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ABSTRACT 

 Intuitive statistical inferential judgments involve the estimation of statistical 

properties of samples of information, such as the mean or variance.  Prior research 

has shown that human judges are generally good at making unbiased estimates of 

sample properties.  However, a series of recent applied consumer research 

experiments demonstrated a systematic bias in comparative judgments of item 

distributions in which the individual items are paired across those distributions, for 

example comparing the prices in two stores selling the same items.  When the two 

distributions have the same mean, the distribution with the higher number of items 

that are smaller in magnitude than the equivalent item in the other distribution is 

typically judged to be the smaller of the two distributions: a frequency bias.  In a 

series of experiments, the research in this thesis provides a robust demonstration of 

the frequency bias and explores possible explanations for the bias.  A comparison 

between simultaneous and sequential presentation of information demonstrates that 

the frequency bias cannot solely be explained by the salience of the frequency cue.  

A novel web-based experiment, in which information was sampled incidentally from 

the environment and a naturalistic task was used to elicit comparative judgments, 

showed that the frequency effect persists in an ecologically-valid context.  A 

systematic comparison between alternative cognitive models of the judgment process 

supports an explanation in which items are recalled from memory and compared in a 

pair-wise fashion, meaning the frequency bias may be found in a wide range of other 

judgment tasks and domains, which would have significant implications for our 

understanding of intuitive comparative judgments. 
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CHAPTER 1 

STIMULUS DISCRIMINATION AND INTUITIVE STATISTICS 

LITERATURE REVIEW 

1.1     Introduction 

 This thesis examines the ability of human subjects to discriminate between 

two complex stimuli in a naturalistic task and explores the possible cognitive 

processes involved in performing the required intuitive statistical judgment.  The 

task adopted is that of determining the relative price level of two stores, an applied 

problem which has received increasing attention in the consumer research literature 

in recent years.  This first chapter provides an overview of research into 

discrimination and intuitive statistical judgments, and related concepts.  It will begin 

with a brief description of some intriguing (and conflicting) research findings from 

the consumer research literature concerning consumer price judgments.  It will then 

present a brief history of psychological and psychophysical research into the 

detection and discrimination of stimuli and of human intuitive statistical judgments. 

It will focus particularly on the special role of frequency information in serially-

experienced events, as this may be vital in understanding the cognitive processes 

underlying many common statistical judgments.  In addition, this chapter will briefly 

review relevant concepts and findings concerning the architecture and performance 

of human memory, which will be important when considering discrimination tasks in 

which one of the experimental stimuli has to be recalled from memory.  Some 

alternative schools of thought concerning the appropriate research methodology for 

exploring human performance in intuitive judgments will also be briefly presented 

and the relative merits of factorial experimental and naturalistic ecologically-
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representative research will be discussed.  In subsequent sections, related price 

judgment research findings from the consumer research literature will be 

summarized and the implications for the research presented in this thesis will be 

drawn out.  Finally, the chapter will conclude with an outline of the motivation for 

the thesis and the choice of research methodology, before briefly describing the 

structure of the following chapters. 

1.2     The Relative Impact of Frequency and Magnitude Cues in Consumer Price 

Judgments 

1.2.1     Comparative Price Data 

A common tactic in grocery store advertising is to compare the prices of a 

selection of items against the prices of the same items in a competitor store.  In a 

series of experiments reported in the Journal of Consumer Research in 1994, Joseph 

Alba and his colleagues systematically explored the relative impact of three factors 

that influence consumers‟ price judgments of such comparative price data (Alba, 

Broniarczyk, Shimp, & Urbany, 1994).  The three factors were prior beliefs about 

the prices in each store, the number of items for which each store was cheaper than 

the other (the „frequency cue‟) and the average size of those price advantages (the 

„magnitude cue‟).  The experiments are described in some detail here as they are 

directly pertinent to the main subject of this thesis. 

In Experiment 1 (p. 222), price judgments were operationalized as the 

difference between participants‟ estimates of the total cost of 60 items in each store, 

which participants were told lay between $100 and $130.  In each case the total cost 

of the 60 items was identical in the two stores ($117.13) but one store was cheaper 

by about $0.07 on 40 of the 60 items (which had an average price of $1.91) and more 
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expensive by about $0.14 on the remaining 20 items (which had an average price of 

$1.89).  The prices were presented in a list format, with the price in each store 

presented side-by-side after each item description.  The price lists were presented in 

a booklet with 15 items per page.  Between-subjects manipulations of prior beliefs 

(using real store names) and processing time were used in a two-way factorial 

design.  Contrary to the authors‟ expectations, price judgments in an initial 

exploratory experiment were not driven primarily by prior beliefs about the two 

stores but by the frequency cue: in every experimental condition in Experiment 1, the 

mean estimated cost in the frequency store was lower than in the magnitude store. 

 In a series of follow-up experiments, the authors explored the boundary 

conditions of this „frequency effect‟ and some possible competing hypotheses for 

why the frequency cue dominated the price judgments.  In Experiment 1A (p. 224) 

they found no moderating effect of either shortening or lengthening the time 

allocated to the task.  In Experiment 1B (p. 225) they found that strengthening the 

prior belief manipulation by using fictional store descriptions rather than real store 

names also had no moderating effect.  In Experiment 1C (p. 226) the prior beliefs 

were manipulated by using real store names but changing the credibility of the 

source of the price information.  Again, even when prior beliefs were inconsistent 

with the frequency cue and the price information came from a highly credible source, 

the frequency store was consistently judged as the cheaper of the two stores. 

In Experiment 2 (p. 226) the authors switched from presenting all price 

information in a booklet to presenting sets of six pairs of prices on a computer screen 

for 30 seconds at a time.  Within each set of items, four items were cheaper in the 

frequency store and two items were cheaper in the magnitude store.  Participants 

were able to choose how many sets of prices they viewed (between one and ten) 
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before identifying the cheaper store.  A $3 budget was decremented by $0.30 for 

each additional set of prices seen, but participants were told they would receive no 

payment if they failed to correctly identify the cheaper store.  Information search was 

low across the experimental conditions, with an average of 2.2 sets of prices viewed.  

Again, the frequency cue dominated the price judgments, with 69% of participants 

judging the frequency store as cheaper when prior beliefs favoured the magnitude 

store and 88% of participants judging the frequency store as cheaper when prior 

beliefs also favoured the frequency store.  In Experiment 3 (p. 227) the authors 

reduced the number of items used to just nine, presented in three sets of three.  

Within each set of three prices, two items were cheaper in the frequency store.  Prior 

beliefs were not manipulated, but the salience of the magnitude cue was varied 

between subjects by presenting either three infrequently-purchased or three 

frequently-purchased items that were cheaper in the magnitude store.  Participants 

were asked to identify the cheaper of the two stores, to estimate the total cost of the 

nine items in the magnitude store given that the total cost was $125 in the frequency 

store (bounded between $110 and $140), and to indicate the store they would 

personally choose in order to obtain good value.  The proportion of participants 

identifying the frequency store as cheaper did not differ significantly between the 

low and high magnitude cue salience conditions (88% and 71% respectively). 

Similarly, the average basket cost estimate did not vary significantly between the 

low and high salience conditions ($129.44 and $128.61 respectively) although in 

both cases the total cost in the magnitude store was estimated to be significantly 

higher than in the frequency store.  However, there was a significant shift in store 

preference toward the magnitude store in the high salience condition, although even 
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in that case more subjects preferred the frequency store (64% in the high salience 

condition vs. 92% in the low salience condition). 

In order to try and explore why the frequency cue dominated the price 

judgment tasks, the authors first examined informal descriptions of the price 

judgment strategies used, as written by participants at the end of the tasks.  Of the 

rationales given, 78% clearly referred to strategies involving the frequency cue, 

magnitude cue or prior beliefs.  Of those, 87% referred to the frequency cue, 8% to 

the magnitude cue and only 5% to prior beliefs about the two stores.  This was 

followed by Experiment 4 (p. 229) in which the 60 items and prices from the initial 

experiments were presented for free inspection, followed by a numerical distracter 

task.  Participants were then presented with a randomly-ordered list of the 30 middle 

items along with the price in the magnitude store and were asked to recall the price 

of each item in the frequency store.  The results were noisy, but showed that when 

prior beliefs were consistent with the frequency cue, participants were reasonably 

accurate in their recall of the frequency cue (18.1 items were judged cheaper, when 

the correct answer was 20) but were insensitive to the magnitude cue with poor recall 

of item price differences.  When prior beliefs were inconsistent with the frequency 

cue, sensitivity to (and accurate recall of) magnitude information increased but to a 

relatively small degree. 

When the total cost is the same in two stores, then the frequency cue and 

magnitude cue are negatively correlated.  In Experiment 5 (p. 230) the authors 

attempted to sensitize participants to this trade-off by explaining that stores could 

discount lots of items by a small amount or a few items by a large amount, making it 

difficult to determine which store is cheaper overall.  A subset of the participants 

was also encouraged to try and keep a running total of the price differential between 
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the stores as they studied the price lists.  The same 60 items and prices from earlier 

experiments were used and again participants were asked to judge the total cost of 

those items in each store.  There was no significant effect of either instruction format 

or processing time on the differences in estimated price between the two stores.  

Relative to Experiment 1, the mean estimated total cost advantage for the frequency 

store was smaller ($4.38 vs. $7.57) but still differed significantly from zero.  Thus, 

despite attempting to sensitize participants to the trade-off between the frequency 

and magnitude cues, the frequency cue continued to dominate the price judgments.  

Finally, in Experiment 6 (p. 231) the salience of the magnitude cue was manipulated 

by replacing the item prices in the magnitude store with the signed difference in 

price between the frequency and magnitude stores.  Hence, the list consisted of 40 

positively-signed dollar differences and 20 negatively-signed dollar differences (as 

well as the 60 item prices in the frequency store).  This format was intended to make 

the calculation of the overall price differential easier for participants, although the 

authors conceded that this format also heightens the salience of the frequency cue.  

Perhaps unsurprisingly then, the frequency store was again judged as cheaper, with a 

mean estimated total cost advantage of $7.82.  The authors conclude that: 

“...these studies confirm our hypothesis regarding the inherent 

salience and persuasiveness of frequency cues.  We found little 

evidence to support the alternative hypotheses that subjects are 

equally sensitive to frequency and magnitude but weigh the former 

more heavily or that the bias to favour the store with the frequency 

advantage is due to computational deficits.” (Alba, et al., 1994) 

However, they note that “additional research involving process measures may be 

needed” in order to explain the dominance of the frequency cue (p. 232).  
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Additionally, they recognize that “in most cases [...] the subject was compelled to 

process all the information [and hence] the salience of these cues, and therefore their 

influence on price perceptions, is unknown for contexts in which they compete for 

attention on unequal footing” (p. 233).  In particular they suggest that “one approach 

would be to employ computer-based shopping methods, which would allow 

assessment of how consumers form price beliefs when direct store-to-store price 

comparisons are hindered by the natural sequential nature of shopping” (p. 233). 

1.2.2     Sequentially-Sampled Price Data 

 In fact, a first attempt at just such an experiment had already been made eight 

years earlier by B. Kemal Buyyukurt and also published in the Journal of Consumer 

Research (Buyukkurt, 1986).  The author was attempting to differentiate between 

different theoretical models of how a consumer might estimate and update the 

perceived value of a basket of items as they serially experience a sequence of item 

prices, analogous to serially sampling price information by selecting items to 

purchase during a shopping task.  The exact specification of each model is not 

relevant to the current discussion, but each was based on the assumption that the 

overall judged value of a basket of items is based upon a weighted average of the 

perceived value of each individual item in the basket.  The weight placed upon each 

item was hypothesized to depend upon serial-order effects such as primacy or 

recency effects.  The perceived value of each item was hypothesized to depend on 

factors including the difference between the expected and observed price and the 

degree of certainty associated with each expected price.  In particular, Buyukkurt 

proposed three different functions mapping the difference between the observed and 

expected price (expressed either as an absolute or percentage difference), D, and a 

component of the perceived value of each item, V1(D): an S-shaped, linear or 
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exponential valuation function.  The three functions are reproduced in Figure 1.1 

below. 

 Figure 1.1: Alternative item valuation functions proposed by Buyukkurt (1986, Figure A). 

The three valuation functions all include a threshold δ, below which it is 

assumed that differences between expected and observed prices are not noticed.  No 

theoretical justification for the threshold is given, being described simply as a 

“psychological threshold” (p. 360).  Similarly, no theoretical justification is given for 

the choice of the three alternative valuation functions, being described as “three 

mathematical forms [...] out of many theoretically possible” (p. 360).  Nonetheless, 

Buyukkurt goes on to describe how each valuation function has different 

implications for the most highly-valued discount structure of a basket of items.  

Assuming that all discounts are greater than the threshold δ, the diminishing returns 

of the S-shaped valuation function imply that a basket with many small discounts 

would be perceived to offer the best value.  On the contrary, the increasing returns of 

an exponential valuation function imply that a basket with a few large discounts 

would be perceived to offer the best value.  A linear valuation function would imply 

no difference in perceived value between a frequency and a magnitude basket, 

provided the total cost was the same.  In addition, the model predicts that if a 

frequency effect (implying an S-shaped valuation function) was observed, that it 
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would be strongest when the basket contained more items and when uncertainty 

about the expected prices was low. 

Buyukkurt also carried out an experiment to test a number of predictions 

generated by the theoretical models, including the discount structure predictions 

described above.  The participants in the experiment were primary grocery shoppers 

for their household, intercepted in a shopping mall.  Each participant selected 20 

items from a list of 42: ten items where they felt quite certain about the usual selling 

price and ten items which they had previously purchased but for which they were 

uncertain about the usual selling price.  The participant also gave a likely price and 

price range for each of the 20 items.  The likely price estimate (or an average of 

estimates from a pilot study when the participant could not give a likely price) was 

used as the expected price of each item, with a small fluctuation of two percent 

randomly added or subtracted.  A basket of items was then constructed for the 

participant, in which the number of items, the ordering of items and the discount 

structure were all varied as between-subjects factors.  Small baskets contained ten 

items (five high certainty and five low certainty items) and large baskets contained 

all twenty items.  In frequency baskets, 40% of the items were discounted by 12.5% 

while in magnitude baskets 20% of the items were discounted by 25%.  The 

participants were then instructed to imagine themselves on a shopping trip in an 

unfamiliar store and to be examining the prices of a basket of items that they would 

normally purchase, with the intention of ultimately choosing between the new store 

and their usual grocery store.  Information about each item (brand name, product 

name, package size and number of units purchased), along with the price paid, was 

displayed on a computer screen for 12 seconds each.  Finally, the total cost of the 

basket was displayed to simulate the total bill paid at the checkout.  The participant 
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then rated the prices in the store relative to their usual store on three different seven-

point Likert scales as well as estimating how much the same basket of items would 

cost in their usual store.  The four response variables were highly correlated, so a 

factor analysis was used to create a linear composite of the four relative price 

judgments. 

Because each basket of items and their expected prices had been tailored to 

the individual participant, the data were analysed using ANCOVA analysis with the 

total cost of the basket of items as a covariate.  The predicted frequency effect in the 

discount structure was significant at =0.05, with frequency baskets being perceived 

to offer significantly better value than magnitude baskets, although the effect only 

accounted for three percent of the observed variance.  However, the predicted 

interactions between discount structure and basket size and between discount 

structure and price certainty were not significant.  In addition, no serial order effects 

(primacy or recency) were observed.  Nonetheless, the frequency effect described by 

Alba et al was found when price information was sequentially sampled.  Buyukkurt 

notes that the experimental procedure had a number of limitations, some of which 

would prevent strong conclusions being extrapolated from the experimental findings 

to real-world effects.  Firstly, the information presentation rate was much higher than 

the acquisition rate in a store.  Secondly, the price manipulation was one-sided, 

whereas in real stores it is highly unlikely that none of the items would have a 

higher-than-average selling price.  Thirdly, there were no attention-distracting cues 

in the laboratory setting and participants were forced to pay attention to the price of 

each item.  Fourthly, the non-random sampling method and relatively skewed 

demographic profile of the sample limits the generalizability of the findings.  Finally, 

and perhaps most importantly, because the basket of items and prices was tailored to 
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each individual, both the observed prices and total monetary discount varied between 

participants, introducing a source of additional variance which the ANCOVA 

analysis could only partially account for. 

1.2.3     Temporal Distributions of Item Prices 

 Joseph Alba published a follow-up paper five years after his original 

frequency effect findings (Alba, Mela, Shimp, & Urbany, 1999) in which he and his 

colleagues studied another complex price judgment task, closely related to the earlier 

task of comparing a selection of item prices between two stores.  This time the 

research focused upon an alternative strategy for determining which of two stores is 

cheaper: observing the price of a single item in two different stores over a period of 

time in order to judge which store has the lower average price.  This is analogous to 

the previous basket comparison in that it involves comparing two distributions of 

prices.  It also involves sequential-sampling of price information, similar to the study 

described above (Buyukkurt, 1986).  However, there are two important differences.  

Firstly, the term „frequency‟ changes from describing the number of items on which 

each store is cheaper to describing the number of times that a single item is 

discounted from its usual selling price, regardless of when those discounts are 

applied.  This is subtly different to counting the number of occasions on which the 

item is cheaper in one store than the other, which would be a closer analogue of the 

previously described paired-price frequency cue.  Secondly, the potential for 

strategic purchasing behaviour to influence price judgments is much greater in this 

second case.  For non-perishable items, purchasing the item when it is discounted 

and stock-piling inventory for future consumption would mean that the average 

purchase price would be lowest when a single deep discount was applied, relative to 

a series of frequent shallow discounts, even if the average presented price were the 
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same or higher over the time period considered.  As will be discussed in more detail 

later in this chapter, this strategic purchasing tactic is more difficult when consumers 

shop across a range of items in a basket, particularly for consumers who shop 

infrequently for large baskets of items (Bell & Lattin, 1998).  It is not clear whether 

consumers would use the judged average presented price or purchase price when 

comparing between two stores, nor do the authors offer any evidence that this brand-

over-time comparison strategy is employed by consumers in the real world.  

Nonetheless, the studies offer a close enough parallel to the earlier studies to merit 

comparison and the authors began the second series of studies expecting to observe a 

similar frequency effect in the new price comparison task. 

 In a pilot study, participants took part in a „buying game‟ in which they 

observed the prices of three brands of shampoo over 36 simulated months.  In each 

month they chose whether or not to purchase, which brand to choose, and how many 

units to purchase.  The participants were provided with a simple formula for 

calculating inventory costs ($0.10 per bottle stored and not consumed that month) 

and told that they consumed one bottle of shampoo each month.  Their task was to 

minimize their combined inventory and purchase costs over the 36 months, whilst 

ensuring sufficient inventory for their required consumption each month.  At the end 

of the 36 months participants provided estimates of each brand‟s average price, sale 

price, regular price and promotional frequency.  The three brands consisted of a 

control brand (constant price of $2.39), a frequency brand (usual selling price of 

$2.49 for 18 months, discounted price of $2.29 for 18 months) and a magnitude 

brand (usual selling price of $2.49 for 33 months, discounted price of $1.29 for 3 

months).  The discounts were distributed uniformly throughout the 36 month period, 

so that the frequency brand had three sale months randomly assigned in each six 
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month period and the magnitude brand had one sale month randomly assigned in 

each 12 month period.  The magnitude brand also had no discount applied in the 

final five months to avoid any recency effects.  It should be noted that the difference 

between the frequency and magnitude brands (reduced six times more often vs. six 

times greater discount depth) is three times larger here than the difference between 

the frequency and magnitude stores in the 1994 studies (reduced twice as often vs. 

twice the discount depth). 

 Repeated measures ANOVA analysis showed significant differences in 

average price estimates and discount frequency estimates between the three brands.  

The estimated average price for the magnitude brand was much lower than for the 

frequency brand ($2.18 vs. $2.33).  Participants also underestimated the discount 

frequency of the frequency brand (9.33 instead of 18) and overestimated the discount 

frequency of the magnitude brand (4.22 instead of 3).  This average price difference 

counteracts the previously observed frequency effect, so a series of follow-up studies 

were again conducted to explore possible explanations for the discrepancy.  Three 

specific explanations were proposed.  Explanation one: that the average price 

estimates were correctly calculated as a weighted average of the usual and sale 

prices, but participants systematically underestimated high frequencies and 

overestimated low frequencies.  A possible cause for underestimation of the high 

discount frequency is that the small discounts for the frequency brand may have been 

subsumed into a latitude of acceptable prices (Monroe, 1971a) or may have been 

small enough to fall into a region of perceptual indifference (δ > 0.08 using the 

terminology of Buyukkurt above).  Explanation two: that the deep sale price of the 

magnitude brand was systematically over-weighted in calculating the numerical 

average of the prices.  A possible cause for over-weighting the deep discount price 
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would be high availability in memory caused by the extremity of the observation 

(Tversky & Kahneman, 1973) or simply that more attention was paid to the sale 

price because the depth brand was usually purchased when it was on sale.  

Explanation three: that the dichotomous price distributions in the pilot study were 

much less complex than the basket price distributions from the 1994 study, and that 

participants were more likely to fall back on a frequency heuristic when their 

cognitive resources are stretched by complex stimuli.  A magnitude effect would be 

especially likely in a dichotomous price distribution if participants used an „anchor-

and-adjust‟ strategy to estimate the average price, with the salient low sale price used 

as the anchor. 

 Study 1 (p. 103) replicated the pilot study, but introduced an additional two-

level between-subjects factor by flagging a discounted price with the word „Sale‟ for 

half the participants.  Although discount frequency estimates for the frequency brand 

were much closer to the correct value (13.1 flagged vs. 6.1 un-flagged), the average 

price estimates for the magnitude and frequency brands did not differ significantly 

between the flagged and un-flagged groups.  Hence, the authors reject the first 

potential explanation, that of systematic biases in frequency estimation.  Study 2 (p. 

105) reduced the extremity of the discount for the magnitude brand by a factor of 

three (and therefore increased the discount frequency by a factor of three) in order to 

bring the difference between the frequency and depth brands in line with the 1994 

study.  The magnitude effect was reduced, but the magnitude brand was still 

perceived to have a lower average price than the frequency brand ($2.31 vs. $2.35) 

and discount frequency estimates for each brand were consistent with the prior 

studies.  Hence, the authors reject the explanation that the extremity of the sale price 

for the magnitude brand in the pilot study was sufficient to reverse the frequency 
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effect.  Study 3 (p. 105) removed the potential attention effect caused by purchasing 

the magnitude brand in the buying game by reverting to the simple paired-price list 

format used in the 1994 study and eliminating the constant price brand.  The 

discount depth advantage of the magnitude brand was introduced as a two-level 

between-subjects factor (2X vs. 6X) and a „basket cost‟ measure (estimated total cost 

if the shampoo was purchased once each month over the 36 months) was also 

collected.  The difference between discount depths was not significant and the 

magnitude effect persisted for both average price and basket cost estimates.  Hence, 

the authors reject the explanation that the depth effect was caused by increased 

attention being paid to the magnitude brand‟s sale price in the buying game 

paradigm. 

Study 4 (p. 106) increased the similarity to the 1994 study by replacing the 

two brands with a single brand‟s prices observed in two different stores.  The price 

distributions were created by taking the first 36 items from the 1994 study and 

assigning a price of $2.49 to whichever was the higher priced brand that month, and 

using the price differential from the 1994 study to determine the price of the 

discounted brand.  As a result, the frequency brand was discounted in 24 months and 

the magnitude brand was discounted in 12 months, with the two brands never 

discounted in the same month.  The price distributions were non-dichotomous and 

overlapping, in that some of the discounts for the magnitude store ($0.06 - $0.18) 

were smaller than some of the discounts for the frequency store ($0.03 - $0.13).  A 

second set of non-overlapping prices was created by subtracting a constant $0.18 

from the magnitude brand‟s sale prices and a constant $0.09 from the frequency 

brand‟s sale prices.  The level of complexity (overlapping vs. non-overlapping) was 

used as a between-subjects factor.  For the first time in this series of studies a 
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frequency effect was observed, with the mean basket price for 36 months of 

shampoo being lower in the frequency store than in the magnitude store ($84.05 vs. 

$86.69).  There was, however, no difference between store estimates in the 

overlapping and non-overlapping groups suggesting that the frequency effect was 

caused by the adoption of non-dichotomous price distributions.  Study 5 (p. 108) 

explicitly tested this hypothesis by pitting the dichotomous distributions from Study 

2 against the non-dichotomous, non-overlapping distributions from Study 4 in a 

between-subjects manipulation.  Repeated-measures ANOVA showed a significant 

interaction between the store (frequency or magnitude) and the complexity of the 

distributions (dichotomous or non-dichotomous) with the magnitude store being 

perceived as cheaper for dichotomous price distributions and the frequency store 

being perceived as cheaper for non-dichotomous price distributions.  The authors 

also note that estimates of discount frequency and regular selling price for the two 

stores did not vary significantly between the dichotomous and non-dichotomous 

cases, but the estimates of the sale price were much more accurate for dichotomous 

price distributions.  They argue that this supports the idea that participants used an 

anchor-and-adjust strategy using the perceived sale price as the anchor, although 

they admit that increasing the complexity of the price distribution may also have led 

participants to switch from making within-store estimates of the average price to 

using a between-stores comparison strategy of counting the number of months in 

which each store had the lower price. 

A recent follow-up study by Lalwani and Monroe argued that the switch from 

a frequency effect to a magnitude effect could better be explained by the relative 

salience of the frequency and magnitude cues, rather than the complexity of the 

stimuli (Lalwani & Monroe, 2005).  The authors first replicated the findings of Study 
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5 above (Alba, et al., 1999, pp. 108-110) using a simple buying game with 36 

months and two brands of shampoo, with either dichotomous or non-dichotomous 

price distributions.  They then repeated the experiment, but this time switched the 

product to a desktop computer, ranging in price from $520 to $740 in the non-

dichotomous condition and from $530 to $740 in the dichotomous condition.  Thus 

the magnitude of discounts and the regular selling price were about 580 times larger, 

but all other aspects of the price distributions were unchanged.  The results showed 

that the magnitude brand was perceived as having the lower average price not only in 

the dichotomous condition ($710.23 vs. $714.00) but also in the non-dichotomous 

condition ($706.43 vs. $717.93).  Lalwani and Monroe argue that increasing the 

magnitude of the discounts made the magnitude cue more salient in the second study, 

causing the switch from a frequency effect in their first study to a magnitude effect 

in their second study, for non-dichotomous price distributions.  They support this 

conclusion with a third experiment using the same stimuli as their first study, but 

increasing the salience of the frequency cue by discounting the frequency brand in 

20 of the 36 months and the magnitude brand in just 2 of the 36 months (a ratio of 

10:1 instead of 2:1).  In this case the frequency brand was perceived to have the 

lower average price for both dichotomous ($1.93 vs. $2.04) and non-dichotomous 

price distributions ($1.95 vs. $2.02).  In this case, they argue that the frequency cue 

was made more salient than the magnitude cue, hence causing a switch to using the 

frequency cue.  However, they are silent on why Alba et al. (1994) first observed a 

magnitude effect with a ratio of 6:1, nor do they address the fact that the frequency 

and magnitude cues are coupled when the average price of the two brands is held 

constant.  Increasing the salience of the frequency cue also increases the salience of 
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the magnitude cue: in this case the change from a 2:1 ratio to a 10:1 ratio increases 

the depth of the discount for the magnitude brand from $0.30 to $1.00. 

1.2.4     Conclusions from Experimental Findings 

The frequency effect first observed by Buyukkurt (1986) and Alba et al. 

(1994) appears to be less robust than first thought, with relatively subtle changes in 

experimental task and price distributions causing it to either shrink or even disappear 

entirely.  Although a series of experiments have explored the boundary conditions 

under which the frequency or magnitude cue dominates price judgments, no firm 

conclusions have been reached nor have convincing explanations for the observed 

pattern of results been put forward.  Worse, the definition of „frequency‟ varies 

arbitrarily between the frequency of within-store/brand discounts over time and the 

frequency of between-store/brand price advantages.  Finally, the methodological 

limitations described by Alba et al. (1994), namely (i) forcing participants to pay 

attention to all price information and (ii) not presenting prices in a format which 

mirrors the sequential nature of between store price comparisons, have not yet been 

addressed.  Nonetheless, the frequency effect offers an intriguing insight into the 

ability of consumers to discriminate between complex real-world stimuli, as well as 

having important practical implications for retailers, consumers and policy-makers.  

As will be shown in the following sections, understanding discrimination and 

judgments has been a central problem in mainstream psychology for a very long 

time, although judgment tasks analogous to those already described have so far 

received relatively little attention.  I shall first describe some of the key theories and 

findings from research into psychophysical judgments, intuitive statistics and 

memory in the psychology literature before returning to other related findings from 

applied price research in the consumer research literature. 
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1.3     A Brief History of Judgment Research 

1.3.1     Detection and Discrimination 

1.3.1.1     Weber’s Law and Fechner’s Law 

 One of the most elementary cognitive processes is that of detecting an object 

(or sensation) or discriminating between two objects (or sensations), i.e. detecting a 

difference.  The first answer to the question of whether or not a difference can be 

detected was given in the 19
th

 century by Weber‟s Law: 

Γ 

 
 =   

Weber derived this relationship from a series of psychophysical experiments.  In one 

example, a blindfolded participant would be given a reference weight to hold in one 

hand and then given a series of weights to hold in their other hand.  The participant 

had to decide whether the second weight was lighter, heavier or the same as the 

reference weight.  Weber found that the smaller the difference between the reference 

weight and the second stimulus, the smaller the proportion of tests in which the 

participant correctly identified the second weight as being heavier.  Weber assumed 

that there was a fixed threshold or „just-noticeable difference‟ (jnd) below which 

differences could not be detected.  The jnd was often taken to be the threshold at 

which the difference in weight was correctly identified on 75% of trials (Gigerenzer 

& Murray, 1987).  Weber found that the jnd was a constant proportion of the starting 

stimulus intensity and his law is a mathematical expression of that finding.  For 

example, if the jnd for a 100g weight was found to be 1g then the jnd for a 1kg 

weight would be 10g. 
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 Fechner developed Weber‟s work with a mathematical derivation of a 

relationship between the stimulus intensity and a unit of sensation, S.  He assumed 

that if a sensation difference of ΓS were to be just noticeable then it would be a 

constant multiple of the Weber fraction: 

      
Γ 

 
 

Rearranging the terms and solving as a differential equation yields Fechner‟s Law: 

  =  ln       

where C is a constant of integration to be determined experimentally.  Fechner‟s Law 

states that sensation is logarithmically related to stimulus intensity, so that if 

stimulus intensity is increased in a geometric progression (multiplied by a fixed 

constant) then perceived sensation increases as an arithmetic progression (adding a 

fixed amount). 

 Fechner‟s work was later criticized by Stevens who developed an alternative 

methodology for obtaining psychophysical judgments of stimulus intensity, known 

as magnitude estimation (Gigerenzer & Murray, 1987; Stevens, 1957).  This 

methodology involved asking participants to report numbers in proportion to the 

sensation arising from different signals, a methodology which Stevens described as 

“direct” measurement and that he contrasted with the “indirect” methods of Weber 

and Fechner (Stevens, 1957).  Stevens claimed that there are two classes of 

sensation, prothetic and metathetic, which approximately correspond to quantity (e.g. 

loudness) and quality (e.g. pitch).  Furthermore, he claimed that prothetic sensations 

did not follow the logarithmic relationship proposed by Fechner, but were in fact 

better modelled by a power law: 
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  = a     

This form of relationship is equivalent to assuming that the relative difference in 

perceived sensation (ΓS/S) is proportional to the Weber fraction, and not the 

absolute difference (ΓS) as assumed by Fechner.  Stevens also applied his direct 

techniques to measuring other forms of judgment, such as opinions and attitudes 

(Stevens, 1966). 

Stevens‟ psychophysical work has itself been criticized on a number of 

fronts.  Firstly, he obtained ratings from a number of subjects and then averaged 

them before fitting a power function, which fails to account for individual 

differences (Gigerenzer & Murray, 1987; Stevens, 1966).  Secondly, the 

methodology of magnitude estimation does not allow for separate testing of 

participants‟ psychophysical sensation and any distortion that might occur in 

transforming that sensation into a numerical response (Luce, 2002).  Thirdly, and 

most fundamentally, the very idea of fixed thresholds in stimulus discrimination has 

been strongly criticized by many psychophysical researchers, beginning with 

Thurstone in developing his „Law of Comparative Judgment‟. 

1.3.1.2     Thurstone’s Law of Comparative Judgment 

 The key concept in Thurstone‟s work was what he referred to as discriminal 

dispersion: the idea that there is ambiguity or variation in how one stimulus is 

perceived by a single observer on different occasions (Thurstone, 1927).  If an 

observer is shown two stimuli, A and B, then on any single occasion i the observer 

will perceive the magnitude of A as ai and the magnitude of B as bi.  Because of 

discriminal dispersion, on some occasions ai will be perceived as greater than bi and 

on other occasions ai will be perceived as less than bi.  If the observer is asked on 
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each occasion to judge whether A is larger or smaller than B, then after a number of 

trials the frequency of each response can be used to generate the probability that A is 

judged to be greater than B, pA>B.  If the magnitude of stimulus B is held constant 

and the magnitude of stimulus A is gradually increased then pA>B rises, just as Weber 

and Fechner observed.  Thurstone himself made no claims about the source of this 

discriminal dispersion, stating simply that “as we inspect two or more specimens for 

the task of comparison there must be some kind of process in us by which we react 

differently to the several specimens” but that “you may suit your own predilections 

in calling this process physical, neural, chemical or electrical” (Thurstone, 1927, p. 

274).  However, what is quite clear is that he totally rejected the idea of fixed 

thresholds in discrimination: “Everyone who works at all seriously in psychophysics 

knows that just noticeable differences have never been found, and that it is necessary 

to specify quite arbitrarily a stipulated frequency of discrimination in order to put 

any sense in the jnd” (Gigerenzer & Murray, 1987). 

 Thurstone also made no particular claims about the distribution of perceived 

stimulus intensities (or “discriminal processes”) arising from discriminal dispersion, 

but rather claimed that the psychological scale should be defined such that the 

frequencies of those stimulus intensities are normally distributed.  In this way, his 

theory is as much about construction of appropriate scales as it is about the cognitive 

processes involved in discrimination.  Indeed, much of his work was concerned with 

attitudes and opinions rather than psychophysical stimuli, and how to appropriately 

scale a collection of stimuli based on a series of pairwise comparisons (Stevens, 

1966).  Discriminal dispersion is specifically defined as the standard deviation of 

discriminal processes on the psychological scale for a particular stimulus.  

Discriminal deviation is defined as the distance between the modal discriminal 
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process and the discriminal process on any particular occasion.  Finally, the 

separation between the modal discrimination processes for two stimuli is the distance 

assigned to those stimuli on the psychological scale.  This leads to the full form of 

Thurstone‟s Law of Comparative Judgment (LCJ): 

 A      =  xA     ζA
2    ζ  

2   2rζAζ  

where SA and SB are the psychological scale values of the two compared stimuli; xAB 

is the sigma value from the cumulative normal distribution corresponding to the 

proportion of judgments pA>B; ζA and ζB are the discriminal dispersions of the two 

stimuli; and r is the correlation between discriminal deviations for the two stimuli in 

the same judgment.  Thurstone considers a number of cases in which various 

simplifying assumptions are made, of which Case V is the most commonly used.  It 

is assumed that (i) the perceived relative values for two stimuli are normally 

distributed for a group of observers as well as a single observer, (ii) that the 

correlation between discriminal deviations for the two stimuli in the same judgment 

is zero (i.e. no contrast effects), and (iii) that all the discriminal dispersions are equal.  

This can be represented graphically as in Figure 1.2, reproduced from Gigerenzer 

and Murray (1987). 
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Figure 1.2: Illustration of Case V of Thurstone‟s Law of Comparative Judgment (Gigerenzer 

& Murray, 1987, p. 37, Figure 2.1). 

Under these simplifying assumptions, and by making the appropriate (arbitrary) 

choice of unit scale, the LCJ simplifies to: 

 A      = xA  

It was the assumption of equal discriminal dispersion in particular which Stevens 

later rejected, although he noted that if Thurstone had conceived of a Case VI in 

which dispersion increased proportionally with intensity then he too would have 

arrived at a power function relating sensation magnitude to stimulus intensity 

(Stevens, 1966) 

1.3.1.3     Signal Detection Theory 

  oth the “fixed threshold” and the “discriminal dispersion” theories view 

discrimination as an essentially passive response of the human judge to external 

stimulus differences or internal variation, whereas the emergence of Signal Detection 

Theory (SDT) in the 1950‟s reflected a broader trend of viewing the mind as making 

active inferential statistical judgments (Gigerenzer & Murray, 1987).  Like the LCJ, 

the basis of SDT is two overlapping distributions as the internal representation of 

two signals, but it goes further by introducing the concept of a subjective decision 
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criterion (Tanner & Swets, 1954).  The two distributions are often assumed to be 

equal variance normal distributions, just as in Thurstone‟s Case V of the LCJ, but 

SDT can be applied to almost any distribution, for example a logistic probability 

distribution (Swets, 1986).  The mathematics of SDT was originally developed 

during World War II to determine the optimal behaviour of radar operators and the 

language of SDT bears witness to this heritage: the two distributions are usually 

referred to as “noise” (n) and “signal plus noise” (sn) and the decision maker is 

assumed to be attempting to detect whether or not a signal is present against a 

background of random noise.  The ideas are, however, just as applicable to the task 

of discrimination between two stimuli in the pairwise comparison tasks described 

earlier.  If the reference stimulus A is labelled n and the second stimulus B is 

labelled sn, then the task of discrimination is analogous to detecting the presence of a 

signal.  In order to decide whether or not a signal is present, the decision-maker must 

set a criterion value above which they will judge that a signal was present (the two 

stimuli were different) and below which they will judge that no signal was present 

(the two stimuli were the same).  This can be represented graphically as in Figure 

1.3, reproduced from Gigerenzer and Murray (1987). 
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Figure 1.3: Illustration of Signal Detection Theory (Gigerenzer & Murray, 1987, p. 43, 

Figure 2.2). 

In setting the decision criterion the decision-maker is making a trade-off 

between the hit rate (the probability that a signal is correctly identified as being 

present) and the false alarm rate (the probability that a signal is incorrectly identified 

as being present).  If the criterion is set very high then very few false alarms will 

occur, but the hit rate will also be low.  If the criterion is set very low then the hit 

rate will be high but the false alarm rate will also be high.  The optimal decision 

criterion depends upon the relative utility of hits, misses, false alarms and correct 

rejections, i.e. it is both subjective and context dependent.  One implication of SDT 

is that the hit rate and the false alarm rate are coupled.  This is identical to the 

inferential statistics of Neyman and Pearson, in which the power of an experiment 

falls (the chance of Type II errors increases) as the probability of a Type I error is 

reduced (Gigerenzer & Murray, 1987).   The relationship between the hit rate and the 

false alarm rate can be represented graphically in the form of a Receiver Operating 

Characteristic (ROC) curve.  For a given pair of stimuli, an ROC curve represents 

the different combinations of hit rates (h) and false alarm rates (f) that occur as the 

decision criterion is varied.  As the inter-stimulus distance (d´) is increased or 
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decreased then families of ROC curve are obtained.  An example family of ROC 

curves for two equal-variance normal distributions is shown in Figure 1.4, 

reproduced from Swets (1986). 

 

Figure 1.4: ROC curves for equal variance normal distributions as a function of the 

standardized inter-stimulus distance d´ (Swets, 1986, p. 106, Figure 3). 

One of the major contributions of SDT to the understanding of human 

discrimination performance is that it introduced the need to consider not only the 

observer‟s subjective sensitivity (d´) but also the decision criterion.  Ideally, 

experiments should be designed to vary both d´ and the decision criterion, and also 

to explore the factors that influence the setting of the decision criterion.  In order to 
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determine the sensitivity and the decision criterion, both hit rates and false alarm 

rates have to be collected as data, and ROC curves used to derive the required 

values.  Most importantly for the topic of this thesis, SDT emphasizes that changes 

in decision context can cause changes in discrimination rates between two identical 

stimuli, because the decision criterion has changed.  Specifically, if the relative 

utility of hits and false alarms differs, or is perceived to differ, between two different 

decision contexts then the probability of discriminating a difference between two 

constant stimuli will also vary.  The importance of context for human judgments is a 

topic that I shall return to in more detail later in this chapter.  

1.3.1.4     Attribution Theory 

 Judgment and discrimination is of course not restricted to the domain of 

sensory perception and psychophysics.  Humans exist in a complex world of social 

interactions, requiring intuitive judgments concerning the motives and actions of 

other people.  One of the dominant theories in social psychology – certainly the 

widest researched – is that of Attribution Theory, first developed in the late 1950s 

and early 1960s (reviewed by Kelley, 1973; Kelley & Michela, 1980).  Attribution 

Theory is primarily a theory of causal judgments that are made in order to interpret 

other people‟s behaviour, but it is closely related to other theories of judgment and 

decision-making: 

“...Attribution Theory is related to a more general field that might be 

called psychological epistemology.  This has to do with the processes 

by which man “knows” his world and, more importantly, knows that 

he knows, that is has a sense that his beliefs and judgments are 

veridical.  The ascription of an attribute to an entity amounts to a 
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particular causal explanation of effects associated with that entity – 

reactions or responses to it, judgments and evaluations of it, etc.  So 

all judgments of the type “Property X characterizes Entity Y” are 

viewed as causal attributions.” (Kelley, 1973) 

Attribution Theory is based on the idea that in order to make causal attributions 

about other people‟s behaviour, a human judge considers three relevant causal 

factors: persons (P), stimuli (S), and times (T).  The attribution of a given person‟s 

response to a stimulus on a particular occasion is judged by (i) the consensus with 

other people‟s response to the same stimulus, (ii) the consistency with this person‟s 

response to the same stimulus on other occasions, and (iii) the distinctiveness from 

this person‟s response to other stimuli (Kelley & Michela, 1980).  In other words, 

causal attribution is based on perceived covariance in the environment, between 

explanatory factors and the effect being judged, and the effect is judged as being 

caused by the factor with which it co-varies, or is perceived to co-vary.  Where 

repeated observations are not available in order to judge covariance, judgments may 

be based on memories of similar judgments in the past or on counterfactual 

reasoning about non-common effects had the person acted in a different way, i.e. 

estimates of covariance based on past experience.  This form of Attribution Theory is 

therefore sometimes described as the „ANOVA model‟ because “the assumption is 

that the man in the street, the naive psychologist, uses a naive version of the method 

used in science” (Kelley, 1973). 

 Why is Attribution Theory of relevance to the kinds of intuitive statistical 

judgments considered in this thesis?  Firstly, it raises the possibility that judgments 

of store prices may also be made on the basis of the perceived covariance of the price 

level of a store with other factors: “Store X is cheap because it shares Attribute Y 
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with other stores which are also cheap”.  Some of those factors, which would have to 

be controlled for or measured in experimental research, are reviewed later in this 

chapter.  Secondly, it raises the wider question of whether, and to what degree, 

humans have the ability to make accurate statistical judgments concerning the world 

around them, in this case to judge the covariance between a factor and an effect.  

Discrimination between complex stimuli, such as distributions of prices and 

distributions of inter-store differences in item prices, may also require intuitive 

judgments of statistical properties such as means, variances and covariances.  In the 

next section I review the evidence related to intuitive statistical judgments, especially 

judgments of frequency information, and briefly discuss the implications of some of 

the apparent limitations and biases that have been found. 

1.3.2     Intuitive Statistics 

1.3.2.1     Intuitive Judgments of Statistical Properties 

 With the popularization of inferential statistics and Bayesian probability 

theory in psychology, the statistical methods of psychologists became increasingly 

viewed as a normative standard for „correct‟ reasoning by those same researchers 

(Gigerenzer & Murray, 1987).  Research was then directed at attempting to 

determine whether or not the human mind is able to calculate probabilities, means, 

variances and correlations, and whether intuitive reasoning follows the „rational‟ 

laws of probability theory and inferential statistics.  The main findings of this body 

of work were summarized by Peterson and Beach (1967), including both intuitive 

descriptive statistics (the process of describing samples of data) and intuitive 

inferential statistics (the process of inferring population statistics from samples).  Of 

particular relevance is research related to people‟s ability to accurately judge the 
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mean of a distribution.  The first finding is that „average‟ is variously interpreted by 

participants as one of several measures of central tendency, including mean, mode 

median and mid-range.  However, if „mean‟ is specified in the task instructions, then 

judgments are relatively accurate with no apparent biases.  The variance between 

estimates of a mean tends to increase with the variance of the sample, with the 

sample size and with the speed of presentation, which suggests that participants are 

actually making inferences about the population mean (Peterson & Beach, 1967).  

Judgments of variance show two interesting effects.  Firstly, they appear to be 

negatively correlated with the mean, suggesting that it is actually the coefficient of 

variation (the ratio of standard deviation to mean, related to the Weber fraction ΓI/I) 

that is being estimated.  Secondly, even once this is accounted for, judgments of 

variance appear susceptible to both underweighting and overweighting of large and 

small deviations from the mean, depending upon the task instructions and the 

distribution of values being judged.  Instructions that emphasize small deviations or 

distributions with many small deviations (e.g. a normal distribution) tend to lead to 

underestimation of variance, whilst instructions that emphasize large deviations or 

distributions with prominent large deviations (e.g. a saddle-shaped distribution) tend 

to lead to overestimation of variance (Peterson & Beach, 1967). 

Inferences of population averages (mean, median and mode) also appear to 

be relatively accurate, although when shown a J-shaped distribution – with many low 

values and a few high values - estimates of the mean are biased towards the median, 

i.e. the mean is underestimated (Peterson & Miller, 1964).  This is equivalent to 

underweighting large deviations, leading Peterson and Beach to conjecture that 

“subjects may have regarded them as unrepresentative and thus not more important 

than the most frequently occurring events” (Peterson & Beach, 1967).  Most of the 



Chapter 1: Literature Review 

32 

inferential tasks involved showing numerical values on cards drawn from a pack and 

asking participants for inferences about the mean or variance of the pack.  For 

example, Irwin, Smith and Mayfield (1956) drew cards one at a time from a pack of 

500 cards and asked participants to judge whether the mean value of the pack was 

greater or less than zero using a confidence scale ranging from -100 (absolutely 

certain the mean is negative) to +100 (absolutely certain the mean is positive).  The 

judgment was given after both 10 and 20 cards, although the second 10 cards were 

fixed to be identical to the first 10 cards, shuffled into a different order.  The actual 

mean and variance of the packs were manipulated between different packs.  

Confidence ratings were directionally accurate, and participants were more confident 

when the actual mean of the pack was further from zero, when the variance of the 

pack was lower and when they had seen more cards. 

However, a closer parallel to the inter-store price comparison task of Alba et 

al can be found in a second experiment involving two packs of cards (Irwin, et al., 

1956).  This time a card was drawn from each pack simultaneously and participants 

had to judge which pack had the higher mean value using a similar confidence scale 

to the previous experiment.  Confidence ratings were obtained after each pair of 

cards was drawn, with 20 pairs of cards drawn in total.  As before, the second 10 

cards in each pack were the same as the first 10 cards, shuffled into a different order.  

Again confidence ratings were directionally accurate and participants were more 

confident when the actual difference in means between the two packs was greater, 

when the variance in each pack was smaller and when more cards had been seen.  In 

every test the values were normally distributed and one pack always had a higher 

mean than the other, so there were no conditions which directly paralleled the price 

distributions used by Alba et al with identical means.  Irwin, Smith and Mayfield 
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also manipulated the mean and variance of each pack of cards separately, so did not 

measure or control the frequency of occasions on which the card drawn from each 

pack had a larger or smaller value than the other pack. 

These kind of card-drawing experiments have subsequently been criticized 

because the judgment task was not truly „intuitive‟, in the sense of knowing or 

learning something without conscious reasoning (Malmi & Samson, 1983).  An 

alternative testing methodology was subsequently used that presented a large sample 

of numbers at high speed, e.g. 50 values for 0.5 seconds each.  Furthermore, two 

different distributions of values, indicated with a category label, were randomly 

interleaved so that each participant would see 100 values in total, before being asked 

to estimate the average of each category.  Even with extremely skewed distributions, 

estimates tended to reflect the mean rather than any other measure of central 

tendency.  Estimate accuracy was unaffected by presentation time or by changing the 

differences of the mean and variance between the two distributions.  Participants 

were also able to give accurate estimates for the variance and skew of each 

distribution, based upon estimates of the frequency with which different bands of 

values were presented.  When asked, post hoc, to exclude values above or below a 

certain threshold and to re-estimate the average of the remaining values estimates 

were also reasonably accurate.  This suggests that a sample of the observed values 

was represented in memory rather than the participants calculating a running mean as 

the items were presented and discarding the individual values from memory (Malmi 

& Samson, 1983). 
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1.3.2.2     Representations of Sets in the Visual System 

 Similar „intuitive‟ experiments have been carried out using shapes and 

colours instead of numerical information, in order to understand how the visual 

system represents sets of items presented simultaneously or with a very short delay.  

In one example (Ariely, 2001), participants were shown sets of different sized circles 

for 500ms, followed by a test circle.  In one task participants had to say whether the 

test circle had been a member of the set they had just viewed, while in a different 

task they had to say whether the test spot was larger or smaller than the mean of the 

set.  The size of the sets and the similarity of the circle sizes were varied between 

trials. Participants were unable to perform the first task (set membership 

identification) any better than chance, but were highly accurate in discriminating the 

mean set size, with a 75% accuracy threshold of about 4-6% of circle size for similar 

sets and 6-12% of circle size for dissimilar sets.  Performance did not differ between 

sets of different sizes.  These findings suggest that the visual field represents 

statistical properties of sets, such as the mean and range, rather than the full 

descriptive details of each individual member of the set (Ariely, 2001).  Subsequent 

studies employing mean size comparisons between two different sets of circles have 

found that judgments of mean size appear to use a value somewhere between the 

mean circle area and the mean circle diameter; that accuracy is unaffected by 

exposure duration or by simultaneous or sequential presentation of the sets; that 

accuracy is the same for different types of distribution and is only slightly worse 

when the shapes of the two distributions are different from each other (Chong & 

Treisman, 2003); that neither set size nor density affects accuracy; and that 

segregation of sets by colour gives mean discrimination thresholds that are no greater 

than when sets are segregated by location (Chong & Treisman, 2005).  
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Representation of mean set size by the visual system appears to be fast, accurate and 

automatic.  Studies suggest that other properties of sets and sequences, including 

higher order temporal structure such as item frequencies and joint probabilities of 

consecutive appearances of item pairs, may also be represented automatically by the 

visual field (Fiser & Aslin, 2002). 

1.3.2.3     Representation and Processing of Numerical Information 

 The experiments described in the two prior sections suggest distributions of 

numerical information are represented and processed differently from distributions 

of visual information: numerical information is retained in memory as individual 

values whilst visual information is represented by summary statistical descriptors.  

This modality difference is not particularly surprising: sensory information 

processing (visual, auditory, etc) is a primitive task, shared by our distant ancestors 

and most other species of animal, while numerical information processing is a 

relatively new and unique task in our evolutionary development.  It is therefore 

plausible that visual information is represented and processed by specialized brain 

circuitry in a highly automatic way while numerical information is represented and 

processed by a more general cognitive architecture.  Nonetheless, there is evidence 

that learning can result in automatic processing of basic numerical information, such 

as classifying digits as large or small (Tzelgov, Meyer, & Henik, 1992).  

Experimental findings suggests that the digit „5‟ has a special status in numerical 

processing, being the exact halfway point in the number line from zero to ten.  Digits 

smaller than five are automatically classified as „small‟ whereas digits larger than 

five are classified as „large‟.  This automatic processing leads numerical size to 

interfere with judgments of physical size in a Stroop-like size congruity effect: when 

physical size and numerical size are inconsistent then reaction times for physical size 
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judgments are increased (Tzelgov, et al., 1992).  However, it also appears that the 

magnitude of these interference effects is malleable, for example by changing the 

discriminability of each dimension, suggesting that numerical processing is not 

strongly automatic because activation of numerical size judgments is not immune to 

changes in task demands and attention (Pansky & Algom, 1999).  In a similar 

fashion, judgments of numerosity also interfere with judgments of numerical size, 

but the effects can be moderated by changes in dimension discriminability, 

motivation and practice (Pansky & Algom, 2002). 

 Research into numerical cognition has found a number of other effects which 

shed further light on how numbers are represented and processed in the human brain.  

One of the earliest and most robust findings is the distance effect in discrimination 

between two single-digit numbers (McCloskey & Macaruso, 1995).  Discriminating 

between two digits is faster and easier when the two numbers are distant (e.g. 2 and 

8) than when the two numbers are close (e.g. 7 and 8).  A similar problem size effect 

is found in algebraic tasks, in which tasks involving larger digits (e.g. 7 + 8) take 

longer to perform than tasks involving smaller digits (e.g. 2 + 3) (Ashcraft, 1992).  It 

is not yet clear whether numbers in different formats, such as Arabic numerals (1, 2, 

3) or verbal numerals (one, two, three) written or spoken, are first transcoded into an 

internal semantic representation or whether the brain works simultaneously 

(asemantically) with representations in different formats.  Proponents of the single-

format position point out that children who learn an arithmetic fact in one format 

(e.g. they are told by a teacher that “eight times four equals thirty two”) are able to 

transfer that knowledge to arithmetic tasks in other formats (e.g. they can solve the 

written Arabic problem “4 × 8”).  Proponents of the multi-format hypothesis point to 

evidence of differences in arithmetic fact retrieval performance depending upon the 
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format of the task and also argue that cross-format learning of arithmetic facts is not 

complete (McCloskey & Macaruso, 1995).  Other studies suggest that numerical 

information is represented spatially in the form of a number line, with small digits 

associated with the left hand end and large digits with the right hand end (Longo & 

Lourenco, 2007).  Furthermore, it appears that larger numbers are less discriminable 

than smaller numbers (as if they obey Weber‟s Law) which has led to suggestions 

that the number line may be logarithmically compressive or that the variability of 

internal representations (discriminal dispersion in the language of Thurstone‟s LCJ) 

increases with the size of numbers.  Evidence for the spatial nature of the mental 

number line include a correlation between individual biases in bisecting spatial and 

numerical lines, and the fact that number line bisection tasks are much harder when 

the larger of the two numbers is presented on the left (Longo & Lourenco, 2007). 

 It is not immediately clear how these numerical cognition findings could 

explain the frequency effect observed in inter-store price comparisons.  On the one 

hand, a frequency store would contain a larger number of small prices with a few 

large prices, which could bias estimates of the mean price downwards if the number 

line is non-linear.  On the other hand, the distance effect would suggest that the large 

price advantages of a magnitude store would be more discriminable (and perhaps 

therefore more salient) than the small price advantages of a frequency store.  In any 

case, the research into intuitive statistical judgments described earlier suggests that 

real-world inter-store price comparisons are a cognitively demanding task and we 

should not expect non-intentional price judgments to be carried out by specialized 

brain circuitry in a fast and accurate manner.  Rather, the discrimination task is likely 

to be biased, subject to influences such as changes in attention or motivation, and 

could also be influenced by potentially irrelevant cues that are easily and 
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automatically processed.  As suggested by Alba et al, one such candidate cue is the 

frequency of price advantages.  In the next section I review the results of research 

into intuitive judgments of frequency, and evidence for the automatic processing of 

frequency information in the environment. 

1.3.3     Frequency Judgments 

1.3.3.1     Probability Learning 

 From the 1950s onwards, a large amount of research was dedicated to 

understanding human probability learning, with the growing belief that humans are 

information processors and decision makers, using informative feedback from their 

past actions rather than being shaped by the effect of rewards and punishments in the 

form of mechanical reinforcement learning (Estes, 1976).  However, a large body of 

evidence suggests that in many circumstances decisions do not correspond to rational 

choice theory (Shanks, Tunney, & McCarthy, 2002).  In a series of repeated 

decisions between two alternatives with different payoff probabilities, rational choice 

theory would predict that the higher probability alternative should be selected 100% 

of the time, after sufficient trials have been conducted in which the payoff 

probabilities can be learned.  However, a large number of experiments found 

asymptotic choice percentages that were lower than predicted, often matching the 

payoff probabilities exactly.  For example, if option A had a payoff probability of 

70% and option B had a payoff probability of 30% then participants would choose 

option A on about 70% of trials: they appeared to be probability matching.  More 

recent experiments have shown that this tendency can be reduced or removed 

through the use of large financial incentives, meaningful and regular feedback, and 

extensive training (Shanks, et al., 2002).  Nonetheless, in many situations the 
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tendency to probability match seems extremely common.  More recent research has 

utilized multiple cue probability learning (MCPL) tasks, in which a number of cues 

(e.g. different medical symptoms) are presented and the participant has to judge 

which outcome will occur (e.g. disease A or B is present).  Again, suboptimal 

responding and probability matching was often found, especially when no feedback 

was given (Estes, Campbell, Hatsopoulos, & Hurwitz, 1989; Shanks, 1990). 

Probability learning research also suggests that probability estimates are 

based upon observed frequencies of events, which can lead to biases in those 

probability estimates.  For example, Estes (1976) carried out an experiment in which 

participants were shown pairs of products as repeated observations.  They were told 

that each observation represented a response from a consumer survey, and on each 

trial one of the products was indicated as being preferred.  By manipulating the 

relative frequency of item appearance and item preference, Estes was able to directly 

pit the frequency cue against the observed probability.  For example, a pair of items 

AB was presented 100 times and another pair of items CD was presented 200 times.  

Within the pairs, A had a 75% chance of being preferred over B whilst C and D each 

had a 50% chance of being preferred over the other.  Thus C has been presented as 

the winning product on 100 observations while A has only been presented as the 

winning product on 75 occasions.  If asked to judge the likely winner from a 

comparison between A and C, a judgment based on observed probability would 

favour A whilst a judgment based on observed frequency would favour C.  In a 

series of experiments Estes showed that it was in fact the frequency cue that tended 

to dominate, leading to the conclusion that “probability estimates, relative frequency 

judgments, and predictive behaviour all share a common basis in associative 

memory” (Estes, 1976, p. 62). 
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1.3.3.2     Frequency Learning 

 A large body of research supports the idea that frequency information is 

accurately encoded and available for recall in judgment and probability estimation 

tasks.  Reviews of frequency learning experiments have consistently reached the 

same conclusion.  Peterson and Beach (1967) state that “the most striking aspect of 

the results is that the relation between mean estimates and sample proportions is 

described well by an identity function” while Howell (1973) concludes that “the 

main point of agreement in the experiments reviewed here is that subjects show a 

remarkable facility for synthesizing and storing the repetitive attribute of event 

occurrences”.  Furthermore, Hasher and Zacks (1984) state that “the major 

conclusion of this area of research stands on a firm empirical base: the encoding of 

frequency information is uninfluenced by most task and individual difference 

variables”.  There is some evidence of a mean reversion bias in some circumstances, 

in which low frequencies are overestimated and high frequencies are underestimated 

(Lichtenstein, Slovic, Fishhoff, Layman, & Combs, 1978; Peterson & Beach, 1967), 

although it has subsequently been argued that this does not necessarily reflect a 

systematic bias but can be explained in terms of unsystematic variance (Hertwig, 

Pachur, & Kurzenhäuser, 2005). 

 It has further been argued that the encoding of frequency information is 

automatic, i.e. that it is low effort, does not draw on limited attentional resources, 

and that it does not interfere with other on-going cognitive processes.  In this respect 

it is a fundamental aspect of the flow of information encoded in memory, along with 

spatial and temporal location (Hasher & Zacks, 1979).  One piece of evidence 

supporting this conclusion is that, unlike most other cognitive processes, it does not 

appear to show any developmental trends: children and young adults show the same 



Chapter 1: Literature Review 

41 

ability as adults to accurately judge frequency of occurrence (Hasher & Chromiak, 

1977).  Other factors which usually influence cognitive performance, such as 

practice or feedback, similarly appear to have no impact on frequency encoding and 

recall (Hasher & Chromiak, 1977).  Frequency information may also be implicated 

in a wide range of tasks and skills including memory for events, organizing existing 

knowledge and acquiring new knowledge, decision-making, and cognitive and social 

development (Hasher & Zacks, 1984). 

1.3.3.3     Animal Foraging 

 Humans are not the only animals that are sensitive to frequencies of 

occurrence in the environment.  Studies of animal foraging behaviour consider the 

degree to which animals are sensitive to probabilities (frequencies) in their 

environment.  For example, bumblebees might be faced with two colours of flowers, 

blue and yellow.  The blue flowers might yield a consistent small amount of nectar 

while the yellow flowers yield a much larger amount of nectar, but only a proportion 

of the flowers contain nectar.  Experiments typically examine the degree to which 

animals are sensitive to the trade-off between mean and variance in different 

foraging options, and whether they are consistently risk-averse or risk-seeking.  

Sensitivity to mean and variance has been found in a wide range of species, 

including bumblebees, sparrows, bananaquits (a small nectar-eating bird), shrews, 

wasps, warblers, rats and pigeons (Real, 1991; Real & Caraco, 1986).  The 

experimental evidence suggests that – just like humans – animals such as 

bumblebees estimate probabilities from experienced frequencies of events.  

However, this leads to a bias in the opposite direction from the mean reversion bias 

described earlier: bumblebees overweight high frequencies and underweight low 

frequencies.  This may be because bumblebee‟s probability judgments are subject to 
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memory or perceptual constraints, but it has also been argued that this bias may be 

adaptive in certain (spatially autocorrelated) environments (Real, 1991).  In any case, 

sensitivity to frequency information appears to be a cognitive ability shared by many 

species. 

1.3.3.4     The Frequentist Hypothesis 

 The universality, automaticity and accuracy of frequency judgments have led 

some researchers to conclude that human statistical cognitive architecture is „tuned‟ 

to information in a frequency format, because this is how it is naturally encountered.  

Probabilities and contingencies are learned through sequential encoding and 

updating of event frequencies.  Statistical judgments are most accurate when 

performed on information presented in this natural format, or formats designed to 

invoke a frequency representation, rather than standard percentage descriptions of 

probabilities (Gigerenzer & Hoffrage, 1995).  The „frequentist hypothesis‟ is that 

“some of our inductive reasoning mechanisms do embody aspects of a calculus of 

probability, but they are designed to take frequency information as input and produce 

frequencies as output” (Cosmides & Tooby, 1996).  When problems are presented in 

a frequency format, many previously observed biases in statistical judgment such as 

overconfidence, the conjunction fallacy and base-rate neglect disappear (Cosmides & 

Tooby, 1996).  Furthermore, the frequency computation system appears to work best 

with representations of whole objects, events and locations, i.e. „natural units‟ 

(Brase, Cosmides, & Tooby, 1998). 

 The frequentist hypothesis and the body of research concerning frequency 

judgments are important to the topic of this thesis for two reasons.  Firstly, they 

highlight the importance of ecological validity: in order to understand how human 



Chapter 1: Literature Review 

43 

decision makers perform a specific task, the experimental methodology must 

accurately recreate the format in which information is received in the real world and 

allow participants to respond in a naturalistic format.  This point will be discussed in 

more detail later in this chapter.  Secondly, if frequency information is readily 

available in the environment then we should not be surprised if it dominates intuitive 

statistical judgments.  On the other hand, given that price information is presented in 

an „unnatural‟ Arabic numeral format, subtle changes in task and information format 

which reduce the availability of frequency information might have a dramatic impact 

on the way price judgment tasks are performed.  For example, in the Alba et al 

experiments participants were encouraged to pay attention to every single price 

whereas in real-world shopping tasks consumer are likely to sample information 

selectively from a much larger number of prices.  Research suggesting that processes 

such as sampling and information search have strong implications for intuitive 

statistical judgments will be reviewed in the next section. 

1.3.4     Naïve Intuitive Statistics 

1.3.4.1     Naïve Information Sampling 

 For various reasons – time constraints, financial costs, cognitive or memory 

constraints – people do not usually sample the full population of information about 

which they want to make a judgment, but rely on samples of information.  For 

example, when asked to estimate the average height of an adult male it would be 

impractical to try and recall the height of every adult male ever encountered.  Instead 

a small sample of examples might be recalled and used to form an estimate.  This is a 

case in which a sample statistic is used to estimate a population statistic.  Samples 

might be drawn from memory or actively searched for.  Sample means and sample 
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proportions are unbiased estimates of their population values, but sample variance 

for a sample size of n is smaller than the population variance by a factor of n/(n+1).  

Experimental evidence suggests that intuitive judgments of variability are not 

corrected for this bias in randomly-sampled information and that therefore humans 

perceive the world as less variable than it really is (Kareev, Arnon, & Horwitz-

Zeliger, 2002).  Because sample variability is a biased estimator but sample 

proportion is unbiased, changing the format of estimation tasks from one that 

encourages the use of variability estimates to one that encourages the use of 

proportions can remove systematic biases such as overconfidence in interval 

estimates (Winman, Hansson, & Juslin, 2004).  As well as failing to correct for 

biases in sample data, people appear to treat sampled data as if it were randomly 

sampled and representative of the population.  For example, the reported frequency 

of violent deaths reported in the media influences the judged risk of violent death, 

which is one explanation for why some low frequency events might be overweighted 

(Lichtenstein, et al., 1978).  Similarly, sampling can also lead to underweighting of 

rare event probabilities in choice behaviour for two reasons.  Firstly, rare events are 

often not encountered in small samples of information.  Secondly, if recent 

information is weighted more strongly in estimation due to the updating process then 

common events will be weighted more strongly than rare events, because they are 

more likely to have occurred recently.  This explains why underweighting of rare 

events is found in both human and animal studies, such as the bumblebee 

experiments cited earlier, which involve sampling of information from the 

environment (Hertwig, Barron, Weber, & Erev, 2004).  Such findings have led to the 

suggestion that humans are „naïve intuitive statisticians‟, in that cognitive processes 

accurately represent and process the available information but that people are naïve 
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with respect to the origin and estimator properties of sampled information (Juslin, 

Winman, & Hansson, 2007). 

 The idea that cognitive processes accurately represent the available 

information has been supported by recent research concerning people‟s knowledge 

of the distribution of real-world phenomena such as life-spans, movie runtimes and 

gross takings, poem lengths, cake baking times and the length of reigns of pharaohs 

(Griffiths & Tenenbaum, 2006).  A novel methodology for obtaining estimates of the 

shape of each distribution involved asking participants to make judgments of the 

most likely outcome given a piece of information.  For example, participants were 

told than a man was currently aged t and were asked to estimate his most likely total 

lifespan ttotal.  A  ayesian statistician would apply  ayes‟ Rule to compute a 

probability distribution over ttotal given t: 

p  ttotal   t     p  t   ttotal     p  ttotal   

Assuming uniform random sampling, the first term is simply 1 / ttotal for all values 

between 0 and ttotal, while the second term reflects general expectations about the 

probability distribution of ttotal.  The relationship between t and predicted values of 

ttotal are quite different for different forms of prior distribution (normal, power-law, 

Erlang etc) so participants‟ responses can be used to determine the most likely 

distribution of prior beliefs.  Compared to real-world data on objective probability 

distributions, participants‟ median responses were extremely close to the optimal 

Bayesian response for a wide range of phenomena with quite different distributions.  

Griffiths and Tenenbaum conclude that their results “demonstrate that, at least for a 

range of everyday prediction tasks, people effectively adopt prior distributions that 

are accurately calibrated to the statistics of relevant events in the world” (Griffiths & 
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Tenenbaum, 2006, p. 772).  Although the results were subsequently criticized 

because they used median responses aggregated across a large number of subjects – 

and hence may not have demonstrated that an individual participant held detailed 

information about the full prior distribution of an event – a follow-up study has 

shown that explanations relying on „the wisdom of crowds‟ cannot explain all the 

observed data, and individuals appear to hold relatively sophisticated knowledge 

about everyday events (Lendanowsky, Griffiths, & Kalish, in press). 

1.3.4.2     Information Integration Theory 

 If humans act as naïve intuitive statisticians, sampling information from their 

environment to make informed judgments, how do they integrate multiple pieces of 

information in order to make an overall judgment?  One possible answer to that 

question is given by Information Integration Theory (N. H. Anderson, 1965, 1970, 

1971).  Information Integration Theory (IIT) has been used with varying success to 

explain findings from a range of fields including judgment and decision making, 

linguistics and social psychology.  IIT assumes that a judgment involves three 

stages: a valuation stage in which each stimulus is mapped onto an internal interval 

scale; an integration stage where each of the subjective values is combined to form 

an overall impression; and a response stage in which the internal impression is 

translated into an overt response.  Example valuation functions were given earlier in 

the description of  uyyukkurt‟s (1986) experiment: individual item prices were 

valued by comparing them to an internal reference price.  The integration function is 

usually assumed to be an additive or averaging process, with weighting often applied 

to account for serial order effects (primacy or recency) or other attentional 

differences between stimuli.  The response function is usually assumed to be a linear 

mapping.  Because IIT is not prescriptive about the exact format of the valuation and 
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integration functions it offers a useful framework for modelling the integration of 

serially sampled information but it does not readily generate falsifiable predictions.  

Rather, it can only be used to compare different functional forms for the valuation 

and integration functions, assuming that IIT is an accurate description of how people 

integrate information from a range of stimuli. 

1.3.4.3     Heuristics and Prior Beliefs 

 Time or resource constraints, low motivation or expertise, and task 

complexity may not only encourage naïve statistical judgments to be based on 

limited samples of information, but might also encourage the use of naïve decision-

making heuristics.  For example, judgments of frequency and probability may be 

based on recall of information from memory.  Rather than recalling lots of events 

from memory, people sometimes rely on the relative ease with which different 

instances come to mind, the so-called availability heuristic (Tversky & Kahneman, 

1973).  Whilst availability is usually correlated with environmental frequency, it is 

also influenced by other factors such as familiarity, salience, and imaginability, 

which can cause systematic biases in judgments based on availability.  For example, 

when people judge the frequency of different lethal events they not only overweight 

rare events and underweight common events, as described previously, but also 

overweight certain specific events such as motor vehicle accidents, homicides, floods 

and tornadoes.  These are all events commonly reported by the media, so may be 

both salient and over-represented in memory (Lichtenstein, et al., 1978). 

Another judgment heuristic is the representativeness heuristic: judging 

probabilities based on the degree to which an item resembles the class it belongs to 

(Tversky & Kahneman, 1974).  For example, a sequence of coin tosses HTHTTH is 
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judged more probable than HHHTTT (which appears to be non-random) and 

HHHHTH (which does not appear to represent a fair coin).  Yet another is the 

anchor-and-adjust heuristic which describes people‟s tendency to make estimates by 

starting from an initial value – often suggested by the problem or the result of a 

partial calculation – and adjust (usually insufficiently) to reach their final answer 

(Tversky & Kahneman, 1974).  Thus different „anchors‟ yield different estimates, 

which are biased towards the initial value.  For example, people estimating the 

product 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 tend to give a higher estimate than people who 

estimate the product 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8, because their initial partial 

calculation from the first few digits is higher.  Finally, people may simply fall back 

on their prior beliefs when a judgment task is too cognitively demanding, especially 

in a complex multivariate environment or when they are required to make a 

prediction (Broniarczyk & Alba, 1994). 

Of particular relevance to this thesis is a decision-making heuristic first 

identified by Dawes (1979) and sometimes referred to as Dawes‟ Rule.  This 

heuristic applies to the choice between two or more options that differ on a number 

of attributes.  The rational way to approach such a choice is described by Multi-

Attribute Utility Theory and involves making a linear combination of the impact of 

each attribute, weighted by the attributes‟ relative importance or utility.  Dawes 

described a simplifying heuristic in which each attribute is equally-weighted and the 

magnitude of attribute differences is ignored, i.e. the decision-maker chooses the 

option with the highest frequency of attribute advantages over the alternatives.  This 

heuristic directly parallels the explanation given by Alba et al (1994) for the 

frequency effect they observed, although Dawes‟ Rule utilizes the frequency of 
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advantages across multiple attributes rather than multiple instances of a single 

attribute, such as item prices. 

1.3.4.4     System I and System II 

 The bodies of research results on frequency judgments, intuitive statistics, 

and heuristics and biases appear somewhat contradictory.  On the one hand, 

frequency estimates and other statistical judgments can be fast and accurate, 

especially if information is presented to the visual field in naturalistic units or is 

serially experienced.  Biases in judgments appear to be due to informational biases 

rather than processing errors: frequency estimates for rare events can be biased 

downwards by limited search or biased upwards by availability in memory.  On the 

other hand, numerical processing appears to be deliberate and difficult, and often 

inaccurate.  Heuristics and prior beliefs can systematically bias statistical judgments, 

even in experts.  One proposed solution to such conundrums is that people have two 

different cognitive systems with which they make judgments, corresponding to 

intuition and reasoning (Kahneman, 2003).  The two systems, also sometimes 

referred to as System 1 and System 2 (Stanovich & West, 2000), have quite different 

properties.  Intuition (System 1) is - like perception - fast, effortless, and implicit 

while reasoning (System 2) is slow, controlled and effortful.  Unlike perception, 

which acts only on current stimuli, both intuition and reasoning can act on 

conceptual representations including ideas evoked by language.  The principal 

differences between the different cognitive systems are summarized in Figure 1.5, 

reproduced from Kahneman (2003). 
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 Figure 1.5: The three cognitive systems involved in judgments and decision making 

(Kahneman, 2003, p. 698, Figure 1). 

 There is considerable evidence supporting the idea of two cognitive systems 

for intuition and reasoning.  For example, using familiarity as a basis for recognition 

judgments is believed to be an automatic use of memory (System 1) but recollection 

is believed to be intentional (System 2).  Recollection is hampered when attention is 

divided, whereas recognition performance is invariant across full or divided attention 

(Jacoby, 1991).  Similarly, dividing attention during a task hampers later recollection 

whilst leaving automatic memory processes unchanged, but switching task modality 

between study and test removes automatic memory influences whilst leaving 

deliberate recollection unaffected (Jacoby, 1996).  Everyday life also abounds with 

examples of two modes of thinking: so-called „conflicts between head and heart‟; the 

appeal of narratives and pictures over informative, dry texts; the persistence of 

superstitions and irrational fears; and possibly even the ubiquity of religion (Epstein, 

1994).  The key concept defining whether a judgment is made intuitively or 

deliberately is the degree to which the relevant concepts are accessible in memory, a 
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term which includes notions of salience, attention, training, activation, and priming 

(Kahneman, 2003).  While there is yet no general theoretical account of the 

determinants of accessibility, further consideration of the role of memory in 

judgments is merited in order to understand the part memory might play in the 

comparative judgments considered in this thesis. 

1.4     Memory 

1.4.1     Memory Architecture 

 While there is considerable disagreement on the exact nature of the 

architecture of memory and cognitive systems which access memory, certain key 

features are common to most memory models, in particular the need for a number of 

different memory „stores‟ (Cowan, 1988).  The earliest models proposed three stores: 

a sensory store for un-analysed information, a limited-capacity short-term store in 

which selected information is held for further coding, and a long-term store 

composing knowledge.  In addition, various control processes or a central executive 

may be required to manage the voluntary transfer of information and to switch 

attention.  Within this architecture, further divisions have been proposed, for 

example the division of long-term memory into episodic memory (memory for 

particular events) and semantic memory (memory for abstract knowledge and 

concepts).  It has also been suggested that the sensory memory store consists of a 

visual sensory store lasting a few hundred milliseconds and an auditory sensory store 

lasting several seconds.  The details of such divisions are not relevant to 

understanding the role of memory in intuitive statistical judgments so will not be 

considered further here. 
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 The short-term memory store is often referred to as „working memory‟ 

because it provides an interface between perception, long-term memory, and action 

(Baddeley, 2003).  Working memory too appears to have subdivisions, in particular a 

phonological loop for processing sound and language and a visuospatial sketchpad.  

The phonological loop can hold memory traces for a few seconds before they fade, 

although rehearsal can refresh those traces.  Similarly, the visuospatial sketchpad 

also appears to be limited in capacity, typically to about three or four objects.  

Finally, the central executive processes in working memory can also be subdivided 

into two forms of control: habit patterns and schemas, implicitly guided by 

environmental cues, and an attentionally-limited supervisory activating system 

(SAS) that intervenes when routine control is insufficient.  More recently, a fourth 

component of working memory, the episodic buffer, has been proposed.  This buffer 

is a limited-capacity store that binds together information into integrated episodes.  

This differs from previous conceptions of working memory merely activating 

existing episodic memories in the long-term memory store because it emphasizes the 

ability of working memory to manipulate and create new representations. 

1.4.2     Memory Storage and Retrieval 

 Within the memory architecture described in the prior section, it is also 

necessary to consider what form a memory takes and how it might be stored in or 

retrieved from a memory store.  Some of the earliest models focused on working 

memory because of the relative ease with which memory limitations could be tested 

in an experimental setting.  For example, experimenters observed a serial order effect 

in memory for short lists of stimuli.  If a participant is presented with a list of items, 

e.g. numerical digits, followed by a test stimulus then recognition performance 

differs according to the serial position of the stimulus within the list.  In general, 
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participants are more confident in their recognition judgments for later items (a 

recency effect) but participants also have a good memory for the first item presented 

(a primacy effect).  Wicklegren and Norman fitted different models in which each 

number presented created a memory „trace‟, an activation corresponding to the 

appropriate point on the number line (Wickelgren & Norman, 1966).  Over time, as 

additional numbers were presented, the earlier traces gradually decay, leaving a 

weaker trace.  When the test item is presented it also generates an activation, which 

is compared to each of the memory traces using a Signal Detection Theory decision 

criterion.  If no match is observed then the participant responds that the test stimulus 

was not in the list.  The best fitting model indicated (i) that memory traces decay 

exponentially, (ii) that participants only report a match if memory strength exceeds 

the decision criterion, and (iii) that the primacy effect is due to the initial memory 

trace being stronger than subsequent traces, rather than decaying more slowly or 

leaving an additional trace in long-term memory.  Thus, memories are modelled as 

activations at a specific location with normally distributed noise, analogous to the 

normally-distributed activation of a stimulus in the LCJ or SDT. 

 Subsequent research into episodic long-term memory persisted with the idea 

that a memory is an activation trace in a multi-dimensional space.  Recognition 

occurs when the activation caused by a cue stimulus is matched with an existing 

memory trace, along the lines of SDT.  Recall follows a similar process, but the cue 

is not the stimulus itself but other information associated with the memory, such as 

contextual cues.  One important finding was that the context in which a memory is 

encoded influences the subsequent ability for a particular cue to trigger recall, known 

as the encoding specificity principle (Tulving & Thomson, 1973).  For instance, the 

word „table‟ can aid in the recall of the previously presented word „chair‟ when the 



Chapter 1: Literature Review 

54 

word was encoded on its own, but not when the word was encoded in a list with 

other words.  When „chair‟ is encoded on its own then the semantic association with 

related words may also be encoded, whereas when it is encoded with other words in 

a list then these new associations are stored instead.  Some models treat memory as a 

large array of traces, in which retrieval involves a probabilistic search of the memory 

space using cues (Gillund & Shiffrin, 1984; Raaijmakers & Shiffrin, 1981).  These 

models are able to explain counter-intuitive results in free recall experiments, such as 

the „part-list cuing effect‟.  When presented with a list of words and later asked to 

recall as many words as possible, participants who are presented with a selection of 

words from the list as prompts perform worse at recalling the remaining words than 

other participants without prompts.  The search models explain this as a result of the 

search cues used by each set of participants and the additional associations between 

the prompt words created by re-presenting them.  The participants with prompt 

words utilize these as cues, and as a result frequently recall other words from the 

prompt list.  The other participants are free to use other cues such as contextual 

information, so are more likely to recall the other words from the original list.  Other 

models treat long-term memory as a distributed system in which all items and events 

are random vectors, so search does not require the identification of the appropriate 

localized portion of memory space (Murdock, 1982). 

More recent models, again based on a memory store consisting of a vast 

number of memory traces, assume that retrieval is based on the summed response of 

all memory traces to a cue or „probe‟, each of which depends upon the similarity 

between the trace and the probe (Hintzman, 1988).  If a secondary intertrace 

resonance feature is added, in which traces activated by a probe can pass activation 

to other related traces, then such models can account for experimentally observed 
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effects in frequency judgment, such as the tendency for presentation frequency 

judgments to be higher when the test word is presented in the same context as it was 

originally presented, relative to the case when the test word is presented in a 

different context.  Similarity relations among multiple memory traces are also found 

in exemplar categorization models, which attempt to explain how items are 

perceptually grouped and the perceived similarity between items in different 

contexts.  In contrast to prototype models which assume that category information is 

stored in an abstract summary category representation, exemplar models are able to 

explain context-dependency in norm construction (Kahneman & Miller, 1986), face 

categorization (Lamberts, 1994), and a wide range of other perceptual classification 

phenomena (Nosofsky & Johansen, 2000). 

1.4.3     Rational Analysis of Memory 

The view of long-term memory as a vast store of memory traces which has to 

be searched through in the retrieval process does not account for search costs such as 

retrieval time or metabolic expenditure.  However, with a non-zero cost to memory 

search, an adaptive or „rationally-designed‟ memory system would stop searching 

when the probable gain from a successful search is outweighed by the costs of that 

search (J. R. Anderson & Milson, 1989).  This assumes that knowledge structures are 

ordered in order of plausibility and that memory search ignores structures below a 

certain threshold plausibility, although search will be more extensive when the gain 

is high (an important task) or the costs are low.  Rational analysis of memory is 

based on the idea that “a system that is faced with the same statistics of information 

usage as a library or a file system and that is optimized [...] will produce the basic 

human memory functions” (J. R. Anderson & Milson, 1989, p. 705).  From this 

perspective, memory is viewed as being optimized to maximize the probability of 
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recall at the lowest cost, given a typical pattern of information retrieval demands.  

For example, as described earlier, memory recall is better for items that have been 

seen more frequently or more recently.  Similar patterns are observed in real 

environments – words which appeared in the New York Times more often in a 100 

day period were more likely to appear again on the 101
st
 day, and words which 

appeared less recently within the last 100 days are less likely to appear on the 101
st
 

day (J. R. Anderson & Schooler, 1991).  Rational analysis argues that human 

memory mirrors the information structure in the environment, and that memory is 

therefore adaptive (Schooler & Anderson, 1997). 

In summary, human memory consists of a number of stores, and judgments 

require information to be retrieved from long-term memory in order to be used in 

working memory.  Long-term memory appears to consist of a large number of 

memory traces, which include contextual information dependent on how they are 

encoded.  Retrieval processes, such as recognition and recall, involve the comparison 

of a probe to each memory trace.  The similarity between the probe and each trace, 

perhaps based on a SDT-type decision criterion, determines retrieval performance.  

Comparative price judgments that rely on recalled price information will therefore be 

influenced both by attentional biases and contextual factors when price information 

is encoded, and also by the specific retrieval cue used and the retrieval context.  

Because memory storage and retrieval is an imperfect process, price judgments from 

memory will be inherently different from price judgments made only using 

information currently available.  Although Rational Analysis argues that memory 

retrieval is adapted to the environment, the degree to which memory is adapted to a 

particular task depends upon the specific task environment.  Hence, to properly 

assess performance on a price judgment task in an experimental setting, the 
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experimental methodology must faithfully recreate the basic information structure 

and memory demands of the real world.  Certain theoretical perspectives emphasize 

the importance of task and environment in psychological research for other reasons.  

In the next section I briefly review some of the other arguments in favour of 

ecologically-valid research designs. 

1.5     Task and Environment 

1.5.1     The Importance of Context 

 One of the earliest proponents of the importance of the environment in 

psychological research was Brunswik, who spent much of his early career 

considering phenomena of perceptual constancy (Brunswik, 1937).  One example is 

body-size constancy, the empirical observation that “the unconstrained observer will 

find it easy and natural to perceive and to compare bodies satisfactorily with respect 

to their own measurable physical sizes, regardless of all changes in distance or 

spatial orientation” (Brunswik, 1937, p. 228).  He argued that because the perceptual 

system has no information except that which it receives from the environment (e.g. 

the light received on the retina) then the translation from received stimuli to 

perception must utilize information contained in the environment.  His explanation 

was that the perceptual system integrates individual elements of a stimulus into a 

functional whole and combines that information with additional indirect stimulus 

effects, such as distance cues.  He used the metaphor of a lens in which marginal 

rays are collected and converge, allowing the location of the radiating point to be 

determined.  His „objective science‟ was concerned with understanding the causal 

links between environmental cues and perception, and the focus of „constancy 

research‟ was on measuring and correlating reactions with environmental traits.  



Chapter 1: Literature Review 

58 

Brunswik later moved onto studying behaviour, but his emphasis on the interaction 

between organism and environment persisted.  He rejected the idea of universal laws 

of behaviour, arguing that they only apply within the context of the relevant ecology, 

which he defined as “the natural-cultural habitat of an individual or group” 

(Brunswik, 1955, p. 198).  Because the ecology is semi-erratic (i.e. random but 

consisting of constant causal relationships) then psychology is inherently 

probabilistic.  Furthermore, Brunswik argued that psychological research should 

adopt a representative design, in which the emphasis is on sampling from an ecology 

rather than controlled factorial experiments. 

 The view that perception is intrinsically linked to the environment was taken 

to its most extreme conclusion by the so-called realists, such as Gibson (Gigerenzer 

& Murray, 1987).  Gibson addressed the question of whether we learn to perceive 

and to what degree, or whether perception is innate.  Whilst Brunswik claimed that 

perception was inherently probabilistic, requiring the organism to make intuitive 

judgments from the available cues, Gibson argued that there was no need to assume 

a difference between sensory input and perception, but instead that “the stimulus 

input contains within it everything that the percept has” (Gibson & Gibson, 1955, p. 

34).  Perceptual learning was explained not as improved inference due to building up 

a store of relevant memories but rather as improved discrimination between stimuli: 

learning to differentiate between more subtle differences in the energy received by 

sensory receptors.  Thus, just as Brunswik concluded, Gibson also rejected the 

traditional experimental approach to studying perception, claiming instead that “the 

laboratory must be like life!” (Gigerenzer & Murray, 1987, p. 84).  More recent 

judgment research provides support for the Brunswik-ian notion of probabilistic 
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inference from environmental cues, even when those cues are non-diagnostic in the 

experimental setting (Josephs, Giesler, & Silvera, 1994). 

1.5.2     Information Format 

 As mentioned earlier in the discussion of the frequentist hypothesis, changing 

the format in which information is presented and the required output format of a task 

can have a significant impact on participants‟ judgments.  Presenting information in 

a frequency format appears to eliminate biases that are consistently observed when 

judgments are based on information presented in a mathematically-identical 

percentage format (Gigerenzer & Hoffrage, 1995).  In addition to the information 

format, the way in which that information is experienced also influences subsequent 

judgments and behaviour.  For example, Prospect Theory, a theory of decision-

making under risk, assumes that outcomes are weighed relative to a reference point 

and that probabilities are transformed into decision weights (Kahneman & Tversky, 

1979).  Based upon a previously-observed certainty effect, in which people 

underweight outcomes that are merely probable in favour of certain outcomes, the 

decision weights assume that people overweight low probabilities and underweight 

high probabilities.  A later version of the theory, Cumulative Prospect Theory, added 

cumulative decision weights and allowed for different weights for gains and losses 

(Tversky & Kahneman, 1992).  The model shows a „four-fold pattern of risk 

attitudes‟: risk-aversion for gains and risk-seeking for losses of high probability; 

risk-seeking for gains and risk-aversion for losses of low probability.  Critically, the 

models were based on experimental findings from tasks where risky or uncertain 

options („prospects‟) were presented descriptively, e.g. “25% chance to win $150 

and 75% chance to win $50”.  In contrast, in experimental paradigms where 

participants have to learn the underlying probabilities and payoffs from feedback 
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based on their previous actions („small feedback-based decisions‟), participants are 

risk-seeking for gains and risk-averse for losses, and they underweight low 

probabilities (Barron & Erev, 2003).  As explained earlier, this is probably due to 

reliance on small samples and over-weighting recent information (Hertwig, et al., 

2004).  Furthermore, feedback in experiential learning biases people towards 

sampling apparently favourable options and away from sampling apparently 

unfavourable options, which can also lead to risk-seeking or risk-aversion without 

requiring any assumptions about the marginal utility of losses and gains (March, 

1996).  Recent evidence suggests that risk aversion is more closely related to the 

Coefficient of Variation (CV) than to the variance of different options when 

information is sampled sequentially, which may be ecologically adaptive given the 

prevalence of Zipf (J-shaped) distributions in real-world phenomena (Weber, Shafir, 

& Blais, 2004). 

1.5.3     Task Design 

 In order to study intuitive statistical judgments experimentally, it is desirable 

to place participants in a situation in which they actually make intuitive judgments 

rather than attempting to calculate the answer, guess, or follow some other cognitive 

process than they would use outside of the laboratory.  This is especially true of 

intuitive statistical judgments where untrained or mathematically-naïve participants 

may not understand terms such as „mean‟ or „variance‟.  This is also highly 

important for certain types of task, particularly tasks involving memory for everyday 

events or tasks given to young children who would be unable to understand more 

abstract instructions (Neisser, 1991).  An excellent example of a naturalistic 

statistical judgment task was used by Hutchinson and Alba (1997) to determine the 

effects of context on intuitive judgments of correlation.  One task involved judging 
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the partial correlations between four columns of input variables and an outcome 

variable.  The input variables were described as advertising expenditures for four 

different products and the outcome variable was described as total store revenue, 

with each row labelled as a different year.  Participants were asked to use the 

information in the table to decide how best to allocate an advertising budget across 

the four products.  The optimal allocation would involve assigning the budget 

depending upon the relative correlation between each input variable and the outcome 

(as the input variables were uncorrelated) so the budget allocations could be used as 

a proxy for correlation estimates.  In fact, it turned out that various task 

manipulations that left the correlations unchanged had a significant impact on 

intuitive assessments of correlation.  Rising or falling trends over time made 

correlation more salient than saw-tooth patterns when the rows were labelled as 

years, but not when the rows were labelled as different stores.  Adding a constant to 

one of the input variables or multiplying it by a constant increased the perceived 

strength of correlation.  The experimental results suggest that a number of different 

decision heuristics were used to make the judgments, rather than a single automatic 

process, which is perhaps not surprising given the presentation of information in 

numerical tabular format.  Hence the findings could be reasonably extrapolated to 

other correlation assessment tasks presented in a similar format, but not to tasks 

where the information was experienced serially or selectively sampled.  Following 

the same logic, inter-store price comparison tasks such as Alba et al (1994) represent 

a naturalistic task for assessing participants‟ ability to discriminate between the 

means of two paired distributions, but only in contexts where all the information is 

presented simultaneously in a written numerical format.  While such naturalistic 

tasks are not common in many areas of experimental psychology, they are the norm 
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in applied consumer research.  In the next section I briefly review some of the key 

findings from prior research into price judgments from the marketing and consumer 

research literature. 

1.6     Consumer Price Research 

1.6.1     Subjective Perceptions of Price 

 Price is central to classical economic theory, acting as a signal of the relative 

levels of supply and demand for a good and the costs faced by each supplier.  If 

supply is greater than demand than suppliers must lower prices in order to clear their 

stock, while if demand is greater than supply then suppliers can raise prices to reduce 

demand.  The market price represents the market-clearing balance between supply 

and demand.  Under perfect competition suppliers continually undercut each other‟s 

prices to capture market share, until the point where marginal revenue is equal to the 

marginal cost of production.  Within this framework, consumers are assumed to have 

perfect knowledge of prices and to make consistent utility-maximizing choices, such 

as always choosing the lowest price provider of a good.  In reality, price perceptions 

– sometimes referred to as price image - differ significantly from objective prices 

and this can lead to consumers making sub-optimal choices between goods and 

stores (Brown, 1969).  In an early study of price perceptions, Brown used ordinal 

store price judgments to place stores on an interval scale (using Thurstone‟s LCJ) 

and then correlated price perceptions in five different cities with objective prices 

based on a market basket of 80 commonly purchased products.  Although shoppers 

were generally in agreement on the ranking of stores by price level (rank correlation 

of 0.92) the correlation between price image and reality varied between 0.98 in the 

best case and 0.00 in the worst case, indicating significant discrepancy between 
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perception and reality.  Psychological theories have commonly been employed to 

explain such phenomena.  For example, some early price studies indicated that 

shoppers were insensitive to item price differences that fall within a threshold, which 

theorists attributed to a Weber-Fechner just-noticeable difference in prices (Monroe, 

1971a, 1971b, 1973).  Others argued that prices are judged relative to a reference 

price, much as in Prospect Theory, although the exact nature of the reference price 

was unclear, viewed as a blend of aspiration prices (e.g. “the price I would like to 

pay”), market prices (e.g. “the average retail price”), and historical prices (e.g. “the 

last price I paid”) (Klein & Oglethorpe, 1987).  In the following sections I survey 

some of the main findings from price perception research, beginning with price 

knowledge and search, followed by perceptions of item prices and ending with 

perceptions of store prices, the main topic of this thesis. 

1.6.2     Price Knowledge and Search 

1.6.2.1     Price Knowledge 

 The first studies into the accuracy of consumers‟ price knowledge showed 

mixed results, with higher accuracy often associated with methodological 

shortcomings such as bias in item selection, although they typically indicated 

relatively poor price knowledge that deteriorated rapidly with time from the moment 

of purchase (Dickson & Sawyer, 1986).  Price awareness, measured by the ability to 

accurately recall prices, differs across product categories, stores and shoppers, with 

awareness of prices for store-brand products being better than for branded items 

(McGoldrick & Marks, 1987).  Even when shoppers are intercepted moments after 

choosing a product from the shelf, price recall is poor with 21% of shoppers unable 

to even estimate the item price and less than half of shoppers able to give the exact 
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price (Dickson & Sawyer, 1990).  Socio-demographic differences in price 

knowledge vary from study to study, but typically lower-income customers have 

better price knowledge (Wakefield & Inman, 1993).  Price awareness is generally 

better for discount stores with smaller ranges but even shoppers in these stores are 

relatively unaware of specific item prices (McGoldrick, Betts, & Wilson, 1999).  

However, store price knowledge was found to be accurate when rival retailers 

actively competed on price and heavily advertised discounts (Seiders & Costley, 

1994).  Over the longer term, consumers appear to underestimate the effects of price 

inflation, with recent prices being under-estimated and past prices being over-

estimated (Kemp & Willetts, 1996).  When a new currency is introduced, the new 

prices are learnt fastest for goods and services where prices are directly proportional 

to quantity (Juliusson, Gamble, & Garling, 2005). 

 Although consumers‟ ability to accurately recall item prices is poor, other 

measures of price knowledge show greater accuracy.  Relative price knowledge, 

measured by the ability to correctly rank order brands from lowest to highest price, is 

much more accurate and only weakly correlated with the ability to recall specific 

prices (Connover, 1986).  Meta-analysis of a large number of studies of consumer 

price knowledge indicates that a significant proportion of variation in price 

knowledge accuracy is driven by differences in research design characteristics such 

as the presence of financial incentives, task size, and the price elicitation method 

(Estelami & Lehmann, 2001).  Some researchers, drawing on findings from research 

into memory and learning, have argued that poor price recall does not necessarily 

indicate poor price knowledge (Monroe & Lee, 1999) and that recognition tasks may 

be more appropriate than recall tasks (Monroe, Powell, & Choudhury, 1986).  Recent 

studies employing recognition measures indicate that recognition of regular prices is 
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poor, with less than 15% of respondents able to recognize the correct price from a 

range of prices within 5% of the actual price. However, deal recognition is very 

accurate, with over 85% of respondents able to discriminate between regular selling 

prices and prices reduced by 20% (Vanhuele & Dreze, 2002). 

1.6.2.2     Price Search 

 One potential explanation for poor price knowledge is a low level of price 

search.  Within the grocery supermarket context, consumers report very low levels of 

price checking, with only 58% of consumers claiming to have checked the price of 

an item before placing it in their basket and only 22% checking the price of an 

alternative brand (Dickson & Sawyer, 1990).  Shoppers who deliberately set out to 

learn prices are better at price recall than relative price ranking, while those who 

acquire price information incidentally are better at relative price ranking and poor at 

recalling specific prices (Mazumdar & Monroe, 1990).  Inter-store price comparisons 

improve price recall accuracy, but increase price recall confidence judgments to a 

greater extent, suggesting that consumers are over-confident in the amount that price 

search aids them in recalling prices (Alba & Hutchinson, 2000; Magi & Julander, 

2005; Mazumdar & Monroe, 1992).  The duration of price search is longer for 

products with a higher base price, but exhibits significant variation between 

individual shoppers (Oliveira-Castro, 2003).  In conclusion, price knowledge appears 

to be poor for everything except significant discounts and most consumers do not 

spontaneously invest a lot of time or resources in searching out price information.  

Thus it is essential that experimental price perception research does not artificially 

encourage participants to pay attention to price information to a greater extent than 

they do in the real world. 
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1.6.3     Item Price Perceptions 

1.6.3.1     Reference Price Research 

 Research into reference prices and reference price effects represents a 

growing body of literature in consumer behaviour, which has been thoroughly 

reviewed by Biswas, Wilson and Licata (1993) and more recently by Mazumdar, Raj 

and Sina (2005).  A reference price is defined as a standard against which the 

purchase price of a product is judged, which can be external or internal to memory 

(Biswas & Blair, 1991; Monroe, 1973).  An external reference price (ERP) is one 

which exists in the environment, either provided by a retailer in advertising or at the 

point of sale, or in the price of a comparable product being sold in the same location.  

An internal reference price (IRP) is a predictive price expectation against which the 

consumer judges the actual purchase price of an item in a particular context.  Various 

conceptualizations of IRP have been suggested, but it is likely that IRP is not the 

same for all consumers, and it may not even be the same for a single consumer over 

multiple purchases and over time.  In the following sections I shall briefly outline 

some of the main findings from consumer research into contextual ERPs, advertised 

ERPs, IRPs, and other influences on item price perceptions. 

1.6.3.2     Contextual External Reference Prices 

 One of the earliest experimental studies into the effect of contextual ERPs 

provided participants with a range of prices for trousers, which had to be categorized 

into different categories of acceptability, with the participants free to choose the 

number and size of each category (Monroe, Dellabitta, & Downey, 1977).  Half the 

participants were provided with a set of prices which ranged from $1 to $25.50 

(short price series) and the other half were given prices ranging from $1 to $50 (long 
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price series).  There was no difference between the short and long price series groups 

in the number of categories formed or the lower limit of acceptability, but the long 

price series group had a significantly higher upper limit for acceptable prices.  A 

later experimental study presented participants with a target mobile phone priced at 

$159.65, in either a high price context (two other phones at $197.85 and $184.75) or 

a low price context (two other phones at $127.65 and $134.75) (Adaval & Monroe, 

2002).  Participants were later asked to compare it with a new mobile phone priced at 

$157.89.  The results showed that participants judged both the target and the new 

phone to be less expensive in the high price context, even though their subsequent 

recollection of the price of the target phone was also higher in this condition.  

Interestingly this priming effect was found even when a contextual price (low or 

high) was instead provided subliminally as part of a visual perception experiment.  

Fitting a model of reference price effects to empirical data on 42,000 purchases of 

saltines (crackers) over a two year period showed effects of both previously observed 

prices and current contextual prices in consumers‟ brand choices (Rajendran & 

Tellis, 1994).  Of all the possible contextual ERPs, the lowest price seen appeared to 

be the most important cue for estimating a reference price, and there was some 

evidence that contextual prices had more influence on customers who shopped 

infrequently for that product. 

 An explanation for such contextual ERP effects is provided by range-

frequency theory, an exemplar-based model of categorization in which an item is 

classified based on (i) its value relative to the minimum and maximum of all 

exemplars (range) and (ii) its rank position in all exemplars (frequency) (Parducci, 

1965).  In an experimental test of range-frequency effects in price judgments, a price 

of $1.25 was judged in the context of a low range of prices ($0.75 to $1.50), a 
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moderate range of prices ($0.75 to $1.75), or a high range of prices ($1.00 to $1.75) 

holding the rank position of the judged price constant (Janiszewski & Lichtenstein, 

1999).   The price was judged as most attractive in the high price context and least 

attractive in the low price context.  The range of acceptable prices in the low price 

context ($0.93 to $1.51) was lower than in the high price context ($1.02 to $1.66).  A 

later follow-up study used a similar methodology, but holding the range of prices 

constant while manipulating the rank position of the test price within the set of 

contextual prices (Niedrich, Sharma, & Wedell, 2001).  Effects of both range and 

frequency on price attractiveness ratings were obtained across three experiments, 

supporting both range-frequency theory and an exemplar representation of 

contextual ERPs. 

1.6.3.3     Advertised External Reference Prices 

 Purchase prices are often presented in conjunction with an advertised ERP, 

such as a previous selling price, a competitor‟s price or a recommended selling price 

(Urbany, Bearden, & Weilbaker, 1988).  This may be done in comparative 

advertising or at the point of sale.  It has long been recognized that such advertised 

ERPs have the potential to mislead consumers, with the Federal Trade Commission 

in the US publishing guidelines about deceptive comparative pricing as long ago as 

1958 (Dellabitta, Monroe, & McGinnis, 1981), while legal action has been taken 

against major retailers over comparative price advertising practices (Grewal & 

Compeau, 1992).  Including an advertised ERP is consistently found to improve 

perceptions of a purchase price (Alford & Engelland, 2000; Biswas & Blair, 1991; 

Compeau & Grewal, 1998; Grewal, Monroe, & Krishnan, 1998; Urbany, et al., 

1988).  Increasing the gap between the purchase price and the advertised ERP 

generally improves perceptions of the offer (Biswas & Blair, 1991; Biswas, Pullig, 
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Krishnan, & Burton, 1999; Compeau & Grewal, 1998; Compeau, Grewal, & 

Chandrashekaran, 2002; Urbany, et al., 1988).  It has been argued that as the 

advertised ERP increases, the plausibility of the ERP decreases and consumers will 

discount high ERPs, but the experimental evidence is mixed with some researchers 

finding a decreased impact of implausible ERPs (Alford & Engelland, 2000; Biswas 

& Blair, 1991; Compeau, et al., 2002; Kopalle & Lindsey-Mullikin, 2003) while 

other researchers found no difference between plausible and implausible ERPs 

(Compeau & Grewal, 1998; Urbany, et al., 1988).  Other factors found to increase 

the impact of an advertised ERP include the type of store (Biswas & Blair, 1991); an 

absence of other external price information such as competitor advertising (Biswas, 

et al., 1999); naming specific competitors (Pechmann, 1996); and specifying the 

savings amount (Dellabitta, et al., 1981; Pechmann, 1996). 

1.6.3.4     Internal Reference Prices 

 Purchase prices for items can vary significantly between purchase occasions, 

due to inflation, seasonal fluctuations, price differences between retailers, and 

promotional offers.  Because of uncertainty about the true price of an item, it is 

assumed that consumers form a price forecast or internal reference price (IRP) which 

they compare against an observed price.  Models fit to consumer purchase data that 

incorporate an IRP show a better fit than those which only use contextual prices 

(Kalyanaram & Winer, 1995; Urbany & Dickson, 1991; Winer, 1986).  Typically the 

IRP is extrapolated from previously observed prices (Winer, 1986), and the range of 

acceptable prices are less variable than market prices, indicating that IRPs can be 

used as a purchase decision criterion (Urbany & Dickson, 1991).  Consistent with 

other research on loss aversion, consumers appear to be more sensitive to prices 

above their IRP than those below (Kalyanaram & Winer, 1995).  Consumers also 
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appear to have brand-level rather than category-level IRPs, and use a weighted 

average of past prices for a brand to estimate an IRP, placing more weight on more 

recent observations (Briesch, Krishnamurthi, Mazumdar, & Raj, 1997).  The 

particular exemplar price memories recalled when estimating an IRP can be 

influenced by priming different features of the product, causing it to be categorized 

in different ways, particularly by novice consumers (Herr, 1989).  Experienced 

shoppers are more likely to rely on an IRP, especially when price claims are higher 

than expected, whereas novice shoppers are more influenced by advertised price 

claims (Yadav & Seiders, 1998).  Importantly for this thesis, the existence and 

influence of IRPs indicates that consumers can store and recall item-level price 

information and subsequently use that information to make price judgments and 

purchase decisions. 

1.6.3.5     Other Influences on Item Price Perceptions 

 Beyond the influence of reference prices, item price perceptions have been 

found to be influenced by a wide range of other factors.  For example, price and 

quality are strongly linked in consumers‟ minds, with high price often treated as an 

indicator of high quality (Monroe, 1973).  The perceived value of an item is a 

function of both price and perceived quality.  If consumers place more weight on the 

price then low price items are judged to be better value, while if consumers place 

more weight on the quality then high price items are judged to be better value.  

Consumers are more likely to utilize the price-quality heuristic when they have low 

motivation or insufficient time to process product information systematically (Suri & 

Monroe, 2003).  The tendency to use the price cue to judge quality is highest 

amongst novice shoppers and decreases with product experience, although expert 

shoppers also utilize a price-quality heuristic when price is a reliable environmental 
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predictor of quality (Rao & Monroe, 1988).  Item prices are often judged in the 

context of other prices and the general circumstances in which a price is presented.  

Consumers judge a price increase that exploits an external shift in demand (e.g. 

doubling the price of shovels when it snows) as unfair, but price increases to prevent 

a loss or protect profits (e.g. passing on an increase in wholesale costs) as fair 

(Kahneman, Knetsch, & Thaler, 1986).  Because of diminishing marginal utility for 

both losses and gains, consumers prefer to integrate two price increases (losses) but 

to separate two discounts (gains), although this is dependent upon the way in which 

the price increases and losses are described (Heath, Chatterjee, & France, 1995).  

Small price changes which reduce the leftmost digit (e.g. reducing $3.00 to $2.99) 

have a disproportionate effect on the perceived size of a price, especially when that 

price is being compared to a competing product‟s price which is very close in 

magnitude (Thomas & Morwitz, 2005).  Finally, item price perceptions exhibit 

significant individual differences.  Accurate price perceptions are only weakly 

related to demographic and shopping variables (Brown, 1971), but consumers differ 

markedly in „shopping personality‟ factors such as their tendency to focus 

exclusively on paying the lowest possible price („price consciousness‟) and their 

propensity to respond to prices framed as promotional offers („sale proneness‟) 

(Alford & Biswas, 2002).  A more general personality factor that appears to be 

related to the degree of price search is „Need for Closure‟, defined as “the desire for 

clear, definite, or unambiguous knowledge that will guide perception and action” 

(Vermeir & Van Kenhove, 2005, p. 73).  Most of these additional factors are 

irrelevant to the topic of this thesis and so are not discussed further here. 
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1.6.4     Store Price Perceptions 

1.6.4.1     Item and Store Selection 

 Retailers and consumer researchers have been greatly concerned with 

understanding item price perceptions as pricing and promotional activity has been 

consistently shown to influence consumer choice behaviour (Lattin & Bucklin, 

1989).  However, item and brand choice is not the only area in which price and price 

perceptions play a role in consumer decision making: price and price image are also 

known to influence store choice, especially for grocery shoppers.  Using a multi-

attribute utility approach, Schuler (1979) found that the price of the merchandise was 

second only to the quality of the merchandise in determining consumers‟ choice of 

store.  An international study, modelling consumer store choice behaviour in six 

countries and over seven years, found that although store choice determinants varied 

between countries and over time, price was consistently the second most important 

factor after locational convenience (Arnold, Oum, & Tigert, 1983).  Across a body of 

research into store choice behaviour, inclusion of a store image parameter generally 

improves fit relative to models which only consider spatial factors (Craig, Ghosh, & 

McLafferty, 1984).  Consumers themselves also rate price as one of the most 

important factors in their choice of store, especially when switching their patronage 

to a different store (Seiders & Costley, 1994). 

1.6.4.2     Determinants of Store Price Perceptions 

 In contrast to research into item price perceptions, research into the 

determinants of store price perceptions is relatively scarce.  Buyukkurt and 

Buyukkurt (1986) argue that consumers find it difficult to judge a store‟s prices 

purely from price samples, so instead base their perception on store attributes that 
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they perceive to correlate with a store‟s prices, as predicted by Attribution Theory.  

Their survey research found that consumers believe that stores with extra operating 

costs and investments (e.g. short queues, long opening hours, attractive displays) are 

more expensive, as are smaller businesses such as family-owned or independent 

stores.  Stores with an extended range, including deli and bakery, gourmet food and 

non-food products are also perceived as more expensive.  Finally, stores that 

advertise more heavily were also believed to be more expensive.  Consumers were 

more likely to infer store price perceptions from store attributes when they perceived 

a wide variation in price between different retailers.  The design of a store‟s 

advertising also influences perceptions of price, with advertised prices presented as a 

reduction from a previous price (i.e. providing an advertised ERP) leading to the 

most favourable store-level price perceptions (Cox & Cox, 1990).  However, 

repeated use of this strategy can have the opposite effect on store-level price 

perceptions if consumers associate the high advertised ERP with the store‟s regular 

selling prices (Blair, Harris, & Monroe, 2002).  Heavy price advertising is related to 

intense price competition between stores, and consumers respond by shopping 

around more and updating their price beliefs about each retailer (Seiders & Costley, 

1994).  The objective accuracy of consumers‟ store-level price perceptions is 

improved by inter-store price search, number of stores shopped, and length of 

residence in the market, but only the first factor is subjectively perceived by 

consumers to improve store price knowledge (Magi & Julander, 2005).  It is possible 

that other cues that are in reality irrelevant to store prices may also influence price 

judgments, as has been observed in related judgments of the value of different 

loyalty programs (Van Osselaer, Alba, & Manchanda, 2004). 
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 In one of the few experimental studies assessing how judgments from 

memory influence store price perceptions, knowledgeable consumers were found to 

use a different judgment heuristic from less knowledgeable consumers (Ofir, 

Raghubir, Brosh, Monroe, & Heiman, 2008).  Participants were intercepted while 

approaching a supermarket and were asked to recall either two or five low-priced 

products sold by the store.  They were then asked to rate the prices in the store on 

two different seven-point scales.  The authors suggested two alternative heuristics 

that consumers could use to make the store price judgment: the availability heuristic, 

where price image is judged by the ease of recalling low prices, or the „numerosity‟ 

heuristic, where price image is judged by the total number of low prices recalled i.e. 

a frequency judgment.  They found that knowledgeable customers had more 

favourable perceptions of the store‟s prices when they had to recall more products, 

indicating the use of a frequency heuristic.  On the contrary, less knowledgeable 

customers had more favourable perceptions of the store‟s prices when they had to 

recall fewer products, which is an easier task, indicating the use of an availability 

heuristic.  Discussing these results in light of the findings of Alba et al (1994), the 

authors suggested that the previously observed frequency effect was due to testing a 

stimulus-based judgment task, while their study tested a memory-based judgment 

task.  If this is the case, then one would not expect to see a frequency effect in inter-

store price judgments, as the large salient price advantages of a magnitude store 

would be more available for memory recall than the small price advantages of a 

frequency store.  However, the artificial priming effect of the earlier price recall task 

is unlikely to reflect the way intuitive store price judgments are usually made.  

Hence, use of the availability heuristic may not be observed in a more naturalistic 

judgment task.  To the best of my knowledge, with the exception of this study, no 
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other consumer research into memory-based judgments of store prices has been 

conducted to date. 

1.6.4.3     Store Price Format 

 Grocery retailers have to make strategic decisions concerning both the price 

level of their store and also the price format of the store.  The price level is the 

average price charged for a comparable basket of items, whereas the price format is 

the distribution of item prices around that mean level.  The marketing literature 

traditionally distinguishes between two polar opposites of price format: Every Day 

Low Pricing (EDLP) and Promotional pricing (PROMO, sometimes referred to as 

HiLO).  EDLP is a price strategy in which all prices are kept as low as possible, 

hence they tend to cluster around the mean item price.  PROMO pricing involves 

higher item prices across most of the range, but with a few deep discounts.  The two 

formats correspond crudely to Alba et al‟s frequency and magnitude stores.  In 

reality, PROMO stores are also usually associated with a higher price level, but also 

offer a higher service level as demanded by time-constrained shoppers (Lal & Rao, 

1997).  Although it has been argued that the two store formats co-exist because they 

serve different market segments, empirical data suggests that stores tend to adopt a 

similar pricing strategy to local competitors, leading to clusters of similar price 

format stores (Ellickson & Misra, 2008). 

 Recent research findings suggest that consumer price perceptions of the two 

price formats depend upon the type of consumer, specifically whether the household 

shops frequently and buys a small number of items on each occasion (small basket 

shoppers) or shops infrequently and buys a large number of items on each occasion 

(large basket shoppers) (Bell & Lattin, 1998).  Large basket shoppers have a 
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relatively high probability of purchase from every product category so are less 

responsive to prices within individual product categories and more responsive to the 

expected basket price.  As a result, large basket shoppers are more likely to choose 

EDLP stores while small basket shoppers are more likely to choose PROMO stores, 

even if the average item price is slightly higher, because they can cherry-pick the 

best offers on each occasion.  Empirical testing using scanner data with the purchase 

behaviour of 1,042 households over two years supports this hypothesised pattern in 

store choice behaviour (although does not measure price perceptions directly).  In an 

experimental study of the determinants of store price perceptions, Desai and 

Talukdar (2003) explored whether discounts applied to different types of item have a 

differential impact on store price perceptions.  Based on survey research with a 

student population, they found that price reductions on items with a short 

consumption span and a large unit price had the greatest impact on store price 

perceptions.  A store with a PROMO price format will have a better or worse price 

image depending upon which particular items are chosen for promotion. 

1.7     Motivation for Thesis 

 The goal of this first chapter was to describe a collection of empirical 

findings concerning intuitive statistical discrimination judgments of grocery store 

prices from the consumer research literature, notably Alba et al (1994), which are 

suggestive of an important role for frequency information in a cognitively complex 

judgment task.  The theories and empirical findings related to stimulus 

discrimination and intuitive statistical judgments were outlined, including a detailed 

discussion of the role of frequency information in different task formats.  An 

overview of human memory was given, focusing on results relevant to the storage 

and retrieval of exemplars in episodic memory for use in intuitive judgments.  Some 
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motivations for designing naturalistic or representative tasks and contexts for 

experimental research were also sketched out.  Finally, the consumer research 

literature concerning price perceptions and price judgments was summarized, 

highlighting the lack of empirical data concerning the interaction between store price 

format and store price perceptions.  Furthermore, it was shown that no analogous 

intuitive statistical judgments have been tested in the psychology literature.  No 

experiments were found in which participants compared the mean size of two paired 

item distributions, either in a descriptive or serially sampled format. 

 As a consequence, my own research aims to address both of these gaps, and 

to contribute to a growing body of empirical results on human intuitive statistical 

judgments in naturalistic tasks.  While the problem and context of grocery store price 

comparisons is adopted from the consumer research literature, and the findings will 

no doubt be of interest to practitioners in that field, the primary focus is on exploring 

the cognitive processes involved in the task.  This review has laid out why the task 

under consideration (inter-store price comparisons) might differ from the related 

empirical findings described at the start of this chapter: switching from forced 

attention to incidental sampling of price information; and switching from 

simultaneous presentation (stimulus-based judgment) to serial presentation 

(memory-based judgment).  By the same token, these factors clearly delineate how 

far the findings from the experiments in this research might be extrapolated to 

analogous judgment tasks.  Specifically, this thesis aims to address the following 

research questions: 

1. How sensitive are participants at discriminating between the means of two paired 

item distributions? 
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2. Do the frequency or magnitude of paired item differences bias intuitive 

judgments when the two distributions have equal means? 

3. Are judgments made differently in stimulus-based and memory-based tasks? 

4. Are judgments made differently in forced-attention and incidental-sampling 

experimental paradigms? 

5. What cognitive processes are involved in making these intuitive statistical 

judgments? 

I will provide evidence that the biasing effect of frequency dominates mean 

discrimination judgments, even in serial presentation of incidentally-sampled 

information, although the effect is strongest in simultaneous presentation of 

information with forced attention.  Furthermore, I will show that sensitivity even to 

large differences in mean between two paired item distributions is weak when serial 

sampling and incidental acquisition of information are involved.  I will demonstrate 

that basket cost estimates are an inappropriate measure of store-level price 

perceptions, which can even be negatively correlated with price judgments under 

certain circumstances, and test hypotheses from the consumer research literature 

concerning the interaction between basket size and price perceptions.  Finally, I will 

fit different cognitive process models to individual-level data to determine which 

theories offer the best explanation of the observed judgment bias, and provide 

evidence for a judgment process involving pair-wise item price comparisons that are 

additively integrated and weighted by attention. 

 A secondary contribution of this thesis to the literature on judgments and 

decision making is a methodological one.  Experiments 3 and 4 were conducted 

online and required participants to carry out a relatively lengthy, complex and 

immersive simulation task.  The use of the web as a research tool and the 
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simultaneous collection of data from hundreds of participants in controlled 

experiments outside of the traditional laboratory setting are unusual but not unique in 

the experimental psychology literature.  Equally, the use of complex naturalistic 

tasks carried out in a representative ecology of information is not new, although such 

tasks differ from the classical stripped-down laboratory methods.  However, the 

combination of the two is novel, as prior web-based research has tended to utilize 

much simpler and less-involving tasks.  Thus the research presented in this thesis, 

although not designed as a comparison between online and offline research, 

demonstrates the methodological possibilities opened up by the latest developments 

in software and web technology, and the increasing ubiquity of web access.  Because 

of the relative novelty of web-based psychology experiments, I conclude this 

literature review with a brief survey of prior research and best practice in conducting 

experiments via the internet. 

1.8     Web-Based Experiments 

1.8.1     Development of the Internet as a Research Tool 

 The internet, particularly the World Wide Web, has developed into a 

platform for mainstream communication, leading to increased interest from 

psychologists into the potential of internet-based experimental research.  In fact, 

psychology experiments have been running on the web since at least 1995 (Reips, 

2001) and web-based research studies are now commonly found in peer-reviewed 

APA journals (Skitka & Sargis, 2006).  In the field of judgment and decision making 

research, web-based studies from a diverse range of topics have been published, 

including probability learning (Birnbaum & Wakcher, 2002), medical decision 

making (Waters, Weinstein, Colditz, & Emmons, 2006), choice between risky 
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gambles (Birnbaum, 1999), reaction times in binary choice (Reimers & Stewart, 

2007), and task-switching (Reimers & Maylor, 2005), as well as many other areas of 

psychology such as psychometric personality assessment (Buchanan & Smith, 1999).  

The internet is also increasingly being used as a medium for publishing and 

disseminating psychology research studies (Brezsnyak, 1999). 

 The correspondence between web and lab experiments is generally very high, 

with comparison studies obtaining broadly similar findings from lab and web 

samples (Birnbaum, 1999, 2004; Buchanan & Smith, 1999; Smith & Leigh, 1997).  

The main differences between web and lab, particularly in early web-based studies, 

were demographic differences between samples.  Compared to traditional 

undergraduate participant samples, internet users tend to be older, more highly 

educated and are more likely to be male (Birnbaum, 1999; Smith & Leigh, 1997).  

However, web samples also tend to be more demographically diverse than student 

populations (Birnbaum, 1999; Smith & Leigh, 1997) and the web potentially offers 

access to more specialized populations (Birnbaum, 2004; Skitka & Sargis, 2006).  

Increased demographic variance potentially both reduces sample bias but also adds 

noise through an additional uncontrolled source of variability (Buchanan & Smith, 

1999; Schmidt, 1997).  As with traditional lab studies, random sampling helps to 

reduce sample bias but researchers have to be aware of a potential self-selection bias 

in the type of internet user who completes online surveys and experiments 

(Birnbaum, 2004; Buchanan & Smith, 1999; Smith & Leigh, 1997). 

1.8.2     Best Practice in Web-Based Research 

 In addition to access to a large and demographically diverse pool of research 

participants, numerous other advantages have been cited for conducting research on 
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the web, including increased speed, lower cost of materials, participant anonymity, 

increased flexibility over time and place of interaction, reduced experimenter bias, 

increased experimental power, the ability to create interactive and tailored 

experiments, and automation of data acquisition and analysis (Birnbaum, 2004; 

Hewson, Laurent, & Vogel, 1996; Schmidt, 1997; Skitka & Sargis, 2006; Smith & 

Leigh, 1997).  Many of these advantages are not specific to web-based experiments 

but apply to offline computer-based testing as well.  Some criticisms and concerns 

have also been raised, particularly concerning ethical issues, participant fraud, high 

dropout and non-response rates, limitations in the type of stimuli that can be 

delivered, technical constraints and lack of control over the PC and screen being 

used, greater variability in the context in which an experiment takes place, lack of 

participant accountability, multiple submissions, and inaccurate control and 

measurement of temporal intervals (Birnbaum, 2004; Schmidt, 1997; Skitka & 

Sargis, 2006; Smith & Leigh, 1997). 

As a result of these concerns a number of researchers have laid out best 

practice guidelines for web-based research.  For example, just as in lab experiments, 

participants must be able to give informed consent, have the right to withdraw, and 

participants‟ anonymity and data security must be protected (Schmidt, 1997; Smith 

& Leigh, 1997).  Participants must also be debriefed as to the purpose of a study 

after completion and should not be subject to deception (Reips, 2001).  The risk of 

multiple submissions can be reduced through giving clear participation instructions, 

by removing incentives for those who participate more than once, by tracking IP 

addresses or personal identifiers such as e-mail addresses, and by filtering data for 

identical or nearly-identical records (Birnbaum, 2004; Smith & Leigh, 1997).  

Participants can be recruited either passively (e.g. through advertising) or actively 
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(e.g. through targeted e-mails) but contact must never be unsolicited (Birnbaum, 

2004; Schmidt, 1997).  Experiments should be piloted before launching them on the 

web in order to check that instructions are clear, that data is being recorded correctly, 

and to check that participants complete the experiment in the required manner 

(Birnbaum, 2004).  Web experiments should be as standardized as possible, not 

requiring any special software or hardware, and should be designed to run on as 

many different web browsers as possible (Hewson, et al., 1996; Schmidt, 1997).  All 

these guidelines were carefully followed in the web experiments presented in this 

thesis, in order to maximize data quality and accuracy. 

1.8.3     Web-Based Interactive Simulations 

 Computer-based simulations have previously been shown to be reasonable 

predictors of consumers‟ real-world shopping decisions (Burke, Harlam, Kahn, & 

Lodish, 1992).  Simulation tasks predict consumer choices best when the appropriate 

product cues can be reproduced, so computer-based simulations are less useful for 

product choices involving non-visual cues such as texture or smell.  Increasing the 

realism of store design and shopping task features also increases the validity of 

observed choices.  Participants are generally more sensitive to price and promotions 

in simple simulations and tend to „buy‟ a greater quantity of the discounted good, as 

they face no budget or space constraints.  Finally, time-compression means that 

repeated choices in simulations tend to show a greater degree of repetition and 

routine than in the real world.  However, the overall correspondence between 

simulation and real-world is good, especially for relative rather than absolute 

measures of choice behaviour. 
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 Advances in web-based software mean that relatively rich, complex and 

involving simulations can now be delivered via the web, as well as automating the 

allocation of participants to experimental conditions and the collection of data.  A 

variety of options are available for delivering web-based experiments, both client-

side (running on the participant‟s local machine) and server-side (running on a 

central server) although data collection obviously has to occur on a central server 

(Birnbaum, 2004).  Javascript has been commonly used for online experimental 

studies (Birnbaum & Wakcher, 2002), but the browser extension Adobe Flash 

(formerly known as Macromedia Flash) is gaining in acceptance (Reimers & 

Stewart, 2007).  The advantages of Flash are that it allows attractive animated 

content to be created quickly and easily, it is ubiquitous (Adobe‟s website claims 

over 99% of internet users have the plugin) and freely available, and pre-prepared 

components like menus, text boxes and buttons make the creation of an ergonomic 

interface straightforward (Reimers & Stewart, 2007; Schmidt, 2001), thus avoiding 

problems caused by unclear design (Birnbaum, 2004).  For these reasons, Flash is 

particularly suited to creating simulated environments such as the shopping task in 

Experiments 3 and 4, and was therefore chosen to implement these experiments. 

1.9     Thesis Structure 

The rest of this thesis is organized into five further chapters.  Chapter 2 

presents the results of two experiments in which the findings of Alba et al are 

replicated (Experiment 1) and then extended into a serial presentation format 

(Experiment 2).  Chapter 3 describes a novel online shopping simulation task used to 

determine participants‟ sensitivity to inter-store mean price differences (Experiment 

3).  Chapter 4 consists of a further experiment using the same experimental 

paradigm, testing for a biasing effect of frequency or magnitude cues in inter-store 
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price discrimination (Experiment 4).  Finally, Chapter 5 compares the ability of 

different cognitive process models to explain the data observed in Experiments 3 and 

4, before Chapter 6 concludes with a summary of the findings, conclusions that can 

be drawn from the research presented, and concrete suggestions for future avenues of 

exploration that would further develop understanding of naturalistic intuitive 

judgments. 
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CHAPTER 2 

BASKET COST ESTIMATES IN PAIRED VS. POOLED PRICE 

INFORMATION PROCESSING (EXPERIMENTS 1 AND 2) 

2.1     Introduction 

 In the original study by Alba et al (1994), as described in Chapter 1, various 

experiments tested the relative impact of the frequency and magnitude cues in 

comparative store price judgments.  Although a number of attempts were made to 

sensitize participants to the trade-off between frequency and magnitude (Experiment 

5) or to emphasize the magnitude cue (Experiment 6), in all cases the prices in the 

two stores were presented side-by-side, enhancing the salience and accessibility of 

the frequency cue.  I shall refer to this mode of presentation as Paired Presentation.  

The central purpose of the two experiments described in this chapter was to compare 

and contrast Paired Presentation of prices with a format in which all prices from one 

store are sampled before all the prices in the second store are seen.  This kind of 

Pooled Presentation format both reduces the salience and availability of the 

frequency cue (by requiring each item price from the first store to be recalled from 

memory) and is also a closer replication of the sequence of price information 

observed when shoppers engage in comparison shopping in two different stores. 

The purpose of Experiment 1 was to replicate a Paired Presentation 

experiment in a UK context, in order to confirm the relative importance of the 

frequency cue, the magnitude cue and prior beliefs upon basket cost judgments in 

paired presentation with forced attention, as found by Alba et al (1994).  Experiment 

2 adapted the methodology of Experiment 1 to present the same information in a 
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Pooled Presentation format.  A meta-analysis across the two experiments was 

conducted in order to examine the impact of presentation format upon participants‟ 

basket cost estimates. 

2.2     Paired Price Presentation (Experiment 1) 

2.2.1     Method 

2.2.1.1     Participants 

 64 participants, consisting of 38 men and 26 women aged between 19 and 69 

years with a mean age of 32 years, were recruited on the campus of the University of 

Warwick via face-to-face recruitment.  In order to ensure sufficient prior experience 

of and accurate prior beliefs about UK supermarket prices, older participants 

including staff, postgraduate students and visitors were targeted.  All participants 

received £5 for their participation. 

2.2.1.2     Stimuli 

 30 pairs of prices were selected from the two largest UK grocery retailers, 

Tesco and Asda.  The selected items are all commonly purchased items, sold in both 

stores, and available in local stores at the time price data was collected.  The total 

cost of the items in the two retailers (at the time of conducting the experiment, 

excluding promotional offers) was £29.23 in Tesco and £29.85 in Asda.  Tesco had 

the lower price for 10 of the items, by an average of 27p.  Asda had the lower price 

for the remaining 20 items, by an average of 10p. 
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2.2.1.3     Design and Procedure 

 The experiment was set up as a between-subjects design with two conditions: 

a Magnitude condition, using the actual item prices, and a Frequency condition in 

which the Tesco prices were altered in order to double the number of items for which 

Tesco had the lower price, whilst maintaining the same total basket cost and 

approximate magnitudes of price advantages and disadvantages.  In the Frequency 

condition, Tesco‟s 20 price advantages were lower by an average of 15p and Asda‟s 

10 price advantages were lower by an average of 23p.  The complete list of items 

and prices in each condition is shown in Table 2.1.  Assignment to the two 

conditions was random.  32 participants were assigned to the Magnitude condition 

and the remaining 32 participants were assigned to the Frequency condition. 

The experiment was implemented on a laptop computer using the E-Prime 

software package.  After giving their age and gender, and reading some brief 

instructions, participants were asked about their prior price beliefs about the two 

stores using a 5-point response scale: 

“Compared to other supermarkets, on the products I buy regularly, [Tesco/Asda] 

has:” 

1. Cheaper prices on all 

2. Cheaper prices on some 

3. Average prices on all 

4. More expensive prices on some 

5. More expensive prices on all 

6. Don‟t know 
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Participants were next told that they would be shown the prices of a basket of thirty 

items sold in Tesco and Asda.  They were asked to read the information carefully 

and to memorize as much as possible about the prices, in order to answer some 

subsequent questions.  They were also told that there was no time limit and they 

were free to spend as long as necessary on each item. 

TABLE 2.1 

Items and prices used in Experiment 1 

 Asda Tesco 

Item Description  Magnitude Frequency 

Baby Potatoes (1 Kg) 88p 58p 58p 

Baking Potatoes (1 Kg) 78p 85p 99p 

Broccoli 68p 99p 99p 

Bunch of Spring Onions 47p 48p 45p 

Celery 47p 48p 45p 

Chicken Tonight (500g Jar) 74p 75p 73p 

Conference Pears (1 Kg) £1.28 £1.19 £1.19 

Crusty White Split Tin Loaf (800g) 58p 63p 56p 

Frozen Peas (1 Kg) 43p 78p 84p 

Golden Delicious Apples (1 Kg) £1.08 £1.18 £1.24 

Iceberg Lettuce 58p 57p 57p 

Large Eggs (6 Pack) 68p 82p 82p 

Lemons 17p 22p 16p 

Low Fat Fruit Yoghurt (4 Pack) 98p 83p 83p 

Medium Eggs (6 Pack) 58p 72p 75p 

Medium Sized Tomatoes (1 Kg) £1.28 £1.29 £1.25 

Medium Tomatoes (6 Per Pack) 68p 49p 49p 

Muller Fruit Corner (175g) 34p 38p 30p 

PG Tips Pyramid Tea Bags (80) £1.38 £1.44 £1.59 

Plum Tomatoes (400g) 24p 19p 19p 

Radishes (125g) 37p 44p 45p 

Royal Gala Apples (1 Kg) £1.28 £1.49 £1.49 

Sliced Danish Loaf (400g) 28p 30p 25p 

Sparkling Mineral Water (2 litres) 43p 18p 18p 

Strawberries (1 Kg) £7.84 £6.23 £6.23 

Swede (1 Kg) 59p 99p 99p 

Toilet Tissue (4 Pack) 44p 42p 42p 

White Finger Rolls (6 Pack) 36p 37p 35p 

Whole Fresh Chicken (Large - Per Kg) £1.97 £1.95 £1.95 

Whole Fresh Chicken (Medium - Per Kg) £1.99 £2.00 £1.95 

 £29.85 £29.23 £29.23 
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 Each item description was displayed in the centre of the screen with the two 

store prices below, one on the left and one on the right.  Each price was labelled with 

the store name.  The store order was counter-balanced between participants but did 

not vary within the experiment
1
.  Each price was displayed for a minimum of two 

seconds, after which the participant could press the spacebar to progress to the next 

item.  All thirty items were shown in a random order without replacement. 

Participants were then asked to judge which store they thought was cheapest 

for the items shown, using a 7-point response scale: 

“The total cost of these items was different in the two stores.  In which store do you 

think the total cost was lowest?” 

1. Definitely Asda 

2. Almost certainly Asda 

3. Probably Asda 

4. They seemed the same to me 

5. Probably Tesco 

6. Almost certainly Tesco 

7. Definitely Tesco 

In addition, participants estimated the total cost of the items in each store: “What 

was the total cost of these items in [Asda/Tesco]?”  A manipulation check was also 

carried out to determine whether participants were aware of the frequency cue: “For 

how many of the thirty items was Tesco cheaper than Asda?”  Finally, participants 

gave their posterior beliefs about the prices in each store, using the same 5-point 

                                                           
1
 All ANOVA and ANCOVA analyses were repeated with the store order as an additional between-

subjects factor, but no significant effects were found (<0.05).  The effect of store order is therefore 

not reported in these results for the purpose of clarity. 
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response scale as at the start of the experiment.  At the end of the experiment 

participants were debriefed as to the purpose of the study and informed that the 

prices they had been shown may not have reflected actual prices. 

2.2.2     Results 

2.2.2.1     Cost Estimates 

 There was a wide spread of cost estimates for both Asda (M = £32.53, SD = 

£17.13) and Tesco (M = £33.67, SD = £16.56).  The mean cost estimates for Asda 

did not vary significantly between the Magnitude and Frequency conditions (£32.17 

vs. £32.89, t(62) = -0.165, p = 0.87, two-tailed) and neither did the mean cost 

estimates for Tesco vary significantly between the two conditions (£35.66 vs. 

£31.68, t(62) = 0.960, p = 0.34, two-tailed).  The cost estimates in each store were 

highly correlated, r(62) = 0.96, p<0.001.  A one-way ANCOVA model was used to 

partial out the variance in Tesco cost estimates explained by the cost estimates in 

Asda, the effect of which was highly significant (R
2
 = 0.94; F(1,61) = 881.49, 

p<0.001).  The adjusted mean cost estimates for Tesco given by participants in the 

Magnitude condition (Madj = £35.99) were higher than the adjusted mean cost 

estimates given by participants in the Frequency condition (Madj = £31.35) and the 

difference was highly significant (F(1,61) = 19.04, p<0.001, η
2
=0.24). 

2.2.2.2     Prior Beliefs 

 Participant‟s beliefs about the prices in each store were collected at the start 

and end of the experiment.  Prior beliefs about Asda did not vary significantly 

between the Magnitude condition (M = 2.0) and the Frequency condition (M = 2.3) 
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(t(47)
 
= -1.156, p = 0.25, two-tailed)

 2
.  Similarly, prior beliefs about Tesco did not 

vary significantly between the Magnitude condition (M = 2.1) and the Frequency 

condition (M = 2.3) (t(60) = -0.991, p = 0.25, two-tailed)
 3

.  Hence, the random 

allocation of participants between the two experimental conditions cannot explain 

the previous difference in Tesco cost estimates. 

 The residual of the previous ANCOVA model was significantly correlated 

with the participants‟ prior beliefs about prices in Tesco, r(60) = 0.33, p<0.01.  

Participants with more favourable prior beliefs about Tesco tended to give lower cost 

estimates.  Including prior belief as an additional covariate in the ANCOVA model 

showed significant effects of both prior beliefs and cost estimates for Asda (Table 

2.2).  The adjusted mean cost estimate for Tesco given by participants in the 

Magnitude condition (Madj = £35.92) was higher than the adjusted mean cost 

estimate given by participants in the Frequency condition (Madj = £30.88). 

TABLE 2.2 

ANCOVA model of cost estimates in Tesco including cost estimate for Asda and prior beliefs 

about Tesco prices as covariates (Experiment 1) 

Source SS df MS F p η2 

Cost Estimate Asda 15333.82 1 15333.82 917.10 <0.001 0.94 

Prior Beliefs Tesco 124.68 1 124.68 7.46 <0.01 0.11 

Price Condition 387.17 1 387.17 23.16 <0.001 0.29 

Error 969.76 58 16.72    

 

2.2.2.3     Confidence Judgments 

 Participants‟ confidence judgments of which store was cheaper were 

uncorrelated with prior beliefs about Asda, r(47) = 0.184, p = 0.21.  Similarly, 

                                                           
2
 Fifteen participants, nine in the Magnitude condition and six in the Frequency condition, answered 

„Don‟t know‟ to the question concerning their prior beliefs about prices in Asda. 
3
 Two participants in the Magnitude condition answered „Don‟t know‟ to the question concerning 

their prior beliefs about prices in Tesco so were excluded from the subsequent ANCOVA model. 



Chapter 2: Paired vs. Pooled Presentation 

92 

confidence judgments were uncorrelated with prior beliefs about Tesco, r(60) = -

0.05, p = 0.69.  Confidence judgments do not appear to have been significantly 

influenced by participants‟ prior beliefs. 

Participants‟ confidence judgments of which store was cheaper differed 

significantly between the Magnitude and Frequency conditions (t(62) = -5.236, 

p<0.001, two-tailed).  In the Magnitude condition participants were confident that 

Asda was the cheaper of the two stores (M = 2.6, SD = 1.5), and the mean rating 

differed significantly from the neutral rating of 4 (t(31) = -5.230, p<0.001, two-

tailed).  In the Frequency condition participants were weakly confident that Tesco 

was the cheaper of the two stores (M = 4.7, SD = 1.7) and the mean rating differed 

significantly from the neutral rating (t(31) = 2.323, p<0.05, two-tailed). 

2.2.2.4     Manipulation Check 

 Participants‟ estimates of how many of the items were cheaper in Tesco were 

uncorrelated with prior beliefs about Asda, r(47) = 0.166, p = 0.25.  Similarly, 

estimates of the frequency of Tesco‟s price advantages were uncorrelated with prior 

beliefs about Tesco, r(60) = -0.151, p = 0.24.  Frequency estimates do not appear to 

have been significantly influenced by participants‟ prior beliefs. 

 Participants‟ mean estimate of how many of the items were cheaper in Tesco 

were significantly lower in the Magnitude condition (M = 12.1, SD = 5.9) than in the 

Frequency condition (M = 17.1, SD = 5.8) (t(62) = -3.417, p<0.001, two-tailed).  

Participants were both sensitive to differences in the frequency cue and able to make 

reasonably accurate estimates of the true frequency. 

 



Chapter 2: Paired vs. Pooled Presentation 

93 

2.2.3     Discussion 

 Consistent with the study by Alba et al (1994), Experiment 1 found that total 

basket cost estimates are strongly influenced by the frequency cue when comparative 

price information is presented in a Paired format and that the frequency cue 

dominates the magnitude cue and prior price beliefs.  Experiment 1 replicated these 

findings in a UK context, with representative items and prices.  In addition, 

participants‟ qualitative confidence judgments concerning which store was cheaper 

mirrored the basket cost finding. 

 Unlike the US study, where all price information was presented in a booklet 

and was therefore readily available to participants, the method of Paired Presentation 

deliberately emphasized the frequency cue.  This format of presentation makes 

basket cost estimates more difficult.  In order to calculate the basket cost in each 

store a participant would have to maintain two running totals simultaneously.  In 

order to calculate the cheapest store a participant would have to calculate the 

magnitude of the price difference in each case and maintain a running total.  It is 

therefore not surprising that the frequency cue dominated the magnitude cue. 

 Given the difficulty of the task, it is perhaps surprising that participants did 

not generalize from their prior beliefs about the prices in each store when estimating 

the total costs.  A simple heuristic would be to estimate a total cost in the first store 

and then to adjust the second estimate up or down from the first, congruent with 

prior beliefs.  Although there is a weak effect of prior beliefs, the relative effect size 

as indicated by the partial eta-squared values in the ANCOVA model was only about 

one third as large as the effect of the frequency cue.  Participants were also sensitive 

to the frequency manipulation as shown in their estimated values of the frequency 
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cue.  In summary, Experiment 1 demonstrated that the frequency cue dominates 

participants‟ cost estimates in a Paired Presentation format which enhances the 

salience and availability of frequency information. 

 As described earlier, the purpose of Experiment 2 was to contrast the Paired 

Presentation format of Experiment 1 with a Pooled Presentation format, in which all 

the item prices for one store are viewed before moving onto the item prices for the 

second store.  This has the effect of making the frequency cue less salient (by no 

longer presenting matched item prices in pairs) and less readily available.  In a 

Paired Presentation format, participants can encode the information as to which store 

was cheaper for each item directly into memory.  To utilize the frequency cue each 

participant then had only to maintain a running count of frequency for each store or 

to retrieve the encoded binary information (cheaper / more expensive) from memory.  

In contrast, in a Pooled Presentation format participants would have to encode both 

the item description and actual price in the first store, in order to have the 

information available (assuming accurate recall) to produce and encode binary 

information as to which store was cheaper for each item.  Hence, ceteris paribus, one 

would expect the frequency cue to have less or no impact in the case of Pooled 

Presentation (Hypothesis 1a). 

 A Pooled Presentation format could, on the other hand, make the magnitude 

cue more salient.  If encoding or retrieval of item price information from the first 

store is noisy or inaccurate then small price differences between items could lead to 

uncertainty over which store is cheaper for that item, or even an incorrect judgment.  

In contrast, large price differences are less prone to such errors and uncertainty.  

Therefore, even if participants are attempting to use a frequency heuristic, one would 

expect to see an increased impact of the magnitude cue.  In the current experimental 
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procedure, this would be indistinguishable from the effect described in the previous 

paragraph as the frequency and magnitude cue are negatively correlated between the 

two price conditions.  Hence, evidence for decreased impact of the frequency cue 

(Hypothesis 1a) could also be interpreted as evidence for a greater impact of the 

magnitude cue (Hypothesis 1b). 

 Finally, given the above discussion concerning the increased task complexity, 

one might expect to see an increased reliance on prior beliefs when price information 

is given in a Pooled Presentation format (Hypothesis 2).  Similarly, one would 

expect participants‟ confidence judgments as to which store was the cheaper to be 

less extreme, reflecting greater uncertainty due to increased task complexity and the 

reduced availability of the frequency cue (Hypothesis 3). 

 In the following section the method and results for Experiment 2 are 

described.  A meta-analysis across the two experiments is then presented, which 

explicitly tests the prior hypotheses outlined above concerning the impact of 

presentation format on cost estimation in a store comparison task. 

2.3     Pooled Price Presentation (Experiment 2) 

2.3.1     Method 

2.3.1.1     Participants 

 64 participants, consisting of 25 men and 39 women aged between 18 and 57 

years with a mean age of 27 years, were recruited on the campus of the University of 

Warwick via face-to-face recruitment.  In order to ensure sufficient prior experience 

of and accurate prior beliefs about UK supermarket prices, older participants 

including staff, postgraduate students and visitors were targeted.  Participants from 
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Experiment 1 were excluded from Experiment 2.  All participants received £5 for 

their participation. 

2.3.1.2     Stimuli 

 The 30 pairs of prices for items used in Experiment 1 were repeated in 

Experiment 2.  As before, the total cost of the items in the two retailers was £29.23 

in Tesco and £29.85 in Asda.  Tesco had the lower price for 10 of the items, by an 

average of 27p.  Asda had the lower price for the remaining 20 items, by an average 

of 10p. 

2.3.1.3     Design and Procedure 

 Experiment 2 was an exact replication of Experiment 1, being a between-

subjects design with two conditions: a Magnitude condition, using the actual item 

prices, and a Frequency condition in which the Tesco prices were altered in order to 

double the number of items for which Tesco had the lower price, whilst maintaining 

the same total basket cost and approximate magnitude of price advantages and 

disadvantages.  In the Frequency condition, Tesco‟s 20 price advantages were lower 

by an average of 15p and Asda‟s 10 price advantages were lower by an average of 

23p.  The complete list of items and prices in each condition is shown in Table 2.1.  

Assignment to the two conditions was random.  32 participants were assigned to the 

Magnitude condition and the remaining 32 participants were assigned to the 

Frequency condition. 

 The experimental procedure was identical to that used in Experiment 1, 

except for the format in which item prices were presented to participants.  Each item 

description was displayed in the centre of the screen with the price in the first store 
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below.  Each price was labelled with the store name and was displayed for a 

minimum of two seconds, after which the participant could press the spacebar to 

progress to the next item.  All thirty items were shown in a random order without 

replacement.  After all the prices for the first store had been viewed the 30 items 

were repeated with the prices in the second store, labelled with the store name.  The 

store order was counter-balanced between participants but did not vary within the 

experiment
4
. 

The instructions, questions and question ordering were unchanged from 

Experiment 1.  As before, at the end of the experiment participants were debriefed as 

to the purpose of the study and informed that the prices they had been shown may 

not have reflected actual prices. 

2.3.2     Results 

2.3.2.1     Cost Estimates 

 There was a wide spread of cost estimates for both Asda (M = £29.12, SD = 

£11.17) and Tesco (M = £30.32, SD = £11.43).  The mean cost estimates for Asda 

did not vary significantly between the Magnitude and Frequency conditions (£27.84 

vs. £30.39, t(62) = -0.912, p = 0.37, two-tailed) and neither did the mean cost 

estimates for Tesco vary significantly between the two conditions (£30.10 vs. 

£30.53, t(62) = -0.148, p = 0.88, two-tailed).  The cost estimates in each store were 

highly correlated, r(62) = 0.94, p<0.001.  A one-way ANCOVA model was used to 

partial out the variance in Tesco cost estimates explained by the cost estimates in 

Asda, the effect of which was highly significant (R
2
 = 0.89; F(1,61) = 482.18, 

                                                           
4
 All ANOVA and ANCOVA analyses were repeated with the store order as an additional between-

subjects factor, but no significant effects were found (<0.05).  The effect of store order is therefore 

not reported in these results for the purpose of clarity. 
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p<0.001).  The adjusted mean cost estimate for Tesco given by participants in the 

Magnitude condition (Madj = £31.34) was higher than the adjusted mean cost 

estimate given by participants in the Frequency condition (Madj = £29.29) and the 

difference was small but significant (F(1,61) = 4.385, p<0.05, η
2
=0.07). 

2.3.2.2     Prior Beliefs 

 Participant‟s beliefs about the prices in each store were collected at the start 

and end of the experiment.  Prior beliefs about Asda did not vary significantly 

between the Magnitude condition (M = 1.9) and the Frequency condition (M = 1.8) 

(t(50)
 
= 0.181, p = 0.86, two-tailed)

 5
.  Similarly, prior beliefs about Tesco did not 

vary significantly between the Magnitude condition (M = 2.2) and the Frequency 

condition (M = 2.1) (t(61) = 0.542, p = 0.59, two-tailed)
 6

.  Hence, the random 

allocation of participants between the two experimental conditions cannot explain 

the previous difference in Tesco cost estimates. 

The residual of the previous ANCOVA model was not correlated with the 

participants‟ prior beliefs about prices in Tesco, r(61) = 0.12, p = 0.34.  

Consequently, including prior belief as an additional covariate in the ANCOVA 

model showed no significant effect of prior beliefs (F(1,59) = 0.916, p = 0.34). 

2.3.2.3     Confidence Judgments 

 Participants‟ confidence judgments of which store was cheaper were 

uncorrelated with prior beliefs about Asda, r(49) = 0.088, p = 0.54.  Similarly, 

confidence judgments were uncorrelated with prior beliefs about Tesco, r(61) = 

                                                           
5
 Twelve participants, six in the Magnitude condition and six in the Frequency condition, answered 

„Don‟t know‟ to the question concerning their prior beliefs about prices in Asda. 
6
 One participant in the Magnitude condition answered „Don‟t know‟ to the question concerning their 

prior belief about prices in Tesco so was excluded from the subsequent ANCOVA model. 
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0.057, p = 0.66.  Confidence judgments do not appear to have been significantly 

influenced by participants‟ prior beliefs. 

Participants‟ confidence judgments of which store was cheaper differed 

significantly between the Magnitude and Frequency conditions (t(62) = -2.322, 

p<0.05, two-tailed).  In the Magnitude condition participants were weakly confident 

that Asda was the cheaper of the two stores (M = 3.3, SD = 1.1), and the mean rating 

differed significantly from the neutral rating of 4 (t(31) = -3.650, p<0.001, two-

tailed).  In the Frequency condition participants were unsure as to which store had 

the lowest total cost (M = 4.1, SD = 1.5) and the mean rating did not differ 

significantly from the neutral rating (t(31) = 0.229, p = 0.82, two-tailed). 

2.3.2.4     Manipulation Check 

 Participants‟ estimates of how many of the items were cheaper in Tesco were 

uncorrelated with prior beliefs about Asda, r(50) = -0.011, p = 0.94.  Similarly, 

estimates of the frequency of Tesco‟s price advantages were uncorrelated with prior 

beliefs about Tesco, r(61) = 0.085, p = 0.51.  Frequency estimates do not appear to 

have been significantly influenced by participants‟ prior beliefs. 

 Participants‟ mean estimate of how many of the items were cheaper in Tesco 

did not differ significantly between the Magnitude condition (M = 9.8, SD = 4.5) and 

the Frequency condition (M = 11.8, SD = 5.1) (t(62) = -1.716, p = 0.09, two-tailed).  

Participants were insensitive to differences in the frequency cue and were unable to 

make reasonably accurate estimates of the true frequency, especially in the 

Frequency condition. 
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2.4 Meta-Analysis: Paired vs. Pooled Presentation 

2.4.1 Cost Estimates 

 There was a wide spread of cost estimates for both Asda (M = £30.83, SD = 

£14.51) and Tesco (M = £31.99, SD = £14.27) across the two experiments.  Two-

way ANOVA models were used to test for differences in mean cost estimates for 

each store between price conditions (Magnitude or Frequency) and presentation 

conditions (Paired or Pooled).   The central tendency and spread of cost estimates are 

summarized in Table 2.3. 

TABLE 2.3 

Summary of cost estimates for Asda and Tesco across Experiments 1 and 2 

 Asda Tesco 

 Paired Pooled Paired Pooled 

Price Condition M SD M SD M SD M SD 

Magnitude £32.17 £13.88 £27.84 £10.17 £35.66 £15.45 £30.10 £11.36 

Frequency £32.89 £20.09 £30.39 £12.12 £31.68 £17.63 £30.53 £11.68 

 

Visual inspection of Table 2.3 suggests that the assumption of equal variances is not 

met: the variances in the Pooled Presentation cells are lower than in the Paired 

Presentation cells for both stores.  However, Levene‟s test of Equality of Variances
7
 

indicated that the differences in variances are insignificant in the full-factorial two-

way design for cost estimates in both Asda (F(3,124) = 2.329, p = 0.08) and Tesco 

(F(3,124) = 1.488, p = 0.22).  Homogeneity of variances is therefore assumed in both 

cases.  No significant effect of price condition or presentation condition was found 

for either store.  A summary of the two ANOVA models is shown in Tables 2.4 

(Asda) and 2.5 (Tesco). 

                                                           
7
 Levene‟s test is preferred to  artlett‟s test as it is less sensitive to departures from normality. 
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TABLE 2.4 

Two-way ANOVA model of cost estimates in Asda 

Source SS df MS F P η2 

Price 85.25 1 85.25 0.403 0.53 0.003 

Presentation 372.58 1 372.58 1.760 0.19 0.014 

Price*Presentation 27.07 1 27.07 0.128 0.72 0.001 

Error 26246.19 124 211.66    

 

TABLE 2.5 

Two-way ANOVA model of cost estimates in Tesco 

Source SS df MS F P η2 

Price 100.91 1 100.91 0.495 0.48 0.004 

Presentation 359.62 1 359.62 1.765 0.19 0.014 

Price*Presentation 154.99 1 154.99 0.761 0.39 0.006 

Error 25261.18 124 203.72    

 

 The cost estimates in each store were highly correlated, r(126) = 0.95, 

p<0.001.  ANCOVA models assume that the slopes of the regression lines are the 

same for each group formed by the categorical variables and measured on the 

dependent, i.e. homogeneity of correlations.  The (Fisher-transformed) correlation 

coefficients for each cell were compared using a two-tailed t-test for independent 

samples
8
.  The results, summarized in Table 2.6, support the null hypothesis of 

equality of correlations. 

                                                           
8
 The difference between correlations are tested using t-tests, where   

           

 
 

      
 

 

      

   and  Z(ri)  is 

Fisher‟s transformation where            
   

   
 .  The degrees of freedom (df) are equal to      

    . 
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TABLE 2.6 

Correlation statistics for cost estimates in each store and t-tests for differences between 

correlation coefficients 

 Presentation Condition 

 Paired Pooled 

Price Condition r p r p 

Magnitude 0.97 (r1) <0.001 0.93 (r2) <0.001 

Frequency 0.98 (r3) <0.001 0.95 (r4) <0.001 

t-test t df p  

r1 vs r2 1.473 60 0.146  

r1 vs r3 -0.494 60 0.623  

r1 vs r4 0.808 60 0.422  

r2 vs r3 -1.967 60 0.054  

r2 vs r4 -0.665 60 0.509  

r3 vs r4 1.302 60 0.198  

 

A two-way ANCOVA model was used to partial out the variance in Tesco cost 

estimates explained by the cost estimates in Asda, the effect of which was highly 

significant (R
2
 = 0.92; F(1,123) = 1402.96, p<0.001).  As before, Levene‟s test for 

Equality of Variances was used to check that the assumption of homogeneity of 

variances was satisfied (F(3,124) = 0.393, p = 0.76).  The adjusted mean cost 

estimate for Tesco given by participants in the Magnitude condition (Madj = £33.65) 

was higher than the adjusted mean cost estimate given by participants in the 

Frequency condition (Madj = £30.34) and the difference was highly significant 

(F(1,123) = 21.125, p<0.001, η
2
=0.15).  The adjusted mean cost estimates for Tesco 

given in the Paired Presentation condition (Madj = £32.06) and the Pooled 

Presentation condition (Madj = £31.92) were not significantly different (F(1,123) = 

0.039, p = 0.84).  The interaction between price condition and presentation condition 

was in the hypothesized direction and approached, but did not reach, statistical 
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significance (F(1,123) = 3.445, p = 0.07).  The results of the ANCOVA model are 

summarized in Table 2.7. 

TABLE 2.7 

ANCOVA model of cost estimates in Tesco including cost estimate for Asda as a covariate 

(Experiments 1 and 2). 

Source SS df MS F P η2 

Cost Estimate Asda 23224.99 1 23224.99 1402.96 <0.001 0.92 

Price 349.71 1 349.71 21.13 <0.001 0.15 

Presentation 0.64 1 0.64 0.04 0.844 0.00 

Price*Presentation 57.03 1 57.03 3.45 0.066 0.03 

Error 2036.18 123 16.55    

 

2.4.2 Prior Beliefs 

 Participant‟s beliefs about the prices in each store were collected at the start 

and end of the experiment.  Prior beliefs about Asda did not vary significantly 

between the Magnitude condition (M = 1.9) and the Frequency condition (M = 2.0) 

(t(99)
 
= -0.753, p = 0.45, two-tailed)

 9
.  Similarly, prior beliefs about Tesco did not 

vary significantly between the Magnitude condition (M = 2.2) and the Frequency 

condition (M = 2.2) (t(123) = -0.508, p = 0.61, two-tailed)
 10

.  Hence, the random 

allocation of participants between the two experimental conditions cannot explain 

the previous difference in Tesco cost estimates. 

The residual of the previous ANCOVA model was significantly correlated 

with the participants‟ prior beliefs about prices in Tesco, r(123) = 0.24, p<0.01.  

Participants with more favourable prior beliefs about Tesco tended to give lower cost 

estimates.  Including prior belief as an additional covariate in the ANCOVA model 

                                                           
9
 27 participants, 15 in the Magnitude condition and 12 in the Frequency condition, answered „Don‟t 

know‟ to the question concerning their prior beliefs about prices in Asda. 
10

 3 participants in the Magnitude condition answered „Don‟t know‟ to the question concerning their 

prior belief about prices in Tesco so were excluded from the subsequent ANCOVA model. 
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showed significant effects of both prior beliefs and cost estimates for Asda (R
2
 = 

0.92; Table 2.8). 

TABLE 2.8 

ANCOVA model of cost estimates in Tesco including cost estimate for Asda and prior beliefs 

about Tesco prices as covariates (Experiments 1 and 2). 

Source SS df MS F P η2 

Cost Estimate Asda 22690.90 1 22690.90 1417.46 <0.001 0.92 

Prior Beliefs Tesco 121.58 1 121.58 7.60 <0.01 0.06 

Price 368.30 1 368.30 23.01 <0.001 0.16 

Presentation 0.00 1 0.00 0.00 0.99 0.00 

Price*Presentation 74.38 1 74.38 4.65 <0.05 0.04 

Error 1904.97 119 16.01    

 

The adjusted mean cost estimate for Tesco given by participants in the Magnitude 

condition (Madj = £33.68) was higher than the adjusted mean cost estimate given by 

participants in the Frequency condition (Madj = £30.24).  When a Paired Presentation 

format is used to display price information, the difference between the adjusted mean 

cost estimates in the Magnitude condition and the Frequency condition (£34.46 vs. 

£29.47) is greater than the difference when a Pooled Presentation format is used 

(£32.90 vs. £31.01) and the interaction is significant (F(1,119) = 74.384, p<0.05).  

The interaction between price condition and presentation condition is illustrated in 

Fig 2.1. 
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Figure 2.1: Interaction plot of the adjusted mean cost estimates for Tesco in Experiments 1 

and 2 (Evaluated at mean cost estimate for Asda = £30.76). 

2.4.3 Confidence Judgments 

 Participants‟ confidence judgments of which store was cheaper were 

uncorrelated with prior beliefs about Asda, r(99) = 0.140, p = 0.16.  Similarly, 

confidence judgments were uncorrelated with prior beliefs about Tesco, r(123) = -

0.016, p = 0.86.  Confidence judgments do not appear to have been significantly 

influenced by participants‟ prior beliefs. 

A two-way between-subjects ANOVA model was used to test for differences 

in the mean confidence judgment between price conditions (Magnitude or 

Frequency) and presentation conditions (Paired or Pooled).  The central tendency 

and spread of confidence judgments are summarized in Table 2.9. 
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TABLE 2.9 

Summary of confidence judgment ratings of the cheapest store across Experiments 1 and 2 

 Paired Pooled 

Price Condition M SD M SD 

Magnitude 2.6 1.5 3.3 1.1 

Frequency 4.7 1.7 4.1 1.5 

 

Participants‟ confidence judgments of which store was cheaper differed significantly 

between the Magnitude and Frequency conditions (F(1,124) = 30.263, p<0.001, 

η
2
=0.20).  In the Magnitude condition participants were confident that Asda was the 

cheaper of the two stores (M = 2.9, SEM = 0.185) while in the Frequency condition 

participants were weakly confident that Tesco was the cheaper store (M = 4.4, SEM 

= 0.185).  The 95% confidence intervals indicate that the mean ratings differed 

significantly from the neutral rating of 4 in both the Magnitude condition (2.572 < M 

< 3.303) and the Frequency condition (4.009 < M < 4.741).  The ANOVA model 

also indicated a small but significant interaction between the price and presentation 

conditions (F(1,124) = 6.307, p<0.05, η
2
=0.05).  When a Paired Presentation format 

is used to display price information, the difference between the mean confidence 

judgments in the Magnitude condition and the Frequency condition (2.6 vs. 4.7) is 

greater than the difference when a Pooled Presentation format is used (3.3 vs. 4.1).  

The interaction between price condition and presentation condition is illustrated in 

Fig 2.2 and the ANOVA model (R
2
 = 0.23) is summarized in Table 2.10. 



Chapter 2: Paired vs. Pooled Presentation 

107 

 

Figure 2.2: Interaction plot of the mean confidence judgments of the cheapest store in 

Experiments 1 and 2 (Neutral rating = 4). 

TABLE 2.10 

ANOVA model of confidence judgment ratings of the cheapest store across Experiments 1 

and 2. 

Source SS df MS F p η2 

Price 66.13 1 66.13 30.26 <0.001 0.20 

Presentation 0.03 1 0.03 0.01 0.91 0.00 

Price*Presentation 13.78 1 13.78 6.31 <0.05 0.05 

Error 270.94 124 2.19    

 

2.4.4 Manipulation Check 

 Participants‟ estimates of how many of the items were cheaper in Tesco were 

uncorrelated with prior beliefs about Asda, r(99) = 0.134, p = 0.18.  Similarly, 

estimates of the frequency of Tesco‟s price advantages were uncorrelated with prior 

beliefs about Tesco, r(123) = -0.038, p = 0.67.  Frequency estimates do not appear to 

have been significantly influenced by participants‟ prior beliefs. 
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A two-way between-subjects ANOVA model was used to test for differences 

in the mean frequency estimates between price conditions (Magnitude or Frequency) 

and presentation conditions (Paired or Pooled).  The central tendency and spread of 

frequency estimates are summarized in Table 2.11. 

TABLE 2.11 

Summary of the estimates of the frequency of price advantages in Tesco across Experiments 

1 and 2 

 Paired Pooled 

Price Condition M SD M SD 

Magnitude 11.9 6.0 9.7 4.6 

Frequency 17.1 5.8 11.8 5.1 

 

Participants‟ mean estimates of the number of items that were cheaper in Tesco 

differed significantly between the price conditions (F(1,124) = 13.909, p<0.001, 

η
2
=0.10).  In the Magnitude condition participants gave lower estimates (M = 10.9) 

than in the Frequency condition (M = 14.5).  Participants‟ mean frequency estimates 

also differed significantly between the presentation conditions (F(1,124) = 15.685, 

p<0.001, η
2
=0.11).  In the Paired Presentation format participants gave higher 

estimates (M = 14.6) than in the Pooled Presentation form (M = 10.8).  The 

interaction between price and presentation conditions was not significant.  The 

ANOVA model (R
2
 = 0.21) is summarized in Table 2.12. 

TABLE 2.12 

ANOVA model of the estimates of the frequency of price advantages in Tesco across 

Experiments 1 and 2. 

Source SS df MS F p η2 

Price 399.03 1 399.03 13.91 <0.001 0.10 

Presentation 450.00 1 450.00 15.69 <0.001 0.11 

Price*Presentation 69.03 1 69.03 2.41 0.12 0.02 

Error 3557.44 124 28.69    
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2.5     Discussion 

2.5.1     Experimental Manipulation 

 Participants‟ estimates of the frequency with which Tesco was cheaper across 

the thirty items, asked as a check of the experimental manipulation, indicate that the 

between-subjects experimental manipulations worked as intended.  The meta-

analysis across the two experiments showed that participants were aware of the 

frequency cue as they gave higher frequency estimates in the Frequency condition 

relative to the Magnitude condition.  Hence, the price manipulation was successful.  

Although the meta-analysis did not show a significant interaction between the price 

and presentation conditions, when the data from the two experiments were analysed 

separately the mean frequency estimates differed significantly between price 

conditions only for Experiment 1 (Paired Presentation) and not for Experiment 2 

(Pooled Presentation).  This suggests that the presentation manipulation reduced the 

salience and availability of the frequency cue in Experiment 2, although a firm 

conclusion cannot be drawn from these results. 

2.5.2     Support for Hypotheses 

 The meta-analysis of Experiments 1 and 2 strongly supports Hypothesis 1: 

that Pooled Presentation of price information would reduce or remove the impact of 

the frequency cue (or strengthen the impact of the magnitude cue), relative to Paired 

Presentation.  A between-subjects ANCOVA showed that mean total cost estimates 

in the manipulated store Tesco - when the correlation with total cost estimates for the 

control store Asda and prior beliefs about Tesco were controlled for – were lower in 

the Frequency condition than in the Magnitude condition for both presentation 

formats, but the difference was significantly smaller in the case of Pooled 
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Presentation.  This pattern of results could not be explained by differences in prior 

beliefs between the experimental conditions.  Nonetheless, it is important to note that 

the difference in cost estimates between the price conditions persisted and did not 

entirely disappear, despite participants being unable to accurately estimate or use the 

frequency cue in the case of Pooled Presentation. 

A similar pattern of results supports Hypothesis 3, concerning differences 

between participants‟ mean confidence judgments of which store was the cheaper of 

the two.  When price information was formatted in a Paired Presentation, participants 

were confident that Asda was the cheapest store in the Magnitude condition and 

weakly confident that Tesco was the cheapest store in the Frequency condition.  

When price information was formatted in a Pooled Presentation, participants were 

again confident that Asda was the cheapest store in the Magnitude condition 

(although less confident than in the Paired Presentation) but were undecided as to 

which store was cheaper in the Frequency condition.  Not only are differences 

between total cost estimates less extreme when prices are presented in a Pooled 

format, but participants are also less confident about which store is the cheaper.  

However, it is again important to note that the change of presentation weakened but 

did not remove the impact of the price manipulation. 

The results of the meta-analysis show mixed evidence concerning Hypothesis 

2 – that participants would rely more on prior beliefs in the case of Pooled 

Presentation of price information – and, on balance, weakly support the null 

hypothesis that prior beliefs play a similar role across presentation formats.  Firstly, 

participants‟ confidence judgments concerning which was the cheaper store were 

uncorrelated with prior beliefs.  Although the fit of the ANCOVA model of total cost 

estimates in Tesco was improved by the addition of prior beliefs about Tesco as an 
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additional covariate, when the data from the two experiments were analysed 

separately, prior beliefs only improved the model fit for Paired Presentation and not 

for Pooled Presentation.  Whilst bearing in mind that the power of statistical tests 

involving prior beliefs was weakened due to the exclusion of participants using the 

„Don‟t Know‟ rating – meaning care must be taking in extrapolating conclusions - 

the results overall show little evidence of participants relying upon prior beliefs and 

even less evidence of increased reliance upon prior beliefs in the case of Pooled 

Presentation relative to Paired Presentation of price information. 

2.5.3     Implications 

 The central result of Experiments 1 and 2 is that removing the availability 

and salience of the frequency cue from comparative price data, via a change in 

presentation format, weakens but does not remove the effect of the experimental 

price manipulation upon either total cost estimates or confidence judgments as to 

which store was the cheaper.  Even when the frequency cue was not easily available, 

participants tended to judge the test store as cheaper when it had many small price 

advantages compared to the control store and more expensive when it had a few 

large price advantages.  As the total cost in the test store was unchanged between the 

price conditions, participants‟ judgments were being systematically biased by the 

distribution of price differences between the two stores.  Alba et al (1994) explained 

this „frequency effect‟ as being due to the salience and availability of the frequency 

cue in comparative price data.  The persistence of a (weakened) frequency effect in 

the case of pooled price information has both theoretical and practical implications 

that merit further investigation. 
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 From a theoretical perspective, the result raises the question – which is the 

topic of this thesis - of what cognitive process or processes underlie participants‟ 

overall comparative judgments of two collections of paired items.  If a simple 

frequency cue heuristic is an insufficient explanation of the experimental findings, 

then some or all of the participants were using an alternative judgment and 

estimation process.  Specifically, given that pooled presentation of price data 

requires the prices in one or both stores to be encoded and retrieved from memory, 

what models of judgment and decision-making from memory best explain the 

observed results?  As the literature review in Chapter 1 showed, a number of 

competing models of decision-making from memory have been proposed, some of 

which would predict a frequency effect.  Fitting different models to the same 

experimental data can lend support to particular models (in the sense that a „model‟ 

is a hypothesis of the reality of the underlying cognitive process) in two ways.  

Firstly, goodness-of-fit statistics can show whether one model explains the observed 

data better than another.  Secondly, the fitted parameters can be compared to those 

found when other researchers have applied the same model to experimental data 

from a different domain or decision-making context.  Consistency in model 

parameters across domains can be interpreted as supporting the existence of a single 

judgment process employed in a range of different decisions. 

 The importance of the theoretical implications is strengthened by the 

potential practical implications of the findings.  Paired presentation of price data is 

only found in comparative price advertising or on comparison websites.  Such 

presentations (i) are therefore mostly limited to stores that practise such comparative 

advertising, (ii) are restricted to stores which choose to compare themselves against 

each other, and (iii) are likely to be seen only infrequently by many consumers.  
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Pooled presentation of prices is analogous to the experience of sequential exposure 

to prices in two stores, either through browsing, deliberate comparative price 

information searching, or shopping in different stores on consecutive visits.  It may 

also be analogous to repeat visits to the same store on different occasions given that 

item prices change over time.  Hence, exposure to comparative price data in a pooled 

presentation format is likely to be a common and frequent experience for most 

consumers.  The existence of a frequency effect in actual - as opposed to advertised – 

prices would potentially link the price format of a retailer (e.g. the EDLP and 

PROMO strategies discussed in Chapter 1) with the price image of that retailer.  As 

outlined in Chapter 1, store price image has consistently been shown to exert a 

strong influence on consumers‟ grocery store selection decisions; hence this would 

have significant economic implications for retailers. 

2.5.4     Limitations of Present Study 

 Whilst the previous discussion highlighted the potential implications of the 

results of Experiments 1 and 2 and supports the case for further investigation, a 

number of methodological limitations in the design of the present study mean that 

strong conclusions cannot be drawn from the data and extrapolated to other (non-

experimental) settings.  In particular, a number of features of the experimental design 

do not reflect the real-world experience of comparison shopping, arguably lessening 

the ecological validity of the findings. 

Firstly, total (basket) cost estimates were employed as a measure of price 

image.  This is appropriate when the basket of items is fixed and constant across the 

two stores.  In real-world grocery shopping, the basket of items will differ between 

trips and between stores because of (i) differences in the range of items stocked; (ii) 
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preference for variety (Ratner, Kahn, & Kahneman, 1999; Simonson, 1990); (iii) 

different purchase needs on different occasions; (iv) changes in purchase behaviour 

driven by price differences; and (v) random variation in purchasing behaviour (a 

“trembling hand”).  Relative basket cost estimates may be decoupled from relative 

store price image judgments when the baskets of items differ between the two stores.  

This would be particularly important in the case of (iv) above, where basket 

differences are driven by price differences between the two stores.  One can 

plausibly imagine a scenario in which a store might be perceived as relatively 

expensive and hence a consumer might choose to buy fewer items or to switch to 

cheaper alternatives when shopping in that store.  In that case, the estimated basket 

cost in the store judged to be more expensive would be lower than the estimated 

basket cost in the store judged to be cheaper. 

Secondly, whilst the Paired Presentation format (especially the fifteen-items-

per-page format adopted by Alba et al rather than the item-by-item presentation of 

Experiment 1) is a realistic reflection of the way in which comparative price 

advertising might be experienced by consumers, the sequential presentation of 

Experiment 2 is quite different from the experience of browsing the prices in a real 

store.  Furthermore, in both experiments, the amount of attention given to the price 

data by participants is likely to be higher than in the real world due to the nature of 

the task given to the participants.  In the current experiments participants were 

explicitly instructed to pay attention to the prices and to memorize as much 

information as possible in order to answer subsequent questions.  In a real store 

prices are encountered incidentally as a result of browsing or shopping, and some 

prices may receive more or less attention than others due to the nature of the specific 

shopping task. 
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Thirdly, the thirty item prices used in the current experiments is orders of 

magnitudes fewer than the tens of thousands of items stocked in a large grocery 

store.  A real-world consumer is likely to be sampling from a much larger 

distribution of prices, rather than explicitly considering every item.  As discussed in 

Chapter 1, decisions from experience (i.e. serial sampling of information) introduce 

further potential biases such as under-weighting rare events.  Whilst the current 

experiments allowed many participants to accurately determine information such as 

the frequency cue, real-world price judgments are likely to involve estimation of 

such cues, even if those cues are then subsequently used in a simple decision 

heuristic. 

In addition to the concerns regarding the lack of ecological validity, the 

design of the current studies yields little information about the judgment process 

followed by participants, or the way in which they processed the information they 

were presented with.  With the possible exception of the manipulation check, all 

measures collected were outcome variables related to the final price estimation 

judgment.  No behavioural process measures were collected to record participants‟ 

behaviour during the experiment, which might shed light on how they made the 

subsequent price judgment. 

These limitations of Experiments 1 and 2 motivated the design of 

Experiments 3 and 4, described in the next two chapters.  The experimental design 

chosen was intended to increase the ecological validity of the way price information 

was encountered and processed, the experimental task, and the outcome variables 

collected.  Additional process variables related to participants‟ behaviour during the 

experiment were also collected. 
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CHAPTER 3 

TESTING THE SENSITIVITY OF DISCRIMINATION JUDGMENTS 

TO CHANGES IN MEAN ITEM PRICE IN AN ONLINE 

COMPARATIVE SHOPPING TASK (EXPERIMENT 3) 

3.1     Introduction 

 In the previous chapter I demonstrated the persistence of a „frequency effect‟ 

in comparative price estimates and judgments, even after the frequency cue is made 

unavailable by switching from a paired to a pooled format for price information.  

With the average item price held constant in both stores, the store with frequent 

small price advantages over the other is perceived as cheaper, while the store with a 

few large price advantages is perceived as more expensive.  A frequency effect in 

pooled presentation of price data suggests that the frequency of price advantages will 

exert a significant influence on comparative price judgments when prices in two 

stores are experienced sequentially, for example in browsing two stores.  However, a 

number of limitations in the experimental design, in particular concerns about the 

ecological validity of the presentation and task, mean it would be unwise to 

extrapolate strongly from the experimental results to real-world behaviour.  The 

motivations for Experiment 3 were to design an experimental procedure that 

overcomes these limitations and then to test the sensitivity of the outcome variables 

to changes in the input prices.  The results from Experiment 3 were intended to be 

used to calibrate a robust test of the frequency effect (Experiment 4) and to select a 

sample size with appropriate statistical power. 
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 Experiment 3 simulates the task of browsing and purchasing from two 

grocery stores, before asking participants to make various judgments about the prices 

in each store.  The experiment was designed to be as ecologically valid as possible in 

an online experimental setting, but there are a number of reasons why participants‟ 

price judgments might be less sensitive than in the real world.  Firstly, the 

experiment is a „one-shot‟ experience, while consumers may visit real stores 

repeatedly over time.  Therefore consumers are likely to be both more 

knowledgeable about prices in real stores and also to be more confident in the 

accuracy of that knowledge.  Secondly, there is no strong extrinsic or economic 

motive to give the correct response in an experiment, in contrast to real-world 

shopping where incorrect price judgments may have significant financial 

consequences.  Thirdly, despite the best efforts of the experimenter, an experimental 

shopping task is a less stimulating and involving experience than shopping in a real 

store.  In a real store items are presented in a visually attractive manner and can be 

physically handled.  Prices may be presented in different fonts, sizes and colours, 

with attention drawn to promotional prices through visual cues and placement within 

the store.  Consumers may spend half an hour or more browsing and shopping a real 

store, but are unlikely to spend more than a few minutes browsing a fictional store 

for an experimental task. 

 Nonetheless, one would reasonably hypothesize that, ceteris paribus, as 

prices are lowered in an experimental test store relative to a control store then 

participants‟ judgments concerning the prices in the test store will become more 

favourable (Hypothesis 1).  However, there are a variety of reasons why one might 

expect participants to be unable to distinguish between the two stores when price 
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differences are small.  From a normative perspective
11

, when the mean prices in the 

two stores (or rather the mean of a sample of prices drawn from each store) are 

closer to each other, then confidence that the detected difference is statistically 

significant rather than a Type I error is lower, and so participants should be more 

likely to rate the stores as having identical prices.  In addition, encoding and retrieval 

of prices from memory may be a noisy process, which would introduce additional 

variance and widen the confidence intervals around estimated mean prices.  Use of a 

response scale that only allows integer responses rather than being a true scale 

measure might also introduce a region in which prices are perceived as different but 

not sufficiently so to select different response values for the two stores.  For these 

reasons, a just-noticeable difference in item price means is expected to be observed, 

below which the prices in the two stores are indistinguishable (Hypothesis 2). 

3.2     Method 

3.2.1     Participants 

 320 participants (40 men and 280 women, aged between 18 and 65 years, 

with a mean age of 36 years) took part in the web-based experiment.  Participation 

was restricted to UK citizens.  The recruitment was conducted via the iVillage.co.uk 

website by posting adverts containing a link to the experiment.  All participants were 

entered into a draw for £1,000. 

3.2.2     Stimuli 

 150 items and prices were selected from a local branch of the UK‟s largest 

supermarket, Tesco.  The selected items are all commonly purchased items available 

                                                           
11

  y “normative”, I mean here that I assume participants follow a Signal Detection Theory decision 

process, in which the decision criterion is held constant across multiple judgments. 
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in local stores at the time price data was collected.  The items were chosen to be 

representative of the range of items found in a typical large grocery store.  Fifteen 

items from ten product categories were chosen.  The item prices (at the time of the 

experiment, excluding promotional offers) were between 11p and £14.98 with a 

mean of £1.95.  A summary of the price distribution in each product department is 

given in Table 3.1 and the full item descriptions and and prices are included in 

Appendices A1 and A2. 

TABLE 3.1 

Summary of the item price distribution used for the control store in Experiment 3. 

Product Department Items M SD Min Max 

Fruit and Vegetables 15 £0.92 £0.49 £0.34 £2.18 

Meat and Poultry 15 £5.34 £2.89 £1.93 £11.31 

Grocery 15 £0.82 £0.24 £0.28 £1.17 

Canned Goods 15 £0.53 £0.49 £0.11 £1.73 

Beverages 15 £1.46 £0.86 £0.14 £2.73 

Household and Pet Food 15 £1.07 £0.81 £0.37 £3.58 

Bakery 15 £0.67 £0.32 £0.23 £1.35 

Dairy 15 £0.95 £0.70 £0.29 £3.08 

Frozen Foods 15 £1.47 £0.53 £0.78 £2.54 

Off-Licence 15 £6.24 £4.19 £0.86 £14.98 

 150 £1.95 £2.56 £0.11 £14.98 

 

 Each participant saw two sets of prices for two different stores.  Both stores 

contained the same 150 items.  All participants saw the same prices in the control 

store (“Smith‟s Supermarket”) but the item prices in the test store (“Jones‟ 

Supermarket”) varied between subjects.  Fictional store names were chosen to avoid 

any influence of prior beliefs on participants‟ price judgments.  Item descriptions 

contained a mixture of unbranded items (e.g. “White Seedless Grapes (1 Kg)”), 

familiar brand names (e.g. “Cadbury‟s Dairy Milk (200g)”) and store own-brand 

items (e.g. “Smith‟s Fresh Pure Orange Juice (1 Litre)”). 
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3.2.3     Design and Procedure 

 The experiment was set up as a between-subjects design with eleven discount 

conditions: 0%, 1%, 2%, 3%, 4%, 5%, 7.5%, 10%, 15%, 20% and 30%.  In each 

case, all 150 items in the test store (Jones‟) were discounted by the same percentage 

amount.  Assignment to the discount conditions was random.  The presentation order 

of the two stores (Smith‟s-Jones‟ or Jones‟-Smith‟s) was also randomized.  The 

effect of drop-outs and randomization was that data was not evenly spread across the 

cells, which weakened the power of t-tests for significant differences.  The allocation 

of participants to conditions is shown in Table 3.2. 

TABLE 3.2 

Allocation of participants to discount conditions and store orders in Experiment 3. 

Discount Smith‟s first Jones‟ first Total 

0% 16 15 31 

1% 18 20 38 

2% 13 13 26 

3% 17 18 35 

4% 14 18 32 

5% 12 14 26 

7.5% 12 12 24 

10% 18 7 25 

15% 12 14 26 

20% 12 13 25 

30% 22 10 32 

 166 154 320 

 

 The experiment was implemented in Adobe Flash, embedded in a standard 

HTML page.  Participants were told that they were taking part in a shopping 

simulation in two fictional stores.  Participants were told to imagine that they had no 

provisions in their house and that they must buy everything they needed for a week.  

Participants were instructed to try to buy the items that they would usually purchase, 

or the closest matching item stocked, but only to buy an item if the price was such 

that they would buy it on a normal shop given their normal budget.  Participants 
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were also informed that they would be unable to progress to the checkout until they 

had chosen a reasonable number and selection of items.  Finally, participants were 

given detailed instructions on how to use the online store: how to navigate the store, 

how to add and remove items from the shopping basket, and how to progress to the 

checkout once the shopping trip was completed.  Screen shots were used to illustrate 

the instructions. 

 The store was laid out with the store name at the top of the screen and the ten 

product departments listed down the left-hand side in a fixed order.  When a product 

department is selected then the fifteen items in that department are listed in the 

centre of the screen in a fixed order, with an item description, unit price, quantity 

selection buttons and a purchase button.  A list format was chosen as prior research 

has shown that this is best suited to browsing tasks in online shopping (Hong, 

Thong, & Tam, 2004).  Selected items are added to a shopping basket at the bottom 

of the screen.  The item descriptions and quantities were shown in the basket but not 

the prices.  There was also a button next to each item allowing it to be removed from 

the basket.  At the very bottom of the screen was a button which took the participant 

to the checkout.  This button was greyed out and inactive until the participant had 

selected items from at least five different product categories.  A screen-shot of the 

store is shown in Figure 3.1. 
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Figure 3.1: Screenshot of the online store used in Experiment 3. 

 After clicking on the „Go To Checkout‟ button, participants were asked for 

their pre-checkout judgment of the prices in the first store, using a 5-item scale 

similar to the price beliefs measure used in Experiments 1 and 2: 

“Compared to other supermarkets that I have shopped at in the last 3 months, on the 

products that I buy regularly, this supermarket had: 

1. Cheaper prices on all 

2. Cheaper prices on most 

3. Average prices on all 

4. More expensive prices on most 

5. More expensive prices on all 
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Participants were then shown a checkout receipt with the details of their purchases.  

The store name, date and time were shown, followed by the details of the items and 

quantities purchased, with their total prices.  The receipt was scrollable if the list of 

items was longer than the screen height.  The total number of items and total cost 

were given at the end of the receipt.  The total cost was also given in a large red font 

below the receipt to ensure all participants paid attention to it.  The „Continue‟ 

button was greyed out and inactive for 15 seconds.  A screenshot of the checkout 

receipt is shown in Figure 3.2. 

 Figure 3.2: Screenshot of the checkout receipt used in Experiment 3. 

After viewing the checkout receipt and total basket cost, participants were asked for 

their post-checkout judgment of the prices in the first store using the same 5-item 

response scale as before the checkout. 

 Participants were then given the same task description for the second store.  

In addition, participants were told not to try and buy exactly the same items as in the 
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first store, as the two stores may stock different items and the prices may differ 

between the two stores.  They then repeated the shopping task in the second store, 

which was laid out identically to the first store.  As before, participants were unable 

to continue to the checkout until they had selected items from at least five different 

product categories.  After clicking on the „Go To Checkout‟ button, participants were 

asked for their pre-checkout judgment of the prices in the second store relative to the 

first store, using a 7-item scale: 

“Compared to the first supermarket, I thought that the second store was:” 

1. A lot cheaper 

2. Cheaper 

3. Slightly cheaper 

4. About the same on price 

5. Slightly more expensive 

6. More expensive 

7. A lot more expensive 

In addition, participants were asked their pre-checkout judgment of the prices in the 

second store using the same 5-item response scale used for the first store.  

Participants were also asked to estimate what their basket of items in the second 

store would cost, in pounds and pence.
12

  As before, participants were then shown 

their checkout receipt and total basket cost.  The 7-item relative price judgment and 

5-item price judgment were repeated after the checkout in the second store. 

                                                           
12

 A basket cost estimate was not collected before the checkout of the first store to discourage 

participants from keeping a running total in the second store. 
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 After completing the two shopping tasks and making price judgments about 

both stores, participants were asked a manipulation check question concerning their 

estimate of the frequency cue for the second store: 

“There were 150 products available in each store.  Compared to the first 

supermarket, I think that the second store was cheaper on:” 

1. 0 – 14 products 

2. 15 - 29 products 

3. 30 - 44 products 

4. 45 - 59 products 

5. 60 - 74 products 

6. 75 - 89 products 

7. 90 - 104 products 

8. 105 - 119 products 

9. 120 - 134 products 

10. 135 – 150 products 

Finally, participants supplied their gender, age, income, education level, employment 

status and location.  The participant‟s e-mail address was collected in order to 

administer the prize draw. 

 In addition to the price judgments and manipulation check already described, 

various behavioural process measures were collected.  Participants‟ shopping baskets 

in each store were recorded, as well as the time spent browsing each of the ten 

product categories in each store.  The IP address of each participant was also 

recorded in order to check for multiple entries. 
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3.3     Results 

3.3.1     Shopping Behaviour 

3.3.1.1     Total Spend 

 There was a wide spread of total spends in both Smith‟s (M = £53.27, SD = 

£33.40) and Jones‟ (M = £49.48, SD = £25.31).  Two-way ANOVA models were 

used to test for differences in mean spend for each store between discount conditions 

and presentation orders (Smith‟s-Jones‟ or Jones‟-Smith‟s).   The central tendency 

and spread of total spends are summarized in Table 3.3. 

TABLE 3.3 

 ummary of total spends in  mith’s and Jones’ (Experiment 3) 

 Smith‟s Jones‟ 

Discount 

Condition 
M SD M SD 

0% £45.47 £21.87 £48.67 £25.47 

1% £50.50 £28.67 £49.74 £26.12 

2% £52.59 £35.48 £50.71 £32.63 

3% £53.92 £24.53 £53.48 £24.39 

4% £56.29 £26.45 £55.84 £23.72 

5% £51.55 £50.05 £48.73 £34.84 

7.5% £64.10 £42.19 £58.63 £29.46 

10% £45.45 £18.38 £47.49 £22.24 

15% £54.25 £31.38 £45.61 £18.05 

20% £60.80 £55.37 £44.68 £17.13 

30% £53.62 £24.88 £40.41 £18.33 

 

No significant effect of discount condition or presentation order was found for either 

store.  A summary of the two ANOVA models is shown in Tables 3.4 (Smith‟s) and 

3.5 (Jones‟). 
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TABLE 3.4 

Two-way ANOVA model of total spend in  mith’s (Experiment 3). 

Source SS df MS F p η2 

Discount 8015.36 10 801.54 0.71 0.71 0.02 

Order 3258.51 1 3258.51 2.90 0.09 0.01 

Discount*Order 9488.61 10 948.86 0.85 0.59 0.03 

Error 334569.61 1 1122.72    

 

TABLE 3.5 

Two-way ANOVA model of total spend in Jones’ (Experiment 3). 

Source SS df MS F p η2 

Discount 7768.16 10 776.82 1.16 0.28 0.04 

Order 743.11 1 743.11 1.21 0.28 0.00 

Discount*Order 5131.53 10 513.15 0.80 0.63 0.03 

Error 190842.69 1 640.41    

 

 The total spends in each store were highly correlated, r(318) = 0.756, 

p<0.001.  A two-way ANCOVA model was used to partial out the variance in total 

spend in Jones‟ explained by the total spend in Smith‟s, the effect of which was large 

and highly significant (R
2
 = 0.61; F(1,297) = 416.31, p<0.001, η

2
=0.58).  Levene‟s 

test for Equality of Variances was used to check that the assumption of homogeneity 

of variances was satisfied (F(21,298) = 0.968, p = 0.50).  The adjusted mean total 

spend in Jones‟ differed significantly between discount conditions (F(10,297) = 

2.846, p<0.01, η
2
=0.09).  Planned multiple comparisons between the discount levels 

show that the adjusted mean spend was significantly lower when prices were 

discounted by 20% (M = £40.36) or by 30% (M = £38.99) compared to the 0% 

discount condition (M = £53.20).  The results of the ANCOVA model are 

summarized in Table 3.6, the adjusted mean spends are shown in Table 3.7 and the 

planned comparisons are shown in Table 3.8. 
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TABLE 3.6 

AN OVA model of total spend in Jones’ including total spend in  mith’s as a covariate 

(Experiment 3). 

Source SS df MS F p η2 

Spend Smith‟s 111381.17 1 111381.17 416.31 <0.001 0.58 

Discount 7613.20 10 761.32 2.85 <0.01 0.09 

Order 31.91 1 31.91 0.12 0.73 0.00 

Discount*Order 489.51 10 48.95 0.18 1.00 0.01 

Error 79461.52 297 267.55    

 

TABLE 3.7 

Summary of adjusted mean spends in Jones’ (Experiment 3). 

Discount 

Condition 
Adjusted Mean SEM 95% C.I. for Mean  

0% £53.20 £2.95 £47.40 £59.00 

1% £51.32 £2.66 £46.09 £56.55 

2% £51.10 £3.21 £44.79 £57.41 

3% £53.13 £2.77 £47.68 £58.57 

4% £53.90 £2.92 £48.17 £59.64 

5% £49.78 £3.22 £43.45 £56.11 

7.5% £52.38 £3.35 £45.78 £58.98 

10% £51.77 £3.65 £44.58 £58.95 

15% £45.03 £3.22 £38.70 £51.36 

20% £40.36 £3.28 £33.91 £46.82 

30% £38.99 £3.12 £32.85 £45.13 

 

TABLE 3.8 

Pairwise adjusted mean spend comparison results (Experiment 3). 

Comparison Difference p 

0% vs. 1% £1.88 0.635 

0% vs. 2% £2.11 0.629 

0% vs. 3% £0.08 0.985 

0% vs. 4% -£0.70 0.867 

0% vs. 5% £3.42 0.433 

0% vs. 7.5% £0.82 0.854 

0% vs. 10% £1.44 0.759 

0% vs. 15% £8.17 0.062 

0% vs. 20% £12.84 <0.01 

0% vs. 30% £14.21 <0.01 
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3.3.1.2     Basket Size 

 There was a wide spread of basket sizes in both Smith‟s (M = 39.1, SD = 

17.4) and Jones‟ (M = 39.9, SD = 17.2).  Two-way ANOVA models were used to 

test for differences in mean basket size for each store between discount conditions 

and presentation orders.   The central tendency and spread of basket sizes are 

summarized in Table 3.9.  No significant effect of discount condition or presentation 

order was found for either store.  A summary of the two ANOVA models is shown 

in Tables 3.10 (Smith‟s) and 3.11 (Jones‟). 

TABLE 3.9 

 ummary of bas et sizes in  mith’s and Jones’ (Experiment 3) 

 Smith‟s Jones‟ 

Discount 

Condition 
M SD M SD 

0% 35.3 14.8 35.9 15.5 

1% 34.6 14.4 35.9 15.0 

2% 40.2 15.9 40.3 20.6 

3% 42.3 19.0 43.3 19.0 

4% 41.9 18.1 41.6 16.7 

5% 39.7 25.9 38.6 23.7 

7.5% 43.8 21.9 43.9 14.8 

10% 35.0 14.8 37.6 18.2 

15% 38.9 14.7 40.0 13.9 

20% 40.2 14.1 42.7 15.5 

30% 39.1 16.0 40.8 15.1 

 

TABLE 3.10 

Two-way ANOVA model of bas et size in  mith’s (Experiment 3). 

Source SS df MS F p η2 

Discount 2517.01 10 251.70 0.83 0.60 0.03 

Order 268.32 1 268.32 0.89 0.35 0.00 

Discount*Order 3719.79 10 371.98 1.23 0.27 0.04 

Error 90064.36 298 302.23    
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TABLE 3.11 

Two-way ANOVA model of bas et size in Jones’ (Experiment 3). 

Source SS df MS F p η2 

Discount 2226.62 10 222.66 0.74 0.69 0.02 

Order 190.37 1 190.37 0.63 0.43 0.00 

Discount*Order 1965.83 10 196.58 0.65 0.77 0.02 

Error 89542.94 298 300.48    

 

 The basket sizes in each store were highly correlated, r(318) = 0.822, 

p<0.001.  A two-way ANCOVA model was used to partial out the variance in basket 

size in Jones‟ explained by the basket size in Smith‟s, the effect of which was large 

and highly significant (R
2
 = 0.70; F(1,297) = 645.45, p<0.001, η

2
=0.69).  Levene‟s 

test for Equality of Variances was used to check that the assumption of homogeneity 

of variances was satisfied (F(21,298) = 1.199, p = 0.25).  The adjusted mean basket 

size in Jones‟ did not differ significantly between discount conditions (F(10,297) = 

0.283, p = 0.99).  A small and marginally significant interaction between discount 

level and presentation order was indicated (F(10,297) = 2.178, p<0.05, η
2
=0.07) but 

visual inspection of the profile plot showed no systematic relationship with discount 

level.  The results of the ANCOVA model are summarized in Table 3.12. 

TABLE 3.12 

AN OVA model of bas et size in Jones’ including bas et size in  mith’s as a covariate 

(Experiment 3). 

Source SS df MS F p η2 

 asket Smith‟s 61324.81 1 61324.81 645.45 <0.001 0.69 

Discount 268.80 10 26.88 0.28 0.99 0.01 

Order 0.08 1 0.08 0.00 0.98 0.00 

Discount*Order 2069.59 10 206.96 2.18 <0.05 0.07 

Error 28218.14 297 95.01    

 

 



Chapter 3: Mean Price Discrimination in Online Shopping Task 

131 

3.3.1.3     Total Shopping Time 

 Repeated-measures ANOVA, with trip (first or second) as a within-subjects 

factor and discount condition and presentation order as between-subjects factors, was 

used to test for differences in the mean time spent on each shopping trip.  Outlier 

values >1000 seconds were removed from the analysis.
13

  There was a large and 

significant difference between the mean times spent on each trip (F(1,294) = 205.74, 

p<0.001, η
2
=0.41).  The mean duration of the first trip (M = 320 seconds) was longer 

than the mean duration of the second trip (M = 230 seconds).  There was no 

significant effect of the discount condition (F(10,294) = 1.815, p = 0.06).  The 

results of the within-subjects tests are shown in Table 3.13 and the between-subjects 

tests are shown in Table 3.14. 

TABLE 3.13 

Within-subjects tests of repeated-measures ANOVA of total shopping time (Experiment 3). 

Source SS df MS F P η2 

Trip 1197711 1 1197711 205.74 <0.001 0.41 

Trip*Discount 36630 10 3663 0.63 0.79 0.02 

Trip*Order 3505 1 3505 0.60 0.44 0.00 

Trip*Discount*Order 51795 10 5179 0.89 0.54 0.03 

Error 1711483 294 5821    

 

TABLE 3.14 

Between-subjects tests of repeated-measures ANOVA of total shopping time (Experiment 3). 

Source SS df MS F P η2 

Discount 454785 10 45479 1.81 0.06 0.06 

Order 32691 1 32691 1.30 0.25 0.00 

Discount*Order 256253 10 25625 1.02 0.43 0.03 

Error 7371959 294 25075    

 

                                                           
13

 The web-based experiment had no time limit, so participants could have been interrupted or taken a 

break during the shopping task and returned to it later.  
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Participants had lower basket costs in Jones‟ in the high discount conditions 

due to the lower item prices.  There is no evidence that participants responded to the 

lower item prices by buying more items in the cheaper store.  Participants took less 

time to shop on their second trip relative to the first, but the prices had no influence 

on the time they spent shopping in each store. 

3.3.2     Price Judgments 

3.3.2.1     Comparative Price Judgments 

 Repeated-measures ANOVA, with checkout (pre- or post-checkout) as a 

within-subjects factor and discount condition and presentation order as between-

subjects factors, was used to test for differences in the mean price judgment rating of 

the second store relative to the first store.  There was a small and marginally 

significant difference in mean rating before and after the checkout (F(1,298) = 5.035, 

p<0.05, η
2
=0.02).  Mean ratings before the checkout are less favourable toward the 

second store (M = 3.75) than the mean rating after the checkout (M = 3.55).  There 

was a significant effect of the presentation order (F(1,298) = 147.784, p<0.001, 

η
2
=0.33) and the discount level interacted significantly with the effect of the 

presentation order (F(10,298) = 12.785, p<0.001, η
2
=0.30).  The results of the 

within-subjects tests are shown in Table 3.15 and the between-subjects tests are 

shown in Table 3.16.  The means plot in Figure 3.3 shows that comparative price 

judgments concerning the second store tend to improve with discount level when the 

second store has a lower average price and tend to worsen with discount level when 

the second store has a higher average price. 
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TABLE 3.15 

Within-subjects tests of repeated-measures ANOVA of comparative price judgments 

(Experiment 3). 

Source SS df MS F p η2 

Checkout 6.39 1 6.39 5.04 <0.05 0.02 

Checkout*Discount 4.53 10 0.45 0.36 0.96 0.01 

Checkout*Order 0.05 1 0.05 0.04 0.85 0.00 

Checkout*Discount*Order 22.08 10 2.21 1.74 0.07 0.06 

Error 378.36 298 1.27    

 

TABLE 3.16 

Between-subjects tests of repeated-measures ANOVA of comparative price judgments 

(Experiment 3). 

Source SS df MS F p η2 

Discount 19.95 10 2.00 0.99 0.45 0.03 

Order 296.82 1 296.82 147.78 <0.001 0.33 

Discount*Order 256.78 10 25.68 12.79 <0.001 0.30 

Error 598.52 298 2.01    

 

 Figure 3.3: Interaction plot of the mean comparative price judgments of the second store 

relative to the first store across discount conditions and presentation orders (Experiment 3). 
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 The data were re-coded to create a new percentage price decrease categorical 

variable with 21 levels, where each level represents the decrease in average item 

price in the second store as a percentage of the average item price in the first store.  

For example, a 30% discount in Jones‟ with presentation order Jones‟-Smith‟s was 

re-coded as a -42.8% decrease (a 42.8% increase in average item price from the first 

store to the second store).  Repeated-measures ANOVA, with checkout (pre- or post-

checkout) as a within-subjects factor and percentage price decrease as a between-

subjects factor, was again used to test for differences in the mean price judgment 

rating of the second store relative to the first store.  As before, there was a small and 

marginally significant difference in mean rating before and after the checkout 

(F(1,299) = 4.170, p<0.05, η
2
=0.01).  Mean ratings before the checkout are less 

favourable toward the second store (M = 3.74) than the mean rating after the 

checkout (M = 3.55).  There was a significant effect of the percentage price decrease 

(F(20,299) = 14.052, p<0.001, η
2
=0.49).  Planned multiple comparisons between the 

percentage price decrease levels show that the mean comparative price judgment 

rating was significantly more favourable when prices decreased by 7.5% (M = 3.08), 

by 10% (M = 2.81), by 15% (M = 1.63), by 20% (M = 2.33) or by 30% (M = 1.71) 

compared to the 0% condition (M = 3.79).  Similarly, the mean comparative price 

judgment rating was significantly less favourable when prices increased by 11.1% 

(M = 4.79), by 17.6% (M = 4.61), by 25.1% (M = 5.04) or by 42.8% (M = 5.55) 

compared to the 0% condition.  The results of the within-subjects tests are shown in 

Table 3.17, the between-subjects tests are shown in Table 3.18, the mean price 

judgments are shown in Table 3.19 and the planned comparisons are shown in Table 

3.20.  Based on the pair-wise comparisons, the just-noticeable difference in average 

price between the two stores can be estimated as being between 7.5% and 10%.  The 
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relationship between the percentage price decrease and the mean comparative price 

judgment is plotted in Figure 3.4. 

TABLE 3.17 

Within-subjects tests of repeated-measures ANOVA of comparative price judgments using 

re-coded price conditions (Experiment 3). 

Source SS df MS F p η2 

Checkout 5.282 1 5.282 4.17 <0.05 0.01 

Checkout*Decrease 25.616 20 1.281 1.01 0.45 0.06 

Error 378.683 299 1.266    

 

TABLE 3.18 

Between-subjects tests of repeated-measures ANOVA of comparative price judgments using 

re-coded price conditions (Experiment 3). 

Source SS df MS F p η2 

Decrease 282.486 20 14.124 14.05 <0.001 0.49 

Error 300.539 299 1.005    
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TABLE 3.19 

Summary of mean price judgments in the second store (Experiment 3). 

Percentage 

Price Decrease 
M SEM 95% C.I. for Mean  

-42.8% 5.55 0.32 4.93 6.17 

-25.1% 5.04 0.28 4.49 5.59 

-17.6% 4.61 0.27 4.08 5.13 

-11.1% 4.79 0.38 4.04 5.53 

-8.1% 3.96 0.29 3.39 4.53 

-5.2% 3.75 0.27 3.22 4.28 

-4.2% 4.25 0.24 3.79 4.72 

-3.1% 4.08 0.24 3.62 4.55 

-2% 4.54 0.28 3.99 5.09 

-1% 3.73 0.22 3.28 4.17 

0% 3.79 0.18 3.44 4.15 

1% 3.72 0.24 3.26 4.19 

2% 3.04 0.28 2.49 3.59 

3% 3.35 0.24 2.87 3.83 

4% 3.21 0.27 2.69 3.74 

5% 3.54 0.29 2.97 4.11 

7.5% 3.08 0.29 2.51 3.65 

10% 2.81 0.24 2.34 3.27 

15% 1.63 0.29 1.06 2.20 

20% 2.33 0.29 1.76 2.90 

30% 1.71 0.21 1.28 2.13 
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TABLE 3.20 

Pairwise comparisons of mean comparative price judgments (Experiment 3). 

Comparison Difference p 

0% vs. -42.8% -1.76 <0.001 

0% vs. -25.1% -1.25 <0.001 

0% vs. -17.6%  -0.82 <0.05 

0% vs. -11.1% -1.00 <0.05 

0% vs. -8.1% -0.17 0.62 

0% vs. -5.2% 0.04 0.90 

0% vs. -4.2% -0.46 0.12 

0% vs. -3.1% -0.75 0.33 

0% vs. -2% -.293 <0.05 

0% vs. -1% 0.07 0.82 

0% vs. 1% 0.07 0.82 

0% vs. 2% 0.75 0.02 

0% vs. 3% 0.44 0.15 

0% vs. 4% 0.58 0.08 

0% vs. 5% 0.71 0.47 

0% vs. 7.5%  0.25 <0.05 

0% vs. 10% 0.99 <0.001 

0% vs. 15% 2.17 <0.001 

0% vs. 20% 1.46 <0.001 

0% vs. 30% 2.09 <0.001 
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Figure 3.4: Plot of the mean comparative price judgments of the second store relative to the 

first store across percentage price decrease conditions (Experiment 3). 

 A more sensitive test of the just-noticeable difference in average price 

between the two stores was estimated by treating the comparative price judgment 

rating data as a pair-wise stimulus comparison task.  For all cases except the 0% 

discount level, participants were presented with a pair of stimuli (stores) which 

differed on an attribute (average item price) by a pre-determined amount (the 

absolute value of the percentage price change between store 1 and store 2).  The 

participant may or may not have correctly identified that the second store was 

cheaper or more expensive than the first store.  A binary response variable indicating 

a correct response was coded as: 

 CORRECT = 1 if RESPONSE = [1,2,3] when PRICE CHANGE<0 

 CORRECT = 1 if RESPONSE = [5,6,7] when PRICE CHANGE>0 
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The coding was applied to both pre- and post-checkout relative price judgments.  

The proportion of correct responses for each magnitude of price change is shown in 

Figure 3.5. 

 Figure 3.5: Plot of the magnitude of the percentage price change between store 1 and store 2 

vs. the proportion of participants correctly identifying the cheaper store (Experiment 3). 

 A logistic regression model was estimated for the response data, with the 

binary correct response as the dependent variable and the magnitude of the price 

change as the independent variable, using an iterative maximum likelihood 

procedure.  A test of the full model versus a model with intercept only was 

significant, 
2
(1, N = 578) = 59.363, p<0.001.  With a cut-off of p = 0.5, the model 

was correctly able to classify 83.9% of participants who made a correct relative price 

judgment and 31.6% of participants who made an incorrect judgment, for an overall 

success rate of 63.5%.  Table 3.21 shows the logistic regression coefficient, Wald 

test and odds ratio for the model variables.  The partial effect of the predictor 

variable was significant, 
2
(1, N = 578) = 44.071, p<0.001.  A one point increase in 
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the magnitude of the percentage price change from the first store to the second store 

increases the probability of a correct relative price judgment by a factor of 1.08.  The 

model predicts that an average item price difference of +/-3% or greater in the 

second store relative to the first store would be correctly identified by more than half 

of participants
14

.  Hence, a better estimate of the just-noticeable difference in average 

item prices is 3%.  The predicted relationship between the price change and the 

proportion of correct relative price judgments is shown in Figure 3.6 and the 

relationship between the observed and predicted proportions of correct judgments is 

shown in Figure 3.7. 

TABLE 3.21 

Logistic regression predicting correct comparative price judgment from magnitude of price 

change between stores (Experiment 3). 

Predictor B SE Wald 
2
 df p Exp(B) 

Price Change 0.075 0.011 44.07 1 <0.001 1.078 

Constant -0.224 0.124 3.26 1 0.07 0.799 

 

                                                           
14

 As three of the seven possible responses are „correct‟, the base rate for random guessing is 43%. 
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Figure 3.6: Plot of the predicted relationship between the percentage price change between 

store 1 and store 2 and the proportion of participants correctly identifying the cheaper store 

based on a binary logistic regression model (Experiment 3). 

Figure 3.7: Plot of the relationship between the observed and the predicted proportions of 

participants correctly identifying the cheaper store based on a binary logistic regression 

model (Experiment 3). 
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3.3.2.2     Absolute Price Judgments 

 The absolute price ratings of each store showed a similar pattern of results to 

the comparative price judgments.  Analysis was conducted on the change in ratings 

between the two stores (a negative difference score implies the second store‟s prices 

are perceived more favourably than the first store‟s prices) both before and after the 

checkout.  The change in pre-checkout ratings is significantly correlated with the 

pre-checkout comparative price judgments, r(318) = 0.662, p<0.001.  Similarly, the 

change in post-checkout ratings is significantly correlated with the post-checkout 

comparative price judgments, r(318) = 0.664, p<0.001. 

Repeated-measures ANOVA, with checkout (pre- or post-checkout) as a within-

subjects factor and discount condition and presentation order as between-subjects 

factors, was used to test for differences in the mean change in price judgment ratings 

between the two stores.  There was no significant difference in rating changes before 

and after the checkout (F(1,298) = 0.514, p = 0.47). There was a significant effect of 

the presentation order (F(1,298) = 98.619, p<0.001, η
2
=0.25) and the discount level 

interacted significantly with the effect of the presentation order (F(10,298) = 8.738, 

p<0.001, η
2
=0.23).  The results of the within-subjects tests are shown in Table 3.22 

and the between-subjects tests are shown in Table 3.23.  The means plot in Figure 

3.8 shows that changes in absolute price judgments between the two stores tend to 

become more favourable towards the second store with discount level when the 

second store has a lower average price and tend to worsen with discount level when 

the second store has a higher average price. 
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TABLE 3.22 

Within-subjects tests of repeated-measures ANOVA of inter-store changes in absolute price 

judgments (Experiment 3). 

Source SS df MS F p η2 

Checkout 0.29 1 0.29 0.51 0.47 0.00 

Checkout*Discount 9.13 10 0.91 1.60 0.11 0.05 

Checkout*Order 0.61 1 0.61 1.08 0.30 0.00 

Checkout*Discount*Order 3.93 10 0.39 0.69 0.73 0.02 

Error 169.60 298 0.57    

 

TABLE 3.23 

Between-subjects tests of repeated-measures ANOVA of inter-store changes in absolute 

price judgments (Experiment 3). 

Source SS df MS F p η2 

Discount 7.92 10 0.79 0.68 0.75 0.02 

Order 115.47 1 115.47 98.62 <0.001 0.25 

Discount*Order 102.32 10 10.23 8.74 <0.001 0.23 

Error 348.92 298 1.17    

 

 Figure 3.8: Interaction plot of the mean change in absolute price judgments between the two 

stores across discount conditions and presentation orders (Experiment 3). 
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As before, the data were re-coded to create a new percentage price decrease 

categorical variable with 21 levels, where each level represents the decrease in 

average item price in the second store as a percentage of the average item price in the 

first store.  Repeated-measures ANOVA, with checkout (pre- or post-checkout) as a 

within-subjects factor and percentage price decrease as a between-subjects factor, 

was again used to test for differences in the mean change in absolute price judgment 

rating between the two stores.  Once again, there was no significant difference in 

mean change in rating before and after the checkout (F(1,299) = 0.588, p = 0.44).  

There was a significant effect of the percentage price decrease (F(20,299) = 9.041, 

p<0.001, η
2
=0.38).  Planned multiple comparisons between the percentage price 

decrease levels show that the mean change in absolute price judgment rating was 

significantly more favourable towards the second store when prices decreased by 

10% (M = -0.53), by 15% (M = -0.96), by 20% (M = -0.79) or by 30% (M = -1.16) 

compared to the 0% condition (M = -0.05).  Similarly, the mean change in absolute 

price judgment rating was significantly less favourable when prices increased by 

11.1% (M = 0.64), by 17.6% (M = 0.75), by 25.1% (M = 0.46) or by 42.8% (M = 

1.65) compared to the 0% condition.  The results of the within-subjects tests are 

shown in Table 3.24, the between-subjects tests are shown in Table 3.25, the mean 

price judgments are shown in Table 3.26 and the planned comparisons are shown in 

Table 3.27. 

TABLE 3.24 

Within-subjects tests of repeated-measures ANOVA of inter-store changes in absolute price 

judgments using re-coded price conditions (Experiment 3). 

Source SS df MS F p η2 

Checkout 0.334 1 0.334 0.588 0.44 0.00 

Checkout*Decrease 12.877 20 0.644 1.135 0.31 0.07 

Error 169.617 299 0.567    
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TABLE 3.25 

Between-subjects tests of repeated-measures ANOVA of inter-store changes in absolute 

price judgments using re-coded price conditions (Experiment 3). 

Source SS df MS F p η2 

Decrease 212.63 20 10.63 9.04 <0.001 0.38 

Error 351.61 299 1.18    

 

TABLE 3.26 

Summary of mean change in price judgments between the two stores (Experiment 3). 

Percentage 

Price Decrease 
M SEM 95% C.I. for Mean  

-42.8% 1.65 0.24 1.17 2.13 

-25.1% 0.46 0.21 0.04 0.88 

-17.6% 0.75 0.21 0.35 1.15 

-11.1% 0.64 0.29 0.07 1.21 

-8.1% 0.38 0.22 -0.06 0.81 

-5.2% 0.36 0.21 -0.05 0.76 

-4.2% 0.19 0.18 -0.16 0.55 

-3.1% 0.25 0.18 -0.11 0.61 

-2% 0.23 0.21 -0.19 0.65 

-1% 0.10 0.17 -0.24 0.44 

0% -0.05 0.14 -0.32 0.22 

1% -0.39 0.18 -0.75 -0.03 

2% -0.31 0.21 -0.73 0.11 

3% -0.27 0.19 -0.63 0.10 

4% -0.11 0.21 -0.51 0.30 

5% -0.13 0.22 -0.56 0.31 

7.5% -0.42 0.22 -0.85 0.02 

10% -0.53 0.18 -0.88 -0.17 

15% -0.96 0.22 -1.39 -0.52 

20% -0.79 0.22 -1.23 -0.36 

30% -1.16 0.16 -1.48 -0.84 
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TABLE 3.27 

Pairwise comparisons of mean inter-store changes in price judgments (Experiment 3). 

Comparison Difference p 

0% vs. -42.8% 1.65 <0.001 

0% vs. -25.1% 0.46 <0.05 

0% vs. -17.6% 0.75 <0.001 

0% vs. -11.1% 0.64 <0.05 

0% vs. -8.1% 0.38 0.11 

0% vs. -5.2% 0.36 0.10 

0% vs. -4.2% 0.19 0.29 

0% vs. -3.1% 0.25 0.19 

0% vs. -2% 0.23 0.27 

0% vs. -1% 0.10 0.50 

0% vs. 1% -0.05 0.14 

0% vs. 2% -0.39 0.31 

0% vs. 3% -0.31 0.35 

0% vs. 4% -0.27 0.81 

0% vs. 5% -0.11 0.77 

0% vs. 7.5% -0.13 0.16 

0% vs. 10% -0.42 <0.05 

0% vs. 15% -0.53 <0.001 

0% vs. 20% -0.96 <0.01 

0% vs. 30% -0.79 <0.001 

 

Based on the pair-wise comparisons, the just-noticeable difference in average price 

between the two stores can be estimated as being around 10%, indicating that the 

change in absolute price judgment ratings between stores is a slightly less sensitive 

measure than the comparative price judgments.  The relationship between the 

percentage price decrease and the mean inter-store change in absolute price 

judgments is plotted in Figure 3.9. 
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 Figure 3.9: Plot of the mean change in absolute price judgments between the first store and 

the second store across percentage price decrease conditions (Experiment 3). 

3.3.2.3     Basket Cost Estimates 

 There was a wide spread of basket cost estimates in the second store (M = 

£51.05, SD = £25.41).  A two-way ANOVA model was used to test for differences in 

mean basket cost estimate between discount conditions and presentation orders.   

The central tendency and spread of basket cost estimates are summarized in Table 

3.28.  There was a small and marginally significant difference between the mean 

basket cost estimates for each store (F(1,298) = 3.983, p<0.05, η
2
=0.01).  The mean 

basket cost estimate in the discounted store Jones‟ (M = £48.03) was lower than in 

the control store Smith‟s (M = £54.25).  A summary of the ANOVA model is shown 

in Table 3.29. 
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TABLE 3.28 

Summary of basket cost estimates in the second store (Experiment 3) 

 Smith‟s Jones‟ 

Discount 

Condition 
M SD M SD 

0% £43.57 £18.38 £53.43 £25.72 

1% £54.77 £31.06 £43.60 £21.81 

2% £48.61 £27.09 £44.25 £19.57 

3% £52.24 £24.04 £53.51 £21.66 

4% £64.53 £23.08 £43.73 £20.27 

5% £52.31 £39.15 £40.48 £20.63 

7.5% £74.85 £47.88 £51.40 £18.88 

10% £48.81 £19.00 £46.40 £19.16 

15% £54.75 £29.63 £50.30 £15.58 

20% £50.50 £31.05 £56.05 £25.04 

30% £48.80 £18.16 £46.73 £16.62 

 

TABLE 3.29 

Two-way ANOVA model of basket cost estimates in the second store (Experiment 3). 

Source SS df MS F p η2 

Discount 6080.01 10 608.00 0.96 0.48 0.03 

Order 2531.00 1 2531.00 3.98 <0.05 0.01 

Discount*Order 7465.65 10 746.57 1.18 0.31 0.04 

Error 189345.50 298 635.39    

 

 The basket cost estimates in the second store were strongly correlated with 

the actual basket cost in the first store, r(318) = 0.883, p<0.001.  A two-way 

ANCOVA model was used to partial out the variance in basket cost estimates in the 

second store explained by the actual basket cost in the first store, the effect of which 

was large and highly significant (R
2
 = 0.82; F(1,297) = 1180.93, p<0.001, η

2
=0.80).  

The adjusted mean basket cost estimates differed significantly between presentation 

orders (F(1,297) = 15.25, p<0.001, η
2
=0.05) and the discount level interacted 

significantly with the presentation order (F(10,297) = 2.74, p<0.05, η
2
=0.09).  The 

results of the ANCOVA model are summarized in Table 3.30. 
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TABLE 3.30 

ANCOVA model of basket cost estimate in second store including basket cost in first store as 

a covariate (Experiment 3). 

Source SS df MS F p η2 

Cost First Store 151295.14 1 151295.14 1180.93 <0.001 0.80 

Discount 1867.35 10 186.74 1.46 0.16 0.05 

Order 1954.12 1 1954.12 15.25 <0.001 0.05 

Discount*Order 3513.72 10 351.37 2.74 <0.05 0.09 

Error 38050.36 297 128.12    

 

The means plot in Figure 3.10 shows that adjusted basket cost estimates for the 

second store tend to decrease with discount level when the second store has a lower 

average price and tend to increase with discount level when the second store has a 

higher average price. 

 

Figure 3.10: Interaction plot of the adjusted mean basket cost estimates for the second store 

across discount conditions and presentation orders (Experiment 3). 
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ANCOVA model was used to partial out the variance in basket cost estimates in the 

second store explained by the actual basket cost in the second store, the effect of 

which was large and highly significant (R
2
 = 0.77; F(1,297) = 873.85, p<0.001, 

η
2
=0.75).  However, the adjusted mean basket cost estimates did not differ 

significantly between presentation orders (F(1,297) = 0.004, p = 0.95) and the 

discount level did not interact significantly with the presentation order (F(10,297) = 

1.745, p = 0.07).  The results of the ANCOVA model are summarized in Table 3.31. 

TABLE 3.31 

ANCOVA model of basket cost estimates in the second store including the actual basket cost 

in the second store as a covariate (Experiment 3). 

Source SS df MS F p η2 

Cost Second Store 141315.65 1 141315.65 873.85 <0.001 0.75 

Discount 1727.63 10 172.76 1.07 0.39 0.04 

Order 0.63 1 0.63 0.00 0.95 0.00 

Discount*Order 2821.99 10 282.20 1.75 0.07 0.06 

Error 48029.85 297 161.72    

 

The results of the two ANCOVA models suggest that participants tended to form 

their basket cost estimates for the second store by anchoring on the basket cost in the 

first store and adjusting up or down in response to observed price differences 

between the two stores.  Hence, basket cost estimates tended to be positively related 

to the discount in the second store and the accuracy of participants‟ estimates was 

not systematically worse in high discount conditions. 

3.3.3     Manipulation Check 

 A two-way ANOVA model was used to test for differences in participants‟ 

mean estimate of the number of items that were cheaper in the second store between 

discount conditions and presentation orders.  The mean estimate differed 

significantly between the two stores (F(1,298) = 25.167, p<0.001, η
2
=0.08).  The 
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estimated proportion of items cheaper was higher in the discounted store Jones‟ (M = 

34%) than in the control store Smith‟s (M = 21%).  The discount level interacted 

significantly with the presentation order (F(10,298) = 2.766, p<0.01, η
2
=0.09).  The 

estimated proportion of items cheaper in the second store tended to increase with the 

discount level when the second store was cheaper and to decrease with discount level 

when the second store was more expensive, indicating that participants were more 

aware of the experimental manipulation in the higher discount conditions.  However, 

even in the 30% discount condition only 7 out of 32 participants correctly identified 

that all products were cheaper in Jones‟.  Across all conditions, only 66 out of 320 

participants correctly identified the number of items cheaper in the second store.  

The central tendency and spread of estimates, as well as the proportion of 

respondents identifying the correct response category, are summarized in Table 3.32. 

TABLE 3.32 

Summary of the estimated frequency of price advantages in the second store (Experiment 3) 

 Smith‟s Jones‟  

Discount 

Condition 
M SD M SD Correct Responses 

0% 21% 22% 23% 15% 11 / 31   (35%) 

1% 31% 20% 35% 25% 4 / 38   (11%) 

2% 29% 19% 28% 23% 2 / 26     (8%) 

3% 15% 13% 27% 22% 8 / 35   (23%) 

4% 22% 16% 26% 21% 5 / 32   (16%) 

5% 24% 20% 25% 28% 5 / 26   (19%) 

7.5% 23% 27% 27% 23% 5 / 24   (21%) 

10% 12% 8% 40% 28% 4 / 25   (16%) 

15% 15% 14% 41% 31% 9 / 26   (35%) 

20% 21% 17% 38% 26% 6 / 25   (24%) 

30% 17% 18% 60% 26% 7 / 32   (22%) 
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3.4     Discussion 

3.4.1     Experimental Paradigm 

 Measures of participants‟ behaviour during the experiment indicated that they 

attempted to complete the shopping tasks as requested and that they behaved in line 

with expectations for a real-world shopping task.  Although basket size and spend 

varied widely between participants, each participant did not vary their baskets 

greatly between the two stores, leading to significantly cheaper baskets in the 

discounted store in high discount conditions.  Participants took significantly less 

time to complete their second shopping task, probably due to familiarity with the 

interface and task, but were typically exposed to the item prices for 4-5 minutes in 

each store.  Hence, although the shopping tasks were completed far more quickly 

than one would expect in the real world, all other observed behaviour supports the 

ecological validity of the experimental paradigm and participants experienced no 

problems in completing the experimental tasks.  The online comparative shopping 

task paradigm successfully achieved the desired improvements over the simpler 

experimental paradigm used in Experiments 1 and 2. 

3.4.2     Price Judgment Hypotheses 

 The results of Experiment 3 support both hypotheses concerning comparative 

price judgments in the online shopping task.  Participants‟ judgments of the prices in 

the discounted store relative to the control store were more favourable in high 

discount conditions.  This was true for both direct between-store comparisons of the 

prices and also for differences between separate price judgments of the prices in each 

store.  Hence Hypothesis 1 was supported: participants‟ price judgments are 

positively related to the discount level in the manipulated store.  However, planned 
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comparisons between the discount levels showed that mean comparative price 

judgments only differed significantly from the no discount condition when the 

discount was 7.5% or greater.  Inter-store differences in absolute price judgments 

only differed significantly from the no discount condition when the discount was 

10% or greater.  Although a more sensitive analysis using binary logistic regression 

indicated that more than 50% of participants would correctly identify the cheaper 

store if the average discount was 3% or greater, all analyses showed that participants 

could not detect small differences between the two stores, even when the discount 

applied to every single item.  Hence Hypothesis 2 was also supported: inter-store 

price differences exhibit a „just-noticeable difference‟ below which prices in the two 

stores are judged to be indistinguishable. 

 As suggested in the previous chapter, a distinction should be drawn between 

participants‟ price judgments and their basket cost estimates, once an ecologically-

valid shopping task is adopted.  Although basket cost estimates did show some 

response to the discount condition, this response was less sensitive to inter-store 

price differences than the price judgment measures.  In addition, there was evidence 

that participants‟ basket cost estimates were anchored on the basket cost from the 

first store.  The fact that basket cost estimates were more strongly correlated with the 

basket cost in the first store than the actual basket cost suggests that participants 

failed to adjust sufficiently from the anchor in response to price differences between 

the two stores. 

 Although participants‟ comparative price judgments became more favourable 

toward the cheaper store as the discount level increased, few participants were aware 

of the experimental manipulation.  This suggests either that participants only paid 

attention to a limited subset of the presented items or that they struggled to recall 
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individual pairs of prices from memory.  Thus, similar to the pooled presentation of 

Experiment 2, the frequency cue appears to be neither salient nor easily available in 

the online comparative shopping paradigm.  The online comparative shopping task is 

therefore ideally suited to testing for a persistence of the frequency effect found in 

Experiment 2, in an ecologically valid setting.  In the following chapter I describe 

the results of this test in Experiment 4. 
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CHAPTER 4 

TESTING FOR A FREQUENCY BIAS IN PRICE DISCRIMINATION 

JUDGMENTS IN AN ONLINE COMPARATIVE SHOPPING TASK 

(EXPERIMENT 4) 

4.1     Introduction 

 Experiments 1 and 2 demonstrated the persistence of a „frequency effect‟ in 

comparative price estimates and judgments when switching from a paired to a pooled 

format for price information: with the average item price held constant across two 

stores, the store with frequent small price advantages over the other is perceived as 

cheaper, while the store with a few large price advantages is perceived as more 

expensive.  However, limitations in the experimental design, in particular concerns 

about the ecological validity of the presentation and task, reduced the external 

validity of the findings.  The online comparative shopping paradigm of Experiment 3 

overcame those limitations and tested the sensitivity of the outcome variables to 

changes in the input prices.  In this chapter the results from Experiment 3 are used to 

calibrate a robust test of the frequency effect (Experiment 4) and to select a sample 

size with appropriate statistical power. 

 As well as aiming to increase the ecological and external validity of the 

previous findings, Experiment 4 extends and improves upon Experiments 1 and 2 by 

disentangling the impacts of the frequency and magnitude cues.  In the prior 

experiments only two test stores were used: a store with a high frequency of low 

magnitude price advantages and a store with a low frequency of high magnitude 

price advantages.  Although holding average price constant between the control and 
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test stores necessarily implies a negative relationship between the frequency and 

magnitude cues (as the number of price advantages in the test store is increased, the 

magnitude of those advantages must fall or the magnitude of the disadvantages must 

rise in order to offset the fall in average item price) it is possible to hold the 

frequency constant whilst varying the magnitude of both the price advantages and 

disadvantages in the test store.  The two-way between subjects design of Experiment 

4 means that the main effects of frequency and magnitude can be tested separately, 

as well as any interaction between the two cues. 

 If the findings of Experiments 1 and 2 extend to the comparative shopping 

paradigm of Experiment 3, one would hypothesize that a test store with a high 

frequency of low magnitude price advantages over a control store with the same 

average item price would be perceived more favourably than a test store with a low 

frequency of large magnitude price advantages (Hypothesis 1).  Holding the 

frequency of price advantages and disadvantages constant, increasing the magnitude 

of price differences between the control and test stores should enhance the salience 

of both positive and negative price differences.  Hence, one would hypothesize that 

increasing the magnitude of price differences whilst holding the frequency of price 

advantages constant should have no impact upon comparative price judgments 

(Hypothesis 2).  However, assuming that small price differences are less salient or 

less likely to be accurately recalled by participants, one would expect to see a 

moderating influence of magnitude upon the frequency cue.  When the test store has 

a high frequency of small price advantages (and therefore a low frequency of large 

price disadvantages) then increasing the magnitude of all price differences should 

enhance the salience and availability of the price advantages to a greater extent than 

the disadvantages.  Similarly, when the test store has a low frequency of large price 
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advantages (and therefore a high frequency of small price disadvantages) then 

increasing the magnitude of all price differences should enhance the salience and 

availability of the price advantages to a lesser extent than the disadvantages.  Hence, 

one would hypothesize that increasing the magnitude of price differences should 

strengthen the frequency effect: the difference in price judgments between a low and 

a high frequency test store should be greater when the magnitude of price differences 

is larger (Hypothesis 3). 

4.2     Calibration of Experimental Design 

4.2.1     Magnitude of Price Differences 

 The results of Experiment 3 showed that when all 150 items were discounted, 

a statistically significant difference in comparative price judgments - relative to the 

no discount condition – was observed for a price difference of 7.5% or greater with a 

sample size of 25-30 participants per condition.  A more sensitive test using binary 

logistic regression indicated that the just-noticeable difference in average item price 

was lower at just 3%.  Given that the frequency of price advantages in Experiment 4 

is less than 100%, then the just-noticeable difference in item prices may be higher.  

Hence, an item price difference of 5% was chosen for the price advantages in the 

small magnitude conditions.  An item price difference of 20% was chosen for the 

price advantages in the large magnitude conditions. 

4.2.2     Power Analysis 

 A priori power analysis was used to determine an appropriate sample size for 

Experiment 4, with sufficient power to detect an effect of the experimental 

manipulation with 95% probability (β = 0.05).  Although the effect size of varying 
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the frequency or magnitude was unknown, the results of Experiment 3 were used to 

estimate an effect size which would be sufficiently large to be considered a 

meaningful effect.  A linear regression model was estimated for the data from 

Experiment 3, using the arithmetic mean of the pre- and post-checkout comparative 

price judgment ratings (M = 3.57, SD = 1.35) as the dependent variable and the 

percentage change in average item price between the first and second store as the 

independent (predictor) variable, using a least-squares procedure.  The model fit (R
2
 

= 0.417) differed significantly from zero (F(1,318) = 227.06, p<0.001) and the effect 

of the predictor variable was highly significant (b = 0.062, t(319) = -15.068, 

p<0.001).  A 10% reduction in average item price in the test store leads to a 0.62 

point improvement on the seven-point comparative price judgment rating scale.  This 

corresponds to an effect size (Cohen‟s f
 2

) of 0.715
15

, which by convention is a large 

effect.
16

  The results of the regression model are summarized in Table 4.1. 

TABLE 4.1 

Linear regression predicting comparative price judgment rating from magnitude of price 

change between stores (Experiment 3). 

Predictor B SE Standardized β t p 

Price Change -0.062 0.004 -0.645 -15.07 <0.001 

Constant 3.599 0.058  62.23 <0.001 

 

 The effect size of the frequency and magnitude cues was hypothesized to be 

smaller than the average item price effect as the overall price level of the store is 

unaffected  by changes in either variable.  Nonetheless, for an effect to be of 

practical or substantive interest, it would need to be within an order of magnitude of 

                                                           
15

 Cohen‟s f
 2
 is calculated as 

  

     and tests for a significant deviation of R
2
 from zero in multiple 

regression. 
16

 By convention,  f
 2
 = 0.02 is a small effect, f

 2
 = 0.15 is a medium effect, and  f

 2
 = 0.35 is a large 

effect, as defined by Cohen (1988, p. 412). 
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the effect size of a change in the average item price.  Hence the appropriate effect 

size was set at 5% of the average item price effect size, i.e. at f
 2

 = 0.0358, which by 

convention is a small effect.  Power analysis was conducted using the G*Power 3 

software (Faul, Erdfelder, Lang, & Buchner, 2007), using the omnibus test for 

multiple regression.  The error probability was set at  = 0.05 and the power at (1-β) 

= 0.95.  Power analysis was conducted for a model with three predictor variables: 

frequency, magnitude and the interaction frequency*magnitude.  The power analysis 

indicated a minimum sample size of 484 participants with a critical F of 2.623.  

Given that power analysis for F-tests assumes equal group sizes in the case of 

ANOVA and Experiment 4 was expected to have unequal group sizes due to 

randomization and dropouts, a 25% margin was added to the minimum sample size, 

to give a minimum sample size of 604 participants.  The power obtained for a range 

of sample sizes and effect sizes for a multiple regression with three predictor 

variables is shown in Figure 4.1. 

 

Figure 4.1: Experimental power of an omnibus test of a multiple regression with three 

predictor variables for a representative range of effect sizes and sample sizes. 
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4.3     Method 

4.3.1     Participants 

 626 participants (253 men and 373 women, aged between 18 and 60 years, 

with a mean age of 38 years) took part in the web-based experiment.  Participation 

was restricted to UK citizens.  The recruitment was conducted via the iPoints reward 

scheme (www.ipoints.co.uk).  Points collected on the scheme can be exchanged for 

CDs, flights and other goods, enabling iPoints to maintain a large panel with a good 

spread across a wide range of demographic variables.  A sample of iPoints members 

were selected at random to receive an e-mail invitation to participate in the 

experiment.  Participants each received 20 iPoints (worth approximately £2) for 

taking part. 

4.3.2     Stimuli 

 The same 150 commonly purchased items and prices were used as in 

Experiment 3, with fifteen items from ten product categories.  As in Experiment 3, 

each participant saw two sets of prices for two different stores.  Both stores 

contained the same 150 items.  All participants saw the same prices in the control 

store (“Smith‟s Supermarket”) but the item prices in the test store (“Jones‟ 

Supermarket”) varied between subjects.  The item prices in the control store were 

between 11p and £14.98 with a mean of £1.95; the full item descriptions and prices 

are included in Appendices A1 and A2. 

4.3.3     Design and Procedure 

 The experiment was set up as a 2x2 between-subjects design with two 

independent variables, Frequency and Magnitude, systematically varied.  The 
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frequency with which the test store was cheaper than the control store was either 

Low (20% of items cheaper in the test store) or High (80% of items cheaper in the 

test store).  The magnitude of those price advantages was also either Small (5% 

cheaper) or Large (20% cheaper).  The reduced items were selected at random, with 

the same number of items reduced within each product category.  In each case, the 

average item price across the 150 items in the control store (Smith‟s) was replicated 

in the test store (Jones‟) by increasing all the non-reduced item prices by a constant 

percentage.  A summary of the prices in the test store and the relative price 

distribution across the control and test stores is shown in Table 4.2.  Assignment to 

the four groups was random.  The presentation order of the two stores (Smith‟s-

Jones‟ or Jones‟-Smith‟s) was also randomized.  The effect of drop-outs and 

randomization was that data was not evenly spread across the groups, which 

weakened the power of t-tests for significant differences.  The allocation of 

participants to groups is shown in Table 4.3. 

TABLE 4.2 

Experimental design and price distributions for the test stores used in Experiment 4. 

Frequency / Magnitude Low/Small Low/Large High/Small High/Large 

Mean item price £1.95 £1.95 £1.95 £1.95 

SD of item prices £2.52 £2.45 £2.57 £2.87 

Minimum item price £0.11 £0.12 £0.10 £0.09 

Maximum item price £14.23 £11.98 £14.23 £19.40 

Number of items cheaper 30 30 120 120 

Number of items more expensive 120 120 30 30 

Mean price advantage £0.16 £0.63 £0.10 £0.40 

Mean price disadvantage £0.04 £0.16 £0.40 £1.61 
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TABLE 4.3 

Allocation of participants to frequency and magnitude conditions and store orders in 

Experiment 4. 

Frequency / 

Magnitude 
Smith‟s first Jones‟ first Total 

Low / Small 70 73 143 

Low / Large 70 81 151 

High / Small 96 77 173 

High / Large 82 77 159 

 318 308 626 

 

 The experimental procedure was identical to Experiment 3.  The experiment 

was implemented in Adobe Flash, embedded in a standard HTML page.  Participants 

were told that they were taking part in a shopping simulation in two fictional stores, 

and were told to imagine that they have no provisions in their house and that they 

must buy everything they need for a week.  Participants were instructed to try and 

buy the items that they would usually purchase, or the closest matching item stocked, 

but only to buy an item if the price was such that they would buy it on a normal shop 

given their normal budget.  Participants were also informed that they would be 

unable to progress to the checkout until they had chosen a reasonable number and 

selection of items and were given detailed instructions on how to use the online 

store. 

 The store was laid out with the store name at the top of the screen and the ten 

product departments listed down the left-hand side in a fixed order.  When a product 

department was selected then the fifteen items in that department were listed in the 

centre of the screen in a fixed order, with an item description, unit price, quantity 

selection buttons and a purchase button.  Selected items were added to a shopping 

basket at the bottom of the screen.  The item descriptions and quantities were shown 

in the basket but not the prices.  After clicking on the „Go To Checkout‟ button, 

participants were asked for their pre-checkout judgment of the prices in the first 
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store, using a five-item scale.  Participants were then shown a checkout receipt with 

the details of their purchases and the total cost was also given in a large red font 

below the receipt.  After viewing the checkout receipt and total basket cost, 

participants were asked for their post-checkout judgment of the prices in the first 

store using the same five-item response scale as before the checkout. 

 Participants were given the same task description for the second store and 

then repeated the shopping task in the second store, which was laid out identically to 

the first store.  After clicking on the „Go To Checkout‟ button, participants were 

asked for their pre-checkout judgment of the prices in the second store relative to the 

first store using a seven-item scale and for their pre-checkout judgment of the prices 

in the second store using the same five-item response scale used for the first store.  

Participants were also asked to estimate what their basket of items in the second 

store would cost, in pounds and pence.  As before, participants were then shown 

their checkout receipt and total basket cost.  The seven-item comparative price 

judgment and five-item price judgment were repeated after the checkout in the 

second store.  After completing the two shopping tasks and making price judgments 

about both stores, participants were asked a manipulation check question concerning 

their estimate of the frequency cue for the second store.  Finally, participants 

supplied their gender, age, income, education level, employment status and location.  

The participant‟s e-mail address was collected in order to credit their iPoints account 

with their incentive payment. 

 In addition to the price judgments and manipulation check already described, 

various behavioural process measures were recorded.  Participants‟ shopping baskets 

in each store were recorded, as well as the time spent browsing each of the ten 
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product categories in each store.  The IP address of each participant was also 

collected in order to check for multiple entries. 

4.4     Results 

4.4.1     Shopping Behaviour 

4.4.1.1     Total Spend 

 There was a wide spread of total spends in both Smith‟s (M = £50.74, SD = 

£26.16) and Jones‟ (M = £49.56, SD = £24.24).  Three-way ANOVA models were 

used to test for differences in mean spend for each store between frequency and 

magnitude conditions and between presentation orders (Smith‟s-Jones‟ or Jones‟-

Smith‟s).   The central tendency and spread of total spends are summarized in Table 

4.4.  No significant effect of frequency condition, magnitude condition or 

presentation order was found for either store.  A summary of the two ANOVA 

models is shown in Tables 4.5 (Smith‟s) and 4.6 (Jones‟). 

TABLE 4.4 

Summary of total spends in  mith’s and Jones’ (Experiment 4) 

 Smith‟s Jones‟ 

Frequency / 

Magnitude 
M SD M SD 

Low / Small £47.79 £22.61 £48.01 £23.01 

Low / Large £51.38 £24.51 £50.58 £22.75 

High / Small £49.70 £23.42 £49.11 £25.36 

High / Large £53.93 £32.56 £50.49 £25.56 
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TABLE 4.5 

Three-way ANOVA model of total spend in  mith’s (Experiment 4). 

Source SS df MS F p η2 

Frequency 845.32 1 845.32 1.23 0.27 0.00 

Magnitude 2327.47 1 2327.47 3.40 0.07 0.01 

Order 641.04 1 641.04 0.94 0.33 0.00 

Freq*Mag 19.51 1 19.51 0.03 0.87 0.00 

Freq*Order 203.03 1 203.03 0.30 0.59 0.00 

Mag*Order 274.21 1 274.21 0.40 0.53 0.00 

Freq*Mag*Order 31.19 1 31.19 0.05 0.83 0.00 

Error 423345.36 618 685.03    

 

TABLE 4.6 

Three-way ANOVA model of total spend in Jones’ (Experiment 4). 

Source SS df MS F p η2 

Frequency 42.51 1 42.51 0.07 0.79 0.00 

Magnitude 669.91 1 669.91 1.14 0.29 0.00 

Order 298.65 1 298.65 0.51 0.48 0.00 

Freq*Mag 49.27 1 49.27 0.08 0.77 0.00 

Freq*Order 1101.39 1 1101.39 1.87 0.17 0.00 

Mag*Order 436.13 1 436.13 0.74 0.39 0.00 

Freq*Mag*Order 919.21 1 919.21 1.56 0.21 0.00 

Error 363849.61 618 588.75    

 

 The total spends in each store were highly correlated, r(624) = 0.826, 

p<0.001.  A three-way ANCOVA model was used to partial out the variance in total 

spend in Jones‟ explained by the total spend in Smith‟s, the effect of which was large 

and highly significant (R
2
 = 0.69; F(1,617) = 1337.98, p<0.001, η

2
=0.68).  Levene‟s 

test for Equality of Variances was used to check that the assumption of homogeneity 

of variances was satisfied (F(7,618) = 0.262, p = 0.97).  The adjusted mean total 

spend in Jones‟ did not differ significantly between frequency conditions (F(1,617) = 

1.335, p = 0.25), magnitude conditions (F(1,617) = 0.661, p = 0.42) or presentation 
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orders (F(1,617) = 0.24, p = 0.88).  The results of the ANCOVA model are 

summarized in Table 4.7. 

TABLE 4.7 

ANCOVA model of total spend in Jones’ including total spend in  mith’s as a covariate 

(Experiment 4). 

Source SS df MS F p η2 

Spend Smith‟s 249016.81 1 249016.81 1337.98 <0.001 0.68 

Frequency 248.48 1 248.48 1.34 0.25 0.00 

Magnitude 122.93 1 122.93 0.66 0.42 0.00 

Order 4.56 1 4.56 0.02 0.88 0.00 

Freq*Mag 108.30 1 108.30 0.58 0.45 0.00 

Freq*Order 495.23 1 495.23 2.66 0.10 0.00 

Mag*Order 66.93 1 66.93 0.36 0.55 0.00 

Freq*Mag*Order 677.78 1 677.78 3.64 0.06 0.01 

Error 114832.80 617 186.12    

 

4.4.1.2     Basket Size 

 There was a wide spread of basket sizes in both Smith‟s (M = 39.1, SD = 

19.4) and Jones‟ (M = 38.8, SD = 16.9).  Three-way ANOVA models were used to 

test for differences in mean basket size for each store between frequency and 

magnitude conditions and between presentation orders.   The central tendency and 

spread of basket sizes are summarized in Table 4.8.  No significant effect of 

frequency condition, magnitude condition or presentation order was found for either 

store.  A summary of the two ANOVA models is shown in Tables 4.9 (Smith‟s) and 

4.10 (Jones‟). 
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TABLE 4.8 

Summary of basket sizes in  mith’s and Jones’ (Experiment 4) 

 Smith‟s Jones‟ 

Frequency / 

Magnitude 
M SD M SD 

Low / Small 37.9 18.8 37.1 17.8 

Low / Large 39.2 18.2 39.2 17.8 

High / Small 38.4 15.9 38.3 16.3 

High / Large 40.7 23.9 40.6 15.7 

 

TABLE 4.9 

Three-way ANOVA model of basket size in Smith’s (Experiment 4). 

Source SS df MS F p η2 

Frequency 175.80 1 175.80 0.47 0.50 0.00 

Magnitude 513.79 1 513.79 1.36 0.24 0.00 

Order 433.83 1 433.83 1.15 0.28 0.00 

Freq*Mag 42.50 1 42.50 0.11 0.74 0.00 

Freq*Order 6.32 1 6.32 0.02 0.90 0.00 

Mag*Order 20.23 1 20.23 0.05 0.82 0.00 

Freq*Mag*Order 129.33 1 129.33 0.34 0.56 0.00 

Error 233116.79 618 377.21    

 

TABLE 4.10 

Three-way ANOVA model of bas et size in Jones’ (Experiment 4). 

Source SS df MS F p η2 

Frequency 295.07 1 295.07 1.03 0.31 0.00 

Magnitude 761.76 1 761.76 2.66 0.10 0.00 

Order 246.92 1 246.92 0.86 0.35 0.00 

Freq*Mag 1.08 1 1.08 0.00 0.95 0.00 

Freq*Order 51.40 1 51.40 0.18 0.67 0.00 

Mag*Order 6.38 1 6.38 0.02 0.88 0.00 

Freq*Mag*Order 204.89 1 204.89 0.72 0.40 0.00 

Error 176775.41 618 286.04    

 

 The basket sizes in each store were highly correlated, r(624) = 0.813, 

p<0.001.  A three-way ANCOVA model was used to partial out the variance in 

basket size in Jones‟ explained by the basket size in Smith‟s, the effect of which was 
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large and highly significant (R
2
 = 0.66; F(1,617) = 1195.07, p<0.001, η

2
=0.66).  

Levene‟s test for Equality of Variances was used to check that the assumption of 

homogeneity of variances was satisfied (F(7,618) = 0.492, p = 0.84).  The adjusted 

mean basket size in Jones‟ did not differ significantly between frequency conditions 

(F(1,617) = 0.623, p = 0.43), magnitude conditions (F(1,617) = 1.369, p = 0.24) or 

presentation orders (F(1,617) = 0.010, p = 0.92).  The results of the ANCOVA 

model are summarized in Table 4.11. 

TABLE 4.11 

AN OVA model of bas et size in Jones’ including bas et size in  mith’s as a covariate 

(Experiment 4). 

Source SS df MS F p η2 

 asket Smith‟s 116584.43 1 116584.43 1195.07 <0.001 0.66 

Frequency 60.81 1 60.81 0.62 0.43 0.00 

Magnitude 133.58 1 133.58 1.37 0.24 0.00 

Order 0.97 1 0.97 0.01 0.92 0.00 

Freq*Mag 12.75 1 12.75 0.13 0.72 0.00 

Freq*Order 29.06 1 29.06 0.30 0.59 0.00 

Mag*Order 0.43 1 0.43 0.00 0.95 0.00 

Freq*Mag*Order 39.32 1 39.32 0.40 0.53 0.00 

Error 60190.98 617 97.55    

 

4.4.1.3     Total Shopping Time 

 Repeated-measures ANOVA, with trip (first or second) as a within-subjects 

factor and frequency and magnitude conditions and presentation order as between-

subjects factors, was used to test for differences in the mean time spent on each 

shopping trip.  Outlier values >1000 seconds were removed from the analysis.
17

  

There was a large and significant difference between the mean times spent on each 

trip (F(1,609) = 459.94, p<0.001, η
2
=0.43).  The mean duration of the first trip (M = 

                                                           
17

 The web-based experiment had no time limit, so participants could have been interrupted or taken a 

break during the shopping task and returned to it later.  
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312 seconds) was longer than the mean duration of the second trip (M = 219 

seconds).  There was a small and marginally significant effect of the frequency 

condition (F(1,609) = 4.313, p<0.05, η
2
=0.01).  The mean duration in the low 

frequency conditions (M = 256 seconds) was shorter than the mean duration in the 

high frequency durations (M = 275 seconds).  The mean shopping time did not differ 

significantly between magnitude conditions (F(1,609) = 1.063, p = 0.30) or 

presentation orders (F(1,609) = 0.064, p = 0.80).  The results of the within-subjects 

tests are shown in Table 4.12 and the between-subjects tests are shown in Table 4.13. 

TABLE 4.12 

Within-subjects tests of repeated-measures ANOVA of total shopping time (Experiment 4). 

Source SS df MS F p η2 

Trip 2666716.6 1 2666716.6 459.94 <0.001 0.43 

Trip*Freq 1229.0 1 1229.0 0.21 0.65 0.00 

Trip*Mag 1581.4 1 1581.4 0.27 0.60 0.00 

Trip*Order 5223.1 1 5223.1 0.90 0.34 0.00 

Trip*Freq*Mag 28848.0 1 28848.0 4.98 <0.05 0.01 

Trip*Freq*Order 792.3 1 792.3 0.14 0.71 0.00 

Trip*Mag*Order 241.1 1 241.1 0.04 0.84 0.00 

Trip*Freq*Mag*Order 1440.8 1 1440.8 0.25 0.62 0.00 

Error 3530993.1 609 5798.0    

 

TABLE 4.13 

Between-subjects tests of repeated-measures ANOVA of total shopping time (Experiment 4). 

Source SS df MS F p η2 

Frequency 107708.8 1 107708.8 4.31 <0.05 0.01 

Magnitude 26547.3 1 26547.3 1.06 0.30 0.00 

Order 1592.1 1 1592.1 0.06 0.80 0.00 

Freq*Mag 18165.7 1 18165.7 0.73 0.39 0.00 

Freq*Order 17710.2 1 17710.2 0.71 0.40 0.00 

Mag*Order 5346.7 1 5346.7 0.21 0.64 0.00 

Freq*Mag*Order 236.2 1 236.2 0.01 0.92 0.00 

Error 15207385.4 609 24971.1    
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Participants‟ basket costs and basket sizes were similar across frequency and 

magnitude conditions, with no evidence of a change in shopping behaviour in 

response to the changes in item prices.  Similarly, the mean duration of each 

shopping trip was not strongly influenced by the experimental manipulation of the 

prices.  Overall, participants‟ shopping behaviour appears to have been the same 

across the different price conditions. 

4.4.2     Price Judgments 

4.4.2.1     Comparative Price Judgments 

 Repeated-measures ANOVA, with checkout (pre- or post-checkout) as a 

within-subjects factor and frequency and magnitude conditions and presentation 

order as between-subjects factors, was used to test for differences in the mean price 

judgment rating of the second store relative to the first store.  There was no 

significant difference in mean rating before and after the checkout (F(1,618) = 0.650, 

p = 0.42).  There was a significant effect of the presentation order (F(1,618) = 

15.537, p<0.001, η
2
=0.03) and the presentation order interacted significantly with 

both the frequency of price advantages in Jones‟ (F(1,618) = 46.176, p<0.001, 

η
2
=0.07) and the magnitude of those price advantages (F(1,618) = 1.869, p<0.001, 

η
2
=0.02).  The hypothesized three-way interaction between presentation order, 

frequency and magnitude was not significant (F(1,618) = 1.542, p = 0.22).  The 

results of the within-subjects tests are shown in Table 4.14 and the between-subjects 

tests are shown in Table 4.15.  
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TABLE 4.14 

Within-subjects tests of repeated-measures ANOVA of comparative price judgments 

(Experiment 4). 

Source SS df MS F p η2 

Checkout 0.802 1 0.802 0.65 0.42 0.00 

Checkout*Freq 3.204 1 3.204 2.60 0.11 0.00 

Checkout*Mag 0.644 1 0.644 0.52 0.47 0.00 

Checkout*Order 0.082 1 0.082 0.07 0.80 0.00 

Checkout*Freq*Mag 0.070 1 0.070 0.06 0.81 0.00 

Checkout*Freq*Order 0.644 1 0.644 0.52 0.47 0.00 

Checkout*Mag*Order 0.497 1 0.497 0.40 0.52 0.00 

Checkout*Freq*Mag*Order 6.405 1 6.405 5.20 <0.05 0.01 

Error 761.770 618 1.233    

 

TABLE 4.15 

Between-subjects tests of repeated-measures ANOVA of comparative price judgments 

(Experiment 4). 

Source SS df MS F p η2 

Frequency 7.356 1 7.356 3.27 0.07 0.01 

Magnitude 0.435 1 0.435 0.19 0.66 0.00 

Order 34.906 1 34.906 15.54 <0.001 0.03 

Freq*Mag 0.001 1 0.001 0.00 0.98 0.00 

Freq*Order 103.741 1 103.741 46.18 <0.001 0.07 

Mag*Order 24.419 1 24.419 10.87 <0.001 0.02 

Freq*Mag*Order 3.465 1 3.465 1.54 0.22 0.00 

Error 1388.421 618 2.247    

 

 The means plot in Figure 4.2 shows that, for participants who saw the control 

store (Smith‟s) followed by the test store (Jones‟), comparative price judgments 

about the test store are more favourable (lower) when the test store has a high 

frequency of price advantages and are less favourable (higher) when the test store 

has a low frequency of price advantages.  Similarly, the means plot in Figure 4.3 

shows that, for participants who saw the test store (Jones‟) followed by the control 

store (Smith‟s), comparative price judgments about the test store are also more 
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favourable (higher) when the test store has a high frequency of price advantages and 

are less favourable (lower) when the test store has a low frequency of price 

advantages.  The mean relative price judgments in the two figures show that the 

second store was perceived to have lower prices than the first store (i.e. < 4) when 

that second store has a high frequency of price advantages but the same mean price.  

The second store was perceived to have the same or higher prices than the first store 

(i.e. ≥ 4) when that second store has a low frequency of price advantages and the 

same mean price. 

Figure 4.2: Interaction plot of the mean comparative price judgments of the second store 

relative to the first store across frequency conditions for participants who saw the control 

store followed by the test store (Experiment 4). 
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Figure 4.3: Interaction plot of the mean comparative price judgments of the second store 

relative to the first store across frequency conditions for participants who saw the test store 

followed by the control store (Experiment 4). 

The means plot in Figure 4.4 shows that when price advantages in the test store are 

small in magnitude, comparative price judgments about the second store are the 

same regardless of whether the store being rated is the control store or the test store.  

When price advantages in the test store are large in magnitude, comparative price 

judgments about the second store are more favourable when the store being rated is 

the test store and less favourable when the store being rated is the control store. 
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Figure 4.4: Interaction plot of the mean comparative price judgments of the second store 

relative to the first store across magnitude conditions and presentation orders (Experiment 

4). 

4.4.2.2     Absolute Price Judgments 

 The absolute price ratings of each store showed a similar pattern of results to 

the comparative price judgments, although the ratings were much noisier.  Analysis 

was conducted on the change in ratings between the two stores (a negative difference 

score implies the second store‟s prices are perceived more favourably than the first 

store‟s prices) both before and after the checkout.  The change in pre-checkout 

ratings was not significantly correlated with the pre-checkout comparative price 

judgments, r(624) = 0.040, p = 0.31.  However, the change in post-checkout ratings 

is slightly and significantly correlated with the post-checkout comparative price 
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order as between-subjects factors, was used to test for differences in the mean 

change in price judgment ratings between the two stores.  There was no significant 

difference in rating changes before and after the checkout (F(1,618) = 2.150, p = 

0.14).  There was a significant effect of the presentation order (F(1,618) = 7.412, 

p<0.01, η
2
=0.01) and the frequency condition interacted significantly with the effect 

of the presentation order (F(1,618) = 9.620, p<0.01, η
2
=0.02).  The magnitude 

condition did not interact significantly with the presentation order (F(1,618) = 1.781, 

p = 0.18) and the hypothesized three-way interaction between frequency, magnitude 

and presentation order was also insignificant (F(1,618) = 0.641, p = 0.42).  The 

results of the within-subjects tests are shown in Table 4.16 and the between-subjects 

tests are shown in Table 4.17. 

TABLE 4.16 

Within-subjects tests of repeated-measures ANOVA of inter-store changes in absolute price 

judgments (Experiment 4). 

Source SS df MS F p η2 

Checkout 1.045 1 1.045 2.15 0.14 0.00 

Checkout*Freq 0.012 1 0.012 0.02 0.88 0.00 

Checkout*Mag 0.035 1 0.035 0.07 0.79 0.00 

Checkout*Order 0.612 1 0.612 1.26 0.26 0.00 

Checkout*Freq*Mag 0.223 1 0.223 0.46 0.50 0.00 

Checkout*Freq*Order 0.322 1 0.322 0.66 0.42 0.00 

Checkout*Mag*Order 0.039 1 0.039 0.08 0.78 0.00 

Checkout*Freq*Mag*Order 0.843 1 0.843 1.74 0.19 0.00 

Error 300.226 618 0.486    
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TABLE 4.17 

Between-subjects tests of repeated-measures ANOVA of inter-store changes in absolute 

price judgments (Experiment 4). 

Source SS df MS F p η2 

Frequency 13.71 1 13.71 12.86 <0.001 0.02 

Magnitude 1.99 1 1.99 1.87 0.17 0.00 

Order 7.90 1 7.90 7.41 <0.01 0.01 

Freq*Mag 0.65 1 0.65 0.61 0.43 0.00 

Freq*Order 10.25 1 10.25 9.62 <0.01 0.02 

Mag*Order 1.90 1 1.90 1.78 0.18 0.00 

Freq*Mag*Order 0.68 1 0.68 0.64 0.42 0.00 

Error 658.50 618 1.066    

 

 The means plot in Figure 4.5 shows that changes in absolute price judgments 

between the two stores tend to be more favourable towards the second store when the 

second store is the test store and has a high frequency of price advantages. 

Figure 4.5: Interaction plot of the mean change in absolute price judgments between the two 

stores across frequency conditions and presentation orders (Experiment 4). 
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4.4.2.3     Basket Cost Estimates 

 There was a wide spread of basket cost estimates in the second store (M = 

£49.25, SD = £23.12).  A three-way ANOVA model was used to test for differences 

in mean basket cost estimate between frequency and magnitude conditions and 

presentation orders.   The central tendency and spread of basket cost estimates are 

summarized in Table 4.18.  There were no significant differences between stores 

(F(1,618) = 1.876, p = 0.17), frequency conditions (F(1,618) = 0.515, p = 0.47) or 

magnitude conditions (F(1,618) = 1.180, p = 0.28).  A summary of the ANOVA 

model is shown in Table 4.19. 

TABLE 4.18 

Summary of basket cost estimates in the second store (Experiment 4) 

 Smith‟s Jones‟ 

Frequency / 

Magnitude 
M SD M SD 

Low / Low £48.09 £22.70 £47.83 £25.02 

Low / High £49.85 £19.02 £48.72 £25.53 

High / Low £50.21 £20.25 £47.00 £19.91 

High / High £54.10 £26.91 £48.53 £25.63 

 

TABLE 4.19 

Three-way ANOVA model of basket cost estimates in the second store (Experiment 4). 

Source SS df MS F p η2 

Frequency 276.27 1 276.27 0.52 0.47 0.00 

Magnitude 632.75 1 632.75 1.18 0.28 0.00 

Order 1005.56 1 1005.56 1.88 0.17 0.00 

Freq*Mag 73.93 1 73.93 0.14 0.71 0.00 

Freq*Order 531.48 1 531.48 0.99 0.32 0.00 

Mag*Order 101.20 1 101.20 0.19 0.66 0.00 

Freq*Mag*Order 21.55 1 21.55 0.04 0.84 0.00 

Error 331326.14 618 536.13    
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 The basket cost estimates in the second store were strongly correlated with 

the actual basket cost in the first store, r(624) = 0.904, p<0.001.  A three-way 

ANCOVA model was used to partial out the variance in basket cost estimates in the 

second store explained by the actual basket cost in the first store, the effect of which 

was large and highly significant (R
2
 = 0.82; F(1,617) = 2797.70, p<0.001, η

2
=0.82).  

The adjusted mean basket cost estimates did not differ significantly between any of 

the price conditions.  The results of the ANCOVA model are summarized in Table 

4.20. 

TABLE 4.20 

ANCOVA model of basket cost estimate in second store including basket cost in first store as 

a covariate (Experiment 4). 

Source SS df MS F p η2 

Cost First Store 271458.98 1 271458.98 2797.70 <0.001 0.82 

Frequency 60.18 1 60.18 0.62 0.43 0.00 

Magnitude 98.16 1 98.16 1.01 0.32 0.00 

Order 632.79 1 632.79 6.52 <0.05 0.01 

Freq*Mag 1.69 1 1.69 0.02 0.90 0.00 

Freq*Order 142.18 1 142.18 1.47 0.23 0.00 

Mag*Order 10.99 1 10.99 0.11 0.74 0.00 

Freq*Mag*Order 39.67 1 39.67 0.41 0.52 0.00 

Error 59867.16 617 97.03    

 

 The basket cost estimates in the second store were also strongly correlated 

with the actual basket cost in the second store, r(624) = 0.849, p<0.001.  A three-

way ANCOVA model was used to partial out the variance in basket cost estimates in 

the second store explained by the actual basket cost in the second store, the effect of 

which was large and highly significant (R
2
 = 0.72; F(1,617) = 1595.25, p<0.001, 

η
2
=0.72).  Again, the adjusted mean basket cost estimates did not differ significantly 

between any of the price conditions.  The results of the ANCOVA model are 

summarized in Table 4.21. 
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TABLE 4.21 

ANCOVA model of basket cost estimates in the second store including the actual basket cost 

in the second store as a covariate (Experiment 4). 

Source SS df MS F p η2 

Cost Second Store 238918.85 1 238918.85 1595.25 <0.001 0.72 

Frequency 111.06 1 111.06 0.74 0.39 0.00 

Magnitude 0.11 1 0.11 0.00 0.98 0.00 

Order 35.28 1 35.28 0.24 0.63 0.00 

Freq*Mag 345.11 1 345.11 2.30 0.13 0.00 

Freq*Order 6.26 1 6.26 0.04 0.84 0.00 

Mag*Order 138.49 1 138.49 0.93 0.34 0.00 

Freq*Mag*Order 159.71 1 159.71 1.07 0.30 0.00 

Error 92407.29 617 149.77    

 

The results of the two ANCOVA models suggest that participants tended to form 

their basket cost estimates for the second store by anchoring on the basket cost in the 

first store.  Neither the degree of adjustment from this anchor nor the accuracy of 

participants‟ estimates differed systematically between price conditions. 

4.4.3     Manipulation Check 

 A three-way ANOVA model was used to test for differences in participants‟ 

mean estimate of the number of items that were cheaper in the second store between 

frequency and magnitude conditions and presentation orders.  The mean estimate 

differed significantly between the two stores (F(1,618) = 5.618, p<0.05, η
2
=0.01) 

and the frequency of price advantages in the test store interacted significantly with 

the presentation order (F(1,618) = 8.097, p<0.01, η
2
=0.01).  When the second store 

was the test store, the estimated proportion of items cheaper in the second store was 

higher when the actual frequency was high (M = 30.4%) than when the actual 

frequency was low (M = 22.6%).  When the second store was the control store, the 

estimated proportion of items cheaper in the second store did not differ significantly 

between frequency conditions.  The results indicate that few participants were aware 
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of the experimental manipulation.  Even in the extreme case where the second (test) 

store was cheaper on 80% of the items by 20%, only 7 out of 82 participants 

correctly identified that between 105 and 134 products were cheaper in the second 

store.  Across all conditions, only 127 out of 626 participants correctly identified the 

number of items cheaper in the second store.  This level of accuracy (20%) is no 

higher than one would expect if participants had chosen one of the two correct 

answers at random from the ten available response categories.  The central tendency 

and spread of estimates, as well as the proportion of respondents identifying the 

correct response category, are summarized in Table 4.22. 

TABLE 4.22 

Summary of the estimated frequency of price advantages in the second store (Experiment 4) 

 Smith‟s Jones‟  

Frequency / 

Magnitude 
M SD M SD Correct Responses 

Low / Low 22% 19% 20% 16% 26 / 143   (18%) 

Low / High 25% 18% 25% 18% 28 / 151   (19%) 

High / Low 21% 17% 27% 21% 38 / 173   (22%) 

High / High 23% 19% 34% 23% 35 / 159   (22%) 

 

4.4.4     Impact of Basket Size 

 As outlined in Chapter 1, Bell and Lattin (1998) hypothesize that large basket 

shoppers will tend to prefer stores with an EDLP pricing format (a low average price 

with little variation) whilst small basket shoppers will tend to prefer stores with a 

PROMO pricing format (a higher average price with a few deep discounts).  Against 

an intermediate store, an EDLP strategy would result in a high frequency of small 

magnitude price advantages while a PROMO strategy would result in a low 

frequency of large magnitude price advantages, analogous to the high and low 

frequency conditions in Experiment 4.  Bell and Lattin argue that (controlling for 
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household size) large basket shoppers shop less frequently and have a higher 

probability of purchase for any given product category, and as such are more captive 

to prices across the store as a whole.  Small basket shoppers, on the other hand, shop 

more frequently and are more able to respond to prices in individual product 

categories.  The authors find support for this hypothesis in their empirical analysis of 

scanner panel data from 1,042 US households. 

 Assuming that basket size differences in Experiment 4 reflect real-world 

differences in purchasing behaviour, one might expect to observe a difference in the 

comparative price judgments of small and large basket shoppers in the online 

shopping paradigm.  Specifically, one would hypothesize that small basket shoppers 

are better able to respond to specific large magnitude price advantages and hence 

reduce their overall basket cost, so they should judge the prices in a low frequency, 

large magnitude store more favourably than a large basket shopper.  Conversely, 

large basket shoppers should judge the prices in a high frequency, small magnitude 

store more favourably than small basket shoppers. 

 Basket size was defined as the total number of items purchased in the control 

store, Smith‟s.  A median split (>37 items) was used to separate participants into 

small basket shoppers (n = 328) and large basket shoppers (n = 298).  The mean 

number of items purchased in Smith‟s by small basket shoppers (M = 26.3, SD = 7.4) 

was smaller than the mean number of items purchased by large basket shoppers (M = 

53.2, SD = 18.7) and the difference was highly significant (t(624) = -24.123, 

p<0.001, two-tailed).  Small basket shoppers‟ mean spend in Smith‟s was also 

significantly lower than large basket shoppers‟ (£35.49 vs. £67.52, t(624) = -19.329, 

p<0.001, two-tailed) and their mean total time spent shopping in Smith‟s was 
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significantly shorter (239 seconds vs. 324 seconds, t(624) = -6.164, p<0.001, two-

tailed). 

 Repeated-measures ANOVA, with checkout (pre- or post-checkout) as a 

within-subjects factor and frequency condition, presentation order and basket size as 

between-subjects factors, was used to test for differences in the mean price judgment 

rating of the second store relative to the first store.  As already shown previously, 

there was no significant difference between mean comparative price judgments 

before and after the checkout, there was a significant difference in mean ratings 

between the two stores and the frequency of price advantages in the second store 

interacted significantly with the presentation order.  However, there was no 

significant difference in mean ratings between basket size groups (F(1,618) = 2.833, 

p = 0.09) and the hypothesized interaction between presentation order, frequency 

condition and basket size was not statistically significant (F(1,618) = 2.213, p = 

0.14).  The results of the within-subjects tests are shown in Table 4.23 and the 

between-subjects tests are shown in Table 4.24. 

TABLE 4.23 

Within-subjects tests of repeated-measures ANOVA of comparative price judgments 

including basket size as a between-subjects factor (Experiment 4). 

Source SS Df MS F p η2 

Checkout 0.996 1 0.996 0.81 0.37 0.00 

Checkout*Freq 2.634 1 2.634 2.14 0.14 0.00 

Checkout*Order 0.076 1 0.076 0.06 0.80 0.00 

Checkout*Basket Size 1.183 1 1.183 0.96 0.33 0.00 

Checkout*Freq*Order 0.848 1 0.848 0.69 0.41 0.00 

Checkout*Freq*BSize 0.859 1 0.859 0.70 0.40 0.00 

Checkout*Order*BSize 6.237 1 6.237 5.06 <0.05 0.01 

Checkout*Freq*Order*BSize 0.042 1 0.042 0.03 0.85 0.00 

Error 761.197 618 1.232    
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TABLE 4.24 

Between-subjects tests of repeated-measures ANOVA of comparative price judgments 

including basket size as a between-subjects factor (Experiment 4). 

Source SS df MS F p η2 

Frequency 7.455 1 7.455 3.29 0.07 0.01 

Order 32.475 1 32.475 14.32 <0.001 0.02 

Basket Size 6.425 1 6.425 2.83 0.09 0.01 

Freq*Order 100.760 1 100.760 44.43 <0.001 0.07 

Freq*Basket Size 1.499 1 1.499 0.66 0.42 0.00 

Order*Basket Size 3.253 1 3.253 1.43 0.23 0.00 

Freq*Order*Basket Size 5.019 1 5.019 2.21 0.14 0.00 

Error 1401.677 618 2.268    

 

4.4.5     Strategic Purchasing 

 Although no significant difference between large and small basket shoppers‟ 

reactions to the price distributions was observed in Experiment 4, the behavioural 

measures collected allow for a more direct test of the hypothesized relationship 

between purchasing behaviour and price judgments.  Instead of using basket size as a 

proxy for the ability (or tendency) to vary purchases between stores in response to 

observed price differences, strategic purchasing behaviour can be directly observed 

and quantified using the experimental data.  Specifically, differences between 

purchase choices in the two stores can be correlated with item-level inter-store price 

differences to test for evidence of price-triggered strategic purchasing behaviour.  

The hypothesized relationships described by Bell and Lattin (1998) would manifest 

themselves in two ways.  Firstly, one would observe a greater degree of strategic 

additional purchasing when the second store has a low frequency of large magnitude 

price advantages, as participants respond to the opportunity to make significant 

savings from the deep discounts.  Secondly, one would observe that strategic 

additional purchasers judge the prices in a low frequency, large magnitude store 
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more favourably while the remaining participants judge the prices in a high 

frequency, small magnitude store more favourably. 

 Price-triggered strategic purchasing can occur in two forms.  A participant 

may notice a product that they did not buy on their first trip is cheaper in the second 

store, and decide to buy it on their second trip (Addition).  Alternatively a participant 

may notice that a product that they bought on their first trip is more expensive in the 

second store and choose not to purchase it on their second trip (Exclusion).  There 

are two important points to note.  Firstly, if differences between participants‟ baskets 

are not driven by price differences but are simply random, one would still expect to 

see a greater proportion of any additional items being cheaper when the second store 

has a high frequency of price advantages.  Similarly, one would also expect a greater 

proportion of any excluded items to be more expensive when the second store has a 

low frequency of price advantages.  Secondly, the expected probability of an 

additional or excluded item being cheaper or more expensive is determined by the 

basket of items chosen in the first store, rather than the frequency of price 

advantages in the second store as a whole.  For instance, if a participant happened to 

select a set of items on their first trip that were all more expensive in the second store 

then it is impossible to prove whether or not a product was discarded because of 

price differences or for some other reason.  If instead only a few of the items selected 

on the first trip happen to be more expensive in the second store but these particular 

items are the ones that are not purchased again, then it is more likely that the item 

selection differences are driven by inter-store price differences. 

 Two variables were created to measure the degree to which differences 

between the two baskets of items selected by a participant are driven by each of the 

two strategies described above.  The first measure is the difference between the 
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observed and expected probabilities of selecting an additional item on the second trip 

that is also cheaper in the second store.  The observed probability for participant i is 

given by the number of additional purchases that are cheaper in the second store 

divided by the total number of additional items: 

Pobs i = 
  1   Firsti    × Secondi   × Cheaper

 
N
 =1

  1   Firsti    × Secondi  
N
 =1

 

Where: 

Firsti   =   
1,  if participant i purchased item   in first store

0,  otherwise                                                       
   

Secondi   =   
1,  if participant i purchased item   in second store

0,  otherwise                                                            
  

Cheaper
 
 =   

1,  if item   is cheaper in second store

0,  otherwise                                        
  

The expected probability for participant i is the probability that an item selected at 

random from all items not purchased on the first trip is cheaper in the second store.  

This is given by the number of products not selected in the first store that are also 

cheaper in the second store divided by the total number of items not selected in the 

first store: 

Pexp i = 
  1   Firsti    × Cheaper

 
N
 =1

  1   Firsti   
N
 =1

 

The difference between these two probabilities is an indication of the degree to 

which additional purchases are driven by price differences rather than random 

variation: 

Additioni = Pobs i   Pexp i 
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A score that is significantly different from zero means that the observed behaviour is 

unlikely to have occurred by chance.  A positive value indicates price-triggered 

strategic additional purchases.  A negative value indicates irrational or random 

behaviour.  For participants who made no additional purchases in the second store 

(Pobs,i = 0) the score was set to zero. 

 Similarly, the second measure is the difference between the observed and 

expected probabilities of excluding a previously purchased item on the second trip 

that is also more expensive in the second store.  The observed probability for 

participant i is the number of non-repeated purchases that are more expensive in the 

second store divided by the total number of excluded items: 

Pobs i = 
 Firsti   × (1   Secondi  ) × Expensive

 
N
 =1

 Firsti   × (1   Secondi  )
N
 =1

 

Where: 

Firsti   =   
1,  if participant i purchased item   in first store

0,  otherwise                                                       
  

Secondi   =   
1,  if participant i purchased item   in second store

0,  otherwise                                                            
  

Expensive
 
 =   

1,  if item   is more expensive in second store

0,  otherwise                                                     
  

The expected probability for participant i is the probability that an item selected at 

random from all items purchased on the first trip is more expensive in the second 

store.  This is given by the number of products selected in the first store that are also 

more expensive in the second store divided by the total number of items selected in 

the first store: 
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Pexp i = 
 Firsti   × Expensive

 
N
 =1

 Firsti  
N
 =1

 

The difference between these two probabilities is an indication of the degree to 

which non-repeated (excluded) purchases are driven by price differences rather than 

random variation: 

Exclusioni = Pobs i   Pexp i 

A score that is significantly different from zero means that the observed behaviour is 

unlikely to have occurred by chance.  A positive value indicates price-triggered 

strategic non-repeated purchases.  A negative value indicates irrational or random 

behaviour.  For participants who did not exclude any previously-purchased products 

in the second store (Pobs,i = 0) the score was set to zero. 

 Across all participants in Experiment 4, the mean value of Addition (M = 

0.020, SD = 0.187) was significantly greater than zero (t(625) = 2.617, p<0.01, two-

tailed).  Similarly, the mean value of Exclusion (M = 0.042, SD = 0.201) was 

significantly greater than zero (t(625) = 5.290, p<0.001, two-tailed).  Participants 

appear to have engaged in both forms of strategic purchasing behaviour, and were 

more likely to exclude an item that was more expensive in the second store than to 

purchase additional items that were cheaper in the second store.  This could be 

because participants were better able to remember the prices of items they actually 

purchased in the first store, or because they were more sensitive to losses than gains 

(Tversky & Kahneman, 1992).  The two strategic purchasing scores were 

uncorrelated, r(624) = 0.029, p = 0.48.  The Addition scores were uncorrelated with 

comparative price judgments about the second store, both before the checkout 

(r(624) = -0.042, p = 0.29) and after the checkout (r(624) = -0.033, p = 0.41).  The 
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Exclusion scores were significantly correlated with comparative price judgments 

about the second store, both before the checkout (r(624) = -0.132, p<0.001) and after 

the checkout (r(624) = -0.134, p<0.001).  The negative correlation implies that, 

perhaps counter-intuitively, participants who excluded previously-purchased items 

from their purchases in the second store because those items were more expensive 

nonetheless gave a more favourable price judgment of the second store relative to the 

first store. 

 Three-way ANOVA models were used to test for differences in participants‟ 

mean degree of strategic purchasing (Addition and Exclusion) between frequency 

and magnitude conditions and presentation orders.  The mean Addition scores did 

not vary significantly across any of the price conditions.  The mean Exclusion scores 

differed significantly between the two stores (F(1,618) = 21.004, p<0.001, η
2
=0.03) 

and the frequency of price advantages in the test store interacted significantly with 

the presentation order (F(1,618) = 6.812, p<0.01, η
2
=0.01).  The mean degree of 

strategic exclusion of previously-purchased items was greatest when the second store 

was the test store with a high frequency of small magnitude price advantages (M = 

0.10).  The results of the two ANOVA models are summarized in Table 4.25 

(Addition) and Table 4.26 (Exclusion), and the interaction plot in Figure 4.6 shows 

how the Exclusion scores varied across frequency conditions and presentation 

orders.  This result explains the previously observed negative correlation between 

Exclusion behaviour and comparative price judgments of the second store: when the 

second store has a high frequency of small magnitude price advantages (and hence a 

low frequency of large price disadvantages) the participants are more likely to 

exclude specific items that are significantly more expensive but also to give a more 

favourable comparative rating of the store overall.  This suggests that participants‟ 
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comparative price judgments are based on a wider selection of item prices than just 

the few large item price differences that the participant noticed and adjusted their 

purchasing behaviour in response to. 

TABLE 4.25 

Three-way ANOVA model of Addition measure of strategic purchasing (Experiment 4). 

Source SS Df MS F p η2 

Frequency 0.119 1 0.119 3.41 0.07 0.01 

Magnitude 0.034 1 0.034 0.97 0.33 0.00 

Order 0.118 1 0.118 3.40 0.07 0.01 

Freq*Mag 0.001 1 0.001 0.04 0.85 0.00 

Freq*Order 0.021 1 0.021 0.61 0.44 0.00 

Mag*Order 0.063 1 0.063 1.80 0.18 0.00 

Freq*Mag*Order 0.000 1 0.000 0.00 0.98 0.00 

Error 21.525 618 0.035    

 

TABLE 4.26 

Three-way ANOVA model of Exclusion measure of strategic purchasing (Experiment 4). 

Source SS Df MS F p η2 

Frequency 0.012 1 0.012 0.31 0.58 0.00 

Magnitude 0.138 1 0.138 3.62 0.06 0.01 

Order 0.804 1 0.804 21.00 <0.001 0.03 

Freq*Mag 0.130 1 0.130 3.40 0.07 0.01 

Freq*Order 0.261 1 0.261 6.81 <0.01 0.01 

Mag*Order 0.021 1 0.021 0.56 0.45 0.00 

Freq*Mag*Order 0.096 1 0.096 2.51 0.11 0.00 

Error 23.658 618 0.038    
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Figure 4.6: Interaction plot of the mean Exclusion measure of strategic purchasing across 

frequency conditions and presentation orders (Experiment 4). 

 The mean Addition scores for small basket shoppers (M = 0.013, SEM = 

0.011) and large basket shoppers (M = 0.027, SEM = 0.010) did not differ 

significantly (t(624) = -0.985, p = 0.33, two-tailed).  The mean Exclusion scores for 

small basket shoppers (M = 0.050, SEM = 0.012) and large basket shoppers (M = 

0.034, SEM = 0.011) were also not significantly different (t(624) = 1.002, p = 0.32, 

two-tailed).  Adding basket size as a covariate in the previous three-way ANOVA 

models showed no improvement in fit and the basket size variable was not 

statistically significant in either ANCOVA model.  Overall, there was no evidence 

for the posited relationship between basket size and strategic purchasing behaviour.  

Participants strategically altered their purchasing behaviour in response to inter-store 

item-level price differences and the degree of strategic purchasing behaviour varied 

depending upon the distribution of inter-store price differences, but small basket 
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shoppers do not appear to have taken advantages of inter-store price differences to a 

greater extent than large basket shoppers in Experiment 4.  

In order to test for the second hypothesized effect, participants were divided 

into two equal size groups based upon the Addition measure, with participants who 

scored less than or equal to 0.021 classified as non-Additional purchasers (n = 313) 

and participants who scored more than 0.021 classified as Additional purchasers (n = 

313).  The mean Addition score of the non-Additional purchasers (M = -0.12, SEM = 

0.008) was lower than the mean score of the Additional purchasers (M = 0.16, SEM 

= 0.007) and the difference was highly significant (t(624) = -26.442, p<0.001, two-

tailed).  Repeated-measures ANOVA, with checkout (pre- or post-checkout) as a 

within-subjects factor and frequency condition, presentation order and Addition 

purchasing group as between-subjects factors, was used to test for differences in the 

mean price judgment rating of the second store relative to the first store.  As already 

shown previously, there was no significant difference between mean comparative 

price judgments before and after the checkout, but there was a significant difference 

in mean ratings between the two stores and the frequency of price advantages in the 

second store interacted significantly with the presentation order.  Furthermore, the 

Addition group interacted significantly with the presentation order (F(1,618) = 

4.984, p<0.05, η
2
=0.01) and there was a significant three-way interaction between 

the presentation order, frequency condition and Addition group (F(1,618) = 4.763, 

p<0.05, η
2
=0.01).  The interaction plots show that, as before, the mean comparative 

price judgments are always more favourable when the second store has a high 

frequency of price advantages than when the second store has a low frequency of 

price advantages.  For both presentation orders the difference in comparative price 

judgment rating between high and low frequency conditions is more extreme for 
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Additional purchasers than for non-Additional purchasers.  The results of the within-

subjects tests are shown in Table 4.27, the between-subjects tests are shown in Table 

4.28, and the three-way interaction is shown in Figure 4.7. 

TABLE 4.27 

Within-subjects tests of repeated-measures ANOVA of comparative price judgments 

including Addition purchasing group as a between-subjects factor (Experiment 4). 

Source SS df MS F p η2 

Checkout 0.537 1 0.537 0.43 0.51 0.00 

Checkout*Freq 2.641 1 2.641 2.13 0.15 0.00 

Checkout*Order 0.189 1 0.189 0.15 0.70 0.00 

Checkout*Addition Group 0.002 1 0.002 0.00 0.97 0.00 

Checkout*Freq*Order 0.839 1 0.839 0.68 0.41 0.00 

Checkout*Freq*AdGrp 1.416 1 1.416 1.14 0.29 0.00 

Checkout*Order*AdGrp 0.132 1 0.132 0.11 0.74 0.00 

Checkout*Freq*Order*AdGrp 2.321 1 2.321 1.87 0.17 0.00 

Error 765.369 618 1.238    

 

TABLE 4.28 

Between-subjects tests of repeated-measures ANOVA of comparative price judgments 

including Addition purchasing group as a between-subjects factor (Experiment 4). 

Source SS df MS F p η2 

Frequency 6.527 1 6.527 2.89 0.09 0.01 

Order 32.327 1 32.327 14.31 <0.001 0.02 

Addition Group 0.514 1 0.514 0.23 0.63 0.00 

Freq*Order 101.935 1 101.935 45.13 <0.001 0.07 

Freq*Addition Group 0.091 1 0.091 0.04 0.84 0.00 

Order*Addition Group 11.259 1 11.259 4.98 <0.05 0.01 

Freq*Order*AdGrp 10.760 1 10.760 4.76 <0.05 0.01 

Error 1396.018 618 2.259    
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Figure 4.7: Interaction plot of the mean comparative price judgments of the second store 

relative to the first store across frequency conditions, presentation orders and Additional 

purchase groups (Experiment 4). 

 Similarly, participants were divided into two equal size groups based upon 

the Exclusion measure, with participants who scored less than or equal to 0.029 

classified as non-Excluders (n = 313) and participants who scored more than 0.029 

classified as Excluders (n = 313).  The mean Exclusion score of the non-Excluders 

(M = -0.10, SEM = 0.008) was lower than the mean score of the Excluders (M = 

0.18, SEM = 0.008) and the difference was highly significant (t(624) = -25.098, 

p<0.001, two-tailed).  Repeated-measures ANOVA, with checkout (pre- or post-

checkout) as a within-subjects factor and frequency condition, presentation order and 

Exclusion group as between-subjects factors, was used to test for differences in the 

mean price judgment rating of the second store relative to the first store.  As already 

shown previously, there was no significant difference between mean comparative 

price judgments before and after the checkout, but there was a significant difference 

in mean ratings between the two stores and the frequency of price advantages in the 
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second store interacted significantly with the presentation order.  In addition, there 

was a significant three-way interaction between the presentation order, frequency 

condition and Exclusion group (F(1,618) = 5.946, p<0.05, η
2
=0.01).  The interaction 

plots show that, once again, the mean comparative price judgments are always more 

favourable when the second store has a high frequency of price advantages than 

when the second store has a low frequency of price advantages.  For both 

presentation orders the difference in comparative price judgment rating between high 

and low frequency conditions is more extreme for Excluders than for non-Excluders.  

The results of the within-subjects tests are shown in Table 4.29, the between-subjects 

tests are shown in Table 4.30, and the three-way interaction is shown in Figure 4.8. 

TABLE 4.29 

Within-subjects tests of repeated-measures ANOVA of comparative price judgments 

including Exclusion group as a between-subjects factor (Experiment 4). 

Source SS df MS F p η2 

Checkout 0.158 1 0.158 0.13 0.72 0.00 

Checkout*Freq 3.601 1 3.601 2.91 0.09 0.01 

Checkout*Order 0.280 1 0.280 0.23 0.63 0.00 

Checkout*Exclusion Group 0.618 1 0.618 0.50 0.48 0.00 

Checkout*Freq*Order 0.422 1 0.422 0.34 0.56 0.00 

Checkout*Freq*ExGrp 0.304 1 0.304 0.25 0.62 0.00 

Checkout*Order*ExGrp 4.293 1 4.293 3.47 0.06 0.01 

Checkout*Freq*Order*ExGrp 0.270 1 0.270 0.22 0.64 0.00 

Error 764.262 618 1.237    
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TABLE 4.30 

Between-subjects tests of repeated-measures ANOVA of comparative price judgments 

including Exclusion group as a between-subjects factor (Experiment 4). 

Source SS df MS F p η2 

Frequency 3.631 1 3.631 1.61 0.21 0.00 

Order 27.693 1 27.693 12.26 <0.001 0.02 

Exclusion Group 5.074 1 5.074 2.25 0.13 0.00 

Freq*Order 105.278 1 105.278 46.62 <0.001 0.07 

Freq*Exclusion Group 3.303 1 3.303 1.46 0.23 0.00 

Order*Exclusion Group 0.016 1 0.016 0.01 0.93 0.00 

Freq*Order*ExGrp 13.428 1 13.428 5.95 <0.05 0.01 

Error 1395.540 618 2.258    

 

Figure 4.8: Interaction plot of the mean comparative price judgments of the second store 

relative to the first store across frequency conditions, presentation orders and Exclusion 

groups (Experiment 4). 

 Neither of the hypotheses drawn from the work of Bell and Lattin (1998) 

were supported.  Strategic additional purchasing did not vary between high and low 

frequency stores.  Rather, strategic exclusion of previously-purchased items was 

more prevalent when the second store had a small number of large price 

3.00

3.25

3.50

3.75

4.00

4.25

4.50

Low (20%) High (80%) Low (20%) High (80%)

M
ea

n
 C

o
m

p
ar

at
iv

e 
P

ri
ce

 J
u
d
g
m

en
t

Frequency of Price Advantages in Test Store (Jones')

Non-Excluders

Excluders

Control Store (Smith's) Test Store (Jones')

Store being rated (second store)



Chapter 4: Frequency Bias in Mean Price Discrimination Judgment 

196 

disadvantages.  Although it might be argued that this is simply the reverse of the 

strategic purchasing behaviour described by Bell and Lattin, the participants in the 

high frequency store were both more likely to exclude previously purchased items 

and also to judge the prices in the second store more favourably relative to the first 

store.  In this case the strategic purchasers were more favourable towards the high 

frequency (EDLP) store than the low frequency (PROMO) store, not less favourable 

as was hypothesized.  In fact, the results of Experiment 4 suggest that strategic 

purchasing behaviour is correlated with more extreme differences in comparative 

price judgments between low frequency and high frequency stores.  The direction of 

causality is unclear – more extreme comparative price judgments and strategic 

purchasing behaviour may both result from a greater awareness of price differences; 

alternatively, a tendency to engage in strategic purchase behaviour may lead to a 

greater awareness of price differences and hence more extreme comparative price 

judgments – but in either case there was no evidence that strategic purchasers prefer 

a different pricing structure to non-strategic purchasers. 

4.5     Discussion 

 Support for the experimental hypotheses was mixed.  Hypothesis 1 was 

strongly supported, with both comparative price judgments and absolute price 

judgments being more favourable when the second store had a high frequency of 

(small) price advantages rather than a low frequency of (large) price advantages.  

However, Hypotheses 2 and 3 were not supported: comparative price judgments 

varied significantly between the control and test store when the magnitude of price 

differences was large but not when they were small, but the difference did not 

systematically vary with the frequency of price advantages in the test store.  No 

significant effects of magnitude were observed in the (much noisier) absolute price 
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ratings.  Overall, the results showed a frequency effect in comparative price 

judgments but did not show – or the experiment lacked sufficient power to find – a 

moderating effect of the magnitude of price differences.  Nonetheless, the findings 

from Experiments 1 and 2 were successfully replicated within the more ecologically 

valid experimental paradigm of Experiments 3 and 4.  Holding the average item 

price constant between a control and test store, comparative price judgments are 

more favourable when the test store has a high frequency of small price advantages 

and a low frequency of large price disadvantages and less favourable when the test 

store has a low frequency of large price advantages and a high frequency of small 

price disadvantages. 

 As the results of Experiment 3 had suggested, Experiment 4 also showed that 

price judgments are distinct from basket cost estimates.  Basket cost estimates were 

not systematically biased by the distribution of inter-store price differences, while 

comparative price judgments about the two stores were.  This supports the idea that 

comparative price judgments are made across all item prices – or as many as can be 

recalled – not just the specific basket of items that each participant chose.  On the 

other hand, the fact that strategic exclusion of expensive previously-purchased items 

was more prevalent than strategic addition of cheaper extra items suggests that 

participants were better able to recall and respond to the prices of items they had 

purchased in the first store relative to other items.  The case for a link between 

awareness of item price differences and comparative price judgments is further 

strengthened by the correlation between strategic purchasing behaviour and the 

strength of observed differences in price judgments between low and high frequency 

stores.  However, participants were unaware of – or could not accurately estimate – 

the frequency cue.  Although item-level inter-store price differences appear to have 
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influenced comparative price judgments, participants were not keeping count of the 

number of items that were cheaper and more expensive in each store and using that 

information to form a comparative price judgment. 

 So how were participants making comparative price judgments about the two 

stores?  In this chapter, linear statistics were used to test differences between groups 

of participants, defined by a priori hypotheses and tested as factors in the between-

subjects experiment design.  However, participants also exhibited individual 

variability in their behaviour in each store – e.g. time spent in each product 

department; items purchased; inter-store differences in purchases – which may yield 

further clues about the judgment process.  Additionally, linear statistics do not easily 

allow one to explore the underlying judgment process: how the available inputs are 

weighted and combined to form an overall judgment.  In the following chapter I shall 

adopt the alternative approach of fitting different families of judgment models 

suggested in the previously-reviewed psychological literature to the available data 

from Experiments 3 and 4 using a maximum-likelihood methodology.  Information-

theoretic measures of goodness of fit will then be used to decide which model or 

models provide the best
18

 description of the comparative price judgment process. 

                                                           
18

 “ est” using information criteria such as AIC or  IC implies the best trade-off between fitting to 

the observed data and generalizability of predictions to new data, usually through parsimony in the 

number of model variables. 
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CHAPTER 5 

FITTING AND COMPARING COGNITIVE PROCESS MODELS OF 

INTUITIVE COMPARATIVE PRICE JUDGMENTS 

5.1     Introduction 

 The findings from Experiments 3 and 4 suggest that intuitive comparative 

price judgments are sensitive to differences in mean price between two paired-item 

distributions, but are biased by the frequency of paired-item advantages and 

disadvantages.  When the mean price is identical in two stores, the store with a high 

number of small price advantages is perceived to be cheaper than the store with a 

low number of large price advantages.  In this chapter a number of plausible 

cognitive process models are compared in order to understand how these intuitive 

statistical judgments are made.  In particular, I explore which process models predict 

the observed frequency effect and what the underlying cognitive mechanism is in 

each case.  Two families of process model are compared: representative participant 

models that are based only on the set of prices faced by each participant and 

sampling differences models that incorporate additional information about the 

process each individual participant followed in order to make their judgment.  Each 

process model incorporates a stochastic response function, in which the judged price 

difference determines the probability of a participant choosing each of the seven 

available responses.  This enables model parameters to be fitted in a maximum-

likelihood procedure and allows for comparison between models using model 

selection statistics such as the Akaike Information Criterion (AIC).  Because of the 

importance of the response function, I begin the chapter with a Signal Detection 

analysis of the data from Experiment 3, in order to determine how participants used 



Chapter 5: Comparing Cognitive Process Models 

200 

the rating scale and whether the pattern of observed responses is consistent with an 

SDT model of the judgment process. 

5.2     Signal Detection Analysis 

5.2.1     Estimating Hit Rates and False Alarm Rates 

 As outlined in Chapter 1, Signal Detection Theory (SDT) assumes that 

discrimination judgments are equivalent to statistical inference, with a subjective 

decision criteria required to decide whether or not two observed signals will be 

judged as the same or different.  Varying the decision criteria implies varying the 

trade-off between correct identification of differences (hits) and incorrect 

identification of a difference when the two signals are the same (false alarms).  In 

order to determine the Receiver Operating Characteristic (ROC) of a participant, it 

is necessary to obtain judgments at different levels of decision criteria, i.e. different 

levels of confidence.  The seven-point rating scale used for the comparative price 

judgments in Experiments 3 and 4 can be interpreted as a confidence rating: a rating 

of 1 implies the participant was extremely confident that the second store was 

cheaper whilst a rating of 3 implies that the participant was only weakly confident 

that the second store was cheaper.  By aggregating data across all the responses to 

Experiment 3, the ratings can be transformed into binary judgments of whether the 

second store was cheaper or the same price as the first store with differing degrees of 

confidence. 

 For high confidence judgments, participants who responded 1 (“Compared to 

the first supermarket, I thought that the second store was a lot cheaper”) were coded 

as having identified a difference and all other responses (2-7) were coded as 

perceiving the two stimuli as identical.  For the next level of confidence, all 
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participants who responded 1 or 2 were coded as having identified a difference and 

all other responses (3-7) were coded as perceiving the two stimuli as identical.  In 

this way, each rating was transformed into six binary responses.  Where participants 

saw the stores in reverse order, the ratings were also reversed (i.e. 1 mapped to 7, 2 

mapped to 6, etc.) in order to ensure consistency across judgments.  Each participant 

contributed two ratings, before and after the checkout in the second store.  Hit rates 

were calculated as the proportion of participants correctly identifying that the test 

store was cheaper, at each discount level and each degree of confidence.  False alarm 

rates were calculated as the proportion of participants incorrectly identifying that the 

second store was cheaper in the 0% discount condition, for each degree of 

confidence.  The observed pattern of hits and false alarms is shown in Table 5.1 and 

the ROC chart is shown in Figure 5.1. 

TABLE 5.1 

Observed hit rates and false alarm rates for comparative price judgments with varying 

degrees of confidence in Experiment 3. 

 Degree of Confidence 

Discount 
Highest 

(1) 

 

(1-2) 

 

(1-3) 

 

(1-4) 

 

(1-5) 

Lowest 

(1-6) 

0% (False alarms) 0% 8% 21% 65% 87% 98% 

1% 3% 11% 37% 66% 86% 97% 

2% 13% 23% 56% 85% 98% 100% 

3% 1% 16% 57% 74% 90% 97% 

4% 3% 19% 55% 77% 97% 98% 

5% 0% 12% 37% 75% 88% 96% 

7.5% 6% 21% 56% 81% 85% 94% 

10% 18% 44% 70% 84% 94% 98% 

15% 29% 60% 79% 85% 92% 98% 

20% 18% 56% 82% 88% 90% 100% 

30% 47% 72% 91% 98% 98% 100% 
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Figure 5.1: Receiver Operating Characteristic plot for judgments discriminating whether the 

second store is cheaper than the first store at different discount levels (Experiment 3). 

5.2.2     Estimating Sensitivity 

 The ROC plot shows that the observed judgments are more accurate than 

random guesses, as the majority of points lie in the top left of the diagram.  It also 

shows that for a given false alarm rate, the hit rate tends to increase with the discount 

in the test store, implying increasing sensitivity.  SDT usually assumes that activity 

caused by each stimulus is normally distributed on a subjective psychological scale, 

and the sensitivity (usually denoted as d‟) is measured by the distance between the 

mean of the two distributions divided by their standard deviation, as described in 

Chapter 1 (see Figures 1.3 and 1.4).  Hence, the sensitivity d‟ is equal to Z(hit rate) – 

Z(false alarm rate).  If the false alarm rates and hit rates on the ROC plot are 

transformed using a standardized cumulative normal probability distribution, the 
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resultant points should lie on a straight line.  Furthermore, the intersection of the line 

with the y-axis (normalized hit rate) is the sensitivity, d‟.  In order to transform 

extreme values of hit rate and false alarm rate, zeroes were replaced with 1/N, where 

N is the number of ratings for that test stimulus, and 100 was replaced with N-1/N.  

Because so few participants used the highest response categories of 6 and 7, the final 

two columns of Table 5.1 were excluded.  An ordinary least squares procedure was 

used to fit a straight line through each set of points using Microsoft Excel.  The 

resulting normalized plot is shown in Figure 5.2 and the estimated values of d‟ for 

each discount level are shown in Figure 5.3. 

 

Figure 5.2: Normalized ROC plot for judgments discriminating whether the second store is 

cheaper than the first store at different discount levels (Experiment 3). 
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Figure 5.3: Relationship between sensitivity d‟ and the percentage difference in mean price 

showing the values excluded and included in the subsequent linear fit (Experiment 3). 

As can be seen from Figure 5.3, participants‟ sensitivity increased 

approximately linearly as the difference in mean price between the two stores was 

increased.  An OLS procedure was used to fit a straight line through the observed 

values of d‟ and the origin using Microsoft Excel, excluding three points as indicated 

due to noise at low discount levels.  The linear fit indicated that d‟ increases by 

0.0644 for every 1% increase in the mean price difference.  The implied ROC plot 

for each level of mean price difference is shown in Figure 5.4. 
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Figure 5.4: ROC plot for judgments discriminating whether the second store is cheaper than 

the first store at different discount levels using fitted values of d‟ (Experiment 3). 
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the seven-point response scale, corresponds to a decision criterion with an associated 

false alarm rate.  Given the fitted values of d‟, the expected hit rate for any false 
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confidence level.  The estimated value of each decision criterion, Z(false alarm rate), 

is shown in Figure 5.5. 

 

Figure 5.5: Fitted values of decision criteria for the threshold between each point on the 

seven-point response scale (Experiment 3). 

 The decision criteria are approximately linearly spaced, suggesting that 

participants used the response scale sensibly to differentiate between different levels 

of confidence in discriminating a difference in mean price between the two stores.  
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regression.  The estimated false alarm and hit rates for each level of mean price 

difference are shown in Table 5.2. 

TABLE 5.2 

Fitted hit rates and false alarm rates for comparative price judgments with varying degrees 

of confidence in Experiment 3. 

 Degree of Confidence 

Discount 
Highest 

(1) 

 

(1-2) 

 

(1-3) 

 

(1-4) 

 

(1-5) 

Lowest 

(1-6) 

0% (False alarms) 3% 14% 40% 67% 89% 96% 

1% 3% 15% 43% 69% 90% 96% 

2% 4% 17% 45% 72% 91% 97% 

3% 4% 18% 48% 74% 92% 97% 

4% 5% 20% 50% 76% 93% 97% 

5% 5% 22% 53% 78% 94% 98% 

7.5% 7% 27% 59% 82% 96% 99% 

10% 10% 33% 65% 86% 97% 99% 

15% 17% 45% 76% 92% 99% 100% 

20% 26% 58% 85% 96% 99% 100% 

30% 50% 80% 95% 99% 100% 100% 

 

5.2.4     Implications and Limitations 

 The fitted values of false alarm and hit rate emphasize how poorly 

participants performed at making the paired-item mean discrimination judgment in 

Experiment 3.  Only half of participants would be confident enough to choose the 

most extreme response value when the mean price difference between the two stores 

was 30%.  Although 95% of participants should correctly identify that the second 

store is cheaper in that condition, they would also have a 40% false alarm rate when 

there is no price difference between the two stores.  Overall, the Signal Detection 

analysis shows that participants are insensitive to small differences in mean price and 

lack the confidence to use extreme responses on the scale.  However, it also shows 

that participants used the rating scale sensibly, with the response values being 

approximately linearly spaced along the subjective psychological scale. 
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 The SDT approach has a number of limitations for this data and judgment 

task.  Firstly, using the seven-point response scale values as estimates of confidence 

is a crude methodology for eliciting judgments with different decision criteria.  In 

particular, the interpretation of false alarms is counter-intuitive as correct responses 

of 4 (the two stores have the same prices) are treated as false alarms for low 

confidence judgments.  For a more accurate SDT analysis, a binary response should 

be elicited (second store is/is not cheaper than first store) and the decision criterion 

manipulated by encouraging respondents only to indicate a difference when their 

confidence exceeds a certain level.  Secondly, the sparseness of the data and the need 

to fit sensitivity and decision criteria values generated some large discrepancies 

between observed and fitted performance, especially false alarm rates.  This 

indicates a poor model fit, which means either the data contains a lot of noise or 

participants‟ judgments were only approximated by a signal detection process.  

Thirdly, and most fundamentally, the standard SDT model cannot easily explain the 

frequency bias observed in Experiment 4.  

In the standard SDT model each item (store) is mapped onto a psychological 

response subject to equal Gaussian noise.  If the mean item price in each store is 

accurately estimated (and there is nothing inherent in SDT to suggest the signal 

would be sensitive to skew or other higher moments of the price distribution), then 

the two responses would completely overlap on the psychological response scale and 

hence would not be discriminable.  The frequency bias indicates either that 

participants‟ estimate of the mean price in each store is biased by the shape of the 

price distribution or that participants‟ judgment process is something other than an 

SDT-like discrimination between two perceived mean prices.  If the former is the 

case, then an additional process is required to explain why mean price estimates are 
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biased, for example incomplete sampling of the available information or recall errors 

when estimating mean prices from memory.  If the latter is the case, then an 

alternative process model is required, such as the “count the frequency of price 

advantages” heuristic suggested by Alba et al (1994).  In that particular case, SDT 

cannot explain the salience of frequency information, as it suggests that large inter-

store item price differences should be more discriminable and hence more salient. 

Thus, two different families of process model could explain the observed 

frequency effect.  The first family of models involve a two-stage decision in which 

the mean item price in each store is estimated, and the estimates then compared in a 

signal detection discrimination judgment to determine the response value.  The 

common feature of these models is that they assume the mean price for each store is 

estimated independently and hence I shall refer to them as pairing-independent 

models.  The second family of models assumes that the decision process involves 

some comparison of individual item prices between stores, such as counting the 

frequency of price advantages, with an alternative process to determine the response 

value.  I shall refer to these as pairing-dependent models.  These two types of model 

can make quite divergent predictions, especially in the context of real stores with 

different ranges.  For example, imagine one store (A) that is cheaper on items sold in 

both stores but that also stocks additional items that gave it a higher average item 

price than another store (B).  In this situation a pairing-dependent model would 

predict Store A would be judged as cheaper, while a pairing-independent model 

would predict Store B would be judged as cheaper.
19

 

Both types of model can be either representative participant models (based 

                                                           
19

 This is a form of “Simpson‟s Paradox”, described by Edward H. Simpson (1951), in which 

statistical conclusions which hold for separate groups are reversed when those groups are combined. 
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on the total set of prices faced by each participant, regardless of whether or not every 

price was observed) or sampling differences models (incorporating information 

about the process each individual participant followed in order to make their 

judgment).  In the following sections I shall fit and compare cognitive process 

models of each possible type to the comparative judgment data observed in 

Experiments 3 and 4. 

5.3     Cognitive Model Fitting 

5.3.1     Modelling Approach 

5.3.1.1     Ordered Probit Model 

 In the experimental setting participants are presented with stimuli (the prices 

in each store) and then asked to respond to a judgment task using a rating scale.  Any 

model of the cognitive processes involved must therefore have two stages.  Firstly, 

the comparative judgment process must take the stimuli as inputs and transform 

them into an internal psychological value (the Valuation Function).  Secondly, that 

internal value must be transformed into a response on the provided scale (the 

Response Function).  In order to compare and choose between alternative cognitive 

models I chose a common response function, allowing me to focus upon identifying 

the valuation function that best predicts the observed data.  I assume that the 

valuation functions all have the general form: 

   
   (prices

A
, prices

 
, behaviourA, behaviour )      

Where ε is a zero-mean Gaussian noise term to capture unexplained variance, 

           .  I also assume that the internal psychological value,    
 , is 
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transformed into the observed response,    , in an ordered and monotonically-

increasing fashion: 

   

 
 
 
 

 
 
 

                
              

                   
    

                   
    

                   
    

                   
    

                   
    

                
              

  

The thresholds c1-6 are parameters to be jointly identified with the parameters of the 

valuation function.  Specifically, I chose an ordered probit model, a commonly-used 

response function for stochastic choice models: 

                        

                                        

                                        

                                        

                                        

                                        

                           

Where      is the standardized normal cumulative distribution function.  The scale 

of the model was fixed using the normalization ζ2=1.  Parameter values for the 

valuation and response functions were found using a maximum-likelihood estimation 

procedure, with the log likelihood function: 
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Where        if m = n and        otherwise.  Model parameters were fit in 

Matlab using the constrained non-linear multivariate optimization routine fmincon.  

The probit boundaries were constrained such that                  . 

5.3.1.2     Model Selection Criterion 

 In this chapter I shall be comparing models with different numbers of 

parameters.  In general, models with more parameters are more flexible and able to 

provide a better fit to any arbitrary set of data, without necessarily having any greater 

predictive power to generalize to new data.  It is therefore important to correct for 

this effect when comparing models.  In order to compare between different valuation 

functions an information-theoretic model selection criterion, the Akaike Information 

Criterion (AIC), was calculated for each model: 

AIC            

This model selection criterion penalizes models with additional free parameters, k, in 

order to prevent over-fitting to the observed data.  A lower score implies a model 

which better predicts the observed data whilst retaining generalizability to new data.  

The AIC penalizes additional free parameters to a lesser extent than alternative 

model selection criteria such as BIC.  In cases where the number of free parameters 

in competing models is identical, the AIC reduces to a likelihood ranking.  

Information-theoretic model selection criteria like the AIC have two major 

advantages over alternative methodologies.  Firstly, they can be used to compare 

non-nested parametric models, unlike alternatives such as a likelihood ratio test.  
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Secondly, they allow models to be fit to an entire dataset without requiring a holdout 

sample to test the generalizability of each fitted model to new data. 

 Each model was fit twice: once to the pre-checkout comparative price 

judgments and once to the post-checkout comparative price judgments.  A baseline 

model (Model 0) was fit to the dataset, to determine the degree to which the response 

function alone could predict the observed data, using a constant valuation function: 

       

The goodness-of-fit measures for the baseline models are shown in Table 5.3 and the 

fitted parameter values are shown in Table 5.4.  The AIC scores obtained for the pre- 

and post-checkout rating models are 3132.9 and 3440.2 respectively.  In order to 

provide a better explanation of the observed data, any other valuation function must 

have a lower AIC score. 

TABLE 5.3 

Goodness-of-fit measures for a baseline model (Model 0) with a constant valuation function. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

0: Baseline -1560.5 3132.9 -1714.1 3440.2 

 

TABLE 5.4 

Fitted parameter values for Model 0. 

Parameter Pre-Checkout Post-Checkout 

c1 -1.713 -1.250 

c2 -0.992 -0.595 

c3 -0.114 -0.027 

c4 0.554 0.394 

c5 1.424 1.183 

c6 2.389 2.010 
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5.3.2     Pairing-Independent Judgments 

5.3.2.1     Representative Participant Models 

As described earlier, one plausible set of cognitive process models assumes 

that participants estimated the mean item price in each store separately and then 

compared the estimated mean prices in order to determine the cheaper store. Five 

basic types of valuation function were compared to determine which best describes 

how participants might have made that comparison.  The first type (A) is based upon 

the linear difference between the two estimated means: 

              

The second type (B) is based upon the difference in estimated mean prices raised to a 

power, as suggested by Stevens‟ Law and described in Chapter 1 (Stevens, 1957): 

         
    

   

The third type (C) is based upon the natural logarithm of the ratio of the estimated 

mean prices, as suggested by Fechner‟s Law and described in Chapter 1 (Gigerenzer 

& Murray, 1987): 

         
    

    
  

The fourth type (D) is based upon the Luce choice rule, motivated by the discussion 

in Chapter 1 of the tendency for human judges to probability match in repeated 

decisions (Shanks et al., 2002): 
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The fifth type (E) is based upon the logistic function, with a sigmoid relationship 

between the valuation and the difference in estimated mean prices in each store, as 

suggested by Buyukkurt and described in Chapter 1 (Buyukkurt, 1986): 

       
    

         
  

In all cases, the shape parameter was constrained so that β ≥ 0.  Using one or more of 

these five types of valuation function it is possible to predict judgments that exhibit 

increasing, decreasing, or constant sensitivity to differences in estimated mean price. 

 Different families of pairing-independent model were fitted.  Some of those 

models assume that all participants make the comparative judgment in the same 

manner (representative participant), while others assume that the process by which 

each individual sampled the price information presented influences the manner in 

which they make their subsequent judgment (sampling differences).  The simplest 

form of representative participant model is one in which participants are able to 

accurately determine the mean price in each store (Model 1), with the price P of each 

item i being equally weighted in the estimated mean price in store S: 

   
 

   
     

     

   
 

Clearly this family of models cannot predict the observed frequency effect from 

Experiment 4, as the mean item price was identical in the two stores.  Nonetheless, it 

serves as a useful yardstick against which to compare more complex cognitive 

process models. 

As before, each type of Model 1 was fit twice, to both pre- and post-checkout 

ratings.  The goodness-of-fit measures for the models are shown in Table 5.5 and the 
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fitted parameter values are shown in Table 5.6.  All five model types offer an 

improvement over the baseline model.  The best-fitting models for pre-checkout 

ratings were the power law comparison (1B), the Luce rule comparison (1D), and the 

logistic comparison (1E).  The log-likelihood of all five model types was almost 

identical for the post-checkout ratings, and significantly worse than the fit for the 

pre-checkout ratings.  A log-likelihood score of -1481.7 implies that the mean 

likelihood of the observed ratings is 21%, compared to a random choice probability 

of 1 in 7 or 14%.  For the pre-checkout rating models, all five models predict an 

increased probability of a high rating (“Compared to the first supermarket, I thought 

that the second store was a lot more expensive”) as the mean price in the first store 

decreases or as the mean price in the second store increases (α > 0). 

TABLE 5.5 

Goodness-of-fit measures for Model 1. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

1A: Linear -1484.6 2983.1 -1643.5 3301.0 

1B: Stevens -1481.7 2979.5 -1643.5 3302.9 

1C: Fechner -1484.6 2985.1 -1643.5 3302.9 

1D: Luce -1481.7 2979.4 -1643.5 3303.0 

1E: Logistic -1481.7 2979.4 -1643.5 3303.0 
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TABLE 5.6 

Fitted parameter values for Model 1. 

 Pre-Checkout 

Parameter 1A 1B 1C 1D 1E 

c1 -1.904 -1.907 -1.904 -0.321 -0.246 

c2 -1.082 -1.085 -1.082 0.502 0.577 

c3 -0.141 -0.141 -0.141 1.447 1.521 

c4 0.570 0.575 0.570 2.162 2.237 

c5 1.505 1.514 1.505 3.102 3.176 

c6 2.638 2.643 2.638 4.231 4.306 

α 3.109 0.045 85 633 3.174 3.324 

β  5.557 27 540 10.76 5.487 

 Post-Checkout 

Parameter 1A 1B 1C 1D 1E 

c1 -1.372 -1.372 -1.372 2.342 84.85 

c2 -0.651 -0.651 -0.651 3.063 85.57 

c3 -0.043 -0.043 -0.043 3.672 86.18 

c4 0.406 0.406 0.406 4.121 86.63 

c5 1.252 1.252 1.252 4.966 87.48 

c6 2.138 2.138 2.138 5.852 88.36 

α 3.051 4.839 19.20 7.429 172.5 

β  0.729 4.574 2.971 0.071 

 

 The second mean estimation process tested (Model 2) assumes that rather 

than making an accurate estimate of the mean price in each store, participants‟ 

estimates were biased, with more weight being placed on either large or small prices: 

    
 

   
     

 
     

   
 

   

 

If w < 1, then proportionately more weight is placed on small prices.  This would 

bias the mean estimate in the frequency store downwards, as it contains many small 

prices and a few large prices.  Hence, if Model 2 predicts a frequency effect, a 

weighting factor less than unity should be observed. 
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The same five types of mean price comparison (A-E) were once again 

compared, and each model was fit to pre- and post-checkout ratings.  The goodness-

of-fit measures for the models are shown in Table 5.7 and the fitted parameter values 

are shown in Table 5.8.  All five model types offer an improvement over both the 

baseline model and the equivalent versions of Model 1.  The best-fitting model for 

pre-checkout ratings was the logistic comparison (2E).  The log-likelihoods of all 

five model types were again almost identical for the post-checkout ratings, and 

significantly worse than the fit for the pre-checkout ratings.  For the pre-checkout 

rating models, all five models predict an increased probability of a high rating as the 

mean price in the first store decreases or as the mean price in the second store 

increases (α > 0) and three of the five models predict a lower estimated mean price in 

a frequency store compared to a magnitude store (w < 1). 

TABLE 5.7 

Goodness-of-fit measures for Model 2. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

2A: Linear -1470.7 2957.4 -1630.3 3276.6 

2B: Stevens -1466.8 2951.6 -1630.3 3278.5 

2C: Fechner -1470.7 2959.4 -1630.3 3278.6 

2D: Luce -1466.1 2950.1 -1630.2 3278.3 

2E: Logistic -1466.2 2950.3 -1630.2 3278.5 
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TABLE 5.8 

Fitted parameter values for Model 2. 

 Pre-Checkout 

Parameter 2A 2B 2C 2D 2E 

c1 -1.939 -1.945 -1.939 -0.390 -0.336 

c2 -1.106 -1.111 -1.106 0.444 0.498 

c3 -0.147 -0.147 -0.147 1.409 1.464 

c4 0.575 0.581 0.575 2.137 2.192 

c5 1.525 1.538 1.525 3.096 3.150 

c6 2.670 2.675 2.670 4.233 4.287 

α 5.763 0.276 193 620 3.112 3.221 

β  0.359 33 597 12.12 0.260 

w -0.070 6.036 -0.070 0.228 9.385 

 Post-Checkout 

Parameter 2A 2B 2C 2D 2E 

c1 -1.399 -1.399 -1.399 1.267 2.925 

c2 -0.667 -0.667 -0.667 1.998 3.656 

c3 -0.047 -0.047 -0.047 2.619 4.277 

c4 0.410 0.410 0.410 3.076 4.734 

c5 1.266 1.267 1.266 3.932 5.590 

c6 2.161 2.161 2.162 4.827 6.485 

α 5.885 4.824 109 320 5.330 8.646 

β  -0.137 18 537 4.598 -0.127 

w -0.169 1.218 -0.173 -0.194 2.777 

 

 There is no strong theoretical justification for participants‟ estimated mean 

prices to be biased toward small prices rather than large prices (although knowledge 

of small and large prices could be tested empirically).  In order to estimate the mean 

price in each store, participants would have to recall a sample of those prices from 

memory, and this is a more plausible source of bias in the estimates.  As discussed in 

Chapter 1, memory trace theories suggest that the most easily recallable memories 

are those that are both salient and typical (Hintzmann, 1988).  Saliency is related to 

factors such as attention and repetition at the moment of storage.  Typicality is 

related to the similarity of a memory trace to the other traces in memory storage.  
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The only available attribute for describing each item in the experimental store is the 

price, hence the distance between any two items i and j is given by: 

            

The similarity between any pair of prices is inversely related to the distance, and 

depends upon the similarity gradient ψ: 

           

The similarity is constrained so that ψ ≥ 0.  If ψ is large then only very close items 

are judged as similar.  If ψ is small, then even distant items are judged as somewhat 

similar.  When ψ = 0 then all items are judged as equally similar.  The typicality of 

an item is given by the summed similarity with all items (including itself): 

       

     

   
 

Model 3 assumes that the probability of recall for a price is proportional to its 

typicality, so the estimated mean price in each store is given by: 

     
    

     
     
   

     
     

   
 

This weighting could explain the frequency effect, as small prices are more typical in 

a frequency store, so the estimated mean price would be biased downwards.  When 

ψ=1, the estimated mean price in the baseline store is £1.03 (actual mean = £1.95).  

The estimated mean prices in the magnitude stores are £1.04 (F20 M5) and £1.06 

(F20 M20).  The estimated mean prices in the frequency stores are £1.03 (F80 M5) 

and £0.98 (F80 M20).  Hence, if Model 3 predicts a frequency effect, a positive 

similarity gradient should be observed. 



Chapter 5: Comparing Cognitive Process Models 

221 

 Again, five types of mean price comparison (A-E) were compared, and each 

model was fit to pre- and post-checkout ratings.  The goodness-of-fit measures for 

the models are shown in Table 5.9 and the fitted parameter values are shown in 

Table 5.10.  All five model types offer an improvement over both the baseline model 

and the equivalent versions of Models 1 and 2.  The best-fitting models for pre-

checkout ratings were the power law comparison (3B), the Luce rule comparison 

(3D) and the logistic comparison (3E).  The log-likelihoods of all five model types 

were again almost identical for the post-checkout ratings, and significantly worse 

than the fit for the pre-checkout ratings.  For the pre-checkout rating models, all five 

models predict an increased probability of a high rating as the mean price in the first 

store decreases or as the mean price in the second store increases (α > 0) and a lower 

estimated mean price in a frequency store compared to a magnitude store (ψ > 0). 

TABLE 5.9 

Goodness-of-fit measures for Model 3. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

3A: Linear -1456.0 2928.0 -1625.3 3266.6 

3B: Stevens -1451.1 2920.2 -1625.3 3268.5 

3C: Fechner -1456.0 2930.0 -1625.3 3268.5 

3D: Luce -1451.3 2920.6 -1625.2 3268.5 

3E: Logistic -1451.2 2920.5 -1625.3 3268.6 
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TABLE 5.10 

Fitted parameter values for Model 3. 

 Pre-Checkout 

Parameter 3A 3B 3C 3D 3E 

c1 -1.970 -1.976 -1.969 -0.356 -0.251 

c2    -1.130    -1.141    -1.130 0.480 0.585 

c3    -0.156    -0.159    -0.156 1.462 1.567 

c4     0.581     0.588     0.581 2.207 2.313 

c5     1.550     1.566     1.550 3.186 3.291 

c6     2.709     2.711     2.709 4.332 4.437 

α     4.819     0.928 168 870  3.239 3.450 

β         4.457 35 213 8.927 7.424 

ψ 42.61 45.29 43.02 46.01 45.74 

 Post-Checkout 

Parameter 3A 3B 3C 3D 3E 

c1 -1.409 -1.409 -1.409 1.771 109.7 

c2    -0.675    -0.675    -0.675     2.505 110.4 

c3    -0.051    -0.050    -0.050     3.130 111.0 

c4     0.411     0.411     0.411     3.591 111.5 

c5     1.273     1.273     1.273     4.453 112.3 

c6     2.170     2.170     2.170     5.350 113.2 

α     5.090     6.746 17.29     6.360 222.1 

β  0.740 2.466     3.141 0.092 

ψ 24.93 24.55 24.53    24.26 24.93 

 

5.3.2.2     Sampling Differences Models 

 Whilst the previous (representative participant) models assume the same 

comparative judgment process is followed by all participants, it is plausible that each 

individual followed a slightly different judgment process because their browsing 

behaviour led them to sample the price information in a unique way.  Three 

measures of each participant‟s behaviour can be used to characterise their personal 

sampling process: the basket of items purchased in each store; the time spent 

browsing each department in each store; and the total cost of the basket of items 

purchased in each store, which was shown at the checkout. 
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As described in Chapter 1, memory traces are stronger when greater attention 

is paid to a stimulus at the moment of encoding and storage.  It is likely that greater 

attention was paid to purchased items than to non-purchased items, as the purchased 

items were selected and placed into the basket by the participant.  Hence, the 

memory traces for the prices of purchased items should be stronger than those for the 

prices of un-purchased items.  If participants attempt to estimate a mean price for 

each store by recalling item prices, the estimated mean prices should then be biased 

towards purchased item prices due to the higher probability of recall.  A binary 

variable XS,i was created for each item i in each store S, such that XS,i = 1 when the 

item was purchased and XS,i = 0 otherwise.  A weighting factor for each price was 

then created, so that: 

             

     
    

     
     
   

     
     

   
 

If the prices of purchased items are more salient than the prices of non-purchased 

items, and hence bias the estimated mean price in each store, then a positive 

contribution π > 0 should be observed. 

 Purchase-weighting (PW) was applied to each of the five types of mean price 

comparison (A-E), and each model was fit to pre- and post-checkout ratings.  The 

goodness-of-fit measures for the models are shown in Table 5.11 and the fitted 

parameter values are shown in Table 5.12.  Purchase-weighting all five model types 

improves the model fits relative to the equivalent un-weighted versions of Model 1.  

The best-fitting models for pre-checkout ratings were the Luce rule comparison 

(1D+PW) and the logistic comparison (1E+PW).  The log-likelihoods of all five 
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model types were again almost identical for the post-checkout ratings, and 

significantly worse than the fit for the pre-checkout ratings.  For the pre-checkout 

rating models, all five models predict an increased probability of a high rating as the 

mean price in the first store decreases or as the mean price in the second store 

increases (α > 0) and mean price estimates biased toward the prices of purchased 

items (π > 0). 

TABLE 5.11 

Goodness-of-fit measures for purchase-weighted versions of Model 1. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

1A+PW: Linear -1483.4 2982.8 -1608.8 3233.7 

1B+PW: Stevens -1480.7 2979.3 -1608.4 3234.8 

1C+PW: Fechner -1483.4 2984.8 -1608.5 3234.9 

1D+PW: Luce -1478.8 2975.5 -1607.6 3233.1 

1E+PW: Logistic -1479.0 2976.0 -1608.3 3234.7 
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TABLE 5.12 

Fitted parameter values for purchase-weighted versions of Model 1. 

 Pre-Checkout 

Parameter 1A+PW 1B+PW 1C+PW 1D+PW 1E+PW 

c1 -1.907 -1.911 -1.906 -0.391 -0.348 

c2    -1.083    -1.086    -1.082     0.436     0.478 

c3    -0.139    -0.139    -0.139     1.387     1.428 

c4     0.573     0.577     0.573     2.104     2.145 

c5     1.508     1.517     1.507     3.046     3.087 

c6     2.636     2.642     2.634     4.170     4.210 

α     3.163     0.052 395 640     3.047     3.130 

β      5.428 126 030    11.90     6.334 

π 0.312 0.168 0.312 0.393 0.351 

 Post-Checkout 

Parameter 1A+PW 1B+PW 1C+PW 1D+PW 1E+PW 

c1 -1.416 -1.418 -1.418 1.012 1.330 

c2    -0.668    -0.670    -0.670     1.761     2.078 

c3    -0.035    -0.037    -0.037     2.396     2.712 

c4     0.431     0.431     0.430     2.864     3.180 

c5     1.312     1.312     1.312     3.747     4.061 

c6     2.238     2.237     2.237     4.670     4.985 

α     3.218 14.19 6.641     4.865     5.493 

β      0.304 0.541     4.521     2.553 

π 3.868 4.960 5.026 5.043 3.755 

 

 In a similar fashion, it is likely that greater attention was paid to items in 

product departments where the participant spent more time browsing.  Hence, the 

memory traces for the prices of such items should be stronger than those for the 

prices of other items.  If participants attempt to estimate a mean price for each store 

by recalling item prices, the estimated mean prices should then be biased towards 

item prices from those departments that were browsed for the longest time, due to 

the higher probability of recall.  Browsing time could not be measured for each 

individual item, but only for each of the ten product departments, each of which 

contained fifteen items.  A variable YS,i was created to represent the approximate 
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percentage of total browsing time in store S dedicated to each item i in product 

department d: 

     
       

              
   

 

A weighting factor for each price was then created, so that: 

             

     
    

     
     
   

     
     

   
 

If the prices of items from departments that were browsed for a longer time are more 

salient, and hence bias the estimated mean price in each store, then a positive 

contribution τ > 0 should be observed. 

Time-weighting (TW) was applied to each of the five types of mean price 

comparison (A-E), and each model was fit to pre- and post-checkout ratings.  The 

goodness-of-fit measures for the models are shown in Table 5.13 and the fitted 

parameter values are shown in Table 5.14.  Time-weighting all five model types 

improved the model fits relative to the equivalent un-weighted versions of Model 1 

for pre-checkout ratings, but not for post-checkout ratings.  The best-fitting models 

for pre-checkout ratings were the Luce choice rule comparison (1D+TW) and the 

logistic comparison (1E+TW).  The log-likelihoods of all five model types were 

again almost identical for the post-checkout ratings, and significantly worse than the 

fit for the pre-checkout ratings.  For the pre-checkout rating models, all five models 

predict an increased probability of a high rating as the mean price in the first store 

decreases or as the mean price in the second store increases (α > 0) but – 

unexpectedly - mean price estimates biased toward the prices of items that were 
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browsed for a shorter time (τ < 0). 

TABLE 5.13 

Goodness-of-fit measures for time-weighted versions of Model 1. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

1A+TW: Linear -1482.4 2980.9 -1643.2 3302.3 

1B+TW: Stevens -1480.3 2978.6 -1643.2 3304.3 

1C+TW: Fechner -1482.4 2982.9 -1643.2 3304.3 

1D+TW: Luce -1480.1 2978.1 -1643.2 3304.4 

1E+TW: Logistic -1480.1 2978.2 -1643.2 3304.3 

 

TABLE 5.14 

Fitted parameter values for time-weighted versions of Model 1. 

 Pre-Checkout 

Parameter 1A+TW 1B+TW 1C+TW 1D+TW 1E+TW 

c1 -1.906 -1.909 -1.906 -0.255 -0.163 

c2    -1.082    -1.085    -1.082     0.570     0.662 

c3    -0.140    -0.140    -0.140     1.515     1.607 

c4     0.573     0.577     0.573     2.232     2.324 

c5     1.511     1.519     1.511     3.174     3.266 

c6     2.646     2.648     2.646     4.305     4.396 

α     3.100     0.067 422 330     3.308     3.492 

β      5.008 136 250     9.903     5.007 

η -7.935    -4.441 -7.936    -5.495    -5.239 

 Post-Checkout 

Parameter 1A+TW 1B+TW 1C+TW 1D+TW 1E+TW 

c1 -1.373 -1.373 -1.373 2.228 87.87 

c2    -0.652    -0.652    -0.652     2.948    88.59 

c3    -0.044    -0.044    -0.044     3.557    89.20 

c4     0.405     0.405     0.405     4.006    89.65 

c5     1.251     1.251     1.251     4.852    90.50 

c6     2.139     2.139     2.139     5.740    91.385 

α     3.059     4.066    31.73     7.201   178.49 

β      0.826     8.658     3.077     0.069 

η 3.293     3.341     3.339     3.437     3.293 
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Finally, it is likely that the total cost of the basket of items purchased in each 

store (CS) will also influence judgments of relative price, especially post-checkout 

once the total cost has been presented to the participant.  Hence, in addition to the 

impact of item prices already discussed, the basket totals may have an additional 

influence on price judgments, with participants making a comparison between the 

basket costs in each store and then integrating this information into their overall 

judgment of relative price.  As suggested in the Information Integration Theory 

literature described in Chapter 1, an additive integration process is likely to perform 

best (N. H. Anderson, 1965): 

                                       

In later models the item price information and basket price comparisons were 

combined, but initially the basket cost effect was considered in isolation, using a 

constant item price valuation function: 

                  

Five different types of basket cost valuation functions were modelled, based upon 

the same comparison processes already tested for the mean price estimate 

comparisons.  The first type (A) is based upon the linear difference between the two 

basket costs: 

                          

The second type (B) is based upon the difference in basket costs raised to a power, as 

suggested by Stevens‟ Law: 
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The third type (C) is based upon the natural logarithm of the ratio of the basket costs, 

as suggested by Fechner‟s Law: 

                     
    

    
  

The fourth type (D) is based upon the Luce choice rule: 

                   
  

 

  
    

 
  

The fifth type (E) is based upon the logistic function: 

                   
    

         
  

In all cases, the shape parameter was constrained so that δ ≥ 0.  Using one or more of 

these five types of valuation function it is possible to predict judgments that exhibit 

increasing, decreasing, or constant sensitivity to differences in basket cost. 

Each basket cost comparison (BC) model was fit to pre- and post-checkout 

ratings.  The goodness-of-fit measures for the models are shown in Table 5.15 and 

the fitted parameter values are shown in Table 5.16.  Adding basket cost 

comparisons does not improve the model fits relative to the baseline model (Model 

0) for pre-checkout ratings, but significantly improves the fit for post-checkout 

ratings using any of the five types of basket cost comparison.  The best-fitting model 

for basket cost comparisons was the logistic comparison (BC(E)).  The post-

checkout log-likelihoods of all five BC models are similar in size to the pre-checkout 

log-likelihoods, suggesting that the previously observed difference was largely due 

to participants making a basket cost comparison after the checkout.  For the post-

checkout rating models, all five models predict an increased probability of a high 
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rating as the basket cost in the first store decreases or as the basket cost in the second 

store increases (γ > 0). 

TABLE 5.15 

Goodness-of-fit measures for basket cost comparison models. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

BC(A): Linear -1560.1 3134.2 -1625.6 3265.2 

BC(B): Stevens -1560.1 3136.2 -1598.5 3213.1 

BC(C): Fechner -1560.1 3136.1 -1593.3 3202.6 

BC(D): Luce -1560.3 3136.7 -1540.6 3097.2 

BC(E): Logistic -1559.4 3134.7 -1534.9 3085.8 

 

TABLE 5.16 

Fitted parameter values for basket cost comparison models. 

 Pre-Checkout 

Parameter BC(A) BC(B) BC(C) BC(D) BC(E) 

c1 -1.713 -1.713 -1.714 -1.677 -1.516 

c2    -0.991    -0.991    -0.991    -0.955    -0.792 

c3    -0.113    -0.113    -0.113    -0.077     0.087 

c4     0.556     0.556     0.556     0.592     0.756 

c5     1.426     1.426     1.426     1.461     1.627 

c6     2.390     2.390     2.389     2.425     2.589 

γ     0.002     0.002     0.598     0.075     0.401 

δ      0.982   256.4     4.866     0.039 

 Post-Checkout 

Parameter BC(A) BC(B) BC(C) BC(D) BC(E) 

c1 -1.358 -1.425 -1.433 -0.643 -0.612 

c2    -0.636    -0.677    -0.681     0.152     0.184 

c3    -0.017    -0.037    -0.037     0.858     0.891 

c4     0.445     0.439     0.441     1.379     1.417 

c5     1.320     1.338     1.346     2.332     2.381 

c6     2.258     2.302     2.316     3.302     3.361 

γ     0.026     1.300     3.170     1.853     1.918 

δ      0.357    28.51    15.06     0.329 
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 The fitted parameter values for the three sampling difference models are 

generally consistent with a plausible causal process of sampling and judgment.  

Purchased items presumably receive more attention than un-purchased items, making 

them easier to recall subsequently, so the prices of purchased items receive greater 

weight in the overall comparative judgment.  Before the checkout the second basket 

cost is unknown, so differences in basket cost could only have a large impact after 

the checkout.  Only the impact of browsing time is counter-intuitive, with longer-

browsed items receiving less and not more weight in the overall judgment.  Given 

that all three sampling differences – purchase-weighting, time-weighting, and basket 

cost comparison – appear to offer an improvement in fit over a simple un-weighted 

mean price model, the logistic versions of each model were combined in different 

permutations to determine whether any incremental improvement in fit is observed.  

Firstly, the purchase-weighting and time-weighting were combined by adjusting the 

weighting parameters: 

                   

Secondly, the purchase-weighting and time-weighting models were combined with 

the basket cost comparisons using additive integration, such that: 

                        
    

         
  

Each combination model was fit to pre- and post-checkout ratings.  The goodness-of-

fit measures for the models are shown in Table 5.17 and the fitted parameter values 

are shown in Table 5.18.  Combining sampling difference terms improves the fit for 

three of the four pre-checkout ratings relative to the best single-term model 

(1E+PW).  The best-fitting model for pre-checkout ratings was the logistic estimated 
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mean comparison model, with purchase-weighting, time-weighting, and a basket cost 

comparison (1E+PW+TW+BC(E)) with an AIC of 2973.9.  Combining sampling 

difference terms also improves the fit for three of the four post-checkout ratings 

relative to the best single-term model (BC(E)).  The best-fitting model for post-

checkout ratings was also the logistic estimated mean comparison model, with 

purchase-weighting and a basket cost comparison (1E+PW+BC(E)) with an AIC of 

2966.6.  Adding time-weighting did not further improve the fit of the post-checkout 

model. 

TABLE 5.17 

Goodness-of-fit measures for Model 1E with sampling differences. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

1E+PW+TW -1477.2 2974.4 -1608.2 3236.4 

1E+PW+BC(E) -1476.6 2975.3 -1472.3 2966.6 

1E+TW+BC(E) -1478.9 2979.8 -1477.2 2976.4 

1E+PW+TW+BC(E) -1475.0 2973.9 -1472.2 2968.4 
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TABLE 5.18 

Fitted parameter values for Model 1E with sampling differences. 

 Pre-Checkout 

Parameter 1E+PW+TW 1E+PW+BC(E) 1E+TW+BC(E) 1E+PW+TW+BC(E) 

c1 -0.286 -0.373 -0.158 -0.311 

c2     0.544     0.454     0.667     0.519 

c3     1.494     1.405     1.612     1.471 

c4     2.213     2.124     2.330     2.191 

c5     3.157     3.070     3.274     3.140 

c6     4.281     4.203     4.412     4.273 

α     3.259     3.244     3.610     3.368 

β     5.847     6.246     4.878     5.796 

π     0.364     0.439      0.447 

η    -5.541  -5.028    -5.285 

γ  -0.167    -0.111    -0.161 

δ      1.440     1.876     1.515 

 Post-Checkout 

Parameter 1E+PW+TW 1E+PW+BC(E) 1E+TW+BC(E) 1E+PW+TW+BC(E) 

c1 1.316 1.069 1.775 1.097 

c2     2.063     1.933     2.637     1.962 

c3     2.697     2.687     3.386     2.716 

c4     3.165     3.249     3.943     3.277 

c5     4.047     4.278     4.964     4.307 

c6     4.972     5.308     5.989     5.335 

α     5.466     3.853     5.102     3.904 

β     2.571     3.777     2.454     3.703 

π     3.801     0.741      0.738 

η     3.127  -1.397    -1.557 

γ  1.681     1.831     1.686 

δ      0.424     0.358     0.421 

 

 These results suggest that adding sampling difference terms – purchase-

weighting, time-weighting, and basket cost comparisons – improves the model fit 

relative to the representative participant models.  However, this was with an 

otherwise un-weighted mean price estimate for each store, whereas the earlier results 

showed that weighting the mean price estimates either by the magnitude of each 

price or by the typicality of each price gives better representative participant rating 
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predictions.  Hence, the three sampling difference terms were also added to the 

logistic typicality-weighted model (3E), both separately and in combination, to test 

whether including sampling difference terms continues to offer improved 

predictions.  In order to combine purchase-weighting or time-weighting with 

typicality-weighting of mean price estimates, a weighting factor for each price was 

created, so that: 

     
    

     
     
   

     
     

   
 

The weighting factor used for purchase-weighting was: 

                    

The weighting factor used for time-weighting was: 

                    

The weighting factor used for both purchase-weighting and time-weighting was: 

                          

As before, the basket cost comparisons were integrated in an additive fashion: 

                        
    

         
  

 All seven permutations of typicality-weighted logistic models were fit to pre- 

and post-checkout ratings.  The goodness-of-fit measures for the models are shown 

in Table 5.19 and the fitted parameter values are shown in Table 5.20.  For the pre-

checkout rating models, six of the seven models have improved AIC scores relative 

to the representative participant model (3E).  The best-fitting model for pre-checkout 
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ratings was the typicality-weighted logistic comparison model, with purchase-

weighting and a basket cost comparison (3E+PW+TW+BC(E)), with an AIC of 

2916.7.  For the post-checkout rating models, six of the seven models have improved 

AIC scores relative to the representative participant model (3E).  The best-fitting 

model for post-checkout ratings was the typicality-weighted logistic comparison 

model, with purchase-weighting and a basket cost comparison (3E+PW+BC(E)), 

with an AIC of 2948.8.  Adding time-weighting did not improve the AIC of either 

model.  These two models are also the best fitting of all the pairing-independent 

models compared, so represent the benchmark against which the pairing-dependent 

models must be judged. 

TABLE 5.19 

Goodness-of-fit measures for Model 3E with sampling differences. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

3E+PW -1450.5 2921.0 -1595.8 3211.5 

3E+TW -1449.3 2918.6 -1625.0 3270.1 

3E+BC(E) -1448.1 2918.2 -1464.4 2950.7 

3E+PW+TW -1448.3 2918.5 -1595.7 3213.3 

3E+PW+BC(E) -1446.5 2916.9 -1462.4 2948.8 

3E+TW+BC(E) -1446.4 2916.7 -1464.3 2952.6 

3E+PW+TW+BC(E) -1445.4 2916.7 -1462.3 2950.6 
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TABLE 5.20 

Fitted parameter values for Model 3E with sampling differences. 

 Pre-Checkout 

Parameter 3E+PW 3E+TW 
3E 

+BC(E) 

3E+PW

+TW 

3E+PW

+BC(E) 

3E+TW

+BC(E) 

3E+PW

+TW 

+BC(E) 

c1 -0.275 -0.203 -0.259 -0.235 -0.298 -0.210 -0.258 

c2 0.562     0.635 0.577 0.605 0.540 0.628 0.583 

c3 1.546     1.618 1.560 1.590 1.527 1.611 1.571 

c4 2.292     2.366 2.309 2.339 2.277 2.362 2.323 

c5 3.271 3.347 3.293 3.321 3.262 3.349 3.311 

c6 4.413 4.494 4.453 4.463 4.418 4.509 4.467 

α 3.407 3.551 3.618 3.494 3.583 3.715 3.666 

β 7.617 7.039 7.282 7.265 7.541 6.926 7.219 

ψ 46.16 47.22 44.93 47.681 45.15 46.29 46.45 

π 0.294   0.328 0.473  0.490 

η  -9.569  -10.80  -8.947 -10.49 

γ   -0.185  -0.220 -0.179 -0.215 

δ   1.581  1.336 1.647 1.420 

 Post-Checkout 

Parameter 3E+PW 3E+TW 
3E 

+BC(E) 

3E+PW

+TW 

3E+PW

+BC(E) 

3E+TW

+BC(E) 

3E+PW

+TW 

+BC(E) 

c1 100.5 100.6 3.493 100.5 3.300 3.555 3.299 

c2 101.2 101.3 4.367 101.2 4.174 4.428 4.174 

c3 101.9 101.9 5.130 101.9 4.939 5.191 4.940 

c4 102.4 102.4 5.697 102.4 5.510 5.759 5.510 

c5 103.3 103.3 6.733 103.3 6.548 6.795 6.549 

c6 104.2 104.2 7.768 104.2 7.584 7.829 7.583 

α 203.9 204.0 8.608 203.9 8.336 8.725 8.329 

β 0.100 0.100 2.212 0.100 2.338 2.179 2.339 

ψ 33.48 25.10 25.62 33.61 26.75 25.53 26.60 

π 8.684   8.950 0.973  0.955 

η  6.034  7.805  -3.138 -4.104 

γ   1.826  1.723 1.832 1.729 

δ   0.342  0.380 0.340 0.377 
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5.3.2.3     Interpreting Model Parameters 

 To understand and interpret the selected pairing-independent model 

(3E+PW+BC(E)) and the fitted parameter values, I have explored the predictions of 

the model at typical values of the input data as well as the sensitivity of those 

predictions to changes in the input variables.  The model can be decomposed into its 

three constituent parts: typicality-weighting (i.e. the price stimuli), purchase-

weighting (i.e. purchasing behaviour), and a basket cost comparison.  Each part can 

be explored independently, by holding the other two parts constant at the mean 

values observed in the experimental data.  In reality the three parts are not truly 

independent – for example, increased purchasing of large price items also increases 

the total basket cost – but these second-order interdependencies will be ignored here 

for the sake of clear exposition. 

 The impact of the input prices was explored for a representative participant, 

with mean purchasing probability for each item in each store, and with the mean 

basket costs CA = £50.25 and CB = £50.88.  The prices in the first store were fixed as 

the control store, Jones.  The prices in the second store were varied to test how the 

model predictions changed in response to those variations.  Figure 5.6 shows how 

the probability distribution for the pre-checkout ratings varies as a function of the 

discount in the second store.  The probability of rating the second store as cheaper 

(RAB = 1, 2, or 3) increases from 46% when the two stores have the same mean price 

to 96% when the second store is 30% cheaper on all items.  Figure 5.7 shows the 

probability distributions for the post-checkout ratings.  The probability of rating the 

second store as cheaper increases from 42% when the two stores have the same mean 

price to 95% when the second store is 30% cheaper on all items.  Figures 5.8 and 5.9 

show the observed mean pre- and post-checkout comparative price judgment ratings 
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from each discount condition in Experiment 3, and the expected values from the 

model: 

                  
   

   
 

The post-checkout ratings are strongly influenced by the basket costs in each store, 

hence they are noisier and less well-explained by the price variations than the pre-

checkout ratings.   The shapes of the pre- and post-checkout response curves are 

similar, although the pre-checkout ratings exhibit a diminishing response to the 

discount level in the large discount conditions.  The post-checkout model appears to 

under-predict the impact of discount level on comparative price judgments.  This is 

likely to be due to the impact of the discount level on the basket cost in the second 

store, whereas the basket costs were held constant in these figures. 
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Figure 5.6: Predicted probability distribution for pre-checkout ratings as a function of the 

mean price difference between the two stores (Model 3E+PW+BC(E)). 

 

Figure 5.7: Predicted probability distribution for post-checkout ratings as a function of the 

mean price difference between the two stores (Model 3E+PW+BC(E)). 
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Figure 5.8: Observed and expected values of pre-checkout ratings as a function of the mean 

price difference between the two stores (Experiment 3 and Model 3E+PW+BC(E)). 

Figure 5.9: Observed and expected values of post-checkout ratings as a function of the mean 

price difference between the two stores (Experiment 3 and Model 3E+PW+BC(E)). 
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 The model also predicts the pattern of comparative price judgments observed 

in the frequency and magnitude conditions of Experiment 4.  Figure 5.10 shows how 

the predicted probability distributions for the pre-checkout ratings vary as a function 

of the frequency and magnitude of price advantages in the second store.  When the 

magnitude of the price advantages in the second store is small (5%), the probability 

of rating the second store as cheaper (RAB = 1, 2, or 3) increases from 42% when the 

second store is cheaper on 20% of the items to 58% when the second store is cheaper 

on 80% items.  When the magnitude of the price advantages in the second store is 

large (20%), the probability of rating the second store as cheaper increases from 43% 

when the second store is cheaper on 20% of the items to 69% when the second store 

is cheaper on 80% items.  Figure 5.11 shows the predicted probability distributions 

for the post-checkout ratings.  The post-checkout ratings are less sensitive than the 

pre-checkout ratings to frequency increases: when the magnitude of the price 

advantages is small, the probability of rating the second store as cheaper increases 

from 40% to 51%; when the magnitude of the price advantages is large, the 

probability of rating the second store as cheaper increases from 41% to 60%.  This is 

reflected in the typicality-weighting parameter values, with the similarity gradient in 

the pre-checkout model (ψ = 45) being much steeper than the similarity gradient in 

the post-checkout model (ψ = 27).  Figures 5.12 and 5.13 show the observed mean 

pre- and post-checkout comparative price judgment ratings from each price condition 

in Experiment 4 and the expected values from the model.  As before, the post-

checkout ratings are noisier and less well-explained by the price variations than the 

pre-checkout ratings.  The post-checkout model also appears to somewhat under-

predict the impact of frequency on comparative price judgments. 
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Figure 5.10: Predicted probability distribution for pre-checkout ratings as a function of the 

frequency and magnitude of price advantages in Store B (Model 3E+PW+BC(E)). 

 

Figure 5.11: Predicted probability distribution for post-checkout ratings as a function of the 

frequency and magnitude of price advantages in Store B (Model 3E+PW+BC(E)). 
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Figure 5.12: Observed and expected values of pre-checkout ratings as a function of the price 

distribution in each store (Experiment 4 and Model 3E+PW+BC(E)). 

Figure 5.13: Observed and expected values of post-checkout ratings as a function of the 

price distribution in each store (Experiment 4 and Model 3E+PW+BC(E)). 
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 The impact of the sampling differences terms can be explored in a similar 

fashion.  By setting the item prices in the test store to match the control store, and by 

holding the total basket costs CA and CB at the mean observed values, the impact of 

variations in purchasing behaviour can be independently tested.  The purchasing 

behaviour in the first store was also held constant at the mean observed item 

purchase probabilities.  Figure 5.14 shows the predicted probability distributions for 

the pre-checkout ratings for five different patterns of purchasing behaviour in the 

second store: (i) the mean observed purchase probability for each item; (ii) no items 

purchased; (iii) all items purchased; (iv) only the 31 smallest price items purchased; 

and (v) only the 32 largest price items purchased.  In the first three cases, the 

probability of rating the second store as cheaper (RAB = 1, 2, or 3) is very similar, at 

46%, 42% and 42% respectively.  When only the 31 smallest price items are 

purchased in the second store, the probability of rating the second store as cheaper 

rises to 64%, whereas when only the 32 largest price items are purchased, the 

probability falls to just 13%.  Figure 5.15 shows the predicted probability 

distributions for the post-checkout ratings, for the same five patterns of purchasing 

behaviour.  Once again, in the first three cases, the probability of rating the second 

store as cheaper is very similar, at 42%, 37% and 37% respectively.  The impact of 

purchasing only the smallest or largest price items is even more extreme for the post-

checkout ratings, with the probability of rating the second store as cheaper rising to 

67% when only the 31 smallest price items are purchased, and falling to just 4% 

when only the 32 largest price items are purchased.  This is reflected in the 

parameter values, with purchased items having 50% more impact than un-purchased 

items in the pre-checkout model (π = 0.47), and almost 100% more impact than un-

purchased items in the post-checkout model (π = 0.97). 
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Figure 5.14: Predicted probability distribution for pre-checkout ratings as a function of the 

purchasing behaviour in Store B (Model 3E+PW+BC(E)). 

 

Figure 5.15: Predicted probability distribution for post-checkout ratings as a function of the 

purchasing behaviour in Store B (Model 3E+PW+BC(E)). 
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 Finally, by setting the item prices in the test store to match the control store, 

and by holding the purchasing behaviour in each store at the mean observed values, 

the impact of variations in basket cost can be independently tested.  The total basket 

cost in the first store was also held constant at the mean observed value of £50.25.  

Figure 5.16 shows the predicted probability distributions for the pre-checkout ratings 

for five different levels of basket cost in the second store: (i) £30; (ii) £40; (iii) £50; 

(iv) £60; and (v) £70.  The impact of the basket cost on pre-checkout ratings is small 

and in a counter-intuitive direction, with the probability of rating the second store as 

cheaper (RAB = 1, 2, or 3) increasing from 40% when CB = £30 to 48% when CB = 

£70.  One possible explanation is therefore that participants purchased slightly more 

items when they perceived the second store to be cheaper, increasing the basket cost 

at the same time as increasing the probability of rating the second store as cheaper.
20

  

Figure 5.17 shows the predicted probability distributions for the post-checkout 

ratings, for the same five values of basket cost CB.  The impact of the basket cost on 

post-checkout ratings is much greater and in the intuitive direction, with the 

probability of rating the second store as cheaper falling from 78% when CB = £30 to 

17% when CB = £70.  This difference is reflected in the parameter values, with a 

much larger scaling parameter for the basket cost comparison term in the post-

checkout rating model (γ = 1.72) compared to the pre-checkout rating model (γ = -

0.22).  Before the checkout, comparative price judgments are dominated by the 

impact of the price distributions in each store   α  /  γ  = 16 , whilst after the 

checkout judgments are also strongly influenced by the basket cost comparison 

  α  /  γ  = 5 .  When the basket costs are correlated with price differences, as in 

Experiment 3, the basket cost comparison will intensify the impact of price 
                                                           
20

 This hypothesis could be tested directly in a future experiment, for example by fixing the purchases 

by providing participants with a shopping list to follow, or alternatively by providing false feedback 

on basket prices after the checkout. 
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differences on comparative judgments.

Figure 5.16: Predicted probability distribution for pre-checkout ratings as a function of the 

total basket cost in Store B (Model 3E+PW+BC(E)). 

Figure 5.17: Predicted probability distribution for post-checkout ratings as a function of the 

total basket cost in Store B (Model 3E+PW+BC(E)). 
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5.3.3     Pairing-Dependent Judgments 

5.3.3.1     Representative Participant Models 

An alternative plausible set of cognitive process models assume that 

participants make pair-wise comparisons between the prices of each item in the two 

stores and then integrate those individual comparisons to make an overall 

comparative price judgment rating.  The most extreme version of these pairing-

dependent models (Model 4) assumes (i) that participants are only sensitive to the 

number of price differences between the two stores (i.e. frequency), regardless of the 

magnitude of those price differences and (ii) that all price differences are noticed and 

equally-weighted in estimating the frequency of price advantages in each store, FS: 

                                      

                                      

                                            

        

     

   
 

The same five basic types of valuation function as before were compared to 

determine which best describes how participants compared the relative frequency of 

price advantages in each store.  The first type (A) is based upon the linear difference 

between the two frequency counts: 

              

The second type (B) is based upon the difference in frequency counts raised to a 

power, as suggested by Stevens‟ Law: 
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The third type (C) is based upon the natural logarithm of the ratio of the frequency 

counts, as suggested by Fechner‟s Law: 

         
    

    
  

The fourth type (D) is based upon the Luce choice rule (adjusted so that the term in 

brackets is equal to 0.5 when the prices in both stores are identical, and hence FA = 

FB = 0): 

       
  

 

  
    

 
  

The fifth type (E) is based upon the logistic function, with a sigmoid relationship 

between the valuation and the difference in frequency counts in each store, as 

suggested by Buyukkurt (1986): 

       
    

         
  

In all cases, the shape parameter was constrained so that β ≥ 0.  Using one or more of 

these five types of valuation function it is possible to predict judgments that exhibit 

increasing, decreasing, or constant sensitivity to differences in frequency.  Clearly 

this family of models cannot predict the observed discount effect from Experiment 3, 

as the frequency, FS, is always 150 in the discounted store regardless of the level of 

discount.  Nonetheless, it serves as a useful yardstick against which to compare more 

complex cognitive process models. 

Each type of Model 4 was fit twice, to both pre- and post-checkout ratings.  
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The goodness-of-fit measures for the models are shown in Table 5.21 and the fitted 

parameter values are shown in Table 5.22.  All five model types offer an 

improvement over the baseline model.  The best-fitting models for pre-checkout 

ratings were the power law comparison (4B) and the Fechner Law comparison (4C).  

The log-likelihood of all five model types was almost identical for the post-checkout 

ratings, and significantly worse than the fit for the pre-checkout ratings.  A log-

likelihood score of -1486.5 implies that the mean likelihood of the observed ratings 

is 21%, compared to a random choice probability of 1 in 7 or 14%.  For the pre-

checkout rating models, all five models predict an increased probability of a high 

rating (“Compared to the first supermarket, I thought that the second store was a lot 

more expensive”) as the frequency of price advantages in the first store increases or 

as the frequency in the second store decreases (α > 0). 

TABLE 5.21 

Goodness-of-fit measures for Model 4. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

4A: Linear -1488.2 2990.5 -1670.6 3355.2 

4B: Stevens -1486.5 2988.9 -1667.7 3351.5 

4C: Fechner -1486.7 2989.5 -1667.9 3351.9 

4D: Luce -1487.6 2991.1 -1668.7 3353.4 

4E: Logistic -1488.2 2992.5 -1670.6 3357.2 
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TABLE 5.22 

Fitted parameter values for Model 4. 

 Pre-Checkout 

Parameter 4A 4B 4C 4D 4E 

c1 -1.874 -1.878 -1.877 -1.226 60.70 

c2    -1.098    -1.097    -1.096    -0.446    61.47 

c3    -0.148    -0.145    -0.145     0.505    62.42 

c4     0.582     0.585     0.585     1.234    63.15 

c5     1.526     1.529     1.529     2.177    64.10 

c6     2.568     2.577     2.577     3.224    65.14 

α     0.004     0.061     0.242     1.298   125.1 

β      0.476    10.64     0.651     0.0001 

 Post-Checkout 

Parameter 4A 4B 4C 4D 4E 

c1 -1.329 -1.330 -1.330 -0.792 48.59 

c2    -0.643    -0.641    -0.641    -0.103    49.28 

c3    -0.044    -0.041    -0.041     0.496    49.88 

c4     0.402     0.405     0.405     0.942    50.32 

c5     1.230     1.235     1.235     1.771    51.15 

c6     2.082     2.090     2.090     2.625    52.00 

α     0.003     0.105     0.136     1.073    99.84 

β      0.328     2.876     0.476     0.0001 

 

At the other extreme, participants could be sensitive only to the magnitude of 

paired-item price differences, regardless of whether those differences are distributed 

over a small or large number of items.  In the case of Experiments 3 and 4, with an 

identical set of products in each store, this is indistinguishable from the case where 

participants make independent judgments of the mean price in each store, as already 

modelled.  More plausibly, participants may be sensitive to the frequency of price 

differences but be more likely to notice and/or be able to recall them when the 

magnitude of the price difference is larger.  Four different candidate cognitive 

judgment models were tested (Model 5).  Each assumes that the comparison process 

occurs in two stages.  Firstly, each pair of prices is compared.  The greater the 
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difference between the two prices, the greater the probability that the participant will 

notice the difference and/or the greater the impact of that item on the overall 

judgment.  Secondly, each of the separate item price comparisons is integrated to 

make an overall comparative judgment about the two stores.  The first pair-wise item 

price comparison process (A) is based on the difference between each item price 

raised to a power, as suggested by Stevens‟ Law: 

       
      

  

The second pair-wise comparison process (B) is based on the natural logarithm of 

the ratio of the price of an item in each store, as suggested by Fechner‟s Law: 

      
      

      
  

The third pair-wise comparison process (C) is based on the Luce choice rule: 

   
    

 

    
      

 
 

The fourth pair-wise comparison process (D) is based on the logistic function, as 

suggested by Buyukkurt: 

   
      

             
 

In each case, the pair-wise comparisons were integrated in an additive fashion, as 

suggested in the Information Integration Theory literature (N. H. Anderson, 1965): 

         

     

   
 

A linear model was not fitted again as it is equivalent to the pairing-independent, 
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accurate mean estimation model (Model 1A) tested earlier, given the identical range 

of items in each of the two stores. 

Each type of Model 5 was fit twice, to both pre- and post-checkout ratings.  

The goodness-of-fit measures for the models are shown in Table 5.23 and the fitted 

parameter values are shown in Table 5.24.  All four model types offer an 

improvement over both the baseline model and the equivalent versions of Model 4.  

The best-fitting model for pre-checkout ratings was the logistic pair-wise comparison 

process (5D).  The best-fitting models for post-checkout ratings were the Luce 

choice rule pair-wise comparison process (5C) and the logistic pair-wise comparison 

process (5D).  The log-likelihood of all four model types was a significantly worse 

fit for the pre-checkout ratings than for the pre-checkout ratings.  For both the pre- 

and post-checkout rating models, all four types predict an increased probability of a 

high rating as the frequency of price advantages in the first store increases or as the 

frequency in the second store decreases (α > 0). 

TABLE 5.23 

Goodness-of-fit measures for Model 5. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

5A: Stevens -1473.0 2962.0 -1631.0 3278.0 

5B: Fechner -1472.6 2961.2 -1631.0 3278.0 

5C: Luce -1464.7 2945.5 -1626.9 3269.9 

5D: Logistic -1459.6 2935.2 -1626.8 3269.5 
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TABLE 5.24 

Fitted parameter values for Model 5. 

 Pre-Checkout 

Parameter 5A 5B 5C 5D 

c1 -1.934 -1.935 -0.041 1.308 

c2    -1.102    -1.102     0.789     2.141 

c3    -0.147    -0.147     1.759     3.116 

c4     0.573     0.573     2.489     3.851 

c5     1.520     1.521     3.450     4.818 

c6     2.665     2.667     4.581     5.956 

α     1.931     0.048     0.025     0.044 

β     0.019 0.233     6.789     3.004 

 Post-Checkout 

Parameter 5A 5B 5C 5D 

c1 -1.397 -1.397 1.513 4.604 

c2    -0.665    -0.665     2.246     5.337 

c3    -0.047    -0.047     2.870     5.961 

c4     0.409     0.409     3.329     6.421 

c5     1.264     1.265     4.189     7.281 

c6     2.161     2.161     5.086     8.178 

α    67.87     0.038     0.039     0.080 

β     0.0005     0.026     3.955     1.266 

 

 In Model 5 each item contributes equally when the pair-wise item price 

comparisons are integrated to make an overall comparison between the two stores.  

However – as with the pairing-independent models - certain item prices may be more 

salient or more easily recalled, so may have a proportionately larger influence in the 

overall judgment.  For example, larger prices may carry greater weight in the 

integration process, as they would have a greater impact on the total cost of a basket 

of items (Model 6).  A weighting factor for each item was created, such that: 
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The same four pair-wise item price comparison processes were used, and each type 

of Model 6 was fit twice, to both pre- and post-checkout ratings.  The goodness-of-fit 

measures for the models are shown in Table 5.25 and the fitted parameter values are 

shown in Table 5.26.  Three of the four model types offer an improvement over the 

equivalent un-weighted versions of Model 5, although the best-fitting un-weighted 

model (5D) has a lower AIC score than any type of Model 6.  The best-fitting model 

for pre-checkout ratings was the Luce choice rule pair-wise comparison process 

(6C).  The log-likelihood of all four model types was almost identical for the post-

checkout ratings, and significantly worse than the fit for the pre-checkout ratings.  

For all the pre- and post-checkout rating models, all four types predict an increased 

probability of a high rating as the frequency of price advantages in the first store 

increases or as the frequency in the second store decreases (α > 0), and for all but 

one of the models items with smaller prices carry more weight in the comparative 

judgment than items with larger prices (ε < 0). 

TABLE 5.25 

Goodness-of-fit measures for Model 6. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

6A: Stevens -1464.2 2946.4 -1625.5 3269.0 

6B: Fechner -1465.5 2949.1 -1626.3 3270.5 

6C: Luce -1458.2 2934.4 -1626.4 3270.9 

6D: Logistic -1458.9 2935.7 -1626.6 3271.1 
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TABLE 5.26 

Fitted parameter values for Model 6. 

 Pre-Checkout 

Parameter 6A 6B 6C 6D 

c1 -1.951 -1.944 -0.485 1.035 

c2    -1.116    -1.112     0.349     1.869 

c3    -0.149    -0.149     1.324     2.844 

c4     0.580     0.577     2.062     3.581 

c5     1.539     1.532     3.031     4.548 

c6     2.682     2.670     4.169     5.686 

α     1.500 519 300     2.951     5.992 

β     1.613 111 360    13.60     2.393 

ε    -0.038 -0.048    -0.747     0.123 

 Post-Checkout 

Parameter 6A 6B 6C 6D 

c1 -1.406 -1.408 0.649 5.005 

c2    -0.672    -0.673     1.383     5.739 

c3    -0.047    -0.048     2.007     6.363 

c4     0.413     0.412     2.467     6.823 

c5     1.274     1.273     3.328     7.683 

c6     2.173     2.172     4.225     8.580 

α     1.541 11 271 000 4.106    12.82 

β     1.583 2 392 900 6.592     1.411 

ε    -0.038 -0.048 -328 880    -0.030 

 

 As discussed earlier in this chapter, there is no strong theoretical justification 

for participants‟ integrated comparative price judgments to be biased toward small 

prices rather than large prices or vice versa.  However, in order to make pair-wise 

price comparisons it is necessary to encode in memory and later retrieve prices from 

the first store.  Items which are more typical are more easily recalled, and hence may 

carry more weight in the integrated comparative price judgment.  Model 7 assumes 

that the probability of recall for a price is proportional to its typicality, using a 

weighting factor for each item such that: 
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The same four pair-wise item price comparison processes were used, and each type 

of Model 7 was fit twice, to both pre- and post-checkout ratings.  The goodness-of-fit 

measures for the models are shown in Table 5.27 and the fitted parameter values are 

shown in Table 5.28.  All of the four model types offer an improvement over the 

equivalent un-weighted versions of Model 5.  The best-fitting model for pre-

checkout ratings was the logistic pair-wise comparison process (7D).  The log-

likelihood of all four model types was almost identical for the post-checkout ratings, 

and significantly worse than the fit for the pre-checkout ratings.  For all the pre- and 

post-checkout rating models, all four types predict an increased probability of a high 

rating as the frequency of price advantages in the first store increases or as the 

frequency in the second store decreases (α > 0). However, two of the models (7A 

and 7B) predict that items with more typical prices carry more weight in the 

comparative judgment (θ > 0), while the other two models predict the opposite (θ < 

0).  Overall, there is little evidence that price- or typicality-weighting the integration 

of the pair-wise item price comparisons offers a significant and consistent 

improvement in model fit or interpretability.  Hence, the best pairing-dependent 

representative participant model assumes logistic comparisons between pairs of item 

prices, integrated in an un-weighted additive fashion (5D). 
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TABLE 5.27 

Goodness-of-fit measures for Model 7. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

7A: Stevens -1467.2 2954.4 -1627.4 3274.7 

7B: Fechner -1468.1 2956.2 -1627.3 3274.5 

7C: Luce -1459.4 2938.8 -1626.5 3272.9 

7D: Logistic -1456.8 2933.6 -1626.7 3273.3 

 

TABLE 5.28 

Fitted parameter values for Model 7. 

 Pre-Checkout 

Parameter 7A 7B 7C 7D 

c1 -1.947 -1.945 -0.459 -0.884 

c2    -1.112    -1.112     0.375    -0.051 

c3    -0.149    -0.149     1.349     0.926 

c4     0.576     0.576     2.085     1.666 

c5     1.530     1.530     3.052     2.635 

c6     2.679     2.673     4.191     3.776 

α    13.55    17.69     2.999     2.163 

β     0.415     1.526    13.20     5.000 

ψ 722 290 10.33    47.92    39.74 

θ 173 660 211 880    -0.112    -0.209 

 Post-Checkout 

Parameter 7A 7B 7C 7D 

c1 -1.404 -1.404 0.922 0.455 

c2    -0.670    -0.671     1.656     1.188 

c3    -0.048    -0.048     2.280     1.811 

c4     0.411     0.411     2.740     2.271 

c5     1.269     1.270     3.601     3.131 

c6     2.167     2.167     4.497     4.029 

α    39.91     7.454     4.654     3.719 

β     0.137     0.277     5.413     1.854 

ψ 34 796 302 420    34.01    23.89 

θ 275 730 236 750    -0.059    -0.129 
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5.3.3.2     Sampling Differences Models 

 As already discussed in relation to the pairing-independent models, it is 

plausible that each individual followed a slightly different judgment process because 

their browsing behaviour led them to sample the price information in a unique way.  

The same three measures of each participant‟s behaviour were used to characterise 

their personal sampling process: the basket of items purchased in each store; the time 

spent browsing each department in each store; and the total cost of the basket of 

items purchased in each store, which was shown at the checkout.  As described in 

Chapter 1, memory traces are stronger when greater attention is paid to a stimulus at the 

moment of encoding and storage.  It is likely that greater attention was paid to purchased 

items than non-purchased items, as the purchased items were selected and placed into the 

basket by the participant.  Hence, the memory traces for the prices of purchased items should 

be stronger than those for the prices of un-purchased items.  If participants make an overall 

price comparison by comparing the frequency with which each store is cheaper on pairs of 

matching items, the judgments should be biased towards purchased items due to the higher 

probability of recall.  A binary variable XS,i was created for each item i in each store S, 

such that XS,i = 1 when the item was purchased in both stores and XS,i = 0 otherwise.  

A weighting factor for each price was then created, so that: 

             

A purchase-weighted version of the simple frequency count model (Model 4) was 

created by adjusting the frequency of price advantages such that: 
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If the prices of purchased items are more salient than the prices of non-purchased 

items, and hence bias the estimated frequency of paired-item price advantages in 

each store, then a positive contribution π > 0 should be observed. 

 Purchase-weighting (PW) was applied to each of the five types of frequency 

comparison (A-E), and each model was fit to pre- and post-checkout ratings.  The 

goodness-of-fit measures for the models are shown in Table 5.29 and the fitted 

parameter values are shown in Table 5.30.  Purchase-weighting all five model types 

improves the pre-checkout rating model fits relative to the equivalent un-weighted 

versions of Model 4, but offers no improvement in the post-checkout rating models.  

The best-fitting model for pre-checkout ratings was the power law comparison 

(4B+PW).  The log-likelihoods of all five model types were again almost identical 

for the post-checkout ratings, and significantly worse than the fit for the pre-

checkout ratings.  For the pre-checkout rating models, all five models predict an 

increased probability of a high rating as the frequency of price advantages in the first 

store increases or as the frequency in the second store decreases (α > 0) and 

frequency estimates biased toward purchased items (π > 0). 
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TABLE 5.29 

Goodness-of-fit measures for purchase-weighted versions of Model 4. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

4A+PW: Linear -1483.8 2983.5 -1670.2 3356.4 

4B+PW: Stevens -1479.8 2977.6 -1667.6 3353.3 

4C+PW: Fechner -1481.7 2981.3 -1669.0 3355.9 

4D+PW: Luce -1482.4 2982.8 -1668.2 3354.4 

4E+PW: Logistic -1483.0 2984.0 -1670.2 3358.4 

 

TABLE 5.30 

Fitted parameter values for purchase-weighted versions of Model 4. 

 Pre-Checkout 

Parameter 4A+PW 4B+PW 4C+PW 4D+PW 4E+PW 

c1 -1.883 -1.892 -1.888 -1.237 -0.785 

c2    -1.104    -1.107    -1.101    -0.455    -0.007 

c3    -0.147    -0.147    -0.144     0.502     0.951 

c4     0.587     0.589     0.589     1.236     1.686 

c5     1.534     1.540     1.537     2.185     2.635 

c6     2.579     2.593     2.592     3.236     3.680 

Α     0.002     0.005     0.186     1.301     2.201 

Β      0.503 135 540     0.748     0.0006 

Π 7.141   634.1 201 120   303.6    54.22 

 Post-Checkout 

Parameter 4A+PW 4B+PW 4C+PW 4D+PW 4E+PW 

c1 -1.329 -1.331 -1.327 -0.788 44.38 

c2    -0.643    -0.641    -0.638    -0.099    45.07 

c3    -0.044    -0.041    -0.040     0.500    45.67 

c4     0.402     0.405     0.405     0.946    46.12 

c5     1.230     1.235     1.235     1.776    46.94 

c6     2.083     2.091     2.091     2.632    47.80 

Α     0.002     0.085     0.100     1.076    91.43 

Β          0.341     0.336     0.432     0.0001 

Π 1.380     2.521    -2.180    -1.765     1.382 

 

 In a similar fashion, it is likely that greater attention was paid to items in 

product departments where the participant spent more time browsing.  Hence, the 
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memory traces for the prices of such items should be stronger than those for the 

prices of other items.  If participants make an overall price comparison by comparing 

the frequency with which each store is cheaper on pairs of matching items, the 

judgments should be biased towards items from those departments that were 

browsed for the longest time, due to the higher probability of recall.  Browsing time 

could not be measured for each individual item, but only for each of the ten product 

departments, each of which contained fifteen items.  A variable YS,i was created to 

represent the approximate percentage of total browsing time in store S dedicated to 

each item i in product department d: 

     
       

              
   

 

A weighting factor for each price was then created, so that: 

             

A time-weighted version of the simple frequency count model (Model 4) was created 

by adjusting the frequency of price advantages such that: 

                                         

                                         

                                                  

   
 

     
     
   

     

     

   
 

If the prices of items from departments that were browsed for a longer time are more 

salient, and hence bias the estimated frequency of paired-item price advantages in 
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each store, then a positive contribution τ > 0 should be observed. 

Time-weighting (TW) was applied to each of the five types of frequency 

comparison (A-E), and each model was fit to pre- and post-checkout ratings.  The 

goodness-of-fit measures for the models are shown in Table 5.31 and the fitted 

parameter values are shown in Table 5.32.  Time-weighting did not improve the 

model fits relative to the equivalent un-weighted versions of Model 4 for any of the 

pre- or post-checkout rating models.  The best-fitting model for pre-checkout ratings 

was the power law comparison (4B+TW).  The log-likelihoods of all five types of 

post-checkout rating model were again significantly worse than the fit for the pre-

checkout ratings.  The best-fitting models for post-checkout ratings were the power 

law comparison (4B+TW) and the Fechner‟s Law comparison (4C TW).  For the 

pre-checkout rating models, all five models predict an increased probability of a high 

rating as the frequency of price advantages in the first store increases or as the 

frequency in the second store decreases (α > 0) but – unlike the pairing-independent 

models - frequency estimates were biased toward the items that were browsed for a 

longer time (τ > 0) in four of the five models. 

TABLE 5.31 

Goodness-of-fit measures for time-weighted versions of Model 4. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

4A+TW: Linear -1488.2 2992.4 -1670.4 3356.8 

4B+TW: Stevens -1486.5 2990.9 -1667.7 3353.3 

4C+TW: Fechner -1486.7 2991.4 -1667.9 3353.7 

4D+TW: Luce -1487.5 2993.1 -1668.7 3355.4 

4E+TW: Logistic -1488.2 2994.5 -1670.6 3359.2 
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TABLE 5.32 

Fitted parameter values for time-weighted versions of Model 4. 

 Pre-Checkout 

Parameter 4A+TW 4B+TW 4C+TW 4D+TW 4E+TW 

c1 -1.874 -1.878 -1.877 -1.226 60.70 

c2    -1.098    -1.097    -1.097    -0.446    61.48 

c3    -0.148    -0.145    -0.145     0.505    62.43 

c4     0.582     0.585     0.585     1.233    63.16 

c5     1.526     1.529     1.529     2.176    64.10 

c6     2.568     2.577     2.577     3.223    65.14 

α     0.001     0.003     0.245     1.299   125.2 

β        0.476 23 851     0.651     0.0001 

η 770.0 79 783 321 090  -133.1     0.018 

 Post-Checkout 

Parameter 4A+TW 4B+TW 4C+TW 4D+TW 4E+TW 

c1 -1.329 -1.331 -1.330 -0.792 48.58 

c2    -0.643    -0.641    -0.640    -0.103    49.27 

c3    -0.044    -0.041    -0.041     0.496    49.87 

c4     0.402     0.405     0.405     0.942    50.32 

c5     1.230     1.235     1.235     1.771    51.14 

c6     2.082     2.090     2.090     2.626    52.00 

α     0.0001     0.009     0.133     1.073    99.83 

β      0.331 7 628     0.477     0.0001 

η 7 801 249 070 451 380 4 190 000    -0.011 

 

Finally, it is likely that the total cost of the basket of items purchased in each 

store (CS) will also influence judgments of relative price, especially post-checkout 

once the total cost has been presented to the participant.  Hence, in addition to the 

impact of item prices already discussed, the basket totals may have an additional 

influence on price judgments, with participants making a comparison between the 

basket costs in each store and then integrating this information into their overall 

judgment of relative price.  As previously, an additive integration process was used: 
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Based upon the results from the earlier pairing-independent models, a logistic basket 

cost comparison was selected to be combined with each type of simple frequency 

count model (Model 4): 

                   
    

         
  

Each basket cost comparison (BC) model was fit to pre- and post-checkout 

ratings.  The goodness-of-fit measures for the models are shown in Table 5.33 and 

the fitted parameter values are shown in Table 5.34.  Adding basket cost 

comparisons does not improve the model fits for pre-checkout ratings, but 

significantly improves the fit for post-checkout ratings using any of the five types of 

frequency comparison.  The best-fitting models for post-checkout ratings were the 

power law comparison (4B+BC(E)) and the Fechner's Law comparison (4C+BC(E)).  

The post-checkout log-likelihoods of all five BC models are similar in size to the 

pre-checkout log-likelihoods, suggesting that the previously observed difference was 

largely due to participants making a basket cost comparison after the checkout.  For 

the post-checkout rating models, all five models predict an increased probability of a 

high rating as the basket cost in the first store decreases or as the basket cost in the 

second store increases (γ > 0). 
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TABLE 5.33 

Goodness-of-fit measures for Model 4 with basket cost comparisons. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

4A+BC(E): Linear -1487.3 2992.6 -1498.6 3015.1 

4B+BC(E): Stevens -1485.5 2991.0 -1496.0 3012.0 

4C+BC(E): Fechner -1485.8 2991.5 -1496.2 3012.3 

4D+BC(E): Luce -1486.6 2993.3 -1496.9 3013.8 

4E+BC(E): Logistic -1487.3 2994.6 -1498.6 3017.1 

 

TABLE 5.34 

Fitted parameter values for Model 4 with basket cost comparisons. 

 Pre-Checkout 

Parameter 4A+BC(E) 4B+BC(E) 4C+BC(E) 4D+BC(E) 4E+BC(E) 

c1 -1.922 -1.926 -1.925 -1.263 60.68 

c2    -1.147    -1.146    -1.145    -0.484    61.46 

c3    -0.196    -0.194    -0.193     0.467    62.41 

c4     0.535     0.537     0.538     1.197    63.14 

c5     1.482     1.484     1.484     2.142    64.08 

c6     2.527     2.536     2.535     3.193    65.13 

α     0.004     0.061     0.247     1.318   125.2 

β      0.479    10.80     0.653     0.0001 

γ    -0.099    -0.100    -0.100    -0.098    -0.099 

δ     2.139     2.095     2.097     2.101     2.137 

 Post-Checkout 

Parameter 4A+BC(E) 4B+BC(E) 4C+BC(E) 4D+BC(E) 4E+BC(E) 

c1 -0.695 -0.702 -0.702 -0.198 48.55 

c2     0.134     0.130     0.131     0.634    49.38 

c3     0.872     0.870     0.870     1.373    50.12 

c4     1.427     1.425     1.425     1.927    50.67 

c5     2.431     2.431     2.431     2.932    51.67 

c6     3.430     3.433     3.432     3.933    52.67 

α     0.003     0.105     0.123     1.005    98.49 

β      0.315     2.430     0.456     0.0001 

γ     1.913     1.902     1.902     1.901     1.913 

δ     0.317     0.323     0.323     0.324     0.317 
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 Two of the three sampling differences – purchase-weighting and basket cost 

comparisons – appear to offer an improved prediction when added to an un-weighted 

frequency count process model.  All three effects were therefore combined with the 

best-fitting pairing-dependent representative participant model: logistic paired-item 

price comparisons with an additive integration process (Model 5D).  In order to 

combine purchase-weighting and/or time-weighting with the additive integration 

process, a weighting factor for each item was created, so that: 

   
      

             
 

        
  

   
     
   

   
     

   
 

For purchase-weighting, the weighting factor used was: 

         

Where Xi = 1 when the item was purchased in both stores and Xi = 0 otherwise.  For 

time-weighting, the weighting factor used was: 

     
 

 
            

To combine purchase- and time-weighting, the weighting factor used was: 

         
 

 
            

As before, the basket cost comparisons were included using additive integration: 
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 All seven possible permutations of sampling differences models were fit to 

pre- and post-checkout ratings.  The goodness-of-fit measures for the models are 

shown in Table 5.35 and the fitted parameter values are shown in Table 5.36.  All the 

seven sampling differences models have improved AIC scores relative to the 

representative participant model (5D), for both pre- and post-checkout ratings.  The 

best-fitting model for both pre- and post-checkout ratings was the logistic pair-wise 

comparison model, with purchase-weighting and a basket cost comparison 

(5D+PW+BC(E)). Adding time-weighting did not improve the AIC of either model.  

The AIC of this model is slightly lower than the AIC of the best-fitting pairing-

independent model for pre-checkout ratings (2916.0 vs. 2916.7) and much lower for 

post-checkout ratings (2941.3 vs. 2948.8).  Thus, it appears that a pairing-dependent 

process model involving pair-wise item price comparisons is a marginally better 

explanation of the observed experimental data than a pairing-independent process 

model.  Accounting for differences in the way price information is sampled 

significantly improves the fit of the models, as does accounting for additional 

information provided such as the total basket cost in each store. 

TABLE 5.35 

Goodness-of-fit measures for Model 5D with sampling differences. 

 Pre-Checkout Post-Checkout 

Model 
Log-

Likelihood 
AIC 

Log-

Likelihood 
AIC 

5D+PW -1451.8 2921.5 -1610.3 3238.6 

5D+TW -1459.4 2936.7 -1626.0 3270.1 

5D+BC(E) -1456.6 2933.3 -1465.1 2950.1 

5D+PW+TW -1451.6 2923.3 -1610.0 3239.9 

5D+PW+BC(E) -1447.0 2916.0 -1459.6 2941.3 

5D+TW+BC(E) -1456.4 2934.8 -1463.7 2949.3 

5D+PW+TW+BC(E) -1446.9 2917.7 -1458.7 2941.3 
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TABLE 5.36 

Fitted parameter values for Model 5D with sampling differences. 

 Pre-Checkout 

Parameter 5D+PW 5D+TW 
5D 

+BC(E) 

5D+PW

+TW 

5D+PW

+BC(E) 

5D+TW

+BC(E) 

5D+PW

+TW 

+BC(E) 

c1 2.143 1.217 1.360 2.107 2.489 1.430 2.435 

c2 2.987 2.052 2.194 2.952 3.334 2.266 3.281 

c3 3.973 3.027 3.170 3.938 4.322 3.241 4.269 

c4 4.713 3.762 3.908 4.678 5.067 3.979 5.014 

c5 5.686 4.729 4.880 5.651 6.048 4.951 5.995 

c6 6.830 5.869 6.031 6.797 7.210 6.105 7.158 

α 8.267 6.355 0.046 8.195 9.203 6.961 9.096 

β 2.505 3.259 2.966 2.590 2.330 3.000 2.413 

π 9.682   18.42 10.94  20.08 

η  105.8  142.1  91.17 131.2 

γ   -0.180  -0.239 -0.181 -0.239 

δ   1.528  1.101 1.537 1.109 

 Post-Checkout 

Parameter 5D+PW 5D+TW 
5D 

+BC(E) 

5D+PW

+TW 

5D+PW

+BC(E) 

5D+TW

+BC(E) 

5D+PW

+TW 

+BC(E) 

c1 7.694 3.969 4.657 7.083 5.555 4.167 5.043 

c2 8.446 4.703 5.531 7.835 6.436 5.043 5.926 

c3 9.083 5.327 6.294 8.472 7.205 5.806 6.694 

c4 9.551 5.787 6.860 8.940 7.775 6.373 7.265 

c5 10.42 6.649 7.894 9.810 8.811 7.409 8.303 

c6 11.33 7.546 8.930 10.72 9.849 8.447 9.343 

α 18.29 10.74 0.073 17.06 12.82 9.945 11.79 

β 0.962 1.564 1.281 1.074 1.227 1.605 1.439 

π 17.47   97.06 7.583  66 003 

η  294.3  7.083  2 596 1270600 

γ   1.831  1.775 1.831 1.775 

δ   0.342  0.349 0.345 0.351 

 

5.3.3.3     Interpreting Model Parameters 

 To understand and interpret the selected pairing-dependent model 

(5D+PW+BC(E)) and the fitted parameter values, I have again explored the 

predictions of the model at typical values of the input data as well as the sensitivity 
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of those predictions to changes in the input variables.  As before, the model was 

decomposed into its constituent parts (pair-wise price comparisons, purchase-

weighting, and a basket cost comparison) and each part was explored independently, 

by holding the rest constant at the mean values observed in the experimental data. 

 The impact of the input prices was explored for a representative participant, 

with mean repeat-purchasing probability for each item, and with the mean basket 

costs CA = £50.25 and CB = £50.88.  The prices in the first store were fixed as the 

control store, Jones.  The prices in the second store were varied to test how the 

model predictions changed in response to those variations.  Figure 5.18 shows how 

the probability distribution for the pre-checkout ratings varies as a function of the 

discount in the second store.  The probability of rating the second store as cheaper 

(RAB = 1, 2, or 3) increases from 45% when the two stores have the same mean price 

to 95% when the second store is 30% cheaper on all items.  Figure 5.19 shows the 

probability distributions for the post-checkout ratings.  The probability of rating the 

second store as cheaper increases from 42% when the two stores have the same mean 

price to 92% when the second store is 30% cheaper on all items.  Figures 5.20 and 

5.21 show the observed mean pre- and post-checkout comparative price judgment 

ratings from each discount condition in Experiment 3, and the expected values from 

the model.  The post-checkout ratings are strongly influenced by the basket costs in 

each store and hence they are noisier and less well-explained by the price variations 

than the pre-checkout ratings.   The shapes of the pre- and post-checkout response 

curves are similar, although the pre-checkout ratings exhibit a slightly diminishing 

response to the discount level in the large discount conditions.  The post-checkout 

model appears to under-predict the impact of discount level on comparative price 
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judgments.  This is likely due to the impact of the discount level on the basket cost in 

the second store, whereas the basket costs were held constant in these figures. 

Figure 5.18: Predicted probability distribution for pre-checkout ratings as a function of the 

mean price difference between the two stores (Model 5D+PW+BC(E)). 

Figure 5.19: Predicted probability distribution for post-checkout ratings as a function of the 

mean price difference between the two stores (Model 5D+PW+BC(E)). 
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Figure 5.20: Observed and expected values of pre-checkout ratings as a function of the mean 

price difference between the two stores (Experiment 3 and Model 5D+PW+BC(E)). 

Figure 5.21: Observed and expected values of post-checkout ratings as a function of the 

mean price difference between the two stores (Experiment 3 and Model 5D+PW+BC(E)). 
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 The model also predicts the pattern of comparative price judgments observed 

in the frequency and magnitude conditions of Experiment 4.  Figure 5.22 shows how 

the predicted probability distributions for the pre-checkout ratings vary as a function 

of the frequency and magnitude of price advantages in the second store.  When the 

magnitude of the price advantages in the second store is small (5%), the probability 

of rating the second store as cheaper (RAB = 1, 2, or 3) increases from 46% when the 

second store is cheaper on 20% of the items to 49% when the second store is cheaper 

on 80% items.  When the magnitude of the price advantages in the second store is 

large (20%), the probability of rating the second store as cheaper increases from 42% 

when the second store is cheaper on 20% of the items to 66% when the second store 

is cheaper on 80% items.  Figure 5.23 shows the predicted probability distributions 

for the post-checkout ratings.  The post-checkout ratings are less sensitive than the 

pre-checkout ratings to frequency increases: when the magnitude of the price 

advantages is small, the probability of rating the second store as cheaper increases 

from 43% to 44%; when the magnitude of the price advantages is large, the 

probability of rating the second store as cheaper increases from 42% to 57%.  This is 

reflected in the pair-wise item price comparison parameter values, with the price 

difference sensitivity in the pre-checkout model (β = 2.33) being much greater than 

the price difference sensitivity in the post-checkout model (β = 1.23).  Figures 5.24 

and 5.25 show the observed mean pre- and post-checkout comparative price 

judgment ratings from each price condition in Experiment 4 and the expected values 

from the model.  As with the earlier pairing-independent model, the post-checkout 

model appears to somewhat under-predict the impact of frequency on comparative 

price judgments. 
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Figure 5.22: Predicted probability distribution for pre-checkout ratings as a function of the 

frequency and magnitude of price advantages in Store B (Model 5D+PW+BC(E)). 

 

Figure 5.23: Predicted probability distribution for post-checkout ratings as a function of the 

frequency and magnitude of price advantages in Store B (Model 5D+PW+BC(E)). 
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Figure 5.24: Observed and expected values of pre-checkout ratings as a function of the price 

distribution in each store (Experiment 4 and Model 5D+PW+BC(E)). 

Figure 5.25: Observed and expected values of post-checkout ratings as a function of the 

price distribution in each store (Experiment 4 and Model 5D+PW+BC(E)). 
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 Because the purchase weighting is applied to pair-wise item price 

comparisons, the effect is not separable from the impact of the price distributions.  

The magnitude of the impact of purchase-weighting is illustrated here by setting the 

item prices in the test store to 10% lower than the control store, and by holding the 

total basket costs CA and CB at the mean observed values.  Figure 5.26 shows the 

predicted probability distributions for the pre-checkout ratings for five different 

patterns of purchasing behaviour in the two stores: (i) the mean observed repeat-

purchase probability for each item; (ii) no items purchased in either store; (iii) all 

items purchased in both stores; (iv) only the 31 smallest price items purchased in 

both stores; and (v) only the 32 largest price items purchased in both stores.  In the 

first three cases, the probability of rating the second store as cheaper (RAB = 1, 2, or 

3) is very similar, at 74%, 78% and 78% respectively.  When only the 31 smallest 

price items are purchased in the second store, the probability of rating the second 

store as cheaper falls to 61%.  When only the 32 largest price items are purchased, 

the probability rises to 97%.  Figure 5.27 shows the predicted probability 

distributions for the post-checkout ratings, for the same five patterns of purchasing 

behaviour.  Once again, in the first three cases, the probability of rating the second 

store as cheaper is very similar, at 67%, 70% and 70% respectively.  The impact of 

purchasing only the smallest or largest price items is less extreme for the post-

checkout ratings, with the probability of rating the second store as cheaper falling to 

57% when only the 31 smallest price items are purchased, and rising to 92% when 

only the 32 largest price items are purchased.  This is reflected in the parameter 

values, with purchased items having 12 times more impact than un-purchased items 

in the pre-checkout model (π = 10.9), and 9 times more impact than un-purchased 

items in the post-checkout model (π = 7.6). 
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Figure 5.26: Predicted probability distribution for pre-checkout ratings as a function of the 

purchasing behaviour in Store B (Model 5D+PW+BC(E)). 

 

Figure 5.27: Predicted probability distribution for post-checkout ratings as a function of the 

purchasing behaviour in Store B (Model 5D+PW+BC(E)). 

0% 20% 40% 60% 80% 100%

High 

Price

Low Price

All

None

Mean

Predicted Probability Distribution

p(R=1)

p(R=2)

p(R=3)

p(R=4)

p(R=5)

p(R=6)

p(R=7)

0% 20% 40% 60% 80% 100%

High 

Price

Low Price

All

None

Mean

Predicted Probability Distribution

p(R=1)

p(R=2)

p(R=3)

p(R=4)

p(R=5)

p(R=6)

p(R=7)



Chapter 5: Comparing Cognitive Process Models 

278 

 Finally, by setting the item prices in the test store to match the control store, 

and by holding the repeat-purchasing behaviour for each item at the mean observed 

values, the impact of variations in basket cost was independently tested.  The total 

basket cost in the first store was also held constant at the mean observed value of 

£50.25.  Figure 5.28 shows the predicted probability distributions for the pre-

checkout ratings for five different levels of basket cost in the second store: (i) £30; 

(ii) £40; (iii) £50; (iv) £60; and (v) £70.  The impact of the basket cost on pre-

checkout ratings is small and in a counter-intuitive direction, with the probability of 

rating the second store as cheaper (RAB = 1, 2, or 3) increasing from 39% when CB = 

£30 to 48% when CB = £70.  One possible explanation is that participants purchased 

slightly more items when they perceived the second store to be cheaper, increasing 

the basket cost at the same time as increasing the probability of rating the second 

store as cheaper.  Figure 5.29 shows the predicted probability distributions for the 

post-checkout ratings, for the same five values of basket cost CB.  The impact of the 

basket cost on post-checkout ratings is much greater and in the intuitive direction, 

with the probability of rating the second store as cheaper falling from 79% when CB 

= £30 to 16% when CB = £70.  This difference is reflected in the parameter values, 

with a much larger scaling parameter for the basket cost comparison term in the post-

checkout rating model (γ = 1.78) compared to the pre-checkout rating model (γ = -

0.24).  Before the checkout, comparative price judgments are dominated by the 

impact of the price distributions in each store   α  /  γ  = 38.5 , whilst after the 

checkout judgments are also strongly influenced by the basket cost comparison 

  α  /  γ  = 7.2 .  When the basket costs are correlated with price differences, as in 

Experiment 3, the basket cost comparison will intensify the impact of price 

differences on comparative judgments. 
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Figure 5.28: Predicted probability distribution for pre-checkout ratings as a function of the 

total basket cost in Store B (Model 5D+PW+BC(E)). 

 

Figure 5.29: Predicted probability distribution for post-checkout ratings as a function of the 

total basket cost in Store B (Model 5D+PW+BC(E)). 
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5.4     Cognitive Modelling Conclusions 

5.4.1     Overview of Models 

 The models compared in this chapter were categorised into families of 

similar models, whose relative performances can be used to draw conclusions about 

the cognitive process followed by participants in Experiments 3 and 4.  Comparing 

pairing-dependent models (that assume item-level price comparisons across the two 

stores) with pairing-independent models (that assume the mean item price of each 

store is estimated independently) tells us whether participants were able to store and 

recall specific item prices from the first store when judging the second store.  Within 

each family of models, comparing different functional forms of comparison process 

tells us what the underlying cognitive mechanism might be.  Finally, comparing 

representative participant models (that assume all item prices are sampled and 

available) with sampling differences models (that assume individual participants 

sample a limited number of prices, determined by their browsing behaviour) tells us 

whether participants made an automatic judgment after viewing all the information 

or a deliberate but difficult judgment based on sampled and recalled information. 

5.4.2     Pairing Dependence 

 The hypothesized explanation for the frequency effect observed in 

Experiments 2 and 4 was that participants‟ comparative price judgments are strongly 

influenced by the frequency with which one store is cheaper than the other on 

identical items.  The magnitude of those price differences has a diminishing impact: 

initially increasing a price difference raises the likelihood of that difference being 

noticed, but for larger differences this effect begins to saturate and the frequency cue 

dominates comparative judgments.  This pairing-dependent explanation assumes that 
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participants are able to recall the prices of at least some items in the first store, and 

compare those recalled prices to the appropriate prices in the second store.  The 

models tested in this chapter pitted this explanation against an alternative hypothesis: 

that participants estimated the mean price in each store independently – in other 

words, without matching the prices of individual items across the two stores – and 

then compared those estimates to make a comparative price judgment.  Such pairing-

independent explanation impose fewer demands upon participants‟ memory for 

items and prices, and the cognitive resources required for such judgments are much 

lower due to the smaller number of calculations involved. 

 The results of the model-fitting exercise in this chapter support the pairing-

dependent process explanation, with the best-fitting pre- and post-checkout models 

both incorporating a series of pair-wise price comparisons across matching items in 

each store.  However, the AIC advantage of this model over pairing-independent 

models (most notably the typicality-weighted mean price estimate model) was small, 

so this result is indicative rather than conclusive.  Nonetheless, the frequency cue 

does appear to play a role in participants‟ comparative judgments, even if the 

magnitude of the price differences moderates their impact in the case of small 

differences.  The best explanation of the observed data is one that assumes pairs of 

prices for matching items are compared, and the store with the highest frequency of 

(noticeable) advantages is judged to be cheaper. 

5.4.3     Functional Form of Comparison Process 

 Of the five types of comparison judgment compared – linear, Steven‟s Power 

Law, Fechner‟s Law, Luce‟s Choice Rule and a logistic choice rule – no single 

process was the best-fitting in every case.  In general, the two parameter models 
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were better than the linear model, despite the AIC penalty for the extra parameter.  In 

the majority of cases, Steven‟s Power Law is a better fit than a Fechner‟s Law 

comparison, although the results are averaged across individuals, which Steven‟s 

own work was criticized for (see Chapter 1).  In general, the Luce and logistic 

comparisons fit better than the other three models, with the logistic model having a 

slight edge, but there were cases in which each type of model had the lowest AIC.  

The best-fitting pairing-independent and pairing-dependent models both utilized a 

logistic comparison process, as suggested by Buyukkurt, lending support to an S-

shaped valuation function.  The S-shape of the Luce and logistic models may make 

them inherently more flexible than the other functional forms, with the ability to 

describe a wider range of data given the same space of input parameters.  If this were 

the case, then a more complex model selection criterion such as the Fisher 

Information Matrix (FIM) would be required to determine whether the slight 

advantage of the S-shaped models is due to their inherent flexibility or whether they 

are truly a better explanation of the observed data. 

 The fitted values of β in the pairing-dependent logistic comparison model 

(5D+PW+BC(E)) suggest a moderate degree of curvature with respect to the 

magnitude of paired-item price differences.  Figure 5.30 shows the valuation 

function for a single item comparison, for an item priced at £1.95 (the mean item 

price) in the first store, for a range of prices in the second store.  Within a limited 

range of price differences (about +/-20%) the item valuation function is 

approximately linear, but differences outside of this range have a diminishing 

marginal impact.  The curvature of the pre-checkout comparisons is greater than that 

of the post-checkout comparisons, reflecting the fact that item price differences play 
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a reduced role in comparative judgments once the total basket cost in each store is 

revealed. 

Figure 5.30: Item valuation function for an item priced £1.95 in the first store, for pre- and 

post-checkout logistic comparisons (Model 5D+PW+BC(E)). 

5.4.4     Sampling Differences 

 As hypothesized, the modelling results strongly support a role for the 

information sampling process followed by each individual participant in determining 

how the comparative price judgment is made.  Three types of information sampling 

differences were tested: the basket of items purchased in each store; the proportion 

of time spent browsing each department in the two stores; and the total cost of each 

basket revealed at the checkout.  The browsing time did not prove to significantly 

impact upon participants‟ judgments, and often worked in a counter-intuitive 

fashion, with less attention being paid to items that had been browsed for longer.  

However, the other two sampling differences proved to be extremely important, and 
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incorporating them into the process models yielded large improvements in AIC 

scores.  Thus, it appears that the way information was sampled by each participant 

(i.e. the items they purchased), and the way in which that information was 

communicated to each participant (i.e. the total cost of their own personal basket of 

items) determine which prices carried most weight in the integrative comparative 

price judgments. 

 The prices of items that were purchased in both stores carry eleven times 

more weight than the prices of un-purchased items in the integration of pre-checkout 

comparative judgments.  This supports the notion that participants‟ judgments were 

disproportionately influenced by prices which had received more attention, and 

hence were easier to recall.  In turn, this also supports pairing-dependence as a 

plausible process explanation, as it suggests that participants stored and recalled 

individual item prices from the first store, rather than making a pairing-independent 

estimate of the average item price and only storing that estimate in memory.  After 

the checkout, once the total basket cost in the second store was revealed, 

participants‟ judgments were strongly influenced by the total cost of the basket of 

purchased items in each store.  In general, the tendency to use basket cost as a proxy 

for the average item price in a store is likely to work well, as basket cost and store 

prices should be positively correlated in the majority of cases.  This simplifying 

heuristic (“rate the store with the lower basket cost as cheaper”) further increases the 

relative importance of purchased items, as these constitute the basket of items whose 

cost is given at the checkout.  Thus, although participants were asked to judge the 

overall price level in each store, their judgment was strongly biased towards the 

prices of purchased items, both because greater attention was paid to those prices and 

also because those items determined the basket costs presented. 
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5.4.5     Implications 

 If people make complex comparative judgments in the manner described by 

the best-fitting process model, then there are a number of implications for our ability 

to make intuitive statistical judgments.  Firstly, these judgments will often exhibit 

systematic biases, such as the frequency effect described in this thesis.  In this case, 

one set of prices is consistently judged to be lower than another, despite having the 

same average magnitude (Experiment 4).  Systematic biases can potentially be 

exploited by other agents, or lead to sub-optimal decisions being made on the basis 

of biased judgments.  Secondly, the information sampling process has a strong 

influence on the outcome of the judgment process, with attentional effects and 

memory processes both introducing potential sources of error into the judgment 

process.  Thirdly, when simpler diagnostic information is available – in this case the 

total basket costs – then people exhibit a tendency to fall back on decision-making 

heuristics that may be fast and demand few cognitive resources, but may also be 

inaccurate or lead to further systematic biases.  I explore these implications in more 

detail in the final chapter, as well as discussing possible applications of these results 

and potential future extensions to this research. 



Chapter 6: Discussion and Conclusions 

286 

CHAPTER 6 

GENERAL DISCUSSION AND CONCLUSIONS 

6.1     Summary of Empirical Findings 

 The research presented in this thesis investigated a type of intuitive statistical 

judgment which has previously received little attention in the psychology literature: 

comparative judgments of the average magnitude of collections of paired stimuli, 

such as item prices in two stores.  As described in the first chapter, one strand of the 

psychology literature has concentrated upon people‟s ability to discriminate between 

stimuli of different magnitudes, from the pioneering work of Weber (e.g. Gigerenzer 

& Murray, 1987), through the psychophysical research of Fechner and Stevens (e.g. 

Stevens, 1957), to Signal Detection Theory (e.g. Tanner & Swets, 1954).  A related 

strand of research has considered people‟s ability to make intuitive statistical 

judgments (summarized by Petersen & Beach, 1967), including inference of 

population averages (e.g. Irwin et al., 1956) which – for numerical stimuli - appear to 

be calculated from a sample of observed values held in memory (Malmi & Samson, 

1983).  However, a series of results from the consumer research literature concerning 

comparative price judgments (e.g. Alba et al., 1994) suggesting a systematic bias in 

comparative judgments of the means of two paired distributions of prices, appears to 

have no direct analogue in the psychology literature. 

 The key distinction between this type of judgment and those previously 

mentioned is the coupling of individual values (in this case item prices) between the 

two distributions.  This appears to bias judgments concerning which distribution has 

the lower average magnitude toward the distribution with the highest frequency of 

paired advantages, even when the true mean is identical or lower in the other 
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distribution.  Whilst this is consistent with a body of research suggesting that 

frequency information is automatically encoded and readily processed (e.g. Hasher 

& Zacks, 1984), subsequent consumer research literature obtained conflicting results 

when the distributions were temporal and item prices paired at points in time (Alba 

et al., 1999) or when the relative salience of frequency and magnitude information 

was manipulated (Lalwani & Monroe, 2005).  The experiments presented in this 

thesis were designed to systematically explore whether the frequency effect 

described in Chapter 1 occurs when frequency information is not readily available 

(Experiments 1 and 2) and whether it persists in a realistic situation where price 

information is sampled incidentally during a browsing and shopping task 

(Experiments 3 and 4).  Furthermore, by fitting and comparing cognitive process 

models to the experimental data, this thesis aims to elucidate how such paired-item 

comparative judgments are made, and how the information sampling process impacts 

upon those judgments.  The empirical findings from each chapter are summarized 

below. 

 The experiments in Chapter 2 first replicated the original frequency effect in 

paired presentation of item price information (Experiment 1) and then determined 

the impact of switching to a pooled presentation of price information (Experiment 2).  

Paired presentation resembles comparative price advertising, where pairs of prices 

for a single item in two different stores are presented side-by-side.  Pooled 

presentation resembles the (much more common) experience of sampling prices 

from two stores sequentially, meaning that prices from the first store would have to 

be encoded, stored and retrieved from memory in order to make paired comparisons 

with the second store.  Experiment 1 replicated the experimental method of Alba et 

al (1994), using the difference between two basket cost estimates as the dependent 
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measure of comparative price judgments.  Because the experimental design pitted 

prior beliefs against the frequency and magnitude of paired-item price differences, it 

was also important to conduct a replication using familiar UK brands and a realistic 

set of products and prices.  Experiment 1 confirmed the previous result: although 

basket cost estimates are influenced by prior beliefs, the dominant factor is the 

frequency with which one store is cheaper than the other (a so-called frequency 

effect).  Furthermore, a subjective confidence judgment of which store was cheaper 

also exhibited a frequency effect, and participants were sensitive to frequency 

differences between the experimental conditions.  Experiment 2 repeated the method 

of Experiment 1, but changed the presentation of the price information from paired 

to pooled as described above.  Both the basket cost estimates and subjective 

confidence judgments continued to show a frequency effect under pooled 

presentation, despite the fact that participants were no longer sensitive to frequency 

differences between the experimental conditions.  A meta-analysis of Experiments 1 

and 2 showed that the frequency effect in basket cost estimates was significantly 

reduced by the switch in information presentation format (after accounting for the 

effect of prior beliefs), as was the frequency effect in subjective confidence 

judgments.  Nonetheless, a weaker frequency effect persisted despite the frequency 

cue no longer being readily available or automatically processed. 

 The replication experiments suffered from a number of limitations, in 

particular employing a design with low ecological validity.  As outlined in Chapter 

1, this not only limits the external validity of any findings but also constrains our 

ability to conclude that observed judgments reflect genuine intuitive judgments 

rather than behaviour induced by the artificial demands of the experimental task.  

Firstly, basket cost estimates were employed as the measure of comparative price 
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perceptions, which is inappropriate when price perceptions causally influence basket 

costs (through purchasing choices) as well as being influenced by them.  Secondly, 

participants were encouraged to pay attention to every price rather than sampling 

price information in a more naturalistic browsing mode.  Thirdly, the number of item 

prices used (30) was far smaller than the number of items and prices found in a 

typical store.  Additionally, only outcome measures were collected so it was 

impossible to determine how the information sampling process followed during the 

experiment might have influenced comparative price judgments.  Hence, Chapter 3 

presented a novel experimental design, developed for this thesis, intended to address 

these flaws and to elicit comparative price judgments made in an ecologically-valid 

environment and task.  Participants conducted a realistic shopping task in two 

different fictional stores, before making a comparative judgment as to which of the 

stores was the cheapest.  The comparative judgment was made before the checkout 

(i.e. immediately after browsing the item prices) and repeated after the checkout 

once the total cost of the basket of purchased items had been presented.  The 

experiment was completed online, allowing a large number of participants to 

complete the experiment in a cost-effective and efficient manner, as well as 

providing access to a wider and more demographically-representative subject pool 

than traditional convenience samples (e.g. Birnbaum, 1999). 

 Experiment 3 tested participants‟ sensitivity to price differences in this 

experimental shopping paradigm by varying the mean item price in the two stores.  

The prices in a control store were fixed across all experimental conditions, while the 

mean item price in a test store was varied in a between-subjects manipulation by 

discounting every item by the same percentage.  As expected, participants‟ 

comparative price judgments were sensitive to changes in discount level, with a just-
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noticeable difference in mean item price of about 3%.  Unlike Experiments 1 and 2, 

the comparative price judgments were decoupled from basket cost estimates in the 

second store, which appear to be have been made by anchoring and adjusting from 

the basket cost in the first store.  The results of Experiment 3 were used in Chapter 4 

to calibrate a robust test of the effects of the frequency and magnitude of inter-store 

price differences and to select an appropriate sample size using a priori power 

analysis.  Experiment 4 used the same procedure and task as Experiment 3, but the 

prices in the test store were varied in a 2x2 between-subjects design in which the 

frequency and magnitude of price advantages were independently manipulated, 

whilst holding the mean item price fixed. 

 The previously-observed frequency effect was found in the ecologically-valid 

setting of Experiment 4: a store with a high number of small price advantages is 

perceived to be cheaper than a store with a low number of large price advantages, 

when the two stores have the same mean item price.  Perceived price differences 

between the control and test store were also larger when the magnitude of price 

advantages (and disadvantages) was greater, but there was no interaction between the 

frequency and magnitude effects.  Again, price judgments were decoupled from 

basket cost estimates.  Furthermore, analysis of purchasing behaviour suggested that 

participants in a high-frequency store were more likely to notice when an item they 

had purchased in the previous store was more expensive, and exclude it from their 

basket.  Despite noticing the more expensive prices, the strategic non-purchasers 

were also more likely to judge the high-frequency store to be cheaper.  This supports 

the hypothesis that the frequency effect is driven by paired-item price differences, as 

those participants who demonstrated memory for individual item prices across the 

two stores were also more prone to a frequency bias in their comparative price 
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judgments.  Finally, in order to test this hypothesis more rigorously Chapter 5 

presented the results of a model-fitting exercise in which different families of 

cognitive process models were fitted to the observed judgments from Experiments 3 

and 4, and then compared using an information-theoretic model selection criterion, 

the Akaike Information Criterion (AIC). 

 The models tested in Chapter 5 fell into four broad categories, depending 

upon whether they were pairing-dependent or pairing-independent, and upon 

whether they assumed representative behaviour by all participants or allowed for 

differences between individuals in the way price information was sampled.  

Although the AIC differences were small, pairing-dependent models (that assume 

participants compare the prices of individual items matched across the two stores) 

explained the observed data slightly better than pairing-independent models (that 

assume participants estimate the mean item price in each store independently).  

Accounting for the way in which price information was sampled by each individual 

significantly improved the explanatory power of the cognitive models, especially 

allowing for the price of purchased items to carry more weight in the comparative 

judgment and assuming that post-checkout judgments were also influenced by the 

total basket cost seen in each store.  Within each of the four categories of models, 

different functional forms for comparison judgments were compared.  In almost 

every case, non-linear functions out-performed models that assumed a linear 

relationship between price differences and judgment ratings.  Furthermore, S-shaped 

functions such as the logistic function or the Luce choice rule tended to have a slight 

advantage over the Fechner ratio and Steven‟s power law, although this was not a 

consistent finding. 
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 The best explanation of the observed data was a cognitive judgment process 

in which participants make logistic pair-wise comparisons between the prices of each 

item in the two stores, and then integrate those comparisons in an additive fashion, 

placing more weight on items that they have purchased in both stores.  After the 

checkout, participants also make a logistic comparison between the total basket costs 

in each store, and integrate that judgment additively with their prior judgment based 

on item prices.  In this explanatory model, the frequency effect arises because of the 

non-linearity of the pair-wise item price comparisons.  Although the impact (or, 

alternatively, the probability of being noticed) of each pair-wise price difference 

increases with the magnitude of the price difference, doubling the size of a price 

difference produces less than twice the impact.  Consistent with the S-shaped 

valuation function described by Buyukkurt (1986) and reproduced in Chapter 1, this 

leads to the conclusion that a store with many small price advantages is perceived as 

cheaper than a store with a few large price advantages.  Increased attention paid to 

certain item prices - caused by purchasing those items - makes it easier for 

participants to recall those particular prices from the first store and make the pair-

wise comparisons, hence inter-store price differences on purchased items have many 

times more impact than price differences on un-purchased items.  However, when 

other salient diagnostic information is also given, such as the total basket cost in 

each store, participants show a strong tendency to use a simple heuristic (“the store 

with the smaller basket cost is cheaper”) in order to make the comparative judgment 

rather than the more cognitively-demanding approach of considering all item prices. 

6.2     Conclusions and Contributions 

 Through the empirical results and computational modelling summarized in 

the previous section, this thesis has provided robust evidence for a systematic and 
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significant bias in comparative judgments of paired distributions of stimuli.  Such 

judgments have so far received little attention in the psychology literature, being a 

special case of the more general (and widely-studied) domain of multi-attribute 

decision-making.  However, unlike the choice between two items with a range of 

attributes – such as when choosing a car, where one might compare the quality, 

speed, safety and fuel-efficiency of different options – there is no need to consider 

issues such as the proper relative weighting of each attribute when comparing two 

distributions of a single attribute.  Furthermore, the judgment studied in this thesis is 

based on objective numerical values, not subjectively determined preferences or 

other abstract qualities, putting it in the domain of intuitive statistical judgments.  

Hence, the normatively correct response is unequivocal and any deviation from the 

normative response represents a genuine bias.  As described in Chapter 1, prior 

research into intuitive statistical judgments have focused upon a single distribution 

of values, or comparisons between two un-paired distributions.  The unique feature 

of the judgment task studied in this thesis is the pairing of items between the two 

distributions, which gives rise to frequency information that appears to be the source 

of the observed bias: when two paired distributions with the same mean are 

compared, the distribution with the higher frequency of values that are smaller than 

the equivalent values in the other distribution tends to be judged the smaller of the 

two distributions. 

 Such a bias would be of little interest if analogues of such judgments were 

not common in everyday life.  However, the two tasks chosen for the experimental 

tests in this thesis – assessments of comparative price lists and comparison shopping 

in two supermarkets – are ubiquitous in today‟s society.  Other examples were 

suggested in Chapter 1, such as comparing the price of two similar items (or the 
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same item in two stores) over a period of time in order to determine which has the 

lowest average price.  Doubtless there are many more instances, for example 

comparing two people‟s abilities or personality by comparing their performance or 

behaviour on a range of specific occasions; comparing the quality of two TV 

channels, restaurants or holiday destinations from a sample of experiences; or 

choosing the best investment by studying the history of past returns on different 

stocks (although this judgment may also depend on temporal structure).  The 

prevalence of complex numerical information and of comparative choice judgments 

in our modern environment make it important to understand under what 

circumstances people might make systematic and predictable errors of judgment.  

Numerical information is often an intrinsic feature of economic decisions – such as 

where and what to purchase, or how and when to invest – and so any errors of 

judgment could have negative welfare implications.  Furthermore, predictable errors 

(as opposed to random errors or noise) could potentially be exploited by other more 

sophisticated economic agents.  For example, comparative advertising of item prices 

or the returns from financial investments could be presented in a way that 

deliberately favours an inferior option. 

 In the case of the comparison shopping task studied in this thesis, there is 

clearly a lot of interest from practitioners such as store managers or government 

regulators in understanding how consumers make price judgments.  The review in 

Chapter 1 described the large volume of literature in the marketing and consumer 

research fields that is devoted to price judgments and price perceptions.  Indeed, it 

was this body of research that originally described the frequency effect, and began to 

explore the boundary conditions under which it may or may not be observed.  

However, these prior experiments suffered from a number of methodological 
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shortcomings, such as the confounding of price judgments with basket cost 

estimates; failing to reduce the salience of the frequency cue by adopting pooled 

presentation of the price information; and inadequately separating the effects of the 

frequency and magnitude cues in the experimental designs.  The research described 

in this thesis has for the first time demonstrated that the frequency bias occurs in a 

realistic setting, with a large number of prices and incidental sampling of those 

prices.  I have also demonstrated that the frequency effect influences price 

perceptions even when basket cost estimates are no longer an appropriate measure, 

because of the problem of reverse causality (price perceptions determine purchasing 

behaviour, which in turn drives the basket cost).  By demonstrating these effects in 

an ecologically-valid experimental setting, the domain in which such effects are 

immediately and practically relevant has widened from the narrow case of 

comparative advertising to the much broader case of comparison shopping. 

 Beyond the identification of a decision-making bias and elucidating the 

practical implications for consumers and retailers, the other contribution this thesis 

makes to the cognitive psychology literature is methodological.  The methodological 

contribution has three aspects: a deliberate focus upon the ecological and external 

validity of the experimental task; the collection of process measures to supplement 

the outcome measures usually collected; and the use of a novel online format with 

large sample sizes and a representative sample of participants.  The first of these 

methodological contributions relates to the Brunswik-ian notion of representative 

design, described in Chapter 1.  Whilst controlled experimental designs were 

employed for this research and not observations taken from a real environment, a lot 

of effort was put into re-creating the key elements of the judgment context: the type 

of information; the format in which it was presented; the task given to participants; 
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the process by which information was sampled; and a naturalistic judgment task 

rather than an abstract and unfamiliar statistical estimate.  By employing a 

representative design and avoiding the use of abstract tasks and judgments often 

found in the cognitive psychology literature, the external validity of the research is 

greatly increased.  There is a much smaller risk that the observed bias was caused by 

features of the experimental design and hence we can be much more confident that 

the frequency bias would also occur in real-world judgments. 

 The second methodological contribution of this thesis is to demonstrate the 

importance and value of collecting process measures in experimental judgment tasks, 

and then employing those measures in cognitive models to determine how the 

judgments were made.  The traditional structural approach in cognitive psychology 

is to vary aspects of the judgment task and context (the inputs) and measure the 

impact on the judgments made (the output).  Different hypothesized judgment 

processes are then compared, either with traditional linear statistics such as ANOVA 

or through more sophisticated models and simulations.  The more direct approach 

employed in this thesis is to measure rather than infer key aspects of the process 

followed by participants in sampling information and making a judgment.  

Incorporating these process measures into subsequent cognitive models has two 

advantages.  Firstly, cognitive models that assume quite different underlying 

sampling and judgment processes can often make quite similar predictions for the 

final judgment.  Discriminating between such models with a structural approach 

requires extremely clever experimental design - to test special cases in which 

competing models make different predictions - or very large sample sizes to enable 

model selection criterion to distinguish the better-performing hypothesis.  In such 

cases, it is clearly better to test the underlying assumptions more directly with 
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process measures.  Secondly, incorporating individual-level process measures into 

cognitive models removes one potentially large source of variation between 

participants.   y factoring out “noise” introduced by individual-level differences in 

the process followed, any remaining differences in predictive power found between 

competing cognitive models are more likely to be genuine.  As demonstrated in 

Chapter 5, the resulting models allow one to separately predict the impact of changes 

in the process followed by an individual and the impact of structural changes to the 

context or task.  This thesis is, of course, not the first time process measures have 

been collected and employed in experimental judgment tasks, but it does form part of 

the growing challenge to the dominant exclusively structural approach. 

 The final methodological contribution of this thesis is in further illustrating 

the benefits of using the internet as a data collection tool.  As outlined in Chapter 1, 

the use of the internet in published studies is still limited – although growing – 

despite some significant advantages (e.g. Birnbaum, 1999).  Most importantly for 

this thesis, web-based experiments allow large samples to be collected in a cost- and 

time-effective manner.  Because data collection occurs in parallel, data from 

thousands of respondents can be collected in a matter of days rather than weeks or 

months and by a single experimenter.  Furthermore, the available pool of participants 

is much wider than the traditional convenience samples used in many published 

studies, which usually consists of psychology undergraduate students completing 

experiments in return for course credits.  The participants in Experiments 3 and 4 

were likely to have far more background knowledge and experience of grocery 

prices to bring into the experiment than undergraduate students.  Their motivation to 

participate and to engage with the experimental task seriously was also likely to be 

greater, as they willingly volunteered to participate rather than being coerced.  In my 



Chapter 6: Discussion and Conclusions 

298 

opinion, these benefits alone outweigh the small loss of experimental control caused 

by not being able to oversee the experimental procedure in person (which in practice 

probably rarely occurs even in lab-based experiments) and not being able to verify 

the identity of participants as effectively.  The former problem can be compensated 

for by increasing sample sizes and experimental power or by using process measures 

- such as time taken and behaviour during the experiment – to filter out poor quality 

data.  The latter problem can be mitigated by the use of checks such as IP addresses 

and e-mail addresses, as well as recruiting participants from well-managed panels of 

volunteers.  By following the best-practice guidelines laid out in Chapter 1, this 

thesis has demonstrated that web-based research allows engaging and immersive 

judgment tasks to be employed with sample sizes that would be impractical or 

impossible in a traditional lab-based setting. 

6.3     Limitations and Future Directions 

 In addition to the theoretical and methodological contributions described 

above, it is also important to highlight limitations in the research, and to outline how 

future investigations might address these limitations and extend the findings of this 

thesis.  The first and most obvious limitation lies in the experimental design: the 

choice to restrict the experimental conditions in Experiments 3 and 4 to the special 

case where the two stores contain an identical range of items.  While this was done 

quite deliberately to maximize the strength of pairing between items, the cognitive 

process models employed in Chapter 5 struggled to differentiate between the 

competing hypotheses of pairing-dependence and pairing-independence. Varying the 

degree of pairing between the two stores, for example by substituting different items 

into the test store or by varying the number of items in the test store, would provide 

an alternative method to verify or reject the proposed pairing-dependent explanation 
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for the frequency effect.  It should be noted, however, that this would be a significant 

experimental undertaking because of the fact that pairing between items is unlikely 

to be a binary variable, but rather items are likely to be judged to be more or less 

similar to each other on a continuous spectrum. 

 Based on our understanding of memory as consisting of traces laid down by 

past experiences (e.g. Wickelgren & Norman, 1966), when a participant wishes to 

judge whether the price of an item is high or low, they will recall prices observed for 

items that are (i) more similar to the test item, (ii) more typical, (iii) more recent, and 

(iv) more salient.  In Chapter 5 I made the simplifying assumption that the only price 

recalled when an item was judged in the second store was for the corresponding item 

in the first store.  In reality, the participant was likely to have also recalled the prices 

of other similar items, both from the first store and from past experiences.  The 

degree of similarity between any two items might depend upon the number of shared 

attributes, the closeness of the two items on those attributes, and the importance 

placed on each attribute in judging similarity or dissimilarity.  As a result, once the 

range of items presented in each store differs, it becomes necessary to measure and 

control the degree of similarity between the two ranges.  That in turn would 

necessitate either collecting information on product attributes in order to predict the 

perceived similarity and degree of pairing between items, or collecting direct 

similarity judgments for pairs of items.  Without this it would be impossible to 

determine to what degree participants were attempting to compare item prices 

between the two stores or were making independent estimates of the mean item price 

in each store.  Whilst this raises significant practical issues for the experimenter, this 

would be a useful future extension to the present research.  In addition to testing the 

conclusion of this thesis - that the frequency effect arises because of item price 
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comparisons between the two stores – it would be of particular interest to determine 

whether participants switch from a pairing-dependent to a pairing-independent 

judgment process when the similarity of the ranges in each store drops below a 

certain threshold. 

 As mentioned above, consideration of the memory recall processes inherent 

in the comparative judgment also highlights further limitations in the current 

experimental design and analytical strategy.  Firstly, the typicality of each item in the 

store (based on all attributes and not just the price as modelled in Chapter 5) could 

potentially influence the relative contribution of an item to the overall comparative 

judgment.  This item typicality could in future research be determined in a separate 

series of judgments, and then added to cognitive process models.  Secondly, the 

recency with which item prices in the first store are observed could determine the 

likelihood that they are recalled by participants when making item-level price 

judgments in the second store.  This recency could be manipulated experimentally or 

be controlled for by collecting process measures such as the order in which each 

product department was browsed.  Thirdly, the salience of particular item prices in 

the first store could be influenced by factors other than whether or not the item was 

purchased.  Again, this could be varied experimentally, for example by drawing 

attention to particular items through the use of different colour or size fonts, or by 

adding promotions to the store.  Finally, the background knowledge of participants 

concerning grocery item prices and their prior experiences of shopping in high or 

low price stores could also determine how they judge the prices shown in the second 

store.  In future studies this could be determined through appropriate questions and 

controlled for in the subsequent analysis. 
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 Another significant limitation of the current research is in the type and detail 

of process measures collected.  The web-based data collection method limited the 

degree to which participant behaviour could be directly observed or the degree to 

which participants could be questioned for insights into the judgment process they 

had followed.  Future studies might employ lab-based techniques such as eye-

tracking or videoing of participants to obtain a more detailed understanding of their 

behaviour, and hence the process by which information was sampled.  Additionally, 

techniques such as think-aloud protocols (in which participants are asked to provide 

a running commentary of their thought processes as they complete the task) could 

shed further light on the cognitive judgment process.  Even in future web-based 

studies, more detailed process measures could be collected such as tracking mouse 

movements during the experiment. 

 Finally, whilst the cognitive modelling in Chapter 5 was able to shed more 

light on the frequency effect than the traditional linear statistics of the prior chapters, 

there were limitations in the modelling approach.  I have already described the 

simplifying assumptions made concerning the way in which items were paired 

between the two stores through recall from memory.  This and other limitations 

relate primarily to a lack of sufficient data to be able to accurately model the 

cognitive judgment process, especially the content of the traces which make up the 

memory of the first store.  However, there are other limitations in the modelling 

approach that could be overcome in future through more sophisticated analysis of 

existing data.  For example, it was assumed that all participants followed the same 

judgment process and the models were compared against each other on that basis.  It 

might in fact be the case that the sample of participants was heterogeneous and 

contained people making the judgment using two or more different processes.  A 
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model that incorporated a mixture of different processes might well perform better 

than a single process.  If that were the case, then it would be the task of future 

research to determine what factors influence the judgment process adopted by any 

specific individual.  For example, do more experienced shoppers use a different 

judgment process from naïve shoppers? 

 The experimental tasks used in this thesis were chosen to match the domain 

of comparative price judgments in which the frequency effect was first identified 

(e.g. Alba et al., 1994).  One interesting avenue for future research would be to test 

for the existence of a frequency effect in analogous judgments in other tasks and 

domains.  As already mentioned, there are analogous price tasks in which prices are 

paired in alternative ways, such as at points in time.  Previous studies have 

considered the task of comparing the average price of two items, sampled over a 

period of time (e.g. Alba et al., 1999).  In future, other numerical tasks could be used 

to look for frequency effects, such as comparing the returns of different investments; 

judging the larger of two companies from staff numbers in different regions of the 

world; or any other task in which numerical values are (superfluously) paired in 

order to create a frequency cue.  If the frequency effect is found to bias judgments 

across a range of intuitive statistical judgments, then an important avenue of future 

research would be to test for a frequency effect in other judgment domains.  This 

work could have important implications for a wide range of learning and judgment 

tasks, ranging from forecasting to person perception. 

 Prior research described in Chapter 1 appears to show that the visual field 

represents statistical properties of sets of items, rather than the detail of each 

individual member (e.g. Ariely, 2001).  If this is the case, then a frequency effect 

would not occur in the visual domain.  However, the tasks employed in the prior 
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research parallel the un-paired distribution tasks employed in prior experiments on 

intuitive statistical judgments.  It would be interesting to recreate an analogous task 

to Experiment 3 in the visual domain by presenting two paired distributions of items 

on a screen.  One possibility would be to pair the items in the two distributions 

through one physical property unique to each item (e.g. shape or colour) and ask 

participants to make comparative judgments of the average value of a second 

physical property that varies across the two distributions (e.g. area or brightness).  

Further manipulations might parallel other parts of this thesis, such as comparing 

paired and pooled presentation formats as was done in Experiments 1 and 2.  

Similarly, one could devise tests of auditory judgments of two sets of sounds, being 

received by each ear.  The sounds could be paired by playing them at the same point 

in time, or by using an auditory property unique to each item such as pitch.  The two 

sets of sounds could then be compared on their perceived average value of another 

auditory property such as loudness.  Testing for the existence of a frequency effect in 

sensory judgments through psychophysical research is perhaps the most exciting 

avenue for future research.  Comparing intuitive judgments of numerical information 

with those of sensory stimuli could help us understand whether all judgment 

processes have a common underlying basis or whether humans have specialized and 

domain-specific judgment processes that operate independently.  This would have 

far-reaching implications, extending the importance of the frequency effect far 

beyond the limited context explored in this thesis, so we may reasonably hope that 

the challenge is soon taken up. 
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APPENDIX A1: Item Descriptions for Experiments 3 and 4 

Item Department Description Price 

1 Fruit & Veg White Seedless Grapes (1 Kg) 2.18 

2 Fruit & Veg Royal Gala Apples (1 Kg) 1.49 

3 Fruit & Veg Conference Pears (1 Kg) 1.18 

4 Fruit & Veg Bananas (1 Kg) 0.74 

5 Fruit & Veg Medium Sized Tomatoes (1 Kg) 1.29 

6 Fruit & Veg Mixed Peppers x3 1.25 

7 Fruit & Veg White Potatoes (2.5 Kg) 0.88 

8 Fruit & Veg Baking Potatoes (1 Kg) 0.85 

9 Fruit & Veg Cauliflower 0.78 

10 Fruit & Veg Whole Cucumber 0.68 

11 Fruit & Veg Iceberg Lettuce 0.57 

12 Fruit & Veg Onions (1 Kg) 0.55 

13 Fruit & Veg Carrots (1 Kg) 0.49 

14 Fruit & Veg Bunch of Spring Onions 0.48 

15 Fruit & Veg Half Cucumber 0.34 

16 Meat & Poultry Fresh Chicken Breast Fillets (1 Kg) 7.73 

17 Meat & Poultry Whole Fresh Chicken (2.5 Kg) 4.45 

18 Meat & Poultry Whole Fresh Chicken (1.5 Kg) 2.96 

19 Meat & Poultry Frozen Chicken (1.8Kg) 2.81 

20 Meat & Poultry Whole Fresh Chicken (1 Kg) 1.93 

21 Meat & Poultry Fresh Beef Sirloin Steak (1 Kg) 11.31 

22 Meat & Poultry Fresh Beef Rump Steak (1 Kg) 7.56 

23 Meat & Poultry Fresh Beef Topside (1 Kg) 6.55 

24 Meat & Poultry Extra Lean Minced Beef (1 Kg) 3.07 

25 Meat & Poultry British Fresh Lamb Loin Chops (1 Kg) 9.95 

26 Meat & Poultry British Fresh Leg of Lamb (1 Kg) 6.69 

27 Meat & Poultry New Zealand Leg of Lamb (1 Kg) 5.88 

28 Meat & Poultry Fresh Boneless Leg of Pork (1 Kg) 3.50 

29 Meat & Poultry Smith's Frozen Pork Chops (1 kg) 3.12 

30 Meat & Poultry Fresh Pork Boneless Rolled Shoulder (1 Kg) 2.58 

31 Grocery Smith's Fusilli Pasta Twists 1Kg  0.64 

32 Grocery Chicken Tonight (500g) 1.16 

33 Grocery Dolmio Sauce (500g) 1.11 

34 Grocery Smith's Pasta Sauce (500g) 0.88 

35 Grocery Walkers Assorted Crisps x6 0.92 

36 Grocery KP Hula Hoops Assorted x7 0.81 

37 Grocery Smith's Multi-Pack Crisps x6 0.79 
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Item Department Description Price 

38 Grocery Smith's Tortilla Chips (200g) 0.28 

39 Grocery Batchelors Cup-a-Soup Tomato x4 0.82 

40 Grocery Oxo Cubes Red x12 0.67 

41 Grocery Knorr Packet Tomato Soup (makes 1.5 pints) 0.53 

42 Grocery Cadburys Dairy Milk (200g) 1.04 

43 Grocery Kit Kat Two Finger x8 0.83 

44 Grocery Smith's White Granulated Sugar (1 Kg) 0.68 

45 Grocery Weetabix x24 1.17 

46 Canned Goods Smith's Red Salmon (212g) 1.73 

47 Canned Goods Smith's Tuna Chunks (215g) 0.32 

48 Canned Goods Smith's Sardines (120g) 0.30 

49 Canned Goods Fray Bentos Corned Beef (340g) 0.95 

50 Canned Goods Smith's Ham (200g) 0.69 

51 Canned Goods Heinz Baked Beans in Tomato Sauce 4 x 415g 1.48 

52 Canned Goods Heinz Baked Beans (415g) 0.38 

53 Canned Goods Smith's Baked Beans (420g) 0.11 

54 Canned Goods Smith's Canned Garden Peas (300g) 0.23 

55 Canned Goods Smith's Canned Sweetcorn (300g) 0.21 

56 Canned Goods Smith's Plum Tomatoes (420g) 0.19 

57 Canned Goods Heinz Ready to Serve Tomato Soup (400g) 0.49 

58 Canned Goods Ambrosia Creamed Rice (425g) 0.43 

59 Canned Goods Smith's Fruit Cocktail (411g) 0.24 

60 Canned Goods Smith's Peach Slices (420g) 0.18 

61 Beverages Tetley Tea Bags x160 2.73 

62 Beverages Smith's Premium Tea Bags x160 2.54 

63 Beverages PG Tips Pyramid Tea Bags x80 1.44 

64 Beverages Smith's Tea Bags x80 0.34 

65 Beverages Nescafe Gold Blend Instant Coffee (100g) 2.14 

66 Beverages Nescafe Instant Coffee (100g) 1.63 

67 Beverages Smith's UHT Pure Orange Juice 4 x 1 Litre 2.18 

68 Beverages Smith's Fresh Pure Orange Juice (1 litre) 0.70 

69 Beverages Smith's UHT Pure Orange Juice (1 litre) 0.32 

70 Beverages Ribena Blackcurrant (1 litre) 2.41 

71 Beverages Pepsi 6 x 330ml 1.94 

72 Beverages Coca Cola (2 litres) 1.28 

73 Beverages Pepsi Cola (2 litres) 1.28 

74 Beverages Schweppes Tonic (1 litre) 0.76 

75 Beverages Smith's Lemonade (2 litres) 0.14 

76 Household & Pet Food Andrex Bathroom Tissue x9 3.58 
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Item Department Description Price 

77 Household & Pet Food Andrex Bathroom Tissue x4 1.65 

78 Household & Pet Food Smith's Luxury Soft Toilet Tissue x4 1.55 

79 Household & Pet Food Smith's Toilet Tissue x4 0.42 

80 Household & Pet Food Smith's Kitchen Towel x3 0.98 

81 Household & Pet Food Wash 'n' Go Shampoo & Conditioner 200ml 1.49 

82 Household & Pet Food Sure Roll-On Anti-Perspirant (50ml) 1.05 

83 Household & Pet Food Bic Razors Economy x10 0.74 

84 Household & Pet Food Domestos (750ml) 0.90 

85 Household & Pet Food Fairy Liquid (500ml) 0.88 

86 Household & Pet Food Lenor Care (1 litre) 0.88 

87 Household & Pet Food Persil Washing Up Liquid (500ml) 0.72 

88 Household & Pet Food Whiskas Supermeat (390g) 0.47 

89 Household & Pet Food Pedigree Chum (400g) 0.42 

90 Household & Pet Food Kit-E-Kat (400g) 0.37 

91 Bakery Smith's Crusty White Bloomer (800g) 0.74 

92 Bakery Kingsmill Medium White Sliced Loaf (800g) 0.73 

93 Bakery Hovis White Sliced Loaf (800g) 0.68 

94 Bakery Nimble White Sliced Loaf (400g) 0.64 

95 Bakery Smith's Crusty White Split Tin Loaf (800g) 0.63 

96 Bakery Smith's White Seeded Burger Buns x6 0.49 

97 Bakery Smith's Crusty White Bloomer (400g) 0.48 

98 Bakery Smith's White Finger Rolls x6 0.36 

99 Bakery Smith's Sliced Danish Loaf (400g) 0.30 

100 Bakery Smith's White Sliced Bread (800g) 0.23 

101 Bakery Mr Kipling French Fancies x8 1.35 

102 Bakery Mr Kipling Manor House Cake 1.06 

103 Bakery Smith's Jam Doughnuts x10 0.99 

104 Bakery Cadburys Mini Rolls x6 0.98 

105 Bakery Smith's Apple Pies x6 0.40 

106 Dairy Fresh Semi Skimmed Milk (6 pints) 1.51 

107 Dairy Pasteurised Milk (4 pints) 1.03 

108 Dairy Fresh Semi-Skimmed Milk (1 pint) 0.29 

109 Dairy Smith's Fresh Double Cream (284ml) 0.62 

110 Dairy Smith's Fresh Single Cream (284ml) 0.51 

111 Dairy Flora (1Kg) 1.57 

112 Dairy Lurpak Slightly Salted Butter (250g) 0.97 

113 Dairy St Ivel Gold Light (500g) 0.87 

114 Dairy Anchor Butter (250g) 0.82 

115 Dairy Smith's Salted Butter (250g) 0.53 
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116 Dairy Smith's Cheddar (1 Kg) 3.08 

117 Dairy Dairylea Cheese Spread Portions x6 0.49 

118 Dairy Medium Eggs x6 (Size 3) 0.72 

119 Dairy Smith's Low Fat Fruit Yoghurt 4 x 125g 0.83 

120 Dairy Muller Fruit Corner (175g) 0.38 

121 Frozen Foods Birds Eye Garden Peas (1.8kg) 2.54 

122 Frozen Foods Birds Eye Garden Peas (907g) 1.17 

123 Frozen Foods Smith's Petit Pois (907g) 0.92 

124 Frozen Foods Smith's Frozen Peas (1Kg) 0.78 

125 Frozen Foods McCain Oven Chips (1.8kg) 1.55 

126 Frozen Foods Birds Eye Potato Waffles x12 1.38 

127 Frozen Foods Smith's Straight Cut Oven Chips (1kg) 0.78 

128 Frozen Foods Smith's Fish Fingers x20 (500g) 2.21 

129 Frozen Foods Birds Eye Cod Fillet Fish Fingers x10 1.34 

130 Frozen Foods Smith's Cod Fillet Fish Fingers x10 1.14 

131 Frozen Foods Birds Eye Roast Beef Platter (340g) 2.10 

132 Frozen Foods Mr Brain's Faggots x4 (378g) 1.00 

133 Frozen Foods Walls Soft Scoop Blue Ribbon Vanilla Ice Cream (2 l) 1.78 

134 Frozen Foods Smith's Soft Scoop Vanilla Ice Cream (4 litres) 1.70 

135 Frozen Foods Mars Chocolate Ice Cream x4 1.64 

136 Off-Licence Stella Artois 24 x 330ml 14.98 

137 Off-Licence Guiness Draught Bitter 4 x 440ml 3.78 

138 Off-Licence Strongbow Dry Cider (2 litres) 2.98 

139 Off-Licence Smith's Bitter 4 x 440ml 0.86 

140 Off-Licence Smith's French Medium Dry White 3 ltr box 9.89 

141 Off-Licence Kumala Reserve Cabernet Sauvignon (75cl) 5.49 

142 Off-Licence Jacobs Creek Shiraz-Cabernet (75cl) 4.98 

143 Off-Licence Smith's Australian White (75cl) 2.73 

144 Off-Licence Smith's Claret (75cl) 2.54 

145 Off-Licence Smith's Liebfraumilch Medium White (75cl) 1.92 

146 Off-Licence Teachers Scotch Whisky (70cl) 11.67 

147 Off-Licence Baileys Original Irish Cream (70cl) 10.47 

148 Off-Licence Smirnoff Vodka Red (70cl) 9.67 

149 Off-Licence Smith's Vodka (70cl) 7.16 

150 Off-Licence Bacardi Breezer 4 x 275ml 4.47 
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APPENDIX A2: Item Prices for Experiments 3 and 4 

Item 0% 1% 2% 3% 4% 5% 7.5% 10% 15% 20% 30% 
F20

M5 

F20

M20 

F80

M5 

F80

M20 

1 2.18 2.16 2.14 2.11 2.09 2.07 2.02 1.96 1.85 1.74 1.53 2.07 1.74 2.07 1.74 

2 1.49 1.48 1.46 1.45 1.43 1.42 1.38 1.34 1.27 1.19 1.04 1.53 1.63 1.42 1.19 

3 1.18 1.17 1.16 1.14 1.13 1.12 1.09 1.06 1.00 0.94 0.83 1.21 1.29 1.12 0.94 

4 0.74 0.73 0.73 0.72 0.71 0.70 0.68 0.67 0.63 0.59 0.52 0.76 0.81 0.70 0.59 

5 1.29 1.28 1.26 1.25 1.24 1.23 1.19 1.16 1.10 1.03 0.90 1.32 1.41 1.59 2.52 

6 1.25 1.24 1.23 1.21 1.20 1.19 1.16 1.13 1.06 1.00 0.88 1.19 1.00 1.19 1.00 

7 0.88 0.87 0.86 0.85 0.84 0.84 0.81 0.79 0.75 0.70 0.62 0.90 0.96 0.84 0.70 

8 0.85 0.84 0.83 0.82 0.82 0.81 0.79 0.77 0.72 0.68 0.60 0.87 0.93 0.81 0.68 

9 0.78 0.77 0.76 0.76 0.75 0.74 0.72 0.70 0.66 0.62 0.55 0.80 0.85 0.74 0.62 

10 0.68 0.67 0.67 0.66 0.65 0.65 0.63 0.61 0.58 0.54 0.48 0.70 0.75 0.84 1.33 

11 0.57 0.56 0.56 0.55 0.55 0.54 0.53 0.51 0.48 0.46 0.40 0.54 0.46 0.54 0.46 

12 0.55 0.54 0.54 0.53 0.53 0.52 0.51 0.50 0.47 0.44 0.39 0.56 0.60 0.52 0.44 

13 0.49 0.49 0.48 0.48 0.47 0.47 0.45 0.44 0.42 0.39 0.34 0.50 0.54 0.47 0.39 

14 0.48 0.48 0.47 0.47 0.46 0.46 0.44 0.43 0.41 0.38 0.34 0.49 0.53 0.46 0.38 

15 0.34 0.34 0.33 0.33 0.33 0.32 0.31 0.31 0.29 0.27 0.24 0.35 0.37 0.42 0.66 

16 7.73 7.65 7.58 7.50 7.42 7.34 7.15 6.96 6.57 6.18 5.41 7.34 6.18 7.34 6.18 

17 4.45 4.41 4.36 4.32 4.27 4.23 4.12 4.01 3.78 3.56 3.12 4.56 4.88 4.23 3.56 

18 2.96 2.93 2.90 2.87 2.84 2.81 2.74 2.66 2.52 2.37 2.07 3.03 3.24 2.81 2.37 

19 2.81 2.78 2.75 2.73 2.70 2.67 2.60 2.53 2.39 2.25 1.97 2.88 3.08 2.67 2.25 

20 1.93 1.91 1.89 1.87 1.85 1.83 1.79 1.74 1.64 1.54 1.35 1.98 2.11 2.39 3.76 

21 11.31 11.20 11.08 10.97 10.86 10.74 10.46 10.18 9.61 9.05 7.92 10.74 9.05 10.74 9.05 

22 7.56 7.48 7.41 7.33 7.26 7.18 6.99 6.80 6.43 6.05 5.29 7.74 8.28 7.18 6.05 

23 6.55 6.48 6.42 6.35 6.29 6.22 6.06 5.90 5.57 5.24 4.59 6.70 7.18 6.22 5.24 

24 3.07 3.04 3.01 2.98 2.95 2.92 2.84 2.76 2.61 2.46 2.15 3.14 3.36 2.92 2.46 

25 9.95 9.85 9.75 9.65 9.55 9.45 9.20 8.96 8.46 7.96 6.97 10.18 10.90 12.30 19.40 

26 6.69 6.62 6.56 6.49 6.42 6.36 6.19 6.02 5.69 5.35 4.68 6.36 5.35 6.36 5.35 

27 5.88 5.82 5.76 5.70 5.64 5.59 5.44 5.29 5.00 4.70 4.12 6.02 6.44 5.59 4.70 

28 3.50 3.47 3.43 3.40 3.36 3.33 3.24 3.15 2.98 2.80 2.45 3.58 3.83 3.33 2.80 

29 3.12 3.09 3.06 3.03 3.00 2.96 2.89 2.81 2.65 2.50 2.18 3.19 3.42 2.96 2.50 

30 2.58 2.55 2.53 2.50 2.48 2.45 2.39 2.32 2.19 2.06 1.81 2.64 2.83 3.19 5.03 

31 0.64 0.63 0.63 0.62 0.61 0.61 0.59 0.58 0.54 0.51 0.45 0.61 0.51 0.61 0.51 

32 1.16 1.15 1.14 1.13 1.11 1.10 1.07 1.04 0.99 0.93 0.81 1.19 1.27 1.10 0.93 

33 1.11 1.10 1.09 1.08 1.07 1.05 1.03 1.00 0.94 0.89 0.78 1.14 1.22 1.05 0.89 

34 0.88 0.87 0.86 0.85 0.84 0.84 0.81 0.79 0.75 0.70 0.62 0.90 0.96 0.84 0.70 

35 0.92 0.91 0.90 0.89 0.88 0.87 0.85 0.83 0.78 0.74 0.64 0.94 1.01 1.14 1.79 

36 0.81 0.80 0.79 0.79 0.78 0.77 0.75 0.73 0.69 0.65 0.57 0.77 0.65 0.77 0.65 

37 0.79 0.78 0.77 0.77 0.76 0.75 0.73 0.71 0.67 0.63 0.55 0.81 0.87 0.75 0.63 

38 0.28 0.28 0.27 0.27 0.27 0.27 0.26 0.25 0.24 0.22 0.20 0.29 0.31 0.27 0.22 

39 0.82 0.81 0.80 0.80 0.79 0.78 0.76 0.74 0.70 0.66 0.57 0.84 0.90 0.78 0.66 

40 0.67 0.66 0.66 0.65 0.64 0.64 0.62 0.60 0.57 0.54 0.47 0.69 0.73 0.83 1.31 

41 0.53 0.52 0.52 0.51 0.51 0.50 0.49 0.48 0.45 0.42 0.37 0.50 0.42 0.50 0.42 

42 1.04 1.03 1.02 1.01 1.00 0.99 0.96 0.94 0.88 0.83 0.73 1.06 1.14 0.99 0.83 

43 0.83 0.82 0.81 0.81 0.80 0.79 0.77 0.75 0.71 0.66 0.58 0.85 0.91 0.79 0.66 

44 0.68 0.67 0.67 0.66 0.65 0.65 0.63 0.61 0.58 0.54 0.48 0.70 0.75 0.65 0.54 

45 1.17 1.16 1.15 1.13 1.12 1.11 1.08 1.05 0.99 0.94 0.82 1.20 1.28 1.45 2.28 

46 1.73 1.71 1.69 1.67 1.66 1.64 1.60 1.55 1.47 1.38 1.21 1.64 1.38 1.64 1.38 



Appendix A2 

328 

Item 0% 1% 2% 3% 4% 5% 7.5% 10% 15% 20% 30% 
F20

M5 

F20

M20 

F80

M5 

F80

M20 

47 0.32 0.32 0.31 0.31 0.31 0.30 0.30 0.29 0.27 0.26 0.22 0.33 0.35 0.30 0.26 

48 0.30 0.30 0.29 0.29 0.29 0.29 0.28 0.27 0.26 0.24 0.21 0.31 0.33 0.29 0.24 

49 0.95 0.94 0.93 0.92 0.91 0.90 0.88 0.86 0.81 0.76 0.67 0.97 1.04 0.90 0.76 

50 0.69 0.68 0.68 0.67 0.66 0.66 0.64 0.62 0.59 0.55 0.48 0.71 0.76 0.85 1.35 

51 1.48 1.47 1.45 1.44 1.42 1.41 1.37 1.33 1.26 1.18 1.04 1.41 1.18 1.41 1.18 

52 0.38 0.38 0.37 0.37 0.36 0.36 0.35 0.34 0.32 0.30 0.27 0.39 0.42 0.36 0.30 

53 0.11 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.09 0.09 0.08 0.11 0.12 0.10 0.09 

54 0.23 0.23 0.23 0.22 0.22 0.22 0.21 0.21 0.20 0.18 0.16 0.24 0.25 0.22 0.18 

55 0.21 0.21 0.21 0.20 0.20 0.20 0.19 0.19 0.18 0.17 0.15 0.21 0.23 0.26 0.41 

56 0.19 0.19 0.19 0.18 0.18 0.18 0.18 0.17 0.16 0.15 0.13 0.18 0.15 0.18 0.15 

57 0.49 0.49 0.48 0.48 0.47 0.47 0.45 0.44 0.42 0.39 0.34 0.50 0.54 0.47 0.39 

58 0.43 0.43 0.42 0.42 0.41 0.41 0.40 0.39 0.37 0.34 0.30 0.44 0.47 0.41 0.34 

59 0.24 0.24 0.24 0.23 0.23 0.23 0.22 0.22 0.20 0.19 0.17 0.25 0.26 0.23 0.19 

60 0.18 0.18 0.18 0.17 0.17 0.17 0.17 0.16 0.15 0.14 0.13 0.18 0.20 0.22 0.35 

61 2.73 2.70 2.68 2.65 2.62 2.59 2.53 2.46 2.32 2.18 1.91 2.59 2.18 2.59 2.18 

62 2.54 2.51 2.49 2.46 2.44 2.41 2.35 2.29 2.16 2.03 1.78 2.60 2.78 2.41 2.03 

63 1.44 1.43 1.41 1.40 1.38 1.37 1.33 1.30 1.22 1.15 1.01 1.47 1.58 1.37 1.15 

64 0.34 0.34 0.33 0.33 0.33 0.32 0.31 0.31 0.29 0.27 0.24 0.35 0.37 0.32 0.27 

65 2.14 2.12 2.10 2.08 2.05 2.03 1.98 1.93 1.82 1.71 1.50 2.19 2.34 2.65 4.17 

66 1.63 1.61 1.60 1.58 1.56 1.55 1.51 1.47 1.39 1.30 1.14 1.55 1.30 1.55 1.30 

67 2.18 2.16 2.14 2.11 2.09 2.07 2.02 1.96 1.85 1.74 1.53 2.23 2.39 2.07 1.74 

68 0.70 0.69 0.69 0.68 0.67 0.67 0.65 0.63 0.60 0.56 0.49 0.72 0.77 0.67 0.56 

69 0.32 0.32 0.31 0.31 0.31 0.30 0.30 0.29 0.27 0.26 0.22 0.33 0.35 0.30 0.26 

70 2.41 2.39 2.36 2.34 2.31 2.29 2.23 2.17 2.05 1.93 1.69 2.47 2.64 2.98 4.70 

71 1.94 1.92 1.90 1.88 1.86 1.84 1.79 1.75 1.65 1.55 1.36 1.84 1.55 1.84 1.55 

72 1.28 1.27 1.25 1.24 1.23 1.22 1.18 1.15 1.09 1.02 0.90 1.31 1.40 1.22 1.02 

73 1.28 1.27 1.25 1.24 1.23 1.22 1.18 1.15 1.09 1.02 0.90 1.31 1.40 1.22 1.02 

74 0.76 0.75 0.74 0.74 0.73 0.72 0.70 0.68 0.65 0.61 0.53 0.78 0.83 0.72 0.61 

75 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.12 0.11 0.10 0.14 0.15 0.17 0.27 

76 3.58 3.54 3.51 3.47 3.44 3.40 3.31 3.22 3.04 2.86 2.51 3.40 2.86 3.40 2.86 

77 1.65 1.63 1.62 1.60 1.58 1.57 1.53 1.49 1.40 1.32 1.16 1.69 1.81 1.57 1.32 

78 1.55 1.53 1.52 1.50 1.49 1.47 1.43 1.40 1.32 1.24 1.09 1.59 1.70 1.47 1.24 

79 0.42 0.42 0.41 0.41 0.40 0.40 0.39 0.38 0.36 0.34 0.29 0.43 0.46 0.40 0.34 

80 0.98 0.97 0.96 0.95 0.94 0.93 0.91 0.88 0.83 0.78 0.69 1.00 1.07 1.21 1.91 

81 1.49 1.48 1.46 1.45 1.43 1.42 1.38 1.34 1.27 1.19 1.04 1.42 1.19 1.42 1.19 

82 1.05 1.04 1.03 1.02 1.01 1.00 0.97 0.95 0.89 0.84 0.74 1.07 1.15 1.00 0.84 

83 0.74 0.73 0.73 0.72 0.71 0.70 0.68 0.67 0.63 0.59 0.52 0.76 0.81 0.70 0.59 

84 0.90 0.89 0.88 0.87 0.86 0.86 0.83 0.81 0.77 0.72 0.63 0.92 0.99 0.86 0.72 

85 0.88 0.87 0.86 0.85 0.84 0.84 0.81 0.79 0.75 0.70 0.62 0.90 0.96 1.09 1.72 

86 0.88 0.87 0.86 0.85 0.84 0.84 0.81 0.79 0.75 0.70 0.62 0.84 0.70 0.84 0.70 

87 0.72 0.71 0.71 0.70 0.69 0.68 0.67 0.65 0.61 0.58 0.50 0.74 0.79 0.68 0.58 

88 0.47 0.47 0.46 0.46 0.45 0.45 0.43 0.42 0.40 0.38 0.33 0.48 0.51 0.45 0.38 

89 0.42 0.42 0.41 0.41 0.40 0.40 0.39 0.38 0.36 0.34 0.29 0.43 0.46 0.40 0.34 

90 0.37 0.37 0.36 0.36 0.36 0.35 0.34 0.33 0.31 0.30 0.26 0.38 0.41 0.46 0.72 

91 0.74 0.73 0.73 0.72 0.71 0.70 0.68 0.67 0.63 0.59 0.52 0.70 0.59 0.70 0.59 

92 0.73 0.72 0.72 0.71 0.70 0.69 0.68 0.66 0.62 0.58 0.51 0.75 0.80 0.69 0.58 

93 0.68 0.67 0.67 0.66 0.65 0.65 0.63 0.61 0.58 0.54 0.48 0.70 0.75 0.65 0.54 

94 0.64 0.63 0.63 0.62 0.61 0.61 0.59 0.58 0.54 0.51 0.45 0.66 0.70 0.61 0.51 
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Item 0% 1% 2% 3% 4% 5% 7.5% 10% 15% 20% 30% 
F20

M5 

F20

M20 

F80

M5 

F80

M20 

95 0.63 0.62 0.62 0.61 0.60 0.60 0.58 0.57 0.54 0.50 0.44 0.64 0.69 0.78 1.23 

96 0.49 0.49 0.48 0.48 0.47 0.47 0.45 0.44 0.42 0.39 0.34 0.47 0.39 0.47 0.39 

97 0.48 0.48 0.47 0.47 0.46 0.46 0.44 0.43 0.41 0.38 0.34 0.49 0.53 0.46 0.38 

98 0.36 0.36 0.35 0.35 0.35 0.34 0.33 0.32 0.31 0.29 0.25 0.37 0.39 0.34 0.29 

99 0.30 0.30 0.29 0.29 0.29 0.29 0.28 0.27 0.26 0.24 0.21 0.31 0.33 0.29 0.24 

100 0.23 0.23 0.23 0.22 0.22 0.22 0.21 0.21 0.20 0.18 0.16 0.24 0.25 0.28 0.45 

101 1.35 1.34 1.32 1.31 1.30 1.28 1.25 1.22 1.15 1.08 0.95 1.28 1.08 1.28 1.08 

102 1.06 1.05 1.04 1.03 1.02 1.01 0.98 0.95 0.90 0.85 0.74 1.09 1.16 1.01 0.85 

103 0.99 0.98 0.97 0.96 0.95 0.94 0.92 0.89 0.84 0.79 0.69 1.01 1.08 0.94 0.79 

104 0.98 0.97 0.96 0.95 0.94 0.93 0.91 0.88 0.83 0.78 0.69 1.00 1.07 0.93 0.78 

105 0.40 0.40 0.39 0.39 0.38 0.38 0.37 0.36 0.34 0.32 0.28 0.41 0.44 0.49 0.78 

106 1.51 1.49 1.48 1.46 1.45 1.43 1.40 1.36 1.28 1.21 1.06 1.43 1.21 1.43 1.21 

107 1.03 1.02 1.01 1.00 0.99 0.98 0.95 0.93 0.88 0.82 0.72 1.05 1.13 0.98 0.82 

108 0.29 0.29 0.28 0.28 0.28 0.28 0.27 0.26 0.25 0.23 0.20 0.30 0.32 0.28 0.23 

109 0.62 0.61 0.61 0.60 0.60 0.59 0.57 0.56 0.53 0.50 0.43 0.63 0.68 0.59 0.50 

110 0.51 0.50 0.50 0.49 0.49 0.48 0.47 0.46 0.43 0.41 0.36 0.52 0.56 0.63 0.99 

111 1.57 1.55 1.54 1.52 1.51 1.49 1.45 1.41 1.33 1.26 1.10 1.49 1.26 1.49 1.26 

112 0.97 0.96 0.95 0.94 0.93 0.92 0.90 0.87 0.82 0.78 0.68 0.99 1.06 0.92 0.78 

113 0.87 0.86 0.85 0.84 0.84 0.83 0.80 0.78 0.74 0.70 0.61 0.89 0.95 0.83 0.70 

114 0.82 0.81 0.80 0.80 0.79 0.78 0.76 0.74 0.70 0.66 0.57 0.84 0.90 0.78 0.66 

115 0.53 0.52 0.52 0.51 0.51 0.50 0.49 0.48 0.45 0.42 0.37 0.54 0.58 0.66 1.03 

116 3.08 3.05 3.02 2.99 2.96 2.93 2.85 2.77 2.62 2.46 2.16 2.93 2.46 2.93 2.46 

117 0.49 0.49 0.48 0.48 0.47 0.47 0.45 0.44 0.42 0.39 0.34 0.50 0.54 0.47 0.39 

118 0.72 0.71 0.71 0.70 0.69 0.68 0.67 0.65 0.61 0.58 0.50 0.74 0.79 0.68 0.58 

119 0.83 0.82 0.81 0.81 0.80 0.79 0.77 0.75 0.71 0.66 0.58 0.85 0.91 0.79 0.66 

120 0.38 0.38 0.37 0.37 0.36 0.36 0.35 0.34 0.32 0.30 0.27 0.39 0.42 0.47 0.74 

121 2.54 2.51 2.49 2.46 2.44 2.41 2.35 2.29 2.16 2.03 1.78 2.41 2.03 2.41 2.03 

122 1.17 1.16 1.15 1.13 1.12 1.11 1.08 1.05 0.99 0.94 0.82 1.20 1.28 1.11 0.94 

123 0.92 0.91 0.90 0.89 0.88 0.87 0.85 0.83 0.78 0.74 0.64 0.94 1.01 0.87 0.74 

124 0.78 0.77 0.76 0.76 0.75 0.74 0.72 0.70 0.66 0.62 0.55 0.80 0.85 0.74 0.62 

125 1.55 1.53 1.52 1.50 1.49 1.47 1.43 1.40 1.32 1.24 1.09 1.59 1.70 1.92 3.02 

126 1.38 1.37 1.35 1.34 1.32 1.31 1.28 1.24 1.17 1.10 0.97 1.31 1.10 1.31 1.10 

127 0.78 0.77 0.76 0.76 0.75 0.74 0.72 0.70 0.66 0.62 0.55 0.80 0.85 0.74 0.62 

128 2.21 2.19 2.17 2.14 2.12 2.10 2.04 1.99 1.88 1.77 1.55 2.26 2.42 2.10 1.77 

129 1.34 1.33 1.31 1.30 1.29 1.27 1.24 1.21 1.14 1.07 0.94 1.37 1.47 1.27 1.07 

130 1.14 1.13 1.12 1.11 1.09 1.08 1.05 1.03 0.97 0.91 0.80 1.17 1.25 1.41 2.22 

131 2.10 2.08 2.06 2.04 2.02 2.00 1.94 1.89 1.79 1.68 1.47 2.00 1.68 2.00 1.68 

132 1.00 0.99 0.98 0.97 0.96 0.95 0.93 0.90 0.85 0.80 0.70 1.02 1.10 0.95 0.80 

133 1.78 1.76 1.74 1.73 1.71 1.69 1.65 1.60 1.51 1.42 1.25 1.82 1.95 1.69 1.42 

134 1.70 1.68 1.67 1.65 1.63 1.62 1.57 1.53 1.45 1.36 1.19 1.74 1.86 1.62 1.36 

135 1.64 1.62 1.61 1.59 1.57 1.56 1.52 1.48 1.39 1.31 1.15 1.68 1.80 2.03 3.20 

136 14.98 14.83 14.68 14.53 14.38 14.23 13.86 13.48 12.73 11.98 10.49 14.23 11.98 14.23 11.98 

137 3.78 3.74 3.70 3.67 3.63 3.59 3.50 3.40 3.21 3.02 2.65 3.87 4.14 3.59 3.02 

138 2.98 2.95 2.92 2.89 2.86 2.83 2.76 2.68 2.53 2.38 2.09 3.05 3.27 2.83 2.38 

139 0.86 0.85 0.84 0.83 0.83 0.82 0.80 0.77 0.73 0.69 0.60 0.88 0.94 0.82 0.69 

140 9.89 9.79 9.69 9.59 9.49 9.40 9.15 8.90 8.41 7.91 6.92 10.12 10.84 12.22 19.29 

141 5.49 5.44 5.38 5.33 5.27 5.22 5.08 4.94 4.67 4.39 3.84 5.22 4.39 5.22 4.39 

142 4.98 4.93 4.88 4.83 4.78 4.73 4.61 4.48 4.23 3.98 3.49 5.10 5.46 4.73 3.98 
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Item 0% 1% 2% 3% 4% 5% 7.5% 10% 15% 20% 30% 
F20

M5 

F20

M20 

F80

M5 

F80

M20 

143 2.73 2.70 2.68 2.65 2.62 2.59 2.53 2.46 2.32 2.18 1.91 2.79 2.99 2.59 2.18 

144 2.54 2.51 2.49 2.46 2.44 2.41 2.35 2.29 2.16 2.03 1.78 2.60 2.78 2.41 2.03 

145 1.92 1.90 1.88 1.86 1.84 1.82 1.78 1.73 1.63 1.54 1.34 1.97 2.10 2.37 3.74 

146 11.67 11.55 11.44 11.32 11.20 11.09 10.79 10.50 9.92 9.34 8.17 11.09 9.34 11.09 9.34 

147 10.47 10.37 10.26 10.16 10.05 9.95 9.68 9.42 8.90 8.38 7.33 10.72 11.47 9.95 8.38 

148 9.67 9.57 9.48 9.38 9.28 9.19 8.94 8.70 8.22 7.74 6.77 9.90 10.60 9.19 7.74 

149 7.16 7.09 7.02 6.95 6.87 6.80 6.62 6.44 6.09 5.73 5.01 7.33 7.85 6.80 5.73 

150 4.47 4.43 4.38 4.34 4.29 4.25 4.13 4.02 3.80 3.58 3.13 4.58 4.90 5.52 8.72 

 


