosensors involves the 

electrochemical deposition of sol-gels and enzyme onto a platinum electrode, first 

described by Dale et al is an unsurpassed method for enzyme-biosensor fabrication. 

Using this method DAAORg was entrapped onto a conductive surface to form a 

robust and porous biolayer around a platinum microelectrode of varying sizes, 

further detailed in table 2.1. This variation in size is useful in experiments requiring 

different biosensor properties, for example in the case of in vivo and in vitro studies, 
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the biosensor of choice is likely to be 0.5mm to minimise damage of the brain upon 

insertion and background noise; whereas in cultured cell experiments the greater the 

surface, the more cells the biosensor will be in contact with, therefore more cells will 

be sampled with a 2mm biosensor. 

 Assembly 1 Assembly 2 Assembly 3 

Surface area 3.97 x 10
-4

 cm
2
 8.05 x 10

-4
 cm

2
 3.22 x 10

-3
 cm

2
 

Diameter 25µm 50µm 50µm 

Length 0.5mm 0.5mm 2mm 

Table 2.1: D-serine biosensors are available in various sizes. The surface area of a 

microelectrode assembly represents the area able to detect D-serine, allowing 

specific design of sensors for particular use. 

Before the enzyme biolayer was deposited, the platinum surface was treated with 1,3 

phenylenediamine by cycling the Pt. between +200mV and 800mV in the solution, 

as previously detailed (Llaudet et al., 2005). This methodology was found to be 

successful in minimising background current and also acts as a barrier against 

electro-active species making contact with the platinum surface directly, thus 

improving selectivity. These include serotonin and ascorbic acid which can be 

oxidised at the platinum surface to give false-positive results (as shown in figure 4). 

Hydrogen peroxide, the agent detected at the platinum surface which acts as an 

indirect measure of D-serine presence, is still able to pass through the screening layer 

to be oxidised at the platinum.  
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Figure 4: Screening of platinum surface to reduce interference. The platinum 

sensor is coated with poly-1, 3-phenylenediamine, screening against electro-active 

species such as serotonin and ascorbic acid but hydrogen peroxide is still able to pass 

through the screening layer to be oxidised at the platinum surface. 

An enzyme biolayer is then deposited, the composition and properties of the 

enzyme-mix used were altered to maximise the retention of enzymatic activity 

within the potentially harmful environment in the layer, by altering ionic properties 

and the hydrophobicity of the final matrix and incorporation of stabilisers (Llaudet et 

al., 2005). Many different compositions within the sol-gel biolayer were tried and 

tested before a stable environment within the matrix for DAAORg enzyme was 

determined. In brief, a number of hydrolysed silanes were combined with 50mM 

Tris/HCl buffer pH 7.4, 5M glycerol, 5M thioglycerol, 0.5M NaCl and 100% PEG 

400; 10µl of this was dissolved with 7 units of previously purified DAAORg to form 

an enzyme-sol-gel mix, which was used to fill a small 1cm glass capillary (Llaudet et 

al. 2003). A pre-treated sensor assembly (coated with poly-1,3 phenylenediamine as 

detailed above) was introduced into one end of the capillary and an Ag/AgCl 

reference electrode was inserted into the other end, as shown in figure 5. A current of 

-1.3mV was applied for 30s using a potentiostat (model AEW-2) from Sycopel 

Scientific for electrochemical deposition onto the platinum wire of the biosensor 

assembly. The electrode was removed and stored in 50mM PBS and 5µM FAD, 

overnight and a second coating with poly-1, 3-phenylenediamine was applied to 

maximise screening against possible interference. 
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Figure 5: Electrochemical deposition of DAAORg on a platinum microelectrode 

assembly. A D-serine biosensor a reference and platinum assembly are introduced 

into a glass capillary filled with enzyme and sol-gel mix before an electrical current 

is applied to deposit a sol-gel/enzyme biolayer onto the Pt. surface (A). Enlarged 

depiction of DAAORg enzyme entrapped within a sol-gel matrix (B).  

The sensors were operated at +500mV relative to a Ag/AgCl electrode to detect 

oxidation of H2O2 on the electrode surface but at such a high potential a number of 

other species is also oxidised. Biosensors were tested in 20µM serotonin and 100µm 

ascorbic acid to assess the selectivity of the sensor. 

2.4 Results 

D-amino acid oxidase is able to utilise a variety of D-amino acids (D-aa), except 

acidic D-amino acids. For many DAAO enzymes, the non-polar amino acids are the 

preferred substrates followed by polar and basic amino acids. Table 2.2 below gives 

the affinity for D-serine as a substrate of a variety of DAAO enzymes, though 

conditions used for determining the Km vary slightly making direct comparison 

difficult. Following the expression and purification of DAAORg, I measured the 

Michaelis-Menten kinetics of this enzyme. As shown by figure 6, the Km 

determined is 4.17mM, at pH 8.0, 25
o
C using a Lineweaver-Burke plot, a contrast 

from previous data, which may be due to a different assay conditions used. 
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Table 2.2: Km of DAAO enzyme for D-serine substrate from various sources  

 

Figure 6: Enzymatic rate and kinetics of free-DAAORg. The Km is determined as 

4.17mM from a Lineweaver-Burke plot and Vmax is achieved at 

1.45µMol/mM/minute. 

R. gracilis Km = 13.7mM (Boselli et al., 2002) 

Sus Scrofa Km = 12.7 (Bakke et al., 2006) 

Trigonopsis varaibillis Km = 25mM (Kubicek-Pranz & Rohr, 1985) 

Candida boidini Km = 33.7mM (Yurimoto et al., 2001) 
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The Km of an enzyme will have influence on the sensitivity of the biosensor, in this 

case, the lowered Km is likely to be useful for the fabrication of a more sensitive 

biosensors but a very low Km can also mean that the linear response range is 

significantly reduced. In this case, the lower Km, has not affected the linear response 

of the biosensor within the required range of use, sensors are linear up to above the 

expected physiological D-serine levels in the brain. 

2.4.1 Sensitivity 

 

The principal challenge in designing D-serine biosensors for in vitro and in vivo 

study of D-serine signalling is adequate performance in sensitivity, speed of response 

and limit of detection. It is essential that the biosensors are able to detect very minute 

amounts of D-serine, quickly in the brain, in a linear manner. The sensitivity of the 

0.5mm (with 50µm diameter) biosensors to D-serine was 200±15µA mM
-1

 cm
-2

 

(n=9). They responded rapidly, within seconds of detecting the amino acid in 

solution, as shown in figure 7 which shows the response curve of a 0.5mm biosensor, 

with a diameter of 50µm.  

 

Figure 7: Response curves of a 0.5mm D-serine biosensor to 10M D-serine. In a 

simple flowing system, the response of the biosensor was recorded to injection of 

10M D-serine. A 10-90% response rise-time was estimated to <3s and the 

sensitivity of 200±15A mM
-1

 cm
-2

 when normalised to the surface area.   
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The limit of detection (LOD) and linear range of a biosensor are a function of 

entrapment process and the recognition element (in this case DAAO). It is essential 

that the response is linear; this was tested from 0.2µM to 200µM D-serine 

concentrations and was linear; only concentrations from 0.5 to 10µM (n=3) are 

shown in figure 8. The size of the biosensor does not impact the sensitivity as this is 

normalised to surface area, to allow comparison of data obtained from different 

biosensors.  

 

Figure 8: Linear response of a 0.5mm D-serine biosensor to expected 

physiological concentrations of D-serine. The response of D-serine biosensors is 

linear from 0.2nM to 10µM, which is within the physiological range expected in the 

brain; further studies indicate that the response is linear up to 200µM, though these 

levels of D-serine are unlikely to be in the brain under a physiological state. 

The LOD of the D-serine biosensors is 25nM (figure 9), although the levels of D-

serine in the brain are expected to exceed this significantly. This is a feature of the 

stable environment in which the enzyme is entrapped within the bilayer, achieved by 

sol-gel deposition. 

 

Figure 9: Limits of detection for D-serine biosensors. D-serine biosensors were 

tested against 0.1µM, 0.05 and 0.025µM D-serine, the sensors are highly sensitive 

and when used in the brain they will be able to detect even very minute amounts of 

D-serine allowing a more detailed study of this chemical transmitter in the brain.  
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Although O2 is necessary in the enzymatic scheme, there appears to be little need for 

a continuous supply of this for oxidation of D-serine, as demonstrated by figure 10. 

The response of the sensor to D-serine was tested at physiological buffer saturated 

with 95% O2 / 5% CO2 before switching to a buffer saturated with 95% N2 / 5% 

CO2. For 4 sensors tested, the mean reduction observed in the current was 4.5 ± 

1.0% of the total response to D-serine. The reasons for this apparent insensitivity 

may be that oxidation of the peroxide on the Pt surface will regenerate O2, which can 

then be utilised by the enzymes within the thin sensing layer. 

 

 

Figure 10: oxygen sensivity of D-serine biosensors. A 10µM solution of D-serine 

was applied in physiological buffer solution saturated with 95%O2 / 5%CO2 (black 

bar), before being switched to D-serine in solutions saturated with 95% N2 / 5% CO2 

(purple bar) and back again. Only a very small reduction in sensor current is 

observed. 

Additionally, in order to compare the Km of free-DAAORg and that entrapped 

within a sol-gel bilayer kinetics data was gathered. The Km of free DAAORg 

(4.17mM) has been lowered (to 2.67mM) by the entrapment of the enzyme; 

suggesting that the protein is in a stable environment within the biolayer (figure 11). 

This could be as a result of a permanent conformational change, due to the 

fabrication process; or a steric effect that orientates the enzyme in such a way that D-

serine binding to DAAORg is favoured.   
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Figure 11: Sensivity of D-serine biosensors in a bilayer on Pt. The Km is 2.67mM 

and Vmax is achieved at 417nA/mM min
-1

. 

2.4.2 pH 

 

The optimum pH for the enzymes DAAO from Rhodotorula gracilis is between 8.0 

and 9.0. The physiological pH that the biosensors will be tested and used at is pH 

7.4± 0.2, any considerable deviance from this likely to alter D-serine response with 

pH. Below neutral pH the response of the biosensors is reduced considerably, as 

observed in figure 12. Here the biosensors were tested between pH 6.4 and pH 8.0, 

around physiological pH, small excursions of pH will not markedly alter the 

sensitivity of the biosensor.  Additionally the Pt surface was shown by Llaudet et al 

(2005) to be sensitive to changes in pH, therefore a null was used to eliminate any 

changes observed in current by subtracting the null biosensor response from the D-

serine signal (Llaudet et al., 2005). 
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Figure 12: Response of D-serine biosensors to varying pH levels. The response of 

D-serine biosensors was analysed at varying pH levels between pH 6.2 to pH 8.0. 

The biosensor response is not altered very much by physiological changes in pH 

(pH7.2±0.2) shown by red bar on the x-axis, with 90% response at pH 7.2 and 106% 

response at pH 7.6, shown by the red bar on the y-axis. 

 

2.4.3 Selectivity 

 

The selectivity of a biosensor is vital for its function. Both in vivo and in vitro 

experiments rely on the biosensor only detecting the required analyte; therefore the 

biosensors are ‘screened’ against a number of potential interferences. H2O2 is 

oxidised at the platinum electrode to give an indirect measure of the presence of D-

serine but a high-applied potential (+500mV) is required, this creates potential 

problems as number of other electro-active species can also be oxidised and thus 

give false-positive results. This is a universal challenge of electrochemical 

biosensors but various screening methods have been devised to sufficiently screen 

against artefacts. One method is to utilize a selective screening layer that allows 

permeation of H2O2, but not larger interfering molecules. Polyphenol, polyresoucinol 

and poly-1, 3-phenylenediamine have all been previously used. It is the latter we find 

to be the most effective at screening out interference.  

A poly-1, 3-phenylenediamine screen can selectively reduce interference against 

agents that directly make contact with the platinum wire: that is ascorbic acid (AA, 
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100µM tested); serotonin (5HT, 20µM tested) as well as L-serine, glycine and D-

aspartate which are amino acids present in the brain that may interact with the 

DAAO enzyme; 10M solutions of these amino acids were made and tested, as 

shown in figure 13. The highest likely concentrations of interferences present in the 

brain were tested. Table 2.3 shows relative response of interferences normalised 

against the D-serine response. 

 

Figure 13: D-serine biosensor selectivity against potential interference The D-

serine biosensor (a) is used alongside a null sensor (b) which were tested against 

10µM D/L-serine (L-ser), glycine (Gly), D-aspartate (D-asp); 20µM serotonin 

(5HT*) is also screened against well by both the null and D-serine biosensor while 

100µM ascorbic acid (AA**) does give a signal, which is minimised upon 

subtraction of the null trace from the D-serine signal. By using a null sensor virtually 

all non-enzymatic signals are removed from a trace. 

  Response (nA) Percentage response 

10µM D-serine 1.48± 0.10 100% 

10µM L-serine 0.01± 0.00 0.5% 

10µM Glycine 0.02± 0.00 1.2% 

10µM D-aspartate 0.03± 0.00 1.8% 

100µM Ascorbic acid 0.11± 0.01 7.2% 

20µM Serotonin/5HT 0.03± 0.00 2.0% 

Table 2.3: Selective response of D-serine biosensors to a number of 

interferences at the predicted levels found in brain (n=7). 

Null 

D-serine 
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We found that re-applying a DAB layer onto the biosensor following dry storage 

improves selectivity and this significantly prolonged the working-life of the 

biosensors. 

2.4.4 Stability 

 

Dried biosensors retain over 85% sensitivity for up to 7 weeks, although, sensors can 

be used for longer depending on the experimental procedure and required sensitivity 

(Figure 14). Wet storage has been found to be as adequate; with biosensors retaining 

full sensitivity for 10days.  

 

Figure 14: D-serine biosensor stability. The D-serine biosensor is stable for over 

50days, initial response was taken before the sensors were dried, a procedure which 

appears to stabilise the response (n=4).  

2.5 Discussions 

Although, the first biosensors were made nearly 50 years ago initial advances in 

making a sensor for D-serine were slow. The major hindrances to date have been the 

source of the DAAO enzyme, entrapment techniques and the microelectrode 

assembly materials. Here, we have combined a highly favourable enzyme 

entrapment technique (sol-gel), with the most stable and sensitive DAAO enzyme 

(DAAORg) to make Pt. microelectrode sensors. This has resulted in D-serine 

biosensors which are far superior to other similarly designed D-serine biosensors. In 

fact two recently published findings conducted in parallel to this study give point of 
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comparison (Pernot et al., 2008; Zain et al., 2010). Pernot et al (2008), use 

DAAORg with elctropolymer/ glutaldehyde entrapment technique to make D-serine 

biosensor, while Zain et al (2010) use a porcine kidney DAAO (DAAOPk) enzyme 

with the same method of deposition. Both sensors were made on Pt. wire and only 

differ in source of enzyme and/or entrapment technique employed. Comparison of 

the sensitivity, limit of detection and stability of these biosensors with our sensor 

allows assessment of the fabrication method and the enzymes utilised. 

The sensitivity of a biosensor is an essential feature and closely associated with this 

is the limit of detection. Two comparisons can be made here, first a comparison of 

the source of DAAO (DAAORg vs. DAAOPk) and secondly the enzyme entrapment 

techniques (sol-gel vs. glutaraldehyde). Pernot et al use DAAORg in biosensor 

fabrication while Zain et al (2010) use DAAOPk, both employing the same enzyme 

entrapment techniques. However, the DAAORg enzyme proves to be superior and 

gives a more sensitive biosensor (89± 33µA mM
-1

 cm
-2

) compared to DAAOPk 

biosensor (61± 7µA mM
-1

 cm
-2

) with a slightly better resolution (16nM to 20nM), 

although this is theoretical and based on low background noise (about 0.05pA; 

signal/noise=3 for their biosensor), which results from the very small biosensor 

designed. The difference in LOD is not likely to alter the applicability of the 

biosensor, since levels of D-serine are thought to be in micromolar range in the 

brain. Surprisingly, biosensor stability, which is partly due to the enzyme and in part 

the deposition technique, is slightly better with DAAOPk (6 months) compared to 

DAAORg (5 months). 

When the same source of enzyme (DAAORg) was used to make our biosensor and 

that of Pernot et al (2008); the techniques used to entrap DAAORg onto the platinum 

wire could be compared. The biosensors in this study are appreciably superior in 

sensitivity (200± 15µA mM
-1

 cm
-2

 to 89± 33µA mM
-1

 cm
-2

); as a result of the sol-gel 

electrochemical deposition technique used while Pernot et al (2008) employed 

glutaldehyde entrapment of the enzyme. The method of enzyme-entrapment 

involving sol-gel electrochemical deposition has proven to be a more effective way 

of making enzyme biolayers at the platinum surface. However, this may have been at 

the cost of the stability, which begins to reduce after 2 months, although this is not 

the sensor working life limit, compared to 5 months stability for the sensor designed 
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by Pernot et al (2008). This may be important in commercialisation of the biosensor 

but for use in the brain it is less of an issue. Perhaps a better means of assessment in 

stability would have been the stability of the biosensor with in vitro or in vivo use. 

This data is unfortunately not available for the other two biosensors, though we have 

re-used sensors for up to 3 days for in vitro experiments. These findings are 

summarized in table 2.4. 

The selectivity is another important feature of a biosensor to be used in the central 

nervous system. Often, the case is that 100% specific response is not achieved, it is 

recognised that biosensor systems based on peroxide carry a price, as a result of the 

relatively high potential (and additionally here the wide substrate range of 

DAAORg). Screening layers with electropolymers were employed in all 3 biosensor 

designs, though Zain et al use nafion in addition to poly-m-phenylenediamine. 

Interference from a number of sources was tested but data from Zain et al is not 

sufficient to make a direct comparison of selectivity. As may be expected, since 

similar methods of screening were used here and by Pernot et al, both biosensors 

give similarly selective response for D-serine (over 88 to 87% respectively). 

Moreover, in both cases null biosensors are used in addition to the D-serine 

biosensors to ensure that non-specific signals are subtracted from the D-serine trace. 

 Our sensor (Pernot et al., 2008) (Zain et al., 2010) 

Sensitivity 200± 15µA mM
-1

 cm
-2

 89± 33µA mM
-1

 cm
-2

 61± 7µA mM
-1

 cm
-2

 

LOD 25nM 16nM (theoretical) 20nM 

Selectivity  88% 87% Not given 

Stability 2 months 5 months 6 months 

Table 2.4: Comparisons in sensitivity, selectivity, stability and limit of detection 

of our D-serine biosensors compared to current D-serine biosensors. 
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The growing interest in D-serine biosensors for use in the brain indicates that there is 

a real need for a tool able to measure this amino acid directly, perhaps in the hope of 

resolving some of the questions surrounding the signalling of this molecule. A D-

serine biosensor makes possible real-time measurements so that for the first time 

activity dependent D-serine release may be observed in the brain. Furthermore, 

accurate numerical data regarding the levels of D-serine found in different brain 

regions may give much insight into the occupancy of the glycine site of NMDA 

receptors, over which there is much debate. Drug targeting and altering of 

dysfunctional D-serine signalling through this site offers numerous possibilities for 

therapeutics but key to this is establishing the dynamics of D-serine in the central 

nervous system. Biosensors for D-serine offer an exciting and novel way of studying 

this amino acid in the whole brain. In additional these biosensors can be employed as 

diagnostic tools in detecting dysfunction levels of D-serine/D-amino acid in patients. 

For example, in schizophrenic patients, where D-serine levels are shown to be lower 

in patients, a device that can give instantaneous numerical readings may be 

beneficial in speeding up treatment and even allow treatments to be followed in 

patients.   

 

 

 

 

 

 

 

 

 

 



83 
 

 

 

 

 

 
 

 

Chapter 3: Use of D-serine biosensors to 

investigate extracellular D-serine tone in vitro 
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3.1 Abstract 

 

The binding of a co-agonist at the glycine site is a prerequisite for activation of 

postsynaptic NMDA receptors. Whether this site is fully saturated or not is hotly 

debated. We have used D-serine biosensors to study extracellular concentrations of 

D-serine in the cortex, hippocampus and cerebellum in vitro, to investigate the 

potential for excitation of the NMDA receptor.  

Surprisingly, there exists much variation in the extracellular levels of D-serine 

throughout the brain and even within one structure. In the case of the hippocampus 

the greatest difference in concentrations is observed between stratum pyramidale 

(1.1 ± 0.3µM; n=18) and stratum radiatum layers (0.4 ± 0.1µM, n=14). D-serine 

levels detected in the molecular layer of cerebellum (0.3± 0.1µM, n=14) were five 

times lower compared to the granule cell layer (1.64± 0.5µM, n=18). In the cortex 

D-serine concentrations were averaged at 1.0±0.2µM, median 0.9µM (n=14).  

NMDA receptors composed of the NR2C/NR2D subunits are (90%) saturated at 

approximately 0.6µM D-serine and those containing NR2A/NR2B subunits are 

saturated at about 1µM D-serine. As a result in s. pyramidale region (largely 

expressing NR2A/NR2B) and the granule cell layer of cerebellum (expressing 

NR2C), NMDA receptors are fully saturated. But in s. radiatum and the molecular 

layer of cerebellum, the levels of D-serine are significantly lower; hence the glycine 

site is not saturated. Rationally NMDA receptor response can be potentiated in these 

low D-serine regions by applications of extracellular D-serine while in regions of 

high D-serine concentrations receptor potentiation is unlikely since the glycine site is 

fully saturated. Corroborative patch-clamp data confirms that the NMDA receptor 

response can be increased in s. radiatum but not in s. pyramidale. Additionally, D-

serine release can be stimulated by an astrocytic peptide agonist of protease-

activated receptor 1 (TFLLRNH2 6µM), which is present largely on astrocytes, that 

can potentiate NMDA receptor response in s. radiatum. Hence NMDA receptor 

activity can be modulated by D-serine in a specific manner, placing D-serine at the 

very centre of signalling events in the central nervous system. 
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3.2 Introduction 

The NMDA receptor is unique amongst the glutamate receptor family in its 

requirement of two agonists (glutamate and a co-agonist) to function. Early studies 

attributed the co-agonist role to glycine (Johnson & Ascher, 1987) but another more 

unusual candidate has since come to light: D-serine. Initially only used as a glycine 

mimic, D-serine often proved to be a more potent co-agonist at the NMDA receptor 

(Kleckner & Dingledine, 1988; Wood et al., 1989). However, the physiological 

relevance of this was only appreciated after the discovery of significant levels of D-

serine in the brain (Hashimoto et al., 1992a). Antibody staining of D-serine and its 

synthesising enzyme, serine racemase (SR) co-localized to regions of high NMDA 

receptor expression, confirming a central role of D-serine in the activity of this 

channel (Hashimoto et al., 1993b; Schell et al., 1995; Wolosker et al., 1999a).  

However, since glycine and later D-serine levels in aCSF were found to be very 

high, it was generally assumed that the co-agonist site is always saturated and hence 

physiologically silent (Ferraro & Hare, 1985; Billups & Attwell, 2003). D-serine 

levels range between 6.5-8µM in the brain according to capillary dialysis studies; 

while glycine levels are slightly higher at 7-10µM (Hashimoto et al., 1995; Matsui et 

al., 1995; Hashimoto & Oka, 1997). Although detailed study of different brain 

regions and layers within a brain structure were not analysed systematically if these 

findings are correct all NMDA receptor subtypes should be fully saturated. Matsui et 

al showed that recombinant NMDA receptors expression in Xenopus oocyte are fully 

saturated (90% and above) at 0.6µM (NR2C/NR2D) and 1µM (NR2A/NR2B) D-

serine. The levels of glycine required for similar saturation are 3-4 times higher 

(Matsui et al., 1995). Nevertheless these saturating concentrations are significantly 

below the amount of D-serine and glycine thought to be present in the brain. 

But numerous studies have shown that exogenously applied D-serine and glycine can 

in fact potentiate NMDA receptor response, endowing physiological importance to 

this site as a regulatory mechanism of NMDA receptors (Thiels et al., 1992; Nilsson 

et al., 1997; Panatier et al., 2006). This signifies that the co-agonist sites of NMDA 

receptors at the synapses are not fully saturated. A number factors could possible 

contribute to the apparently ambiguous results: the transporters of D-serine and 

glycine, variation in affinity of different NMDA receptor isotypes for a co-agonist 
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(as a result of the NR2 subunit) and errors in experimental design of studies used to 

measure glycine and D-serine levels. 

Although extracellular levels of glycine and D-serine are found to be very high, this 

doesn’t necessarily indicate that the same concentrations are present at the synapse. 

This is certainly so for glycine, which is subject to a powerful uptake system; the 

GlyT1 and 2 transporters have very high affinity for glycine; in the rat hippocampus 

GlyT1 has a Km of 0.06µM. D-serine on the other hand has two comparatively low 

affinity transporters, the ASC-1 transporter Km is 67µM while the ASCT2 

transporter has a Km of 1mM D-serine (Yamamoto et al., 2004; Shao et al., 2009). 

Implications of this are that of the two co-agonists, the more likely co-agonist to be 

present at the synapse or extracellular space will be D-serine. Additionally, it is well-

known that the NR2 subunit of NMDA receptors largely dictates the distinct 

functional properties of this channel. The four NR2 (A-D) subunits endow varying 

agonist potencies, deactivation time courses, open probabilities, single channel 

conductance, as well as sensitivities to Mg
2+

 and extracellular modulators.  The 

affinity for D-serine is generally higher compared to glycine for different NMDA 

receptor composites implying a preference for D-serine even if glycine was present 

at high levels (Matsui et al., 1995). Hence D-serine concentrations are likely to be a 

closer representative of the saturation state of NMDA receptor compared to glycine 

concentrations.  

Currently, investigators are largely dependent on HPLC analysis coupled with 

capillary dialysis studies to determine D-serine levels in the brain (Ciriacks & 

Bowser, 2004; O'Brien & Bowser, 2006). The major disadvantage of HPLC 

technique is the need to homogenise tissue or disrupt cellular networks in order to 

collect lysate for further analysis; this is often from the whole brain or a brain 

structure. This disturbance of the cellular network may alter D-serine physiology. 

Capillary dialysis probe are slightly better in that they can be inserted into a 

particular brain region but these are often large and needs to be embedded into the 

brain for up to a week before recordings can be made. Over this time period the cells 

surrounding the probe alter morphologically to accommodate the probe, hence, the 

recordings made may not be representative of the normal brain.   
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D-serine biosensors offer vast advances over these techniques for determining D-

serine levels in the brain, without the disadvantages associated with traditional 

techniques. The probe is small in size to minimise cell damage and recordings are 

made within seconds and the cellular structure remains intact. Three key areas of the 

brain were selected to determine D-serine levels: cortex, hippocampus and 

cerebellum using D-serine biosensors in vitro in order to determine the extent of 

saturation at the co-agonist site of the NMDA receptor. Due to efficient design of the 

D-serine biosensor, recordings can be made from different cell layers within a brain 

structure, so investigations of the different layers of the hippocampus (s. oriens, s. 

pyramidale, s. radiatum and s. lacunosum molecular) and cerebellum (granule and 

molecular layers) will be carried out to ensure that D-serine levels are uniform 

throughout a structure of the brain as has been assumed by current studies. The 

extracellular concentration of D-serine in the brain will reveal the extent of 

saturation at the co-agonist site of NMDA receptors, and the extent by which NMDA 

receptors can be potentiated. 

 

3.3 Methods 

3.3.1 Biosensor fabrications 

The chemical technique used to make D-serine biosensors involves the 

electrochemical deposition of sol-gels and DAAORg onto a platinum electrode, as 

described in chapter 2 (Llaudet et al., 2005). The DAAORg enzyme catalyses the 

following reaction: 

D-serine + H2O + O2  Hydroxypropionate + H2O2 + NH3 

The H2O2 produced is oxidised at the platinum electrode giving an electrical signal 

that can be observed.  Screening against interferences is achieved with 1, 3 

phenylenediamine and the sensors were operated at +500mV relative for Ag/AgCl to 

detect oxidation of H2O2 on the electrode surface. Only those biosensors 

demonstrating 75% selectivity for D-serine and of over 150A mM
-1

 cm
-2

sensitivity 

were used, along with a null sensor in all experiments. All test solutions, silanes and 

reagents were obtained from Sigma-Aldrich. 
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3.3.2 Slice preparations  

Male Sprague-Dawley rats aged 12-21 days were sacrificed by cervical dislocation 

in accordance with schedule 1 of the UK Government Animals (scientific 

procedures) Act 1986. The brain was removed and placed in artificial cerebrospinal 

fluid (aCSF) at 4ºC  before 500µm horizontal slices were cut with a Vibrotome as 

previously described (Dale et al., 2000). Slices were placed in an incubation 

chamber in aCSF continuously oxygenated (with 95% oxygen/ 5% carbon dioxide) 

at room temperature for 1hr before use. The composition of aCSF is as follows: 

NaCl 124mM; KCl 3mM; CaCl 2mM; NaH2CO3 26mM; NaH2PO4 1.25mM; D-

glucose 10mM; MgSO4 1mM; pH 7.4 with 95% oxygen and 5% carbon dioxide.  

A single slice was transferred to a recording chamber, fully submerged with 

oxygenated aCSF and profused at 8mL/min (33-34ºC). A Deuostat interfaced to PC 

by an A to D converter board was used and an Ag/AgCl was used as a pseudo-

reference electrode. D-serine biosensors of 0.5mm length and 50µm diameter are 

used in this study unless otherwise stated. In all cases a null biosensor was used (a 

sensors without enzyme in the biolayer) to ensure accuracy of recordings and placed 

as close to the D-serine biosensor as possible, as shown in figure 1.  
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Figure 1: D-serine biosensor and null sensor placements in cerebellum and 

hippocampus. (a) D-serine biosensor 0.5cm in length and 50µm in diameter (b) 

cerebellum slice 500µm thickness, null and D-serine biosensors are placed into the 

granule cell layer (dark blue staining) and molecular layer (pink stained region). Null 

sensors are placed as close to D-serine biosensors as possible. (c) D-serine and 

respective nulls are placed into s. pyramidale (dark stain) and s. radiatum (light 

stain).http://www.biocell-interface.com/bcimages/hippocampus_b.jpg. 

http://www.deltagen.com/target/histologyatlas/atlas_files/nervous/cerebellum_brains

tem_2x.htm 

 

3.3.3 Determining extracellular basal D-serine levels in the brain 

To determine the extracellular basal D-serine levels (or tone) slices were submerged 

with aCSF in a perfusion chamber before the pre-calibrated D-serine biosensors were 

inserted into a selected brain region. These are then allowed to stabilise for 20 

minutes to permit recovery of damage done upon insertion and in order for any D-

serine that has been released as a result of damage to be washed away. Biosensors 

were then removed from the slice, before being calibrated with 10µM D-serine. The 

difference between D-serine levels detected in the slice and those when the sensor is 

not in the slice is termed the tone or basal levels of D-serine in the selected brain 

region (Figure 2). This give a numerical value for the amount of D-serine in the area 

studied and the process was repeated in slices from different male SD rats within the 

12-21 day age-range. Data was also gathered by similar means for the cerebellum 

(a) 

http://www.biocell-interface.com/bcimages/hippocampus_b.jpg
http://www.deltagen.com/target/histologyatlas/atlas_files/nervous/cerebellum_brainstem_2x.htm
http://www.deltagen.com/target/histologyatlas/atlas_files/nervous/cerebellum_brainstem_2x.htm
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Figure 2: Basal D-serine concentrations are determined subtracting the signal 

from the null sensor from the D-serine trace. D-serine and null sensors are placed 

closed together into the granule cell layer of the cerebellum, and are removed from 

the slice after 20 minutes. The signal from the null sensor (b) is subtracted from the 

D-serine trace (a) and basal levels determined using a calibration of 10µM D-serine. 

10µM 5HT is also applied to test interference. Examples of D-serine tone traces 

from s. oriens and s. pyramidale of the hippocampus are also shown (d). 

 

3.3.4 Statistical analysis 

D-serine levels in the hippocampus and cerebellum are presented as a cumulative 

probability distribution. Data from the hippocampal regions was analysed with the 

Kruskal-Wallis test. Pair-wise comparisons between 2 regions of the hippocampus 

were then made using the Kolmogrov-Smirnov test, to decide if samples are 

significantly different. Since each measurement represents a real-time measurement 

of extracellular D-serine levels in a particular region, and often the data was not 

normally distributed we have used median values as well as the mean to represent 

the basal D-serine levels. The median is not distorted by outliers while the mean is 

altered. 

3.4 Results 

3.4.1 Extracellular D-serine levels in the hippocampus 

 

D-serine biosensors permitted detection of D-serine with minimal damage, greater 

accuracy and speed, allowing differentiation of cell layers within a brain structure 

which was previously not possible. In the hippocampus this has lead to surprising 

results (figure 3). D-serine levels were not uniformly distributed but instead varied 

significantly from cell layer to cell layer (Kruskal-Wallis test P=0.042, n=62). The 

(d) 
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greatest difference in extracellular D-serine levels was seen between s. pyramidale 

1.1 ± 0.3µM (median: 0.8µM, n=18) where the highest amounts of D-serine are 

found and s. radiatum 0.4 ± 0.1µM (median: 0.3µM, n=14) where the least amount 

of D-serine is observed (Kolmogorov-Smirov test p=0.021, n=32). In s. lacinosum 

moleculare and in s. oriens similar amounts of D-serine were detected: 0.7 ± 0.1µM 

(median: 0.5µM, n=15) and 0.6 ± 0.2µM (median: 0.3µM n=15) respectively. Figure 

4 shows a cumulative probability plot of the tone data gathered from the 

hippocampus, with average tone levels of D-serine (in µM) labelling the relevant cell 

layers. Little statistical difference was observed between the s. radiatum and s. 

lacunosum moleculare (K-S test p=0.34, n=29) but basal D-serine tone in s. oriens 

and s. pyramidale is more statistically likely to be different (K-S test p=0.08, n=33). 

The lack of statistical significance may be due to error in sensor placement. D-serine 

levels in the dentate gyrus were also measured 0.6 ±0.1µM (n=14). 

 

Figure 3: Basal D-serine levels in different layers of the hippocampus of rat 

brain Indicates the basal levels of D-serine detected in S. oriens, S .pyramidale, S. 

radiatum, and the S. lacinosum moleculare of the hippocampus of SD rats. Mean levels of 
D-serine are given for each layer in µM, with statistical analysis *Kolmogorov-Smirnov test 
**Kruskal-Wallis test. 

3.4.2 Extracellular D-serine levels in the cerebellum 

In the cerebellum, D-serine biosensors were used measure basal D-serine levels in 

the granule cell layer and the molecular layer. Significant differences were observed 

in the cerebellum, as shown in figure 4, where highest levels of D-serine were found 

in the granule cell layer 1.64 ± 0.51µM (n=18) and significantly less D-serine was 

found in the molecular layer 0.31 ± 0.05µM, n=14 (K-S p=0.042, n=32). 
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Figure 4: Basal D-serine levels in the cerebellum of rat brain. Displays the basal 
levels of D-serine detected in the granule cell layer and the molecular layers of the 
cerebellum of SD rats.*p value for the Kolmogorov-Smirnov test to determine significant 
difference between the two data sets.  

 The data obtained from the granule cell layer was rather variable. The median 

(0.5µM) is out by a factor of 3 from the mean. This may be explained by sensor 

misplacement and/or the age of the rats (D-serine levels are found to be higher in 

younger animals). For this latter reason, data points were plotted against the age of 

the animal, as shown in figure 5. However, no clear correlation with age was 

apparent. In fact if the cumulative probability figure is analysed closely, the data for 

the granule cell layer appears to composed of two distinct distributions  
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Figure 5: Scatter distribution of age and D-serine tone in the granule cell layer 

of cerebellum. D-serine levels in the cerebellum vary considerably but that variation 

is not as a result of age, as shown here. No relationship exists between the levels of 

D-serine detected in the cerebellum and the age of the animal from which the slice 

was derived.  

Sensor placement may be the contributing factor to the differing distributions. The 

cerebellum alveoli, when cut on the horizontal plane give a slice where granule cell 

layer width varies. In some areas (figure 6, labelled 1) the granule cell layer is small 

in width. Here the layer is composed of fewer cells and if sensor is placed here, both 

the tone from the granule cell layer and the molecular layer will be recorded by the 

microelectrodes. Median M1 correlates exactly with the median for the molecular 

layer, 0.3µM. Compared to regions where the width of the granule cell layer is much 

larger (labelled 2, figure 6); the sensor is likely to be only recording basal D-serine 

tone from the granule cells. 
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Figure 6: A single median/mean is misleading for the probability distributions 

seen in the granule cell layer. There appear to exist two distinction distributions, 

with a median of 0.3µM (M1) and 2.1µM (M2). It is likely that M1 represents 

recordings from regions where the granule cell layer width is small, while M2 

recordings are from regions labelled 2, here the granule cell population is much 

larger.  

In light of this, M2 may be a better representation of the basal tone observed in the 

cerebellum granule cell layer, 2.1µM. 

3.4.3 Extracellular D-serine levels in the cortex 

 

In the cortex extracellular D-serine concentrations were 0.99 ±0.19µM (n=14). Due 

to the limited resolution of steromicroscopes used, it was not possible to differentiate 

between cortical layers, although it is likely in light of the data gathered from the 

hippocampus and the cerebellum that basal D-serine tone will differ in the 6 cortical 

layers.  Further investigation is required to determine this variation which can also 

explain the wide range of D-serine concentrations observed from the cortex, with 

levels varying from 0.3µM to 2.5µM.  Figure 7 shows the cumulative probability 

plot of this data, along with median, upper and lower quartiles.  
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Figure 7: D-serine levels in the cortex of rat brain. Cumulative probability graph 

showing basal D-serine tone detected in the cortex in various layers. Median D-

serine levels in the cortex are 0.9µM. 

The levels of D-serine detected in the various brain structures and regions within are 

summarized in table 1; both mean and median values are given. Henceforth, only the 

median values will be used to conduct functional significance of the levels of D-

serine detected although the mean values can also be justifiably used. 

  Median (µM) Mean (µM) 

Hippocampus S. oriens 0.3 0.6±0.1 

 S. pyramidale 0.8 1.1±0.1 

 S. radiatum 0.3 0.4±0.1 

 S. lacunosum-moleculare 0.5 0.7±0.1 

 Dentate gyrus (GCL) 0.4 0.6±0.1 

Cerebellum Cerebellum (ML) 0.3 0.3±0.1 

 Cerebellum (GCL) 0.3, 2.1** 1.5±0.5** 

Cortex Cortex 0.9 1.0±0.2 

 

Table 3.1: Median and mean D-serine concentrations in various rat brain 

regions. D-serine levels in the brain vary in the different structures of the brain and 

also within these brain regions. **The difference in median and mean is the greatest 

in the granule cell layer compared to any other region. 

3.4.4 PAR1 induced D-serine release 

Protease activated receptor-1(PAR1) is abundantly expressed on astrocytes and is 

activated by proteolytic cleavage by brain serine proteases under physiological 
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conditions (Wang et al., 2002; Wang et al., 2006). Activation of this receptor causes 

an increase in intracellular calcium levels that has the potential to cause D-serine 

release from cells synthesising this amino acid. It is possible to determine whether 

D-serine release can be evoked by a glial-specific stimulus and whether release of D-

serine correlates with existing basal tone. Although D-serine has been localised to 

neurones as well as glia, the PAR-1 receptor agonist TFLLRNH2 activates PAR-1 

receptors specifically which are found on glial cells. As observed in figure 8, 

extensive D-serine can be evoked by this agonist in s. pyramidale (0.71±0.2µM, 

n=9).  The tone in this region is high (median: 0.8µM). 

In s. radiatum however, D-serine release as a result of PAR-1 receptor activation is 

significantly less and infrequent (0.30±0.1µM, n=5). In this region the existing basal 

tone is the lowest seen in the hippocampus (median-0.3µM). 

 

Figure 8: PAR1 activation can cause D-serine release in S. pyramidale and s. 

radiatum. D-serine biosensors were placed in the hippocampus before 6µM PAR-1 

agonist TFLLRN was applied (black bar). D-serine release in s. pyramidale was 

significantly higher compared to s. radiatum as shown in biosensor traces on the left 

(T-test P<0.02) and on the right the bar graph shows the concentrations of D-serine 

released in the two respective regions. 

 

4.0 Discussion 

 

D-serine biosensors have been used in this study to gain novel insight into basal D-

serine levels in the brain. These findings can be used to determine NMDA receptor 

co-agonist site saturation states. We have also shown novel release of D-serine as a 

result of a glial-specific agonist, TFLLRNH2. 
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In order to determine the significance of D-serine tone in the brain, data regarding 

glycine site occupancy levels was take from a detailed study carried out by Matsui et 

al. Saturation levels of recombinant NMDA receptors (NR2A-D) expressed in 

Xenopus oocytes were explored. The characteristics of these receptors were found to 

be typical of neuronal NMDA receptors (antagonised by AP5, Mg
2+

 ), authenticating 

the data gathered  (Matsui et al., 1995). Using data from this study, we have 

calculated dose response concentration curves for the 4 NMDA receptor variants 

tested, using the Hill equation (I=Imax[D-serine]
n
/EC50 + [D-serine]

n
) where Imax is 

the maximal response, EC50 is the D-serine concentration yielding response one-half 

of the Imax and n is the Hill coefficient, shown in figure 9. 

 

Figure 9: Saturation of the co-agonist site of NMDA receptors based on NMDA 

receptor on the hill coefficient from data collected by Matsui et al (1995). 

NR2C/D containing NMDA receptors have a higher affinity for D-serine than 

NR2A/B-receptors (brackets contain the hill coefficient values collected). Saturation 

(90%) is achieved at 0.6µM and 1µM for NR2C/D and NR2A/B containing NMDA 

receptors. 

According to the dose-response curves, receptors containing NR2A and NR2B 

subunits require higher levels of D-serine for 90% response (in the region of 1µM), 

compared to NMDA receptors containing NR2C and NR2D subunits (approximately 

0.6µM) (Matsui et al., 1995). Half-maximal or 50% saturation is achieved between 

0.17µM to 0.32µM D-serine for NR2D to NR2A containing receptors. Implications 

of this are that in regions of fixed extracellular D-serine levels, the occupancy levels 

at the co-agonist site will vary with the NR2 subunit composition.  Receptors 
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composed of NR2A and NR2B subunits will be less saturated compared to those 

composed of NR2C and NR2D subtypes, in the same region. This has important 

functional consequences since, it has been proposed that different variants of the 

NMDA receptors (particularly NR2A and NR2B) are linked to different intracellular 

cascades and participate in different functions in synaptic plasticity and pathological 

conditions (Liu, XB et al., 2004; Kim, MJ et al., 2005).  Therefore, pharmacological 

agents manipulating D-serine related signalling cascades will have varying 

influences, depending on the NR2 composition as NMDA receptor populations.  

This data can be used to determine the extent of NMDA receptor excitation in the 

various regions of the hippocampus, cerebellum and cortex using the extracellular 

tone measurements made here using D-serine biosensors. Extracellular tone is 

denoted by the median levels of D-serine concentration detected in each brain area; 

this is used to determine the degree of saturation at the co-agonist site by D-serine. 

3.4.5 Exploration of the saturation state of NMDA receptor co-agonist site in the 

hippocampus 

The NMDA receptor subtypes most highly expressed in the hippocampus are the 

NR2A and NR2B containing channels. Although, the intensity of the expression of 

each subunit is thought to change with development; at P12 (animals in this study 

were P12-21) the levels of NR2A are found to rise rapidly to reach adult levels by 

P22 while NR2B protein levels begin to decline rapidly to undetectable levels by 

P22 (Wang et al., 1995). Functionally this means that NMDA receptor potentiation 

declines slightly, with increased NR2A-containing NMDA receptor expression, as 

more D-serine is required to achieve the activation state of NR2B-containing NMDA 

receptors. Incidentally, NR2A-NMDA receptors display faster kinetics with a 100ms 

deactivation time constant while NR2B-channels show slower deactivation time 

constant, approximately 250ms resulting in reduced decay time (Cull-Candy & 

Leszkiewicz, 2004). 

Lowest levels of D-serine are detected in the s. radiatum and s. oriens (medians 0.31 

µM each). At these levels according to the dose-response curves NR2A/B-NMDA 

receptors (and depending on glycine levels), the occupancy levels vary over 

approximately 45-55%. NR2A/B receptors localised in the s. oriens and s. radiatum 

regions can therefore be potentiated by extracellular D-serine, by as much as 50%. 
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Figure 10: NMDA receptor co-agonist site saturation in the hippocampus. 

Regions within the hippocampus differ in the levels of D-serine, which denotes 

differing excitation ability of NMDA receptors. Levels of D-serine in s. radiatum 

and s. oriens are low (45-55%), here NMDA receptor response can be potentiated 

while in s. pyramidale the response is almost fully saturated (87%).  

D-serine concentrations in dentate gyrus indicate that NMDA receptor saturation is 

below 60% (intermediate). The region is one the few areas of the brain that continues 

to incorporate granule neurons during adulthood, a process influenced by excitatory 

amino acids through the NMDA receptor (Schlessinger et al., 1975). It is likely that 

NMDA receptor response can be potentiated by as much as 40% here. In s. 

lacunosum-molecular region, NMDA receptors occupancy is between 70-75% due to 

higher D-serine availability, therefore the NMDA receptor response is likely to only 

be potentiated by 20-30% with increased availability of D-serine or glycine.  Levels 

of D-serine in the s. pyramidale are such that the NMDA receptor occupancy is 

almost 90%, making it unlikely that receptor response can be potentiated. 

If the D-serine release induced by glial agonist TFLLRNH2 is considered in this 

context, then in s. radiatum NMDA receptor response is potentiated by 

approximately 20% as a result of 0.3±0.1µM D-serine release while in s. pyramidale, 

the effect of the D-serine (0.7±0.2µM) on NMDA receptor activation is likely to be 

call as saturation levels are already 85% and above. It is interesting that highest D-
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serine release by this glial specific stimulus is observed in a region where the tone is 

already high, perhaps indicating a relationship between components which maintain 

the steady-state D-serine release and activity dependent D-serine release. But D-

serine release in areas previously saturated may be indicative of another function for 

D-serine release, which is independent of NMDA receptors. PAR-1 is thought to 

regulate astrocyte proliferation and increased expression of this receptor in astrocytes 

has been shown to protect neurones from toxicity (Ishida et al., 2006). But the 

protective effect of PARs depends on the extent of injury or thrombin concentration, 

with high levels leading to neurodegeneration and cell death.  

3.4.6 Co-agonist site occupancy in the Cerebellum 

The mRNA of all the subunits (NR2A-D) has been localised to the cerebellum. The 

molecular layer is composed of Purkinje cell dendrites and Bergmann glia processes. 

The levels of D-serine are not saturating in this layer and receptor response can be 

potentiated by 20-55% depending on receptor subunit composition. This also means 

that depending on the glycine tone due to the low availability of the co-agonist D-

serine, NMDA receptors in this region are purposely maintained at low potentiation 

states. Thus D-serine, as well as glutamate and membrane depolarisation need to be 

regulated for the activation of this channel. 

The granule cell layer of the cerebellum, where the highest levels of NR2C receptor 

subtypes are found, has high levels of extracellular D-serine (median 2.1µM). Under 

these conditions most NMDA receptors will be fully saturated and so will be 

unaffected by changes in D-serine concentration. Studies by Attwell and colleagues 

examining changes in the NMDA receptor component of the synaptic current at the 

rat cerebellar mossy fibre to granule cell synapse under applications of glycine and 

D-serine support these findings. Applications of up to 100µM D-serine or glycine 

had little effect on the synaptic current (Billups & Attwell, 2003). NMDA receptors 

in this region are maintained fully saturated at the co-agonist site, so that other 

factors limit NMDA receptor potentiation ability. 
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Figure 11: Saturation of the co-agonist site of NMDA receptors in the 

cerebellum and cortex. The dose-response curve of a NMDA receptor varies 

depending on the NR2 (A-D) subunit composition. Here levels of extracellular D-

serine detected in ML (molecular layer, cerebellum), GCL (granule cell layer, 

cerebellum) and cortex are plotted. 

If D-serine levels vary throughout the brain and even within a single a structure, it 

stands to reason that extracellular concentrations are maintained by regulatory 

mechanisms. Whether this involves increased uptake of D-serine or a reduction in D-

serine synthesis/release has yet to be established. The mRNA distribution of SR 

correlates with the data gathered in this study, the highest level of the D-serine 

synthesising enzyme are found in the granule cell layer of the cerebellum and s. 

pyramidale of hippocampus. Expression in the cortex is more wide spread, maybe 

suggesting that D-serine levels in the different cortical layers are not distinct from 

each other (figure 12). 
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Figure 12: Antibody staining for serine racemase mRNA shows highest 

distribution in the hippocampus and granule layer of the cerebellum of mouse 

brain, these are the regions where the highest concentrations of D-serine were 

recorded using D-serine biosensors (Allen brain atlas). 

A number of factors can potentially be involved in regulating extracellular levels of 

D-serine, but incredibly the regulation of this amino acid must also vary within a 

single brain region to maintain the diversity in D-serine concentrations that is 

observed in the hippocampus for example. Figure 13 shows a model whereby 

extracellular basal D-serine levels are maintained and the saturation state of the co-

agonist of NMDA receptors and hence potentiation ability of this channel 

determined. 

 

Figure 13: Factors contributing to extracellular D-serine basal levels. D-serine 

steady-state and activity dependent release and D-serine transporters increase 

extracellular pool of D-serine while removal of D-serine can only occur by re-uptake 

by transporters with subsequent breakdown of D-serine by DAAO. 

 



103 
 

 

 

 

 

 
 

 

Chapter 4: Use of D-serine biosensors in vivo 
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4.1 Introduction 

D-serine biosensor technology has the potential to revolutionise the way in which D-

serine signalling is studied. The in vivo model is the closest physiological replica for 

the living brain but also the most difficult environment for use of enzyme-based 

biosensors; with enzyme stability and non-selective interference posing the biggest 

problems.  The practicability of D-serine biosensor use in vivo was explored. Some 

limitations in the design of the micro-electrode assembly and screening layer were 

apparent but D-serine biosensors can be used to detect changes in D-serine. 

4.2 Method 

In vivo data was gathered as part of collaboration with Dr. Matt Jones of Bristol 

University. Rats were anaesthetized with sodium pentobarbitone (60mg/kg) and 

received a subcutaneous injection of atropine sulphate to attenuate mucosal 

secretions. Rats were then placed in stereotaxic frame and secured with atraumatic 

ear bars coated with a topical local anaesthetic (Xylocaine). Absence of limb 

withdrawal corneal reflexes and lack of whisking were taken as evidence of 

unconscious state. Core body temperature was maintained at 37
o
C through the use of 

a homeotheric blanket controlled by a probe measuring rectal temperature. 

In all experiments a craniotomy exposed the cortex directly above the hippocampus 

in both the left and right hemisphere and a second craniotomy exposed the dorsal 

surface of the cerebellum. The dura was removed and the brain surface was 

periodically irrigated with saline before a calibrated D-serine and a null biosensor 

were inserted into the brain (Figure 1). Sensors were allowed to stabilise for 10 

minutes in the cortex before being inserted further to make recordings from the 

hippocampus, then these were removed from the brain completely for calibration in a 

separate perfusion chamber, at room temperature.  

 



105 
 

 

Figure 1: Use of D-serine biosensors in vivo. Sensors were placed directly above 

the area of interest, above the brain tissue (of rats aged approximately 6 weeks) but 

beneath a saline solution before insertions of 0.5mm to reach the cortex and further 

insertion of 2mm for the hippocampus. 

Once the electrophysiological experiments were complete, the brain was removed 

and fixed in 4% paraformaldehyde (PFA) in 0.1M PBS pH 7.4 overnight. Before 

sectioning, tissue was treated with 30% sucrose in PBS pH 7.4 for 24hours at 4
o
C 

and then embedded in cryo-M-Bed (Bright instruments). 20µm free-floating saggital 

sections were made and mounted on frosted slides, in order to image the path of the 

D-serine biosensors, into the brain.  

4.3 Results 

Extracellular D-serine levels were determined by inserting a D-serine biosensor into 

the cortex initially, directly above the CA1 region of the hippocampus (figure 2). 

Following measurements in the cortex (allowing 10minutes for stabilisation of the 

signal), the biosensor was inserted further, into the hippocampus and allowed to 

stabilise before making a calibration. Figure 2 shows cryostat sections from the 

hippocampus and cortex. Inflammation of the regions where the sensors were 

inserted shows much damage. A null sensor was also used, which ensured that any 

non-enzymatic interference could be detected. 

 

Figure 2: Progression of D-serine biosensor into the hippocampus. D-serine 

sensor is inserted into the cortex (a), following a stable recording it is inserted further 

until the hippocampus is reached (b, c, and d); the white bar represents a scale of 

1mm. 
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Since the biosensors need to be calibrated immediately after the experiment, a test-

chamber was devised but sensors could only be calibrated at room temperature. As a 

result the calibration (of 10µM D-serine) was smaller, since there is some 

dependency of the enzyme on temperature (Pilone Simonetta et al., 1989b; Pernot et 

al., 2008). Figure 3 shows a trace of D-serine and respective null sensors allowed to 

calibrate in the cortex, before being inserted further into the hippocampus. Sensors 

are then removed from tissue and re-calibrated. Similarly D-serine measurements 

were made in the cerebellum, though sensors were only inserted 1.5mm into the 

tissue. Differentiations between the granule cell layer and the molecular layer could 

not be made, as done in in vitro studies.  

The resulting in vivo D-serine tone is much higher than the levels detected in vitro 

(Figure 4 and table 4.1) Also the hippocampus and cortex measurements are not 

statistically different (P=0.21, T-test). A number of factors may have contributed to 

this including age of rats (these rats were approximately 6 weeks old while in vitro 

measurements were from p14-21 days), experimental constrictions (sensors ideally 

need to calibrated at 34-37
o
C) and limitations of the in vivo model for detected basal 

tone within brain regions- discrimination of different hippocampal or cerebellum 

layers is extremely difficult since the different layers cannot be visualised. 

 

Figure 3: In vivo measurements of D-serine tone in the hippocampus and cortex. 

A trace of D-serine sensor is inserted into the cortex, following stabilisation of 

current; the sensor is inserted further until the hippocampus before being removed 

from the brain entirely. 
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Though, this may be a real in vitro to in vivo difference in D-serine concentrations, 

further refinement of D-serine biosensors and experimental technique is required to 

confirm any conclusions. However, in a preparation of rat brain homogenate D-

serine concentrations have been shown to range from 10µM in the cerebellum to 

400µM in cerebral cortex, possibly supporting these in vivo findings (Nagata et al., 

1994). Still, with refinement of D-serine sensor design damage in the cortex may be 

minimised upon insertion into the hippocampus, and with smaller sensors, it may be 

possible to place both null and D-serine biosensors in closer proximity. However, it 

is unlikely that the changes in D-serine levels within a single structure of the brain 

can be observed in in vivo, since the length of the sensors is greater than the different 

layers of the hippocampus for example.  

Figure 4: Basal D-serine concentrations are high in the hippocampus and cortex 

but these are not significantly different from each other (T-test P=0.21). D-

serine concentration in the cerebellum is lower and also agrees more closely to 

the in vitro findings shown in chapter 3.  
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Table 4.1: In vivo D-serine measurements in the brain 

4.1  Discussion 

A number of issues arose with in vivo use of D-serine biosensors, which were not 

faced with in vitro use which highlighted the need for improvement in sensor design 

and use. 

(1) Screening against non-specific interference 

D-serine biosensors and null sensors are coated with poly-DAB to screen against 

non-specific interferences such as ascorbic acid and serotonin. For in vitro use this is 

a proficient barrier against non-specific signals but in in vivo, D-serine biosensors 

lost both sensitivity and selectivity much faster than with in vitro use, where sensors 

could be continually used for a few days. The major problem is the harsh in vivo 

environment, where both factors contributing to enzyme instability and increased 

number of interferences are present. For this reason new screening methods have 

been devised. 

(2) Microelectrode size: diameter and length 

Although in vitro, the sensor is only inserted into tissue of 500µm thickness, in vivo, 

the biosensor travels up to 2.5mm into the brain, to the reach the hippocampus. The 

current microelectrode are 50µm in diameter for the first 0.5mm and then 

significantly increase in width, causing much of the tissue damage observed in the 

cortex (figure 2). However, changes can be easily made to the biosensor design. An 

ideal assembly will have a 3mm length, of diameter 50µM or smaller for easy 

insertion into tissue. The mass damage observed in the cortex may have prevented 

clear reading in the hippocampus, where in vitro levels of D-serine are generally 

lower than those detected in the cortex. No significant difference was observed 

between D-serine levels in the hippocampus and cortex in vivo. 

Brain region Tone 

Hippocampus 

 

23.1±6.4µM, n=4 

Cortex 

 

26.1±3.5µM, n=4 

Cerebellum 

 

13.3±5.1µM, n=4 
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(3) It is not possible to made recording from sub-regions within the hippocampus 

or cerebellum 

Biosensor use in vitro allow for measurements to be made within different structures 

of the brain, as in the case of the four layers of the hippocampus. However in vivo, 

this was difficult to do with accuracy and routinely, as there was no way of 

visualising the sensor path into the brain. Cyrostat sectioning allowed for arbitory 

judgements to be made regarding the placements of the sensors. Figure 3 shows clear 

changes in D-serine levels in the cortex and hippocampus but changes in D-serine 

levels within the hippocampus couldn’t be made as the sensing area of the biosensor 

is larger than the defined cell layers (which is approximately 70µm in length). 

Therefore in vivo only whole structure measurements can be made, missing out 

possibly vital differences within a structure. Similarly in the cerebellum the changes 

observed in basal D-serine levels in the granule cell layer and the molecular layer 

were not seen. Incidentally, the D-serine concentration detected in vivo were most 

similar to those observed in vitro for the cerebellum, this is likely due to less damage 

in tissue as sensors were not inserted so deep into tissue, 1mm compared to 2.5mm 

in the hippocampus/ cortex. 

(4) Calibration chamber 

Sensors need to be calibrated before and after a recording, in vitro; this is usually 

done by applying a known amount of D-serine in the circulating aCSF. However, for 

in vivo experiments a separate chamber was devised but the sensors could not be 

calibrated at the temperature that they were used at (33-37oC), instead calibrations 

were made at room temperature. A small but noticeable reduction in the response of 

the sensor can occur. If the calibration is lower then, the basal D-serine tone detects 

is magnified. This may account for in part the higher levels of D-serine detected in in 

vivo compared to in vitro, though age of animals may also be a large factor.  
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Chapter 5: Activity dependent modulation of 
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5.1 Abstract 

AMPA, kainate and NMDA receptors form the ionotropic glutamate receptor family; 

these channels mediate the majority of excitatory brain function. D-serine is a major 

co-agonist of the NMDA receptor, the binding of which is prerequisite for activation. 

Here we use D-serine biosensors to analyze the mechanisms of glutamate receptor 

evoked D-serine release and determine the functional implications of these changes 

on the NMDA receptor. We have systematically explored different regions of the 

brain and find surprising heterogeneity of mechanism.  

We show that D-serine release can be evoked by the glutamate receptor agonists 

5µM AMPA (+0.5±0.1µM, n=9), 20µM NMDA (+1.1±0.3µM, n=9) and 12.5µM 

kainate (+1.1±0.4µM, n=9) in the cortex, where levels of D-serine are already 

saturating. This release follows an increase in intracellular calcium levels in 

astrocytes, as observed by a Rhod2 signal and is diminished significantly by the 

removal of extracellular calcium. Two regions in the hippocampus were also 

explored. In s. pyramidale all 3 ionotropic agonists can evoke both loss and release 

of extracellular D-serine indicating the existence of two opposing mechanisms. In s. 

radiatum AMPA and NMDA caused a loss in extracellular D-serine: but loss with 

NMDA (-0.4±0.1µM, n=11) is twice that seen with AMPA (-0.2 ± 0.0µM, n=14), 

while with kainate both release and loss of extracellular D-serine is observed. In the 

context of the existing basal tone, the loss of D-serine has the potential to 

significantly diminish NMDA receptor activity, while the release occurs in regions 

where the NMDA receptor co-agonist site is already saturated; hence less likely to 

have functional significance for NMDA receptor activation.  

During a LTP inducing tetanus (100Hz, 200ms), a process involving the ionotropic 

glutamate receptors NMDA and AMPA heavily, in CA1 of hippocampus D-serine is 

released (0.73±0.35µM, n=5) but this D-serine release occurs several seconds after 

the tetanus. 
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5.2 Introduction 

 

Glutamate, the major excitatory neurotransmitter of the brain acts via ligand gated 

ion channels (ionotropic receptors) and G-protein coupled (metabotropic) receptors. 

Activation of these channels is responsible for excitatory synaptic transmission and 

mechanisms underlying learning and memory (LTP and LTD). The NMDA channel 

is unique among these receptors with regards to a voltage-dependent block by Mg
2+

 

and permeability to Ca
2+

, both features are key to the physiological role of NMDA 

receptors in learning and memory (Collingridge et al., 1983; Oliver et al., 1990b). D-

serine is an additional ligand to glutamate, which acts at the modulatory glycine site 

of the NMDA receptor; its binding is necessary for activation (Fadda et al., 1988; 

Wolosker et al., 1999b). Predictably it has been linked to multiple roles in the CNS, 

including modulating glutamatergic synapses (Wolosker et al., 1999a); and action as 

a motility signal  to promote development and maturation of brain cells (Kim, PM et 

al., 2005). In excess D-serine has been shown to promote cell death, through over-

excitation of the NMDA receptor (Aschner et al., 1999). Thus there is a need to 

identify the factors involved in manipulating D-serine metabolism (release, uptake 

and breakdown) in the brain. 

 

The D-serine synthesising enzyme serine racemase (SR) appears to be central to the 

regulation of extracellular D-serine levels. First discovered in the late 1990s, this 

enzyme is known to be present in both in glia and neurones (Wolosker et al., 1999a; 

Wolosker et al., 1999b; Kartvelishvily et al., 2006). Under physiological conditions 

the conversion of L-serine to D-serine predominates (Vmax: 5µmol/mg/h; Km: 

9.8mM), while a surprising reverse reaction of D-serine to L-serine can also occur 

(Vmax: 22µ mol/mg/h; Km: 60mM). Due to the much higher Km value in the direction 

of D- to L-serine, the enzyme should predominantly make D-serine but the rate of 

the reverse reaction is much faster when it does occur. Further study of SR revealed 

that racemisation of L-serine could be regulated by a number of divalent cations 

including Mg
2+

 and Ca
2+

, as well as ATP and co-proteins GRIP (proteins glutamate 

receptor interacting protein), protein interacting with C-kinase (PICK1) and PLP 

(pyridoxal 5′-phosphate) all of which influence the  racemisation of L-serine to D-

serine and basal D-serine concentrations. The exact mechanisms by which SR 

regulation results in altered extracellular D-serine levels is not fully understood 
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(Wolosker et al., 1999b; Kim, PM et al., 2005; Fujii et al., 2006). Stimulation of this 

enzyme by the co-factors leads to D-serine release in the brain and removal of co-

factors of SR causes a loss in D-serine levels in the extracellular space (Cook et al., 

2002). 

The ionotropic glutamate agonists alpha-amino-3-hydroxy-5-methylisoxazole-4-

propionic acid (AMPA), N-methyl-D-aspartate (NMDA) and kainate all cause D-

serine release from cortical neuronal cultures, where SR is over-expressed 

(Kartvelishvily et al., 2006). Similar patterns of release are observed in glial cultures 

for AMPA receptor activation but NMDA receptor activation is known to reduce 

extracellular D-serine levels (Kim, PM et al., 2005; Mustafa et al., 2007). Both of 

these alterations result from modification of SR. AMPA receptor activation causes 

the dislocation of glutamate receptor interacting protein (GRIP), which when free 

can bind SR to trigger D-serine synthesis (Kim, PM et al., 2005). NMDA receptor 

activity on the other hand inhibits SR through S-nitrosylation of the enzyme and 

results in reduced D-serine release in cell cultures (Mustafa et al., 2007). Kainate and 

ionophore A23187 can also cause D-serine release by boosting SR activity through 

increased intracellular calcium which results in as much as 21µM D-serine release 

from glial cultures (Cook et al 2002). As may be expected the removal of calcium 

results in inhibition of D-serine release (Mothet et al., 2005).  

By far the main concern with these findings is their limitation to cultured cells.  In 

vitro or in vivo brain models are much closer representations of the brain in the sense 

of the tightly packed cellular structure and physiological milieu. A limitation in the 

technology used to monitor D-serine levels is also a major contributor to many of the 

questions relating to D-serine signalling in the brain remaining unanswered. Real-

time D-serine detection in intact brain tissue is not possible with HPLC and very 

difficult with capillary dialysis. D-serine biosensors provide significant advances 

over these techniques allowing both speedy detection of D-serine (in the second 

timeframe) and sensitive measurements in a selective manner. 

Here we use D-serine biosensors to determine the influence of ionotropic glutamate 

receptor agonists on D-serine signalling in the brain and ultimately NMDA receptor 

excitability. Recordings were made from the cortex and 2 regions with the 

hippocampus (s. radiatum and s. pyramidale) and the influence of calcium (both 
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intracellular and extracellular) on D-serine metabolism will be explored. Since all of 

the ionotropic glutamate receptors contribute to learning and memory, the role of D-

serine in long term potentiation (LTP) will be examined. 

 

5.3 Methods 

5.3.1 In vitro slice preparation 

Slice preparations are as described in chapter 3. Male Sprague-Dawley rats aged 12-

21 days were used and 500µm horizontal hippocampus/cortex slices were prepared 

(Dale et al., 2000). D-serine biosensors of 0.5mm length and 50µm diameter were 

used in all studies, inserted into the slice, allowed to stabilise for 20 minutes before 

application of drugs. In all cases a null biosensor was used (a sensor without enzyme 

in the bilayer) to ensure accuracy of recordings. 

5.3.2 Regions of interest: hippocampus and cortex  

Recordings were made in the cortex, s. radiatum and s. pyramidale of hippocampus. 

The regions were purposely selected to represent functionally and structurally 

different areas of the brain, in the context of D-serine tone (Chapter 3). In the cortex, 

basal D-serine concentrations are saturating at the modulatory glycine site, this 

region can be compared with s. pyramidale of the hippocampus, which also has high 

D-serine levels. S. radiatum on the other hand has lower levels of D-serine and the 

modulatory glycine site is not fully saturated. Hence comparisons can be made 

between two regions within a single structure (s. radiatum and s. pyramidale), two 

areas containing high levels of D-serine (s. pyramidale and cortex) and areas of low 

D-serine tone vs. high D-serine tone (s. pyramidale vs. s. radiatum and s. radiatum 

vs. cortex) for a more detailed investigation.  

5.3.3 Synaptic transmission and ionotropic glutamate receptor agonist 

concentrations 

Field EPSPs (fEPSPs) were evoked by stimulating the Schaffer collateral 

commissural pathway with small impulses (150µA) at 15s intervals and subsequently 

recorded from s. radiatum of CA1. As well as monitoring synaptic communication, 

the fEPSP allowed assessment of the healthiness of a slice and the reversibility of 
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drug treatment. The concentrations of AMPA-5µM, NMDA-20µM and kainate-

12.5µM used, are maximal concentrations for which the fEPSP fully recovers and 

non-physiological D-serine release as a result of cell death is avoided. At higher 

concentrations of AMPA (10µM) and kainate (25µM) some cell death occurs 

(Figure 1). The physiological effect of which is failure of the fEPSP to return to the 

initial strength, as can be seen for 10µM AMPA and 25µM kainate. Data from Arias 

et al also confirms that 10µM AMPA (and 30µM NMDA) is toxic to the slice in 

vitro (Arias et al., 1999).  

 

 

Figure 1: 10µm AMPA and 25µM kainate is toxic to the slice in vitro. At these 

higher concentrations of agonist AMPA and kainate, the fEPSP does not fully 

recover, a sign of irreversible toxic changes in the slice as result of exposure to drugs 

(A). Part B displays single examples of fEPSPs observed intially, in the presence of 

non-damaging concentrations of AMPA, NMDA and kainate and also the recovery 

of synaptic transmission after these drugs are washed out. 

 

(A) 

(B) 
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5.3.4 Analysis of recordings 

Traces from D-serine biosensors were analysed as shown in figure 2. A null sensor 

(not containing DAAO enzyme) is used alongside a D-serine (or glutamate) 

biosensor. The subtraction of the null trace from the D-serine (or glutamate) trace is 

used to represent the actual change observed in the slice. The red bar represents the 

application of a drug in all traces and the release or loss of a signal is taken as the 

difference between the initial levels minus the peak of any change that occurs (loss 

or release), shown by the arrows in figure 2. All data was sampled at 10 kHz and 

filtered at 1Hz and 3kHz using a A/D board. The acquisition software Signal was 

used for all data acquisition.  

 

Figure 2: Null sensor traces are subtracted from the D-serine trace to visualise 

an actual change observed with the biosensors. The null biosensor trace is 

subtracted (a) and (b) to give the ‘actual’ trace to be used for further analysis. 

Release in neurotransmitter is taken as the difference between the initial basal levels 

and the peak in rise observed. Loss similarly is the difference between the initial 

concentrations and the greatest level of reduction seen. 

Once the release or loss has been calculated, additional information can be gathered 

regarding the kinetics of the changes that occur. For example, the time taken for the 

loss or release to occur and the time taken for steady levels to be reached, may not 

the same. (x) Represents the time taken for the change to peak, while (y) represents 

the time taken for the D-serine (or glutamate) levels to return to baseline (red dotted 
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line). This may provide information about mechanism kinetics involved in restoring 

baseline levels of a neurotransmitter. 

 

Figure 3: Kinetics of changes observed in D-serine. The time taken for the change 

to peak from the initial levels has been denoted (x), while the time taken for these 

levels to return to initial levels has been denoted (y). This indicates that mechanisms 

enabling change x are faster than those initiating change y.  

5.3.5 Rhod2 staining 

Hippocampal slices of 200µm thickness were prepared as described above. Rhod2 

was prepared by dissolving 50µg of the dye in 2µl of dimethylsulfoxide and 440µl 

distilled water at room temperature. Slices were transferred to a small slice chamber 

filled with this solution, and continually oxygenated. After an incubation of 40 

minutes slices were washed in normal aCSF and contained in this solution in the 

dark until required. Rhod2 was excited at 540± 10nm and emission was measured at 

610nm wavelength from a number of cells around the biosensor.  

5.4 Results 

D-serine can be released by ionotropic glutamate agonists AMPA, NMDA and 

kainate in neuronal culture studies from cells over-expressing SR (Kartvelishvily et 

al., 2006). Here we test these findings in normal in vitro slices using the D-serine 

biosensor to measure real-time changes in D-serine levels in the hippocampus and 

cortex with bath applications of these agonists.  

5.4.1 Does acute AMPA receptor activation alter D-serine levels? 

AMPA receptors along with NMDA receptors mediate the bulk of fast excitatory 

synaptic transmission in the brain and activation of this channel has been shown to 

cause D-serine release, both neuronal and from glial cultures (Kim, PM et al., 2005; 

Kartvelishvily et al., 2006). In agreement with these studies, D-serine is released in 

the cortex as a result of acute AMPA receptor activation in vitro, +0.5±0.1µM, n=9. 

The recovery of the fEPSP however occurs much later than the recovery in D-serine 
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concentrations, possibly as a result of simultaneous reductions in glutamate levels, 

which recover much more slowly.  

However, we report a surprising heterogeneous response of D-serine to acute AMPA 

receptor activation in the hippocampus. Both release of D-serine and reduction in 

concentration can result from acute AMPA receptor activation, indicating presence 

of 2 different mechanisms. In s. pyramidale of hippocampus release of D-serine is 

observed and in a couple of cases a reduction in D-serine concentrations also occurs, 

the overall change in D-serine levels observed is positive +0.2 ±0.1µM, n=9. An 

example trace is shown in figure 4b. Simultaneous recordings of glutamate were also 

made and levels reduced with acute AMPA receptor activation. D-serine release is 

observed within seconds of AMPA application, with peak levels coinciding with 

lowest concentrations of glutamate. In s. radiatum however, D-serine levels are 

reduced much more so, with a negative overall change -0.19 ± 0.0µM, n=14. The 

reduction in fEPSP is also observed, which recovers as D-serine levels begin to 

return to initial basal concentrations (figure 4c). This decrease occurs at a much 

faster rate (110±12s, n=14) compared to the eventual recovery in D-serine levels 

(364±49s, n=14), suggesting that the signalling mechanisms responsible for the loss 

of D-serine are much faster than the signalling pathway responsible for the recovery 

in D-serine levels.  
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Figure 4: Acute AMPA receptor activation can trigger a reduction in extracellular D-serine and D-serine release in different 

brain regions. Red bar represents an application of 5µM AMPA for 1 minute in two areas of the hippocampus: s. radiatum and s. 

pyramidale and the cortex. fEPSP was recorded in s. radiatum in all cases and can be observed on the microelectrode. (a) D-serine is 

released in the cortex (b) D-serine release and simultaneous reductions in glutamate are seen in s. pyramidale (c) D-serine levels are 

reduced with AMPA receptor activation in s. radiatum (d) change in D-serine concentration is plotted as a cumulative probability graph. 
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The cumulative probability plot of this data best highlights the diversity in changes 

that occur in D-serine levels as a result of acute AMPA receptor activation. To 

answer the question set at the beginning of this section: can AMPA receptor 

activation alter extracellular D-serine concentrations? The answer most definitely is 

yes but what is more interesting is that this change is not uniform throughout the 

brain or even within a single brain region implying the activation of more than one 

signalling cascades. Release of D-serine is observed in s. pyramidale and cortex 

while in the s. radiatum D-serine levels decrease. In s. radiatum (blue line) the 

action of AMPA resulted in a decrease in D-serine concentration while the majority 

of the data points in s. pyramidale (red line) are positive, showing D-serine release. 

There is one occasion when release is observed in s. radiatum and a loss of D-serine 

levels is seen in s. pyramidale. This may be an anomaly due to sensor placement, 

since the physical difference between s. radiatum and s. pyramidale is not much 

greater than the diameter of the D-serine microelectrode (50µm). 

We explored the link between D-serine release and changes in intracellular calcium 

levels. In the cortex, D-serine release may be linked to an increase in intracellular 

calcium in astrocytes, as observed by a Rhod 2 calcium signal. An increase in 

calcium is observed prior to D-serine release, as shown in figure 5.

 

Figure 5: AMPA receptor activation causes D-serine release through a change 

in intracellular calcium as observed by a Rhod2 signal. D-serine biosensors were 

used in conjunction with histo-chemical staining techniques to investigate whether 

D-serine release precedes changes in calcium. Bath application of AMPA (blue bar) 

causes an increase in intracellular calcium levels in astrocytes as observed by the 

Rhod 2 signal. Release of D-serine precedes this. 
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However, when attempts were made to boost intracellular calcium using 

pharmacological compounds Adenosine-5’-γ-thiotriphosphate (γ-ATP), 

methylthioadenosine 5′-diphosphate (MeS-ADP), and ionophore A23187 little 

change in D-serine concentrations was seen. Cook et al have shown that as much as 

21µM D-serine can be released from primary astrocyte cultures using ionophore 

A23187, with suggestions that direct binding of calcium to SR, increases the 

synthesis of D-serine and its release into the extracellular space (Cook et al., 2002). 

We saw little evidence of this in our in vitro brain slice model (n=7). Although, the 

pharmacological effects of the drug can be observed by the increase in the fEPSP 

(figure 6), as a result of increased intracellular calcium. Little change in the fEPSP is 

observed with the addition of 1.5µM of ionophore A23187, suggesting that 500nM 

effectively saturates the physiological effect of this compound.  

 

Figure 6: Increasing intracellular Calcium with A23187 does not alter D-serine 

levels in the hippocampus and cortex. Application of 500nM and 1.5µM of the 

calcium augmenting compound A23178 does not cause D-serine release in vitro. 

However, the pharmacological effect of the drug is almost instant, with the field 

EPSP increasing as a result of increased calcium levels. Fields recordings were 

made in the hippocampus with simultaneous biosensors recordings from the cortex 

and hippocampus. 

MeS-ADP (60 µM), an agonist at P2Y1, P2Y12 and P2Y13 receptors and γ-ATP 

(100µM), an analogue of ATP can both boost intracellular calcium levels. Although, 

the pharmacological effects of these drugs can be observed on synaptic transmission, 

little change in D-serine levels was observed in the hippocampus and cortex with 

MeS-ADP (n=7) or γ-ATP (n=5).  

Hence, although changes in intracellular calcium are important to D-serine release 

with acute AMPA receptor activation we find little evidence for D-serine release 
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triggered by non-specific amplifications of intracellular calcium by pharmacological 

compounds in vitro.  

5.4.2 Does acute NMDA receptor activation alter extracellular D-serine 

concentrations? 

The agonist NMDA (20µM) can be used to distinguish the NMDA receptor from 

other ionotropic glutamate receptors. It is proposed that NMDA receptor activation 

can reduce D-serine levels in the cultured cells, by down-regulation of the D-serine 

synthesising enzyme SR though S-nitrosylation (Mustafa et al., 2007).  Our findings 

present a more complex and multifaceted series of events triggered upon acute 

NMDA receptor activation in vitro, as observed by D-serine biosensors. 

In the cortex, D-serine is released with acute activation of NMDA receptors, +1.1 ± 

0.3µM (n=9). D-serine levels rise swiftly, upon the NMDA agonist reaching the 

slice, with a peak observed as the fEPSP dimishes (figure 7a). Following this D-

serine levels fall and evventually return to the initial concentrations. The released D-

serine concentrations are greater than those observed for AMPA receptors (4a), 

which indicates that NMDA receptor activation is a greater stimulus for D-serine 

release mechanism in the cortex. 

In the hippocampus, acute activation of NMDA receptors interestingly had two 

different consequences on the extracellular D-serine concentration in s. pyramidale. 

Both loss of D-serine is seen and D-serine release (7d, red line). Overall, a loss in D-

serine levels is seen -0.33±0.2µM (n=9) with a bath application of NMDA and an 

immediate loss of synaptic transmission also occurs. Both mechanisms (for loss and 

release) are present in s. pyramidale and they can be singly triggered by NMDA to 

give opposing D-serine signals. Of note also is the D-serine release is observed with 

acute AMPA receptor activation in this region, compared with the loss seen with 

NMDA receptor activation. Since we confirmed above that two mechanisms are 

present in the hippocampus, one to regulate deficits in D-serine concentration and 

another to cause D-serine release, this variation in the responses seen with AMPA 

and NMDA agonist may indicate the preferential activation of the D-serine reducing 

mechanism by NMDA and D-serine release mechanism by AMPA.  
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Figure 7: Acute NMDA receptor activation can trigger a reduction in extracellular D-serine and D-serine release in different 

brain regions. Red bar represents an application of 20µM NMDA for 2 minutes in two areas of the hippocampus: s. radiatum and s. 

pyramidale and the cortex. fEPSP was recorded in s. radiatum in all cases and can be observed on the microelectrode. (a) D-serine is 

released in the cortex (b) D-serine release and reduction in D-serine levels are seen in s. pyramidale (c) D-serine levels are reduced with 

NMDA receptor activation in s. radiatum (d) change in D-serine concentration is plotted as a cumulative probability graph. 
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In s. radiatum (as with AMPA receptor activation) acute NMDA receptor activation 

causes a loss in D-serine levels (-0.42 ±0.07µM (n=11), as seen in figure 7c. This 

reduction in D-serine occurs in a similar pattern to that observed in figure 4c, above, 

for AMPA receptor activation. It may be that acute AMPA and NMDA receptor 

activation triggers the same mechanism, resulting in the loss of D-serine observed in 

both cases. Additionally, as seen with AMPA the fall from base levels it much faster 

(144±16s, n=11) compared to the slow recovery in D-serine levels (480±39, n=11). 

Synaptic transmission is terminated as observed by the fall in the fEPSP, similar to 

that seen under acute AMPA receptor activation.  

The cumulative probability plot (7d) shows that D-serine levels can be altered by 

acute NMDA receptor activation. More D-serine release and more severe reduction 

in D-serine concentrations are triggered with NMDA compared with AMPA in the 

cortex and s. radiatum. This may be an indicator of acute NMDA receptor activation 

being a superior stimulus than AMPA receptor activation. But NMDA receptors 

preferentially cause loss in D-serine observed in s. pyramidale while AMPA 

receptors preferentially stimulate D-serine release. The functional consequence of 

extracellular changes in D-serine triggered by acute AMPA and NMDA receptor 

activation on the modulatory glycine site will also vary. 

5.4.3 Does acute kainate receptor activation alter extracellular D-serine levels? 

Kainate receptor activation alters D-serine levels in a similar pattern to that observed 

with NMDA and AMPA. Bath application of 12.5µM kainate for 2 minutes caused 

D-serine release in the cortex, +1.1 ± 0.4µM, n=9 (figure 8a). In s. pyramidale a loss 

of D-serine was observed, -0.16±0.1µM, n=9 (figure 8b), similar to that seen for 

NMDA, a few experiments showed D-serine release under the same conditions. In s. 

radiatum, both loss and release of D-serine has been seen with the activation of 

kainate receptors, so that the average change is very small, +0.02±0.1µM, n=9 

(figure 8c). Although the median and mean data in s. radiatum shows little change, 

in fact, the extent of release and loss is similar to that seen in s. pyramidale (figure 

8d).  
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Figure 8: Acute kainate receptor activation can trigger a reduction in extracellular D-serine and D-serine release in 

different brain regions. Red bar represents an application of 12.5µM kainate for 2 minutes in two areas of the hippocampus: s. 

radiatum and s. pyramidale and the cortex. fEPSP was recorded in s. radiatum in all cases and can be observed on the 

microelectrode. (a) D-serine is released in the cortex (b) D-serine reduction is seen in s. pyramidale (c) D-serine release and 

loss is observed in s. radiatum (d) change in D-serine concentration are plotted for all three brain regions as a cumulative 

probability graph. 
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Acute kainate receptor activity alters D-serine levels in the brain differently 

depending on the brain region studied and is certainly more complicated than has 

been previously suggested by studies conducted in cultured cells.  The release of D-

serine in the cortex is similar to that observed with NMDA, indicating similar 

abilities of the two agonists in stimulating the D-serine release mechanism. In s. 

pyramidale the reduction in D-serine is less compared with NMDA, signifying that 

NMDA stimulates the reduction mechanism more so than kainate.  

5.4.4 Can extracellular alterations in Ca
2+

 ions alter D-serine signalling 

mechanisms? 

Intracellular and extracellular changes in Ca
2+

 can play a role in a wide variety of 

processes in the brain. Locally Ca
2+

 signalling controls neurotransmitter release, 

while globally it is used to regulate synaptic strength and accomplish postsynaptic 

processing. In glia Ca
2+

 ions are used to convey long-range signalling by means of 

propagating Ca
2+

 waves and control the release of glio-transmitters (Verkhratsky et 

al., 2009). Hence it is not surprising that a number of studies have shown that D-

serine can be released by agents that augment intracellular calcium, though we have 

not found any evidence for this here (Mothet et al., 2005). But since the enzyme SR 

requires Ca
2+

 as a co-factor and it is intrinsically involved in the D-serine release, by 

unknown mechanisms (Mothet et al., 2005), we considered the Ca
2+

-dependence of 

the changes in D-serine levels induced by the ionotropic agonists AMPA and 

NMDA. Figure 9 shows an example trace, calcium free aCSF (with EGTA, a 

calcium-chealator) was applied to the slice, the immediate effect of which is 

termination of synaptic transmission (fEPSP). This is applied for 20-25 minutes to 

ensure full removal of calcium from the slice, before 5µM AMPA in calcium-free 

aCSF is applied to the slice for 1 minute (and in the case of NMDA, 20µM, for 2 

minutes). This causes a reduction in D-serine levels occurs in s. pyramidale. Calcium 

is washed back in after 20 minutes and full recovery in fEPSP strength is observed. 

This indicates no lasting effect of the removal of calcium and acute AMPA (or 

NMDA) receptor activation on synaptic transmission.  
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Figure 9: AMPA response in calcium-free aCSF in s. radiatum and s. 

pyramidale. AMPA still causes a loss of D-serine in calcium free aCSF in both areas 

of the hippocampus. The fEPSP is lost in calcium free-aCSF but this recovers fully 

with the removal of calcium-free aCSF. 

Cumulative probability plots of the data gathered show clearly some dependence on 

extracellular calcium by the mechanisms regulating D-serine signalling triggered by 

AMPA receptor activation but not in all regions. D-serine signalling under calcium-

free conditions in s. radiatum remains unaffected as shown in figure 10, with the 

average change of -0.2± 0.0µM, n=7, compared to -0.2±0.0µM, n=9 seen with the 

presence of calcium.  

But much of the D-serine release observed in s. pyramidale (+0.2±0.1µM) is 

changed instead to a reduction (-0.2±0.1µM, n=7), suggestive of a central role of 

calcium in determining whether D-serine release occurs or loss.  In the cortex, D-

serine release (0.5±0.1µM) is severely diminished (+0.15±0.07µM, n=7) and is some 

cases no change in D-serine levels occurs at all. Earlier studies showed that an 

intracellular rise in calcium in the cortex precedes D-serine release, as a result of 

AMPA receptor activation; we now confirm that both intracellular and extracellular 

calcium is important in the release of D-serine from the cortex.  To summarise, the 

mechanisms that evoke D-serine release as a result of AMPA receptor activation 

depend on extracellular calcium while the loss of D-serine occurs by a mechanism 

independent of extracellular calcium. 
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Figure 10: AMPA dependent D-serine signalling is calcium-sensitive in s. 

pyramidale and the cortex. Cumulative probability traces show that under calcium 

free conditions AMPA receptor dependent D-serine release is reduced in the cortex 

and s, pyramidale, while the little change is observed in s. radiatum. 

Under calcium-free/acute NMDA receptor activation, D-serine release in s. radiatum 

(-0.42±0.07µM) is severely affected, with much of the reduction in D-serine no 

longer observed (-0.12±0.04µM, n=5). Signalling in s. pyramidale appears to be 

largely unaffected as can be seen in figure 11, while the average signalling changes 

of -0.3±0.2µM in the presence of calcium is reduced slightly to -0.1±0.2µM, n=5, 

under calcium free conditions However, much of the D-serine release (+1.1±0.3µM) 

observed with NMDA in the cortex is lost, instead loss of D-serine in the cortex 

occurs (-0.1±0.2µM, n=8). This data is summarised in Table 5.1.

 

Figure 11: NMDA dependent D-serine signalling is calcium-sensitive in s. 

radiatum and the cortex. Cumulative probability traces show that under calcium 

free conditions NMDA receptor dependent D-serine release is reduced, while the 

reduction in s. radiatum is less. In s. pyramidale very little change occurs. 
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 Presence of calcium Calcium-free 

s. radiatum-AMPA -0.2±0.0µM -0.2±0.0µM, n=7 

s. pyramidale-AMPA +0.2±0.1µM -0.2±0.1µM, n=7 

Cortex-AMPA +0.5±0.1µM +0.15±0.1µM, n=7 

s. radiatum-NMDA -0.42±0.1µM -0.12±0.0µM, n=5 

s. pyramidale-NMDA -0.3±0.2µM -0.1±0.2µM, n=5 

Cortex-NMDA +1.1±0.3µM -0.1±0.2µM, n=8 

 

Table 5.1: Regulation of D-serine by acute NMDA and AMPA receptors is 

dependent on extracellular calcium in some regions of the brain. 

5.4.5 D-serine and LTP 

Since NMDA receptors play a vital function in the mediation of LTP/LTD, the 

underlying mechanisms of learning and memory, and D-serine is a required co-

agonist at the NMDA receptor, we explored the changes induced in D-serine level 

during LTP. The slope of fEPSP was measured for 15 minutes before high frequency 

stimulation (HFS) was used to induce LTP. Ten trains of four 100Hz pulses each, 

separated by 100ms formed the tetanus applied (a theta burst), this caused an 

increase in fEPSP amplitude that was long-lasting (LTP), as shown in figure 12.  
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Figure 12: LTP can be achieved with high frequency stimulation. Time course of 

the normalised fEPSP and the spike in fEPSP amplitude induced with high 

frequency stimulation. 
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HFS induced D-serine release (0.73±0.4µM, n=5).  Recordings were made in two 

regions of the hippocampus, and D-serine release lasts for 74±9 seconds (n=5) after 

the tetanus was applied. The release of D-serine appears to be too slow to partake in 

the LTP spike resulting from HFS but it may increase NMDA receptor activity in 

certain hippocampal sub-regions, such as s. radiatum where levels of D-serine are 

non-saturating.  

 

Figure 13: During LTP D-serine is released in the hippocampus, s. radiatum and 

s. pyramidale.  The highest levels of D-serine release are observed on sensors placed 

closest to the stimulating electrode which was placed in CA s. radiatum.   

5.5 Discussion 

Changes in D-serine levels have been studied using various techniques, but D-serine 

biosensors provide perhaps the most advanced means by which this chemical 

transmitter can be studied in the brain. Here, we use these microelectrodes to observe 

activity dependent D-serine changes simultaneously from different brain regions and 

within a single structure in real-time. We report the most unexpected findings. Our 

data highlights the need for a revision of current methods used to study D-serine in 

the brain.  

5.5.1 Ionotropic glutamate receptors influence D-serine concentration 

We report the presence of multifaceted signalling events following inductions with 

ionotropic glutamate receptor agonists. Unlike previous studies which describe 

release of D-serine (with AMPA and kainate) or loss (with NMDA). Both release 

and loss of extracellular D-serine can be induced by ionotropic agonists in s. 
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pyramidale while only release is evoked in the cortex with all 3 agonists and overall 

a loss in D-serine concentrations is seen in s. radiatum with AMPA and NMDA. 

Figure 14 presents a cumulative probability plot of the different regions studied and 

regulatory changes brought on by the 3 ionotropic agonists. Since a change in D-

serine concentration is likely to affect NMDA receptor potentiation ability, it can be 

concluded that both AMPA and kainate receptor activation can influence NMDA 

receptors, through the regulation of D-serine. NMDA receptors also appear to 

regulate D-serine concentrations; this could indicate the presence of negative 

feedback system in the hippocampus and a positive feedback mechanism in the 

cortex by which NMDA receptor events are controlled by the availability of D-

serine. 

 

Figure 14: Changes in extracellular D-serine observed with ionotropic agonists 

in s. radiatum, s. pyramidale and cortex.  

Since binding at the co-agonist site of NMDA receptors is necessary for activation, 

rationally it may be expected that increased D-serine release will potentiate NMDA 

receptor activity, while reduced D-serine levels could diminish receptor activation. 

But, this may not necessarily be the case in light of variations in basal D-serine 

levels and saturation states of the co-agonist site seen in different brain areas, as 

presented in chapter 3. Hence any changes in D-serine levels need to be considered 

in the context of the existing D-serine tone in order to determine their functional 

implications at the modulatory glycine site of the NMDA receptor. The regions 

where D-serine release is observed (cortex and s. pyramidale) are already saturated 

at NMDA glycine site (as discussed in chapter 3) and a reduction in D-serine levels 

occurs in where D-serine concentrations are not saturating.  



132 
 

For the purpose of analysis, median values will be taken to represent the whole data 

set as means/averages do not necessarily represent an observed event in the slice, as 

observed by the D-serine microelectrodes. Each data set is an actual change that 

occurs in the slice, so any point can be taken to determine its functional significance 

on NMDA receptor potentiation ability, theoretically. Often, these median values 

closely represent the mean change observed and will be used as an example to show 

the general implications of the changes in D-serine levels observed with ionotropic 

agonists, in the specific regions studied. Table 5.2 below gives the median changes 

observed, as well as being a useful measure for data that is not normally distributed, 

the median values also represent real-time observations; along with the D-serine tone 

in the different areas studied as determined in chapter 3. 

 Tone (µM) AMPA (µM) NMDA (µM) Kainate (µM) 

S. radiatum 0.3 -0.1 -0.4 No effect 

S. pyramidale 0.8 +0.1 -0.3 -0.3 

Cortex 0.9 +0.4 +0.9 +0.7 

 

Table 5.2: Median values for change detected with AMPA, NMDA and kainate, 

and the known D-serine tone in the regions examined. 

5.5.2 Acute AMPA receptor activation can alter NMDA receptor co-agonist site 

saturation. 

Changes in D-serine levels as a result of acute AMPA receptor activation show 

disparate functional significance at the NMDA receptor co-agonist site. Plotted on 

figure 14 are the basal D-serine levels observed in s. pyramidale, s. radiatum and 

cortex, with arrows showing the direction of change in occupancy levels, as a result 

of AMPA receptor activation. 
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Figure 15: Functional significance of the agonist AMPA on NMDA receptor 

occupancy. The co-agonist site occupancy levels are altered in a different way in the 

3 regions of the brain studied. In s. radiatum co-agonist site occupancy decreases to 

18-37% (NR2A-D respectively) for the different NR2 subunits; while the release of 

D-serine in the cortex and s. pyramidale does not alter site occupancy levels by 

much and hence NMDA receptor function is unlikely to be affected. 

In s. radiatum percentage occupancy levels at the co-agonist site fall from 47-53% 

(for NR2A and NR2B containing NMDA receptors, most highly expressed in this 

region) to 18-23% respectively. This suggests a reduction in NMDA receptor 

excitability by a factor of 2 which under acute AMPA receptor activation may be 

beneficial, as over-excitation at the NMDA receptor is a well-known feature of cell 

death. Damage due to over-excitation of the NMDA receptor will be reduced as a 

result of low co-agonist availability. Structurally, s. radiatum, is the site of 

approximately 54% of all excitatory synapses and the highest density of dendritic 

spines and synapses of pyramidal neurones. The over-excitation of the NMDA 

receptor (under acute conditions) can potentially cause immense damage in the 

region. The reduction in D-serine levels seen here has the potential to moderate 

NMDA receptor activity and may be critical in the survival of the slice (i.e. neuro-

protective).  

In the s. pyramidale and cortex, D-serine is released. Almost twice as much D-serine 

release is observed in the cortex compared to s. pyramidale (+0.5±0.1µM and 
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+0.2±0.1µM respectively). However, in both regions this release appears to have 

little functional significance on the saturation levels of the glycine modulatory site. 

In s. pyramidale co-agonists site occupancy levels are almost saturated at 

approximately 85%, with the released D-serine altering this to 95% while in the 

cortex occupancy levels are increased from 90% to 95% irrespective of NR2 subunit 

composition of NMDA receptors. This change is unlikely to affect NMDA receptor 

activity by very much. 

 It is possible that this D-serine release is a by-product of over activity of SR, which 

makes 3 molecules of pyruvate for every D-serine molecule (De Miranda et al., 

2002; Strisovsky et al., 2003). Pyruvate is a strong neuroprotectant in animal models 

of stroke, also protects cells agonist oxidative damage (Desagher et al., 1997; 

Sheline et al., 2000). Hence, pyruvate maybe the desired product, while D-serine 

synthesis and release is a by-product of increased SR activity. Additionally, the 

objective for this D-serine release may be for further breakdown to form pyruvate 

(by DAAO) or removal via the blood brain barrier. This latter pathway may account 

for high levels of D-serine detected in the urine of rodents and humans (Haung et al., 

1998; Foltyn et al., 2005). Whatever, the purpose of this release, it is unlikely to 

have much functional significance at the NMDA receptor co-agonist site. 

5.5.3 Acute NMDA receptor activation can alter NMDA receptor activity 

Acute NMDA receptor activation causes loss of D-serine levels in s. radiatum. This 

loss has significant functional implications on co-agonist site occupancy levels, 

which are reduced from 47-53% (for NR2A and NR2B, most highly expressed here) 

to a low level. In fact the reduction in D-serine levels falls below the median basal 

levels of D-serine or the tone detected in this region (although the mean levels were 

found to be 0.4±0.1µM), indicating that NMDA receptor activity will be reduced 

significantly if not completely if acute NMDA receptor activation occurs under 

physiological conditions. This neuro-protective D-serine decrease will eliminate 

NMDA-receptor associated cell death in s. radiatum. The reduction in D-serine 

observed with NMDA (-0.43µM) is almost three times that seen for AMPA (-

0.14µM). If the same mechanism is responsible for the reduction in D-serine levels, 

then acute NMDA receptor activation is a stronger stimulus for the activation of this 
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pathway.  

 

Figure 16: Functional significance of the agonist NMDA on NMDA receptor 

occupancy. The co-agonist site occupancy levels are altered differently in the 3 

regions of the brain studied. In s. radiatum co-agonist site occupancy decreases to 

0% for the different NR2 subunits; while the release of D-serine in the cortex and s. 

pyramidale does not alter site occupancy levels and hence NMDA receptor function 

is unlikely to be affected. 

While overall release of D-serine is observed with acute AMPA receptor activation, 

under acute NMDA receptor activation an overall loss in D-serine levels occurs. This 

reduction in D-serine concentrations potentially has some functional consequence on 

NMDA receptors, reducing co-agonist site occupancy from 83% to 65%-75%. This 

will reduce NMDA receptor activity, by approximately 20%, which may be enough 

to reduce over-excitation. 

The D-serine release observed in the cortex alters co-agonist site occupancy levels 

from 85% to 95%; NMDA receptor activation maybe potentiated slightly as a result. 

However, as mentioned above, the D-serine released may also be an indicator of 

another neuro-protective event occurring i.e. pyruvate synthesis.  

5.5.4 Acute kainate receptor activation may alter NMDA receptor activity 

The median data points are taken to represent a real-time physiological event; the 

median change in s. radiatum as a result of acute kainate receptor is 0µM. For this 

reason no effect on NMDA receptor occupancy levels is shown even though D-
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serine release and loss was observed with kainate. In s. pyramidale D-serine loss is 

reduced from -0.8µM to -0.54µM; this leads to saturation levels to fall from 85% to 

approximately 67% for NMDA receptor composed of NR2A/B subunits. Potentially 

this reduces NMDA receptor activation. In the cortex, D-serine levels rise from 

+0.9µM to +1.6µM, increasing D-serine site occupancy from 85% to 95%. This is 

likely to have very little functional significance on NMDA receptor activity. 

 

Figure 17: Functional significance of the agonist kainate on NMDA receptor 

occupancy. The co-agonist site occupancy levels are altered differently in the 3 

regions of the brain studied. In s. radiatum no change is detected; while D-serine 

levels fall by -0.26µM in s. pyramidale but this only reduced glycine site occupancy 

levels to approximately 70%. In the cortex D-serine is released, increasing glycine 

site occupancy levels to 95%. 

The underlying mechanisms by which D-serine release is evoked by AMPA, NMDA 

and kainate receptor agonists in the cortex and the loss of D-serine in s. radiatum 

occurs have yet to be determined. The latter, may potentially be a novel mechanism 

by which NMDA receptor-associated excitotoxic damage is avoided, while the 

former maybe a means of recycling D-serine (to pyruvate), or its removal by the 

blood brain barrier. It is plausible that this D-serine release will feed into a 

mechanism which results in the potentiation of NMDA receptors. Thus signalling 
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cascades which allow regulation of NMDA receptor action (through regulation of D-

serine) by all 3 members of the ionotropic glutamate receptor family exist.  

5.5.5 Calcium alters D-serine signalling mechanisms 

As shown some of these signalling events are dependent on extracellular calcium and 

intracellular calcium changes may be involved in D-serine release in the cortex. 

Calcium is a known co-factor of SR; its intracellular increase can cause D-serine 

synthesis and release. We show that intracellular calcium change by itself does not 

necessarily induce D-serine release, but rather only specific signalling events achieve 

this, in a calcium dependent manner.  For example, acute AMPA receptor activation 

induces D-serine release in the cortex which follows a surge in intracellular calcium 

but extracellular calcium is also important; its removal reduces AMPA-induced D-

serine release by 66% and NMDA-induced release by 91%. In the hippocampus, loss 

of D-serine induced by NMDA is less in s. radiatum and AMPA-induced down-

regulation is unaffected by the removal of calcium.  

5.5.6 D-serine and LTP 

Stimulation of the glycine site coupled to the NMDA receptor complex is necessary 

to induce LTP. Blocking the glycine site pharmacologically with an antagonist 7-

chlorokynurenic acid (7-CKA) blocks LTP in hippocampal slices, an effect reversed 

by D-serine (Oliver et al., 1990a). Hence, the role played by D-serine via NMDA 

receptors is essential for LTP. NMDA receptor activation during LTP results in the 

influx of calcium, which is a well known secondary messenger able to bind several 

proteins (Oliver et al., 1990b). Binding of calcium to calmodulin for example, can 

results in alterations of signalling transduction molecules such as protein kinase A 

(PKA) and protein kinase C (PKC). Additionally during LTP several co-factors of 

the enzyme SR play an important role. PICK1 and GRIP both interact with SR (to 

increase D-serine synthesis) and are involved in the insertion of AMPA receptor at 

the synapses during LTP. GRIP for example is relieved from AMPA receptors, 

subsequently binds SR to increase D-serine synthesis/release. The D-serine release 

observed may be involved in long-lasting LTP processes and could be important for 

maintaining LTP in surrounding cells, since initial LTP can wane. It has been shown 

that blocking intracellular calcium release in an astrocyte blocks LTP in surrounding 
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cells (Henneberger et al., 2010). It is presumed that D-serine release is blocked as a 

result and this diminishes LTP, applications of D-serine re-establish LTP. Here, we 

have been able to observed real-time changes in D-serine levels and show D-serine 

release may not be as necessary in establishing LTP as previously thought. 

5.6 Conclusions  

1. Ionotropic glutamate receptors AMPA and kainate may modulate 

NMDA receptor activity by regulating extracellular D-serine levels  

2. NMDA receptors could self-regulate activity, by altering D-serine 

concentrations  

3. Decreasing D-serine release reduces NMDA receptor activity and is 

potentially neuro-protective 

4. Mechanism regulating D-serine are sensitive to extracellular calcium 
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Chapter 6: The role of D-serine in excitotoxic 

cell damage 
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6.1 Abstract 

NMDA receptors are vital for normal brain function. But over-excitation by 

excessive glutamate and consequent calcium entry through this channel is a major 

contributor to neuronal death during stroke, epilepsy and cardiac arrest. The role of 

the co-agonist D-serine in permitting NMDA receptor activation under these 

conditions is investigated here using D-serine biosensors, which permit sensitive 

real-time measurements.  Two in vitro stress models were selected: hypoxia and 

ischemia, to study the part D-serine plays in NMDA receptor mediated cell death. 

Under hypoxic conditions D-serine levels are reduced by -0.4 ± 0.1µM, n=12 and 

with ischemia the extent of reduction is initially greater -1.2 ± 0.4µM, n=6 but D-

serine levels begin to rise before anoxic depolarisation. These low D-serine 

concentrations may significantly reduced NMDA receptor activity by limiting co-

agonist availability which will be advantageous in reducing excitotoxic damage. In 

fact when the NMDA receptor component was pharmacologically isolated, a reduced 

NMDA receptor fEPSP was observed under hypoxia (reduced to 45±4% of initial 

response, n=5) while in the presence of 1mM D-serine the reduction in NMDA 

receptor response is significantly less (from 100% response to 68±6%, n=7; P=0.03, 

two-population t-test). The loss of D-serine observed under hypoxic and ischemic 

conditions diminishes NMDA response, and is a neuroprotective mechanism by 

which NMDA receptor mediated excitotoxicity is minimised.  
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6.2 Introduction 

A continuous supply of blood and glucose is vital for cell survival but brain cells are 

more prone to irreversible damage than any other cells of the body. Unfortunately 

the states of hypoxia (oxygen deprivation) and ischemia (oxygen and glucose 

derivation) are common in many disease states such as stroke, cardiac and 

respiratory arrest as well as being contributing factor to neonatal brain damage and 

morbidity (Cortey, 1995; Martin & Wang, 2010). Together these disorders are a 

leading cause of neurological disability and death. In spite of this little is known 

about the pathogenesis of hypoxia-ischemic brain damage or why brain tissue, is so 

vulnerable to such insults. In particular, areas such as the hippocampal field CA1 and 

neocortical layers 3, 5 and 6 are characteristically destroyed after sub-maximal 

hypoxic-ischemia exposure (Nikonenko et al., 2009). 

The excitatory effects of the amino acid glutamate are well documented as a major 

cause of cell death after brain injury. This is usually as a result of uncontrolled 

activation of glutamate receptors, particularly the NMDA receptor (Choi & 

Rothman, 1990; Bliss & Collingridge, 1993; Monyer et al., 1994). Over-excitation at 

this channel leads to a mass of Ca
2+

 influx that subsequently triggers signalling 

cascades promoting cell death. Under physiological conditions however, this channel 

is essential for many brain functions including synaptic plasticity-the molecular basis 

for learning and memory, cell migration and development (Bliss & Collingridge, 

1993; Aamodt & Constantine-Paton, 1999). Maintaining this balance is one of the 

key reasons why specific antagonism of postsynaptic glutamate receptors has not 

been widely used to treat stroke patients for example, even though a variety of 

preparations have shown that this greatly diminishes the sensitivity of central 

neurones to hypoxia and ischemia (Rothman & Olney, 1986; Aamodt & 

Constantine-Paton, 1999). 

Since the discovery of the co-agonist requirement of the NMDA receptor, a number 

of studies have indicated that D-serine, a major NMDA receptor co-agonist, also 

contributes to the excitotoxic effects of NMDA receptors (in particular in 

Alzheimer’s disease). In view of the fact that co-agonist binding is essential, it 

maybe supposed that D-serine levels are increased during hypoxia and ischemia, 

where much cell death and injury is observed. At high concentrations D-serine will 
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contribute to excitation of the NMDA receptor. Conversely, reduced availability of 

D-serine will limit NMDA receptor activity which potentially is neuro-protective. 

Here we investigate the changes in extracellular D-serine levels under hypoxic and 

ischemic conditions in hippocampal brain slices and relate these to potential 

excitability of NMDA receptors. D-serine biosensors are used to make sensitive and 

selective real-time recordings from the hippocampus under hypoxia and ischemia, to 

study the role of D-serine in injury related cell death at the NMDA receptor. 

6.3 Methods 

6.3.1 Slice preparations  

Male Sprague-Dawley rats aged 12-21 days were sacrificed by cervical dislocation 

in accordance with schedule 1 of the UK Government Animals (scientific 

procedures) Act 1986. The brain was removed and placed in artificial cerebrospinal 

fluid (aCSF) at 4ºC  before 500µm horizontal hippocampus slices were cut with a 

microslicer (Vibrotome) as previously described (Dale et al., 2000). Slices were 

placed in an incubation chamber in aCSF continuously oxygenated (with 95% 

oxygen/ 5% carbon dioxide) at 33
o
C for 40minutes before use. The composition of 

aCSF is as follows: NaCl 124mM; KCl 3mM; CaCl 2mM; NaH2CO3 26mM; 

NaH2PO4 1.25mM; D-glucose 10mM; MgSO4 1mM; pH 7.4 with 95% oxygen and 

5% carbon dioxide.  

A single slice was transferred to a recording chamber, fully submerged with 

oxygenated aCSF and profused at 8ml/min (33-34ºC). A Duostat interfaced to PC by 

an A to D converter board was used and an Ag/AgCl was used as a reference 

electrode. A D-serine biosensor of 0.5mm length and 50µm diameter was inserted 

into the hippocampus (CA1 region), allowed to stabilise for 20 minutes before 

induction of hypoxia or ischemia. Extracellular recordings of the evoked field 

excitatory postsynaptic potentials (fEPSPs) were made from stratum radiatum with 

an aCSF-filled glass microelectrode and using a stimulating electrode bought from 

WPI. 
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6.3.2 Induction of hypoxia and ischemia 

 

Hypoxia was induced by the substitution of normal aCSF with identical pre-

equilibrated aCSF with 95% nitrogen and 5% carbon dioxide with episodes lasting 

for 10 minutes. Slices were exposed to a single episode as it was noticed that in the 

second hypoxic attack D-serine loss was less severe and the NMDA receptor 

component was reduced less (data not shown). Ischemia was induced by replacing 

normal aCSF with that containing 10mM sucrose (instead of 10mM D-glucose) and 

saturation with 95% nitrogen/5% carbon dioxide gases. Episodes lasted 10 minutes 

and severe damage of the slice was observed by loss of the fEPSPs, hence only 

single applications were made per slice. In order to record accurately the 

extracellular potential shifts associated with the anoxic depolarisation continuous 

DC-3kHz recordings were also made using the custom software package used to 

record sensor signals (Dale et al., 2000).  

6.3.3 D-serine and glutamate biosensors 

 

D-serine sensors were fabricated as previously described and calibrated as described 

previously with 10µM D-serine and serotonin at the end of a recording. Glutamate 

biosensors were made using the same technique (Dale et al., 2005). In all cases a null 

biosensor was used (a sensor without enzyme in the bilayer) to ensure accuracy of 

recordings. All traces shown are null subtracted. Data is expressed as mean ± SEM 

with n indicating the number of slices.  

6.4 Results 

6.4.1 Extracellular changes in D-serine during hypoxia and ischemia 

 

Extracellular D-serine levels can determine the capacity for activation of the NMDA 

receptor as previously described in chapters 3 and 4. To determine how D-serine 

levels are altered, we placed D-serine biosensors in the CA1 of the hippocampus, the 

most vulnerable brain region to pathological states of hypoxia and ischemia, to 

determine the role D-serine in NMDA receptor mediated cell death.  
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D-serine levels during a 10 minute episode of hypoxia are reduced by -0.4 ± 0.1µM, 

n=12 (figure 1). D-serine concentrations begin to fall quickly with reduced 

availability of oxygen and then continue to do so until oxygen is washed back in. 

The fEPSP (amplitude) also falls very rapidly. Re-oxygenation causes a fast efflux of 

D-serine (+0.38±0.1µM, n=12), which in some cases is greater than basal levels. 

This transmitter release has previously been described for glutamate and adenosine, 

termed the post-perfusion (hypoxic/ischemic) efflux, PPE (Frenguelli et al., 2003). 

Eventually, the concentrations of D-serine slowly return to initial concentrations 

(7±1 minutes, n=6) but the full recovery of the fEPSP occurs before this (5±0.3 

minutes, n=6). It may be predicted that the NMDA receptor component does not 

recover until 7±1 minutes and this is concealed by the fast AMPA receptor currents. 

 

Figure 1: D-serine levels are reduced under hypoxic conditions. Re-oxygenation 

causes a D-serine efflux, PPE. Levels of D-serine return to baseline levels after 

synaptic transmission appears to have fully recovered. The null sensor trace has been 

subtracted from this D-serine trace. 

In ischemia a similar effect on extracellular D-serine levels is observed initially, a 

reduction of -1.2 ± 0.4µM in D-serine concentration occurs n=6, as shown in figure 

2a. As with hypoxia, as soon as ischemic aCSF is washed on, D-serine levels begin 

to decrease and simultaneously the fEPSP is also markedly reduced. Unlike with 

hypoxia however, D-serine levels appear to recover even before the ischemic aCSF 

is washed off, with levels rising at 4.5±0.2 minutes, n=4 into a 10 minute ischemic 

episode and total increase of +0.5±.01µM, n=4 is seen.  
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Figure 2: D-serine levels and glutamate level are reduced under ischemic 

conditions. D-serine and glutamate levels are initially reduced but levels of D-serine 

begin to rise before anoxic depolarisation while glutamate rise corresponds to AD. 

PPE is observed in both excitatory amino acids post-ischemia. Upon the onset of the 

AD a large negative deflection of the DC trace is observed. 

The anoxic depolarisation (AD) is observed on the DC trace, this is a marker of cell 

membrane depolarisation which results from an energy deficit due to ischemia, 

rendering the Na+/K+ ion pump ineffective. The Na+/K+ ATPase usually maintains 

normal transmembrane ionic balance necessary for resting membrane potential, 

using up to a third of a cells energy expenditure. During ischemia, the ATP deficit 

disrupts ionic transmembrane balance, resulting in AD which sets in motion a series 

of events resulting in cell death. AD occurs at 6.1±0.3 minutes into a 10 minute bout 

of ischemia. Upon washing a surge in D-serine levels, the PPE is observed 

(+2.7±1µM, n=4) which returns to baseline levels over a period of 21±2minutes 

(n=4). The fEPSP doesn’t recover, as seen with hypoxia most probably indicative of 

irrevocable cell damage so that synaptic transmission is permanently affected. 

Glutamate levels are also reduced during ischemia, figure 2b, by -3.6±0.3µM, n=12, 

and a rise in glutamate is observed at 6.7±0.7 minutes, n=6 of +2.5±0.2µM, n=7. 

This time at which the rise in glutamate is observed is similar to when AD occurs 

(6.1±0.3 minutes). A PPE of +4.3±0.8µM, n=10 is observed post-ischemia. During 

ischemia the only point of difference appears to be the timing of D-serine and 
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glutamate release. D-serine release occurs significantly earlier (4.5±0.2 minutes, 

n=4) compared to glutamate release (6.7±0.7 minutes, n=6). Anoxic depolarisation 

occurs at 6.1±0.3 minutes (n=6) after the induction of ischemia, indicating that D-

serine levels begin to rise before AD initiated cell damage (see Table 6.1 and Figure 

3). 

 

Figure 3: D-serine and glutamate levels show a very similar pattern of change 

under ischemic conditions. Concentrations in both amino acids are reduced 

initially, but a rise in D-serine concentrations is observed approximately 2 minutes 

before a rise in glutamate is seen. Washing in glucose and oxygen causes a rapid 

efflux in both neurotransmitters, which eventually returns to baseline levels. 

 

Table 6.1: Changes in D-serine and glutamate levels during ischemia; a number 

of phases occur during ischemia, in both neurotransmitters initially a loss of 

concentration is observed, followed by a rise to initial resting levels and then a 

spike in concentration (PPE). 

D-serine biosensor recordings show a clear reduction in D-serine during hypoxia and 

initially during ischemia. This loss of D-serine predicts that the NMDA receptor 

activation will be reduced, due to unavailability of D-serine during hypoxia and the 

initial stages of ischemia. A way to test these findings is to determine whether the 

NMDA receptor fEPSP (fEPSPN) alters when pharmacologically isolated. Since 

 a- loss b- pre-recovery 

time 

c- release d- PPE 

D-serine -1.2±0.4µM, 

n=6 

274±10s, n=4 +0.5±0.1µM, 

n=4 

+2.7±1.0µM, 

n=4 

Glutamate -3.6±0.3µM, 

n=12 

402±42 s, n=6 +2.5±0.2µM, 

n=7 

+4.3±0.8µM, 

n=10 
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under ischemia synaptic transmission is lost permanently (most likely from 

irreparable cell damage), a change in NMDA receptor activity may be observed as a 

result of this rather than a cellular change resulting from ischemia-related events. For 

this reason, henceforth only the hypoxic model is used to investigate the role of D-

serine and NMDA receptor activity in brain injury even though the ischemic model 

is thought to be closer representative of the physiological changes occurring in 

stroke.  During hypoxia complete recovery in synaptic transmission is seen 

indicating that permanent damage as a result of cell death has not occurred. 

6.4.2 Isolating the NMDA receptor component 

 

Here the fEPSPN will be defined as the component pharmacologically isolated using 

CNQX at 10µM and picrotoxin (100µM) and that which is largely removed in the 

presence of D-AP5 (100µM), a NMDA receptor antagonist (6±1%, n=4). The 

fEPSPN component is approximately 22±8% (n=4) in size compared to the 

AMPA/NMDA fEPSP indicating that it is the AMPA receptors that make up the 

bulk of fEPSP amplitude (as shown in figure 4).  
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Figure 4: fEPSPN can be isolated from fEPSP pharmacologically. The NMDA 

receptor component is isolated using 10µM CNQX/ 100µM picrotoxin; and makes 

up 22±8% of full fEPSP. Synaptic transmission is reduced by 94±1% by 100µM D-

AP5. Inset: an example of single superimposed EPSPs in control, in the presence of 

CNQX and D-AP5. 

6.4.3 fEPSPN and hypoxia 

 

Under hypoxic conditions, the NMDA receptor component of the fEPSP is reduced, 

as predicted by the biosensor recordings. This is shown in an example trace, figure 5. 

If (a) is taken as 100% of the NMDA receptor response than and the change 

observed under hypoxic conditions, (b), is a reduction of the fEPSPN by 45±4% 

(n=3) and complete recovery of synaptic transmission occurs with re-oxygenation, 

(c). D-serine in relation to these change are also shown. The fEPSPN diminishes as 

soon as D-serine levels begin to reduce. The complete recovery of fEPSPN occurs as 

D-serine levels approach the initial concentrations, suggesting that the D-serine is a 

requirement for NMDA receptor activity. Full recovery in fEPSPN is seen at 6.7±0.5 
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minutes, n=7, after re-oxygenation, this supports the findings seen figure 1, where D-

serine levels return to initial baseline at 7 ±1 minutes, n=6. 

 

 

 

 

Figure 5: The isolated NMDA receptor component is reduced significantly 

under hypoxic conditions, both in the presence and absence of 8-CPT. D-serine 

levels are also reduced, and this corresponds to a reduction in NMDA receptor 

mediated synaptic transmission as shown in insets labelled a, b and c. In the presence 

of 8-CPT, an unusual rise in fEPSP amplitude is observed, the reasons for this are 

not clear but the fEPSPN is reduced during hypoxia and recovery is similar to that 

observed in the absence of 8-CPT. 

A possible explanation for the reduction in fEPSPN is the presynaptic effect of 

adenosine. Large concentrations of adenosine release are observed during hypoxia, 

which in consequence reduces pre-synaptic glutamate release via A1 receptors; this 

may result in reduced fEPSPN (Dale et al., 2000). An antagonist 8-

cyclopentyltheophylline
 
(8-CPT) at 1µM is known to block A1 receptors, and this is 

used as an additional control to ensure that fEPSPN is not altered by pre-synaptic 

changes. In the presence of 8-CPT the NMDA receptor component makes up 

27±7%, n=4, of the total fEPSP, not significantly different from the size of fEPSPN 

in the absence of 8-CPT (pair-wise T-Test P=0.31). During hypoxia the reduction in 

fEPSPN observed in the presence of 8-CPT is 44±3% (n=3) of total fEPSPN, as 
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shown in figure 6. The difference is not significant (T-test P=0.94) indicating that 

A1-receptors do not affected NMDA receptor mediated synaptic transmission during 

hypoxia. But an unexplained potentiation of the fEPSPN is observed at the onset of 

hypoxia in the presence of 8-CPT which is not seen its absence (Figure 5 and 7). 

 

Figure 6: fEPSPN reduction during hypoxia is still observed in the present of 8-

CPT. fEPSPN is defined as the component observed in the presence of 100µM 

picrotoxin and 10µM CNQX and which is removed by the presence of D-AP5. Here 

fEPSPN is shown to be not significantly affected by the presence of 8-CPT, 

indicating that fEPSPN reduction seen during hypoxia do not result from pre-synaptic 

effects mediated by adenosine release.  

6.4.4 fEPSPN and hypoxia in the presence of D-serine 

 

This confirms that reduced availability of D-serine during hypoxia results in reduced 

fEPSPN, as predicted by D-serine biosensor recordings (figure 1). Hence it is 

reasonable to assume that increased availability of D-serine is likely to compensate 

for the D-serine reduction and the fEPSPN will be reduced less. 

To test this hypothesis experiments were repeated in the presence of 1mM D-serine. 

1mM may appear to be a higher concentration than necessary but not all of this D-

serine reaches the slice, as it is not all detected by the D-serine biosensors in tissue 
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(applications of 100µM to the slices was only detected as a 2-3µM on a sensor 

embedded in a slice). The D-serine may be broken down and/or taken up by 

transporters before it has a chance to reach the synapse. The reduction of the fEPSPN 

as a result of hypoxia is less in the presence of D-serine (reduced to 68±6% of total 

fEPSPN, n=7) implying strongly that the reduction in the NMDA receptor component 

is due to the reduced availability of D-serine. During hypoxia, the fEPSPN is 

significantly less affected during hypoxia in the presence of D-serine compared to its 

absence (T-test, P=0.03). 

 

Figure 7: The normalised fEPSPN is reduced under hypoxic conditions but the 

reduction is less severe in the presence of excess D-serine. The bar chart shows 

significant affect of the presence of D-serine on fEPSPN while on the right a trace of 

hypoxia experiments conducted in the presence and absence of 8-CPT are shown 

(red bar indicates hypoxia), each circle/square indicates EPSPN amplitude. 

Hence, the reduction of D-serine observed under hypoxic and ischemic conditions is 

an indicator of reduced NMDA receptor activity. This reduction has the potential to 

be highly beneficial in cases of brain injury and stroke, promoting cell survival rather 

than cell death. This is particularly important when the fall in glutamate 

concentrations is above the known basal tone for glutamate, hence, some glutamate 

is still available to activate NMDA receptors but it is the reduction in D-serine which 

potentially limits over-excitation at the NMDA channel. 

6.5 Discussion  

Ca
2+

 influx through the NMDA receptor can both kill neurons and promote survival 

under different circumstances. The extent of activation of the NMDA receptor, both 
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intensity and duration, determine the nature of the response, with pro-death signals 

requiring higher levels of activity than pro-survival pathways (Soriano & 

Hardingham, 2007). The factors which may influence the level of potentiation at this 

channel include the subunit composition, localisation (whether extra-synaptic or 

synaptic) and also co-factors which physically associate with the channel including 

the co-agonist: D-serine. Here we show that D-serine is a central component in 

determining the extent of NMDA receptor activation and that a reduction in the 

extracellular concentrations of D-serine is used as a means to lessen the activation of 

this channel or to promote pro-survival responses under hypoxic conditions.  It is the 

reduced availability of D-serine which diminishes fEPSPN during hypoxia, as 

presence of exogenous D-serine lessens the hypoxic-fEPSPN reduction. Interestingly 

Bickler et al (2003) observed that NMDA receptor potentiation (as measured by 

intracellular calcium changes) during hypoxic episodes is lower compared to that 

observed under control conditions and assign this to the NR2 subunit (Bickler et al., 

2003). Here, we show that these observations result from reduced availability of D-

serine during hypoxia, which binds the NR1 subunit but also affinity of the NR2 

subunit for glutamate is altered. Hence a reduction in D-serine during hypoxia is 

neuro-protective, as it limits over-excitation of NMDA receptors.  D-serine transport, 

break-down (through increasing D-amino acid oxidase activity) and reduced D-

serine synthesis/release (via changes in serine racemase activity) may all contribute 

to achieve D-serine loss observed during hypoxia. 

In the case of ischemia, the initial D-serine reduction may be neuro-protective but 

there is evidence that a rise in D-serine levels may contribute to anoxic 

depolarisation and cell death. D-serine levels rise at approximately 4.5±0.2 minutes, 

n= 4, into a 10 minute episode of ischemia. A study by Kirschner et al (2009) 

conducted using capillary dialysis techniques has showed that a 24 minute ischemic 

episode in acute hippocampal slices induced D-serine (2.5 fold) efflux, which 

parallels glutamate efflux (17 fold) similar to what we have observed. The analysis 

was conducted every 2 minutes and data compiled together to form the pattern of 

release (Kirschner et al., 2009). Owing to the limited resolution of this study, the 

initial reduction in D-serine levels (and glutamate) is completely overlooked, and 

only efflux of D-serine and glutamate are seen after 10 minute of ischemia, missing 

out the rise in D-serine levels before the onset of anoxic depolarisation. Due to the 
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sensitive real-time measurements of D-serine biosensors, we have been able to 

follow the change in D-serine levels in the second to second time frame and show 

during ischemia, the rise in glutamate occurs at the same time as the anoxic 

depolarisation while D-serine rise precedes this event. Anoxic depolarisation signals 

the collapse of the ionic gradient and resting membrane potential which results in 

acute neuronal death due to profound depolarisation of neurones and glia. Blocking 

this anoxic depolarisation or the signalling events which trigger this during stroke is 

neuroprotective (Anderson et al., 2005). The rise in D-serine occurs before anoxic 

depolarisation by approximately 2 minutes (Figure 2), since this is a trigger for 

NMDA receptor mediated cell death, it is possible that D-serine contributes to 

signalling events that result in anoxic depolarisation. 

To conclude, the reduction in D-serine levels observed under hypoxic and initially 

under ischemic conditions is neuro-protective Therefore signalling mechanisms are 

triggered during stroke for example, which protects cells by reducing extracellular 

D-serine levels, as a means to diminish NMDA receptor activity. A rise in D-serine 

during ischemia may signal onset of cell damage. Hence signalling mechanisms 

involved in D-serine regulation maybe a novel target for preventing cell damage 

during stroke.  
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7.1 D-serine biosensors provide novel insight  

D-serine is a specific NMDA receptor co-agonist. Its binding at this channel is a pre-

requisite for the activation of the NMDA receptor complex. Hence, the study of D-

serine allows for NMDA receptor activity to be indirectly monitored. This research 

project identified the need for a tool to study D-serine distribution in the central 

nervous system, in a sensitive, selective manner with real-time recordings and 

biosensor technology offered a solution. Biosensors for a number of 

neurotransmitters have been in regular laboratory use for many years and a very 

stable form of the enzyme DAAO (DAAORg) was recently purified. To a make a 

biosensor for D-serine was an obvious solution, not only to us but at least two other 

groups, who have since published their findings. In chapter 2, I have shown that the 

biosensors designed here are far superior in sensitivity as a result of the fabrication 

technique, compared to other published work, while selectivity and stability of these 

sensors are equivalent.  

The small size of the microelectrodes and second-by-second D-serine detection make 

these ideal tools for use in brain tissue and provide much advantage over current 

modes of study. Perhaps the most useful feature of D-serine biosensors is that 

localised basal D-serine measurements in selected brain areas can be made. Previous 

tools employed for this purpose include HPLC assays on homogenised tissue and the 

use of microdialysis probes. In both cases the refinement in the detection of D-serine 

observed with D-serine biosensors is poor. Homogenising tissue entails complete 

loss of differentiation been extracellular and intracellular D-serine levels, while 

microdialysis probes are large (typically around 250µm diameter) and often need to 

be embedded in the brain for a few weeks before recordings can be made. The 

obvious drawbacks of which are mutations in cell morphology and physiology. 

Alternatively, D-serine biosensors (50µm diameter) need only to be inserted into 

tissue for instantaneous measurements with the additional benefit of simultaneous 

recordings within different regions due to the small microelectrode size. This 

allowed the detection of extracellular D-serine concentrations in a number of brain 

regions (hippocampus, cortex and cerebellum) and within substructures in these 

areas. This led to novel insight into the heterogeneous D-serine distributions of the 

brain and within brain structures, which conveys important functional regulatory role 

of D-serine at NMDA receptors.  This detail of work cannot be as easily conducted 
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using traditional techniques where small samples of cerebral spinal fluid are taken 

via a dialysis probe and later analysed by HPLC; the entire content of extracellular 

D-serine form a brain structure is measured, without differentiation of sub-regions 

within. The enormity of this distortion is most clearly seen if the recordings made 

here with biosensors are pooled for each brain area, as is typical in dialysis/HPLC 

recordings (figure 1).  The D-serine concentrations in the cortex 1.0±0.2µM (n=14) 

and cerebellum 1.0±0.3µM (n=32) appear to be the same and slightly less D-serine is 

observed in the hippocampus 0.7±0.1µM (n=76)  

Figure 1: Total D-serine content of the hippocampus, cortex and cerebellum as 

measured by D-serine biosensors is misleading. 

Incidentally, HPLC studies have also shown that the highest levels of D-serine are 

found in the pre-frontal cortex and there is less D-serine in the cerebellum 

(Hashimoto et al., 1993b; Schell et al., 1997). This data would suggest that the co-

agonist site of NMDA receptors is fully saturated in the cortex and cerebellum 

regardless of NR2 subunit composition and in the hippocampus, the NRC/D-

containing NMDA receptors are also fully saturated while NRA/B containing 

NMDA receptors are 80% saturated at these concentrations of D-serine. It has long 

been believed that the co-agonists site of NMDA receptors is fully saturated in the 

brain; though many studies have showed evidence that NMDA response could be 

potentiated with exogenous D-serine or glycine applications. By looking at D-serine 

concentration differences within a single brain structure as was done here, these 

apparently contradictory results may be reconcilable. As in the case of the 

hippocampus region, according to the basal D-serine tone, the co-agonist site of 

NMDA receptors in s. pyramidale is saturated (1.1±0.1µM) while those in s. 
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radiatum are not (0.4±0.1µM). Since the NR2A/B subunits are most highly 

expressed in the hippocampus and these receptors are saturated at around 1µM 

(chapter 3, basal tone), it may be predicted that the receptor response can be 

potentiated in the latter region by as much as 50-60%. Independent investigations 

carried out by Professor David Spanwick of Warwick University confirm these 

findings. The modulatory effects of D-serine on NMDA receptor whole cell current 

and excitatory post synaptic current (EPSC) was examined in the s. radiatum and s. 

pyramidale in hippocampal slices from 7 week old rats. Unsurprisingly, D-serine 

augmented NMDA receptor currents in s. radiatum but not in s. pyramidale (figure 

2).  

 

Figure 2: Whole cell recordings from hippocampal neurons in stratum 

pyramidale and stratum radiatum. In pyramidale neurons of s. pyramidale there 

was little potentiation of the NMDA-evoked currents and NMDA receptor-mediated 

EPSCs by 100 µM D-serine. In contrast D-serine substantially potentiated both 

NMDA-evoked currents and NMDA receptor-mediated EPSCs in s. radiatum. 
EPSCs were evoked by stimulation of the Schaffer collaterals with a bipolar 

stimulating electrode. NMDA responses were evoked by brief bolus application of 

NMDA in the medium.  Recordings were made from pyramidal neurons and 

interneurons in stratum radiatum. 

The NMDA receptor EPSC is enhanced in s. radiatum to 159±10%, n=8 of the 

normalised current, n=8 (paired t-test, P=0.006) while in s. pyramidale no significant 

difference in amplitude is observed in the control and the presence of D-serine 

(paired T-test, P=0.3, n=7). Similarly, NMDA induced whole cell currents were 

augmented when D-serine was washed on in the presence of NMDA in s. radiatum 

(to 175±27%, n=5; P=0.001) but not in s. pyramidale (n=5, P=0.46). The 

(b) EPSCs 

(a) NMDA induced currents 
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potentiation of both the response to NMDA and the NMDA EPSC with D-serine is 

similar to that predicted from the existing basal tone.  

D-serine biosensors have provided detailed insight into extracellular basal D-serine 

tone, which conveys important functional information regarding NMDA receptor 

potentiation state. The small microelectrode size and sensitivity of the biosensors 

allow for measurements to be made within brain structures, this is the first step in 

characterising D-serine signalling in the brain. 

7.2 Factors contributing to D-serine tone 

Extracellular D-serine levels differ from one brain area to the next and even within a 

single structure, implying the existence of different factors involved in regulating D-

serine release and its uptake. A major factor regulating extracellular D-serine levels 

is likely to be the D-serine synthesising enzyme, serine racemase. A number of 

studies have shown that extracellular and intracellular D-serine concentrations are 

altered as a result of SR activity by mechanisms not fully understood (Cook et al., 

2002; De Miranda et al., 2002; Foltyn et al., 2005). Interestingly, there is debate 

regarding which cells of the brain contain SR, with increasing number of 

immunohistochemical studies questioning the long held view that SR is only 

localised to astrocytes (Miya et al., 2008). This is important because the cells that 

release D-serine in essence will be responsible for modulating NMDA receptor 

activity and function. SR mRNA has been detected in neuronal populations of the 

hippocampus, particularly to pyramidale layers of the CA1-CA3 fields and the 

granule cell layers of the dentate gyrus (Kartvelishvily et al., 2006). Incidentally, 

these are the areas where using D-serine biosensors the present study has found the 

highest levels of D-serine in the hippocampus, suggesting that the basal D-serine 

tone detected may be largely synthesised in and released by neurones. However, D-

serine release can also be evoked by a glial-agonist TFLLRN in s. pyramidale, not 

limiting D-serine synthesis or release only to neurones.  

D-amino acid oxidase is also involved in maintaining extracellular D-serine 

concentrations, as elevated D-serine levels have been found in DAAO-knockout 

studies (Hamase et al., 2005; Almond et al., 2006). Moreno et al localised DAAO to 

both neurones and glial cells, with varying densities. Glial immmunostaining of 

DAAO was strongest in the caudal brainstem and cerebellar cortex, particularly in 
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astrocytes, Glogi-Bergmann glia and tanycytes. Hindbrain neurones were more 

reactive than those in the forebrain, although staining was observed in cortical and 

hippocampal neurons (Moreno et al., 1999). Alterations of DAAO activity may be a 

key contributor to symptoms of schizophrenia, where activity of this enzyme is 

elevated by its promoter (DAAO promoter, G72). Thus, the modulation and activity 

of DAAO is important in maintaining correct extracellular D-serine levels in the 

brain. 

A number of transporters of D-serine have also been found to regulate D-serine 

levels, especially in forebrain regions where DAAO expression is low. Astrocytes 

express a Na
+
-dependent transporter with low affinity for D- and L-serine. In 

neurones (particularly on presynaptic terminals, dendrites and neuronal bodies) a 

Na
+
-independent transporter of neutral amino acids (Asc-1) is shown to transport D-

serine with high affinity. In gene knock-out studies of Asc-1, the levels of D-serine 

uptake was reduced by 34% and 22% in the forebrain and cerebellar synaptosomes 

respectively, suggesting that transporters play an essential role in removal of D-

serine from the extracellular space. Potency determination of D-serine uptake 

showed that Asc-1 mediated rapid high affinity Na
+
-independent uptake with an IC50 

of 19µM, while the remaining uptake was mediated via a low affinity Na
+
-dependent 

transporter with an Km of 670µM that is likely to be the glial alanine-serine-cysteine 

transporter 2 (ASCT2). These transporters, along with factors controlling D-serine 

enzymes are likely to be involved in the strict control of extracellular D-serine levels 

in the brain, playing a more essential role in some regions than others. 

SR, DAAO and D-serine transporters are all involved in regulating extracellular D-

serine concentrations and hence the saturation levels of the co-agonist site and 

potentiation ability of NMDA receptors. A typical pyramidal neuron has 

approximately 12,000µm length in dendrites and can receive as many as 30,000 

excitatory synaptic inputs. Approximately 54% of all excitatory synapses contact 

spines in the s. radiatum and 36% in the basal dendrites (s. oriens) (Andersen et al., 

1966; Megias et al., 2001). In the context of basal D-serine tone, 90% of excitatory 

synapses are in regions where NMDA receptor co-agonist site is not saturated (figure 

3). In fact NMDA receptor response can be potentiated by as much as at least 50% 

(NR2A/B) at 27,000 synapses. This means D-serine release in s. radiatum and s. 

oriens has the potential to cause mass cellular damage and cell death by over-
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excitation of the NMDA receptor. Even small increases in D-serine concentration 

can have widespread influence at excitatory synapses and NMDA receptor-

dependent processes in the CNS. Reductions in D-serine may signal significantly 

reduced NMDA receptor-mediated excitation in CA1 neurones. It is likely then that 

D-serine levels are tightly regulated.  

 

Figure 3: The vast majority of excitatory synapses on a typical CA1 pyramidale 

neurone are in s. raidatum and s. oriens. These regions have the lowest levels of 

D-serine in the hippocampus (median tone levels labelled). Orginal image taken 

from:http://groups.nbp.northwestern.edu/spruston/sk_models/HippocampusDB

/ca1_map.htm 

Notably, s. lacunosum moleculare can receive input from the entrihnol cortex, while 

s. oriens and s. raditum receive inputs from within the hippocampus (Schaffer-

collateral). In the context of D-serine basal tone, excitatory inputs received from EC 

will involve stronger NMDA receptor response (frequency or amplitude) compared 

to SC inputs.  

7.3 Activity dependent D-serine regulation 

Alterations in D-serine levels can only be fully understood in the context of the 

existing basal tone and my results demonstrate the need for detailed study of D-

serine signalling in the brain preferably via combination of electrophysiological and 

0.5µM 

0.3µM 

0.8µM 

 

0.3µM 
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biosensor recordings.  This is because release of D-serine or slight reductions in 

areas of high extracellular D-serine tone are not likely to alter NMDA activity while 

in regions of low existing D-serine tone, slight changes can significantly alter the 

extent to which the NMDA receptor can be potentiated. For instance the importance 

of activity dependent D-serine changes cannot be fully appreciated if differentiations 

in basal tone within sub-layers of the hippocampus are not made. Release of D-serine 

with PAR1 agonist TFLLRN was much greater in s. pyramidale compared to s. 

radiatum but functionally, the release in s. radiatum is more significant. This is due 

to the low occupancy of NMDA receptors in s. radiatum; a small increase in D-

serine concentration can potentiate the NMDA receptor response, while NMDA 

receptor response is likely to be unaffected by D-serine release in s. pyramidale 

where the receptors are almost fully saturated.  

Activity dependent changes in D-serine levels were also induced by ionotropic 

glutamate receptor agonists. Acute activation of AMPA, NMDA and kainate 

receptors provoked changes in extracellular D-serine concentrations which were 

region-specific and most surprisingly heterogeneous even within a single structure 

(Table 7.1). This implies the existence of more than one signalling mechanism which 

is triggered by these ionotropic glutamate receptor agonists in the hippocampus 

while in the cortex, only release is observed.  

 AMPA NMDA Kainate 

S. radiatum Reduction Reduction* Reduction/release 

S. pyramidale Release* Reduction Reduction/release 

Cortex Release* Release* Release 

Table 7.1:  Activity dependent regulation of D-serine by ionotropic glutamate 

receptor agonists; *denotes calcium sensitivity of mechanism (kainate calcium-

sensitivity was not analysed). 

Acute activation of AMPA, NMDA and kainate receptors evokes D-serine release in 

the cortex in a calcium dependent manner. SR appears to be intrinsically involved in 

the control of D-serine release and activation of this enzyme by co-factors (Ca
2+

, 

GRIP and ATP) is known to induce release in cultured cells. Table 7.2 summarises 

the known regulators of SR and DAAO. 
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Enzyme Positive regulators Negative regulators 

Serine Racemase Pyridoxal 5’-phosphate, 

ATP, Mg
2+

, Ca
2+

, GRIP, 

PICK1 

Glycine 

Nitric Oxide 

PIP2 

D-amino acid oxidase Nitric oxide 

DAAO promoter (G72) 

 

 

Table 7.2: Positive and Negative modulators of Serine racemase and D-amino 

acid oxidase. 

On the presupposition that all 3 ionotropic glutamate receptor agonists augment D-

serine synthesis by increasing SR activity and subsequent release via a co-factor of 

this enzyme, Ca
2+

 appears to be a likely candidate. The possible mechanism by 

which AMPA, NMDA and kainate receptors can influence intracellular Ca
2+

 levels 

are shown in figure 4. NMDA receptors are well-known for calcium permeability but 

AMPA receptor activation can also lead to increases in intracellular Ca
2+

 by 

increased expression of the receptors lacking the GluR2 subunit (Terashima et al., 

2004). Perhaps not by coincidence GluR2 insertion/expression is regulated by 

PICK1, a known modulator of SR (Fujii et al., 2006). Kainate receptor activation can 

depolarise the membrane and increase intracellular calcium via the Ca
2+

/Na
+
 

exchanger (Hoyt et al., 1998). Additionally voltage-gated calcium channels can may 

be involved in increasing neuronal Ca
2+

 and cause D-serine release. If Ca
2+

 is the 

factor involved in D-serine release in the cortex, then certainly it makes sense that 

the removal of extracellular calcium profoundly reduces D-serine release evoked by 

ionotropic glutamate receptor agonists. 

There is evidence that this D-serine release in the cortex by AMPA, NMDA and 

kainate agonists is of neuronal origin. Studies carried out in cortical neuronal 

cultures pre-treated with L-serine, show D-serine release with applications of 

ionotropic glutamate receptor agonists (Kartvelishvily et al., 2006). Incidentally, D-

serine release was blocked in the absence of Ca
2+

, as observed here, with some 

evidence that release was from a cytosolic non-vesicular pool.  

Nevertheless D-serine release has also been observed with AMPA receptor 

activation in glial cells. Studies carried out in cultured astrocytes provide evidence of 

AMPA receptor phosphorylation and subsequent dissociation of a bound protein 

GRIP (glutamate receptor interacting protein) that can bind SR directly augmenting 

its activity (Kim, PM et al., 2005). Since glia communicate via propagation of 
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calcium waves, the calcium dependence of this D-serine release may support glial 

origin. Moreover, activation of AMPA receptors is one of the best stimuli leading to 

release of D-serine from the glial neutral amino acid transporter ASCT2, present on 

astrocytes which may contribute to the D-serine released (Ribeiro et al., 2002).  

 

Figure 4: D-serine release mechanisms in the cortex. Membrane depolarisation 

gives rise to intracellular Ca
2+

 influx via number of different mechanisms, 

which can release D-serine stores and increase its synthesis by activating SR.  

But the D-serine release in the cortex is puzzling in the context of the co-agonist site 

saturation state of NMDA receptors. The basal D-serine tone in the cortex is 

1±0.2µM (mean ±SEM), at these concentrations all NMDA receptor co-agonist sites 

should theoretically be saturated or almost fully saturated. Although it is unknown 

whether extracellular D-serine levels differ in the cortical layers; if there are regions 

where levels of D-serine are lower, then D-serine release may potentiate NMDA 

receptor activity.  

In the hippocampus, there is evidence for the presence of two different signalling 

pathways that can be trigger by the same agonists. Both D-serine release and 

Astrocyte 
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reductions in D-serine concentrations are elicited by AMPA and kainate. In the case 

of kainate, both loss and release of D-serine are observed in each of the two regions 

of the hippocampus studied, suggesting no region-specific response in D-serine. 

However, with AMPA, loss of D-serine is seen in s. radiatum while in the majority 

of case D-serine release is observed in s. pyramidale. This is a region specific 

response to acute AMPA receptor activation and only the D-serine release (of s. 

pyramidale) is sensitive to the removal of extracellular calcium. D-serine loss in s. 

radiatum remains unaffected under calcium-free conditions. This suggests that the 

signalling events which generate the D-serine release in s. pyramidale are likely to 

be same as those observed in the cortex, where release (by AMPA, NMDA and 

kainate) is also affected by the removal of calcium.   

But the manner in which D-serine levels can be reduced by AMPA or kainate 

receptor activation is difficult to grasp. Calcium independent removal of D-serine 

may occur via D-serine transporters (both glial and neuronal) or the cellular 

degradation of D-serine through α,β-elimination of water which is observed both in 

vitro and in vivo (Foltyn et al., 2005). Mutations in the α,β-elimination property led 

to increased levels of D-serine in the extracellular space, suggesting that some D-

serine removal occurs via this mechanism. Figure 4b, shows the manner in which D-

serine reduction in a calcium independent manner can be achieved in cells.  

The over-whelming response to NMDA receptor activation was a reduction in D-

serine in both regions of the hippocampus (Table 7.2).  Though only assumptions 

can be made about the mechanisms responsible for changes in D-serine observed 

here, a number of studies have described NMDA receptor mediated D-serine 

reduction in the brain, as a result of reduced SR activity (figure 4a).  Balan et al 

(2009) show that NMDA receptor activation promotes translocation of cytosolic SR 

to the plasma membrane of dendrites, where PIP2 occupies the ATP binding site of 

SR, this dramatically reduces its activity, an effect easily reversed by the block of 

NMDA receptors (in primary neuronal cultures). D-serine release was diminished by 

10% as a result of translocation and mutants of SR unable to bind PIP2 display a 

four-fold enhancement in activity (Balan et al., 2009; Mustafa et al., 2009). 

Additionally, NMDA receptor activation can inhibit SR activity through S-

nitrosylation at residue C113, a physiological process reflecting the action of 

neuronally derived NO. This process is lost in nNOS knockout mice (Mustafa et al., 
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2007). NO is also a known positive regulator of DAAO, perhaps simultaneous 

reductions in D-serine synthesis and increased degradation cause the decrease in D-

serine concentrations observed with NMDA receptor activation. Additionally, D-

serine loss occurs in a calcium dependent manner, and reduction in D-serine is 

virtually eliminated with the removal of extracellular calcium. This provides 

additional proof that the mechanisms responsible for D-serine loss in s. radiatum 

with AMPA are different from those activated by NMDA. 

 

Figure 5: D-serine loss can be induced by a number of mechanisms, both 

calcium sensitive (a) and calcium-insensitive signals (b). A cross denotes 

reduction in enzyme activity or an enzymatic pathway while a tick signifies 

increased enzymatic activity or a pathway. 

To summarise, real-time D-serine biosensor recordings have shown presence of at 

least 3 different signalling events which can be triggered by ionotropic glutamate 

receptor agonists: (1) a calcium sensitive D-serine release mechanism in the cortex 

and s. pyramidale; (2) a D-serine reducing signalling event which is calcium 

independent (and elicited by AMPA) and (3) a calcium-sensitive D-serine loss signal 

(initiated by NMDA).   

(a) (b) 
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Thus a single stimulus can have opposing consequences on extracellular D-serine 

levels in different brain regions and even within a single structure and further still, 

the significance of these on NMDA receptor activity can vary depending on the 

existing basal D-serine tone. The reduction of D-serine (calcium sensitive-NMDA 

and calcium-insensitive AMPA induced) significantly lowers co-agonist site 

saturation of NMDA receptor and its activity. Under stress conditions such as acute 

AMPA, NMDA and kainate receptor activation this reduction is neuroprotective. In 

contrast D-serine release both in s. pyramidale (with AMPA) and cortex does not 

alter NMDA receptor co-agonist occupancy and hence function. The importance of 

this is yet unknown. 

7.4 D-serine reduction as a novel neuro-protective pathway 

Stroke is a major cause of mortality and morbidity with a range of possible 

contributing factors including alcohol/drug abuse, smoking, poor diet, age (chances 

of stroke double with each decade after 55 years), gender (men are more at risk than 

women) and family history. Stroke is defined as a loss of brain function caused by a 

blockage or rupture of blood vessels. Interruption of the blood supply to the brain 

results in tissue hypoperfusion, hypoxia and eventual cell death. Excessive glutamate 

release during stroke is thought to be a major contributor of neuronal death, as mass 

calcium influx activates pro-death signals (Rothman & Olney, 1986).  

Traditional mechanisms to prevent stroke damage have focused on reducing 

extracellular glutamate levels and increasing cellular adenosine levels, both of which 

are neuroprotective. Reductions in glutamate levels lowers AMPA, NMDA, kainate 

and also metabotropic glutamate receptor activation while Adenosine operates via 

the abundantly expressed adenosine A1 receptor and it can reduce glutamate release 

and hyperpolarise neurones (Fredholm et al., 2005). I have shown profile of 

extracellular glutamate concentrations during ischemia: initially glutamate levels ate 

reduced followed by release at the onset of the anoxic depolarisation and detailed 

recordings made by Dale et al (2002) with adenosine biosensors show that during an 

ischemic episode adenosine release occurs almost immediately following the onset 

of ischemia and similarly during hypoxia (Dale et al., 2000; Frenguelli et al., 2003). 

At the anoxic depolarisation ATP release is also observed, as shown in figure 6 and 

PPE in both nucleotides is observed with reoxygenation.  
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Figure 6: Adenosine release increases gradually during the in vitro ischemic 

episode (black bar) then displays a surge on reoxygenation (black arrowhead). 

ATP release only occurs following the anoxic depolarisation (Frenguelli et al., 

2003). 

Until now, it had not been possible to determine in detail the alterations in D-serine 

during stroke. A study recently performed using capillary dialysis to follow changes 

in D-serine and glutamate levels is poor in resolution compared to D-serine 

biosensors. Kirschner et al apply ischemia for 24 minutes, and took samples every 2 

minutes to follows changes induced. Figure 7 shows these findings: the initial 

reduction in D-serine and glutamate levels observed here with microelectrodes are 

not clear but release in both transmitters occurs after 10 minutes. Additionally, 

instead of quantitative recordings, only percentage changes from baseline can be 

clearly established (Kirschner et al., 2009).  
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Figure 7: D-serine and glutamate efflux is observed using capillary dialysis 

under ischemic conditions in the hippocampus (Kirschner et al., 2009). 

With the use of D-serine biosensors much greater resolution of the changes that 

occur in D-serine levels is permitted. Two models of stroke: hypoxia and ischemia 

were used to analyse changes in D-serine to determine whether this co-agonist 

augmented NMDA receptor mediated cell death. In both models, D-serine levels are 

reduced (chapter 5). This reduction is neuro-protective since it signals lowered 

NMDA receptor activity. In fact the reduction in NMDA-receptor dependent fEPSP 

correlates with D-serine loss during hypoxia and addition of excess D-serine during 

hypoxia lessens the fEPSPN reduction. This indicates that D-serine levels are reduced 

to ensure cell damage due to over-excitation at the NMDA receptor does not occur. 

Similarly during ischemia the initial loss of D-serine is neuroprotective but unlike 

during hypoxia, D-serine release is observed approximately 5 minutes into oxygen-

glucose deprivation. Since this is a closer model of insult and injury to cells during 

stroke, and NMDA receptors mediate much of the cell death that occurs during 

ischemia and D-serine release may initiate NMDA receptor mediated cell death. D-

serine release during ischemia occurs over 2 minutes before glutamate levels rise and 

the onset of anoxic depolarisation occurs. Considering figure 6, adenosine release is 

observed immediately with ischemia and out of the two agonists for the NMDA 

receptor; it is D-serine which is released first. Then anoxic depolarisation occurs and 

both ATP and glutamate are released. It has long been believed that glutamate 

released is the major cause of cell damage during stroke but in vitro D-serine release 

occurs before the release of glutamate suggesting that D-serine may be a trigger 

which instigates excessive NMDA receptor activation leading to mass Ca
2+

 influx 
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which can subsequently trigger signalling cascades promoting cell death. D-serine 

release mechanisms, SR and DAAO may be novel targets for therapies in stroke, as 

these can potentially reduced D-serine release and may be important in blocking 

anoxic depolarisation, which protects against cell death (Anderson et al., 2005). In 

serine racemase knockout mice, it was noted that cell damage was significantly 

reduced during ischemic episodes compared to controls even though increased 

expression and sensitivity in NMDA receptors was observed (Mustafa et al., 2010). 

However, clinical trials with NMDA receptor glycine site antagonists licostinel and 

gavestinel have shown no significant difference from placebo, though the drugs are 

well tolerated since they are specific for NMDA receptors (Albers et al., 1999; 

Warach et al., 2006). This may be indicative of the need to minimise D-serine levels 

or the effect of this co-agonist at the NMDA receptor very early into an episode to 

reduce subsequent cell damage.   

7.5 Diagnostic applications for D-serine biosensors 

Since D-amino acids are not widely utilised by mammalian cells, the presence or 

absence of these may be an indicator of disruptions in normal cell function. Two 

specific cases where changes D-serine levels may signify physiological dysfunction 

are schizophrenia and Alzheimer’s disease, where D-serine biosensors may be used 

as diagnostic tools for disease states.  

7.5.1 Schizophrenia and low D-serine levels 

Schizophrenia affects approximately 1% of the World’s population and describes a 

group of psychotic disorders characterised by disturbances in thought, perception, 

behaviour and communication (Liddle, 1987). The negative symptoms include 

apathy, poor rapport, lack of spontaneity, motor retardation, blunted affect and 

emotional withdrawal. The positive symptoms of schizophrenia include bizarre trains 

of thoughts, hallucinations and delusions (Mueser & McGurk, 2004). The age of on 

set is early 20s in males and slightly later in females, with societal costs of the 

disease reaching £6.7 billion in the UK alone. Approximately 10% of affected 

individuals commit suicide.  

There is no clear prognosis procedure which can predict physiological alterations 

before the onset of symptoms. NMDA receptor hypofunction is thought to contribute 
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to the disease, as a result of reduced availability of D-serine. The gene G72 is 

thought to be a genetic marker of the disease; this encodes a DAAO promoter able to 

increase the activity of this enzyme by three-fold (Chumakov et al., 2002). The D-

serine content of patients is thought to be as much as 25% less compared to control 

in cerebral spinal fluid (Bendikov et al., 2007) and some studies have shown the 

effectiveness increasing patient D-serine levels (Tsai et al., 1998; Heresco-Levy et 

al., 2005; Lane et al., 2005). 

Changes in D-serine levels may be a biological marker for the onset of disease. D-

serine biosensors can detect D-serine level and may be used in addition to existing 

diagnostic procedures to detected lower D-serine levels in blood, urine or CFS in 

patients. Additionally, the sensors may be used to follow the viability of drug 

treatments.  

7.5.2 Alzheimer’s disease and increased D-serine levels 

Alzheimer’s disease is thought to affect 1 in 3 individuals over 65 years of age (UK, 

2009) and diagnosis of this disease is based on memory tests and brain scans. Since 

symptoms are slow to develop and are frequently similar to other conditions, the 

onset of disease is not easily recognised. Over excitation of the NMDA receptor is 

thought to contribute to cell death and damage, where increased D-serine release by 

microglia can potentially augment activity of this channel (Barger & Basile, 2001; 

Butterfield & Boyd-Kimball, 2004). Inflammation of microglia is caused by amyloid 

β-peptide (αβ), which can also bind SR (at the AP1 region) to increase D-serine 

synthesis and subsequent release. The D-amino acid content in CSF increases from 

17.9 to 26.4nmol/ml, this change can be easily detected by D-serine biosensors. The 

detected of increased D-serine levels in blood, urine or CFS may be a biological 

marker of the disease state and D-serine biosensors may also be utilised in 

monitoring the success of treatments.  

7.6 D-amino acid content and bacterial contamination  

D-amino acids are generally restricted to bacteria and lower organisms with high 

concentrations of these marking the presence of bacterial contamination in dairy 

products including milk and cheese as well as fruit juices. The D-amino acid content 

of consumable products are regularly tested by the food standards agency; D-alanine 
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is generally taken as a indicatory of bacterial contamination. The current techniques 

used to detected D-amino acids are HPLC or enzymatic assays. The use of D-serine 

biosensors (which can also detect all non-acidic amino acids including D-alanine) is 

cheaper, faster, without the need for complicated equipment. 

7.7 Summary 

I have designed the most sensitive D-serine biosensors to date and shown that these 

tools have the ability to transform the way in which D-serine signalling in the brain 

is studied. I have demonstrated novel insight into D-serine distribution in the brain, 

and its activity dependent modulation in real-time by ionotropic agonists, a glial-

specific modulator and high frequency stimulation. Additionally, I present evidence 

for a neuroprotective role of D-serine in stroke damage and a possible crucial 

function in initiating cell damage and death. 
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