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Abstract

Hunt and Kaloshin (1999) proved that it is possible to embed a compact
subset X of a Hilbert space with upper box-counting dimension d into RN for any
N > 2d+ 1, using a linear map L whose inverse is Hölder continuous with exponent
α < (N − 2d)/N(1 + τ(X)/2), where τ(X) is the ‘thickness exponent’ of X. More
recently, Ott et al. (2006) conjectured that “many of the attractors associated with
the evolution equations of mathematical physics have thickness exponent zero”.

In Chapter 2 we study orthogonal sequences in a Hilbert space H, whose
elements tend to zero, and similar sequences in the space c0 of null sequences.
These examples are used to show that Hunt and Kaloshin’s result, and a related
result due to Robinson (2009) for subsets of Banach spaces, are asymptotically sharp.
An analogous argument shows that the embedding theorems proved by Robinson
(2010), in terms of the Assouad dimension, for the Hilbert and Banach space case
are asymptotically sharp.

In Chapter 3 we introduce a variant of the thickness exponent, the Lipschitz
deviation dev(X). We show that Hunt and Kaloshin’s result and Corollary 3.9 in
Ott et al. (2006) remain true with the thickness replaced by the Lipschitz deviation.
We then prove that dev(X) = 0 for the attractors of a wide class of semilinear
parabolic equations, thus providing a partial answer to the conjecture of Ott, Hunt,
& Kaloshin.

In Chapter 4 we study the regularity of the vector field on the global attractor
associated with parabolic equations. We show that certain dissipative equations
possess a linear term that is log-Lipschitz continuous on the attractor. We then
prove that this property implies that the associated global attractor A lies within
a small neighbourhood of a smooth manifold, given as a Lipschitz graph over a
finite number of Fourier modes. This provides an alternative proof that the global
attractor A has zero Lipschitz deviation.

In Chapter 5 we use shape theory and the concept of cellularity to show that if
A is the global attractor associated with a dissipative partial differential equation in
a real Hilbert space H and the set A−A has finite Assouad dimension d, then there
is an ordinary differential equation in Rm+1, with m > d, that has unique solutions
and reproduces the dynamics on A. Moreover, the dynamical system generated by
this new ordinary differential equation has a global attractor X arbitrarily close to
LA, where L is a homeomorphism from A into Rm+1.

v



Chapter 1

Introduction

The main focus of this thesis is to examine the regularity of embeddings of finite-

dimensional compact subsets of an infinite-dimensional Hilbert space into a Eu-

clidean space, motivated by applications to the theory of global attractors.

1.1 Semigroups and Global Attractors

There are many interesting partial differential equations whose solutions generate an

infinite-dimensional dynamical system. The evolution of such a dynamical system

can be described by a continuous semigroup
{
S(t)

}
t≥0

of solution operators.

Definition 1.1.1 (Ladyzhenskaya, 1991). A continuous semigroup on a Hilbert

space H is a family of continuous linear operators on H, {S(t)}t≥0, satisfying

(i) S(0) = I,

(ii) S(t)S(s) = S(s)S(t) = S(s+ t), for all t, s ≥ 0, and such that

(iii) the mapping given by (t, x) 7→ S(t)x from [0,∞]×H to H is continuous.

In this case, the family of operators is defined by

S(t)u0 = u(t;u0), for all t ≥ 0,

where u(t;u0) is the solution of the differential equation with initial condition u0.

A large number of nonlinear dissipative evolution equations have been shown

to possess global attractors (see Hale (1988), Ladyzhenskaya (1991), Babin and

Vishik (1992), Temam (1997) and Robinson (2001), for more detail).
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Definition 1.1.2 (Robinson, 2001). Let H be a Hilbert space and let {S(t)}t≥0 be

a continuous semigroup defined on H. A global attractor A ⊂ H is a compact

invariant set, i.e.

S(t)A = A for all t ≥ 0 (1.1)

that attracts all bounded sets, i.e.

dist(S(t)X,A)→ 0 as t→∞, (1.2)

for any bounded set X ⊂ H. If the global attractor A exists, then it is unique.

The distance in (1.2) is the Hausdorff semidistance between two non-empty subsets

X,Y ⊂ H,

dist(X,Y ) = sup
x∈X

inf
y∈Y
‖x− y‖,

where ‖ · ‖ denotes the norm in H.

It follows from the definition thatA contains all stationary points, all periodic

orbits, and all almost-periodic orbits. In fact, the global attractor A is composed

of all complete bounded orbits (see Hale, 1988). One can also characterize global

attractors as the union of the omega-limit sets of all bounded sets X, where

ω(X) =
{
y ∈ X : y = limS(tn)xn, for some tn →∞ and {xn} ∈ X

}
=

⋂
t≥0

⋃
s≥t

S(s)X.

If a system possesses a global attractor, the study of the asymptotic be-

haviour of the system essentially reduces to the analysis of the dynamics on the

attractor, as shown by Langa and Robinson (1999) for example. Global attractors

are complicated objects to describe, and usually, as in Hale (1988), the study is

focused on their geometric properties as subsets of the infinite-dimensional phase

space in which they lie.

The complexity of the flow on the attractor depends in part on the dimension

of A. Many dissipative equations, such as the Kuramoto-Sivashinsky and the 2D

Navier-Stokes equations, possess finite-dimensional global attractors (see Constantin

and Foias (1988), Eden et al. (1994), Temam (1997) and Robinson (2001) for a more

detailed study). It is therefore natural to seek a finite-dimensional dynamical system

whose asymptotic behaviour reproduces that of the original flow.

A necessary step towards solving this problem relies on proving the existence

of an embedding of the global attractor into some Euclidean space with a sufficiently
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regular inverse. A map φ between metric spaces (X, d) and (Y, d̃) is an embedding if

it is a homeomorphism onto its image. In this thesis we are particularly interested in

embeddings of compact subsets of Hilbert and Banach spaces into Euclidean spaces.

1.2 Notions of Dimension

In order to study embeddings of sets with complex geometric structure, such as

attractors, it is necessary to introduce precise measures of dimension, such as the

Hausdorff and the upper box-counting dimension. In this section we introduce

some important notions of dimension for subsets of a Hilbert space H. We restrict

ourselves to those dimensions and their properties that are especially useful in the

study of the asymptotic behaviour of dynamical systems generated by dissipative

partial differential equations.

1.2.1 The Hausdorff dimension

Definition 1.2.1 (Falconer, 1990). The Hausdorff dimension of a set X is defined

by

dimH(X) = inf{d : Hd(X) = 0} = sup{d : Hd(X) =∞},

where Hd is the d-dimensional Hausdorff measure

Hd(X) = lim
δ→0

(
inf

{ ∞∑
i=1

|Ui|d : {Ui} is a δ−cover of X

})
.

Here |Ui| = sup{|x − y| : x, y ∈ Ui} is the diameter of the set Ui and a δ-cover is a

cover {Ui} such that |Ui| ≤ δ for all i. The following general result estimates the

effect of general transformations on the Hausdorff dimension of sets.

Proposition 1.2.2 (Falconer, 1990). Let X be a compact subset of a Hilbert space

H. Suppose that f : X → H is Hölder continuous with exponent η, i.e. there exist

c > 0 and η > 0 such that

‖f(x)− f(y)‖ ≤ c‖x− y‖η, for all x, y ∈ X.

Then dimH f(X) ≤ (1/η) dimH(X).

It follows from Proposition 1.2.2 that if f : X → H is a bi-Lipschitz transformation,

i.e,

c1‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤ c2‖x− y‖, for all x, y ∈ X,
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where 0 < c1 ≤ c2 <∞, then dimH f(X) = dimH(X).

1.2.2 The upper box-counting dimension

Definition 1.2.3 (Falconer, 1990). Let X be a compact subset of a Hilbert space

H. The upper box-counting dimension dimbox(X) of X is given by

dimbox(X) = lim sup
ε→0

logNX(ε)

− log ε
,

where NX(ε) denotes the minimum number of ε-balls in H necessary to cover X.

It follows from the definition that the upper box-counting dimension ofX, dimbox(X),

is the infimum over all d for which there exists K such that

NX(ε) ≤ K(1/ε)d, for 0 < ε < 1.

Roughly speaking, NX(ε) grows at the rate of ε− dimbox(X) as ε→ 0. More precisely,

NX(ε)εd tends to infinity if d < dimbox(X), and NX(ε)εd tends to zero if d >

dimbox(X).

It is important to note that, for every X ⊂ H, dimH(X) ≤ dimbox(X). In

addition, the upper box-counting dimension shares the following property with the

Hausdorff dimension.

Proposition 1.2.4. Suppose that f : X → H is Hölder continuous with exponent

η, then dimbox f(X) ≤ (1/η) dimbox(X).

Hence, the upper box-counting dimension, like the Hausdorff dimension, is invariant

under bi-Lipschitz transformations. For more information on the Hausdorff and

upper box-counting dimension, see Falconer (1990).

1.2.3 The Assouad dimension

Another useful measure, the Assouad dimension, was introduced by Assouad (1983)

in the context of bi-Lipschitz embeddings of abstract metric spaces, and general-

izes the dimensional order of Bouligand (1928). One may conveniently define this

dimension in terms of homogeneous spaces.

Definition 1.2.5. A metric space (X, d) is said to be (M, s)-homogeneous (or sim-

ply homogeneous) if any ball of radius r can be covered by at most M(r/ρ)s smaller

balls of radius ρ, for some M ≥ 1 and s ≥ 0.
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Using this auxiliary notion, one can characterized the Assouad dimension of X,

dimA(X), similarly to the box-counting dimension.

Definition 1.2.6 (Luukkainen, 1998). The Assouad dimension of X, dimA(X), is

the infimum of all s such that (X, d) is (M, s)-homogeneous, for some M ≥ 1.

It is clear that if X is homogeneous then it has finite Assouad dimension. So, as

any metric dimension, the Assouad dimension depends on the metric used.

Olson (2002) proved that X has finite Assouad dimension if it satisfies the

following doubling property.

Lemma 1.2.7 (Olson, 2002). Let NX(r, r/2) be the number of r/2-balls required

to cover any r-ball in X. If there exists K such that NX(r, r/2) < K holds for all

r < 1, then X has finite Assouad dimension. Moreover, dimA(X) ≤ log2K.

Since the Assouad dimension is scale invariant, one may think of it as a measure of

the ‘size’ of a metric space in all scales.

It follows from the definition that dimH(X) ≤ dimbox(X) ≤ dimA(X), if

(X, d) is a compact metric space. Moreover,

Lemma 1.2.8 (Movahedi-Lankarani, 1992). The Assouad dimension has the fol-

lowing properties:

(i) If X1 ⊂ X2, then dimA(X1) ≤ dimA(X2).

(ii) If X is an open subset of Rn, then dimA(X) = n.

(iii) If (X1, d1) and (X2, d2) are bi-Lipschitz isomorphic, then dimA(X1) = dimA(X2).

It follows from (ii) and (iii) that a metric space (X, d) has necessarily finite Assouad

dimension if there exists a bi-Lipschitz embedding of (X, d) into a Euclidean space.

However, the converse is not true (see Lang and Plaut (2001) or Heinonen (2001)

for discussion). In fact, Lipschitz maps, even if they are homeomorphisms, can raise

the Assouad dimension. In section 2.1.2, we discuss some properties of the Assouad

dimension of orthogonal sequences. For a comprehensive treatment of the Assouad

dimension see Luukkainen (1998) and Olson (2002).

1.3 Embeddings of finite-dimensional sets

Motivated by the theory of infinite-dimensional dynamical systems, the regularity

of embeddings of finite-dimensional sets into Euclidean spaces has been studied in

various papers. Mañé (1981) showed that if X is a compact subset of a Banach
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space with upper box-counting dimension d, then for any n ≥ 2d+ 1 a generic set of

projections of X onto any n-dimensional subspace is injective on X. Considerable

work on orthogonal projections followed this result. Ben-Artzi et al. (1993) proved

that given a compact subset X ⊂ RN with finite upper box-counting dimension,

there exists an orthogonal projection P such that P is injective on X and its inverse

is Hölder continuous when restricted to P (X). Furthermore, they established a

sharp upper bound on the Hölder exponent using an approach that will be adopted

in Chapter 2. Eden et al. (1994) gave a constructive proof of the existence of

such projections in a Hilbert space and showed again that the inverse is Hölder

continuous if X ⊂ RN . Foias and Olson (1996) showed the existence of a dense

set of projections with Hölder continuous inverse when X is a compact subset of

an infinite-dimensional Hilbert space, but did not obtain a bound for the Hölder

exponent.

The most powerful current results are based on an argument due to Hunt and

Kaloshin (1999), who provided an explicit bound on the Hölder exponent. Their the-

orem is expressed in terms of prevalence1, which generalizes the notion of ‘Lebesgue

almost every’ from finite to infinite-dimensional spaces.

Definition 1.3.1 (Hunt et al., 1992). Let V be a normed linear space. A Borel

subset S ⊂ V is prevalent if there exists a compactly supported probability measure

µ on V such that µ(S + x) = 1, for all x ∈ V . In particular, if S is prevalent then

S is dense in V .

In other words, a subset S ⊂ V is prevalent if there exists a compact Q ⊂ V

supporting a probability measure µ such that x+ π ∈ S, for µ-almost every π ∈ Q
and for all x ∈ V . In practice, one can think of Q as a probe set consisting of

perturbations π, and prove the prevalence of S by constructing Q in such a way

that µ
(
Q \ (S + x)

)
= 0, for all x ∈ V .

As a component of the proof of their embedding result, Hunt and Kaloshin

(1999) introduced the ‘thickness exponent’, a quantity that measures how well a

compact set X ⊂ H can be approximated by finite-dimensional subspaces.

Definition 1.3.2 (Hunt and Kaloshin, 1999). Let X be a compact subset of a Hilbert

space H. For ε > 0, let dH(X, ε) be the minimum dimension of all finite-dimensional

1The term prevalence was coined by Hunt, Sauer and Yorke, who introduced the concept in
their 1992 paper. Essentially the same notion was used earlier by Christensen (1973) in a study of
the differentiability of Lipschitz mappings between infinite-dimensional spaces. Let G be a Abelian
group with a complete separable metric. Christensen (1973) define a Borel set A to be a Haar null
set if there is a Borel probability measure µ on G such that µ(A+ x) = 0 for every x ∈ G. Hence,
a prevalent set is a set whose complement is a Haar null set. See Benyamini and Lindenstrauss
(1973) for more details.
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subspaces U ⊂ H such that every point of X lies within a distance ε of U ; if no such

U exists, then dH(X, ε) =∞. The thickness exponent τ(X) of X is defined as

τ(X) = lim sup
ε→0

log dH(X, ε)

− log ε
.

The following lemma shows that the thickness exponent is bounded above by the

upper box-counting dimension.

Lemma 1.3.3 (Lemma 3.5 in Hunt and Kaloshin, 1999). Let X ⊂ H be a compact

set with upper box-counting dimension dimbox(X). Then τ(X) ≤ dimbox(X).

Proof. If one covers X by N (X, ε) balls of radius ε, X clearly lies within ε of the

linear subspace spanned by the centres of these balls. Hence, dH(X, ε) ≤ N (X, ε).

It follows from this inequality that τ(X) ≤ dimbox(X) as claimed.

Using the concept of the thickness exponent, Hunt and Kaloshin (1999) es-

tablished the following abstract result concerning general embeddings of compact

subsets of a Hilbert space into a Euclidean space of sufficiently large dimension. Let

H be a real Hilbert space endowed with a norm ‖ · ‖ and a scalar product (·, ·). We

will write | · | for the norm on any Euclidean space.

Theorem 1.3.4 (Hunt and Kaloshin, 1999). Let X be a compact subset of a real

Hilbert space H with upper box-counting dimension dimbox(X) = d and let τ(X) be

the thickness exponent of X. Let N > 2d be an integer and let ζ be a real number

with

0 < ζ <
N − 2d

N(1 + τ(X)/2)
. (1.3)

Then for a prevalent set of bounded linear maps L : H → RN there exists a CL > 0

such that

CL|L(x)− L(y)|ζ ≥ ‖x− y‖ for all x, y ∈ X. (1.4)

In particular, these maps are injective on X.

Note that the thickness exponent is used to bound explicitly the Hölder exponent

of the inverse of L restricted to the image of X. The regularity of the inverse of

such a linear map is important for understanding how it may distort a compact set,

despite being injective on it.

Inspired by the work of Hunt and Kaloshin (1999), Olson and Robinson

(2010) introduced the notion of the m-Lipschitz deviation. This quantity provides

a measure of the extent to which a compact subset X ⊂ H can be approximated
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by graphs of Lipschitz functions defined over finite-dimensional subspaces of H. In

Chapter 3 we will discuss this notion in more detail.

An analogous result to Theorem 1.3.4 is also true for Banach spaces. In

order to study the embeddings of finite-dimensional subsets of a Banach space B,

Robinson (2009) introduced the concept of the dual thickness exponent τ∗(X) of a

compact subset X ⊂ B, for which one can show that τ∗(X) ≤ dimbox(X).

Definition 1.3.5 (Robinson, 2009). Given θ > 0, let nθ(X, ε) denote the lowest

dimension of any linear subspace V of B∗ such that for any x, y ∈ X with ‖x−y‖ ≥ ε
there exists an element ψ ∈ V such that ‖ψ‖ = 1 and

|ψ(x− y)| ≥ ε1+θ.

Set

τ∗θ (X) = lim sup
ε→0

log nθ(X, ε)

− log ε
,

and define the dual thickness τ∗(X) by

τ∗(X) = lim
θ→0

τ∗θ (X).

Using the dual thickness, Robinson (2009) proved the following embedding theorem

for subsets of Banach spaces.

Theorem 1.3.6 (Robinson, 2009). Let X be a compact subset of a Banach space

B with finite upper box-counting dimension dimbox(X) = d and τ∗(X) = τ∗. Then

for any integer N > 2d and any θ with

0 < θ <
N − 2d

N(1 + τ∗)
(1.5)

there exists a prevalent set of bounded linear maps L : B → RN such that, for some

cL > 0.

cL|L(x)− L(y)|θ ≥ ‖x− y‖ for all x, y ∈ X. (1.6)

In particular, these maps are injective on X.

In order to show that the limiting Hölder exponent in (1.3) is sharp, Hunt

and Kaloshin (1999) considered a infinite binary tree and associated each node to

the corresponding element of the standard basis of `2 with their indices written in

base 2. Then, they constructed an intricate example consisting of certain linear

combinations of those basis elements corresponding to certain infinite branches of

the binary tree. In Section 2.1.1, we show that the class of orthogonal sequences

8



in a Hilbert space H, whose elements tend to zero, as considered by Ben-Artzi et

al. (1993), have thickness exponent equal to their box-counting dimension. This

result provides a much simpler example than that given by Hunt and Kaloshin to

demonstrate that the bound (1.3) on the Hölder exponent in Theorem 1.3.4 is sharp

as N → ∞. In Section 2.2, we study a general set of sequences in c0 that enables

us to use methods derived from Ben-Artzi et al. (1993) in the Banach space case.

We then apply the results obtained to show that (1.5) is sharp.

More recently, Ott et al. (2006) also utilized the thickness exponent to show

how the Hausdorff dimension of a subset of an infinite-dimensional space is affected

by mappings into finite-dimensional spaces. It follows from standard properties of

the Hausdorff dimension (see Falconer (1990) or Section 1.2.1) that for any bounded

linear map L that satisfies the inequality (1.4),

N − 2d

N(1 + τ(X)/2)
dimH(X) ≤ dimH

(
L(X)

)
≤ dimH(X).

But more is true, as Ott et al. (2006) showed:

Theorem 1.3.7 (Ott et al., 2006). Let H be a real Hilbert space. Let X ⊂ H be a

compact set with thickness τ(X). For a prevalent set of linear maps L : H → RN ,

dimH

(
L(X)

)
≥ min

{
N,

dimH(X)

1 + τ(X)/2

}
.

Note that in both Theorem 1.3.4 and Theorem 1.3.7, sets with zero thickness

have a special place. In the first result, when τ(X) = 0 one can make the Hölder

exponent of the embedding as close to one as required by taking N sufficiently large;

while in the second, the Hausdorff dimension of sets with zero thickness is preserved

by ‘most’ linear maps. It is therefore a natural question when one can show that a

set X has zero thickness exponent.

Much of the interest in the above results comes from their application to the

attractors of infinite-dimensional dynamical systems associated to certain dissipative

partial differential equations. It is known that the thickness exponent of many

attractors of infinite-dimensional systems is significantly smaller than their box-

counting dimension: Friz and Robinson (1999) proved, in particular, that if an

attractor is uniformly bounded in the Sobolev space Hs(Ω), with s > 0 and Ω a

sufficiently smooth bounded domain in Rn, then its thickness in L2(Ω) is at most

n/s. Ott et al. (2006) (see also Ott and Yorke, 2005) conjecture that, under certain

dynamical hypotheses, the attractor of a sufficiently dissipative and smooth flow has

zero thickness.
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We are not aware of any explicit examples of attractors of natural models

that can be proved to have non-zero thickness, but there is also no proof currently

available that ‘many attractors’ do have zero thickness exponent. The result of Friz

and Robinson (1999) implies that any global attractor of a PDE that is bounded in

H1(Ω), where Ω is a d-dimensional domain, has thickness exponent (in L2(Ω)) no

larger than d. But this result can only guarantee that global attractors have zero

thickness when they are uniformly bounded in the Sobolev spaces Hs for all s > 0.

Let us consider the 2D Navier–Stokes equations as an illustrative example;

we write the equations in their functional form

du/dt+ νAu+B(u, u) = f,

see Constantin and Foias (1988), for example. It is known (Temam, 1997) that if

the forcing function f is ‘smooth’, i.e. f ∈ Hk for any k, then its attractor is also

smooth, and so has zero thickness. But one can easily construct a forcing f ∈ L2

for which the attractor is not bounded in H3, by choosing any u∗ ∈ H2 \ H3 and

setting

f = νAu∗ +B(u∗, u∗).

For such a forcing, u∗ is a stationary solution of the equation, and so must be an

element of the attractor. Since u∗ /∈ H3, the attractor cannot be bounded in H3.

This does not demonstrate that the corresponding attractor has non-zero thickness,

but does show that one cannot use the idea that ‘thickness is inversely proportional

to smoothness’ to prove a satisfactory general result in this context.

In Chapter 3 we prove a version of the conjecture of Ott, Hunt, and Kaloshin.

In Section 3.1 we define a new quantity, based on ideas in Olson and Robinson (2010),

called the Lipschitz deviation, and show that Theorems 1.3.4 and 1.3.7 remain true

with the thickness replaced by the Lipschitz deviation. Then, in Section 3.2, we

show that the global attractors of a large class of semilinear parabolic equations

have zero Lipschitz deviation: in particular, if one considers the two-dimensional

Navier-Stokes equations, our results imply that if f ∈ L2 the attractor has zero

Lipschitz deviation (as remarked above, it is only known that the attractor has zero

thickness if f ∈ Hs for every s).

The proof of this result uses ideas from the theory of approximate inertial

manifolds (Foias et al., 1988a), and relies on the fact, proved by Eden et al. (1994),

that the solutions of these semilinear equations satisfy the geometric ‘squeezing

property’, introduced by Foias and Temam (1979). (In fact we show that the class of

equations we consider has a family of approximate inertial manifolds of ‘exponential

10



order’, cf. Debussche and Temam (1994) and Rosa (1995)).

A related approach to the study of the regularity of embeddings into a Eu-

clidean space is to consider those conditions under which a metric space (X, d)

admits a bi-Lipschitz embedding into a Euclidean space. Since the Assouad dimen-

sion is preserved under bi-Lipschitz mappings and is finite for subsets of Euclidean

spaces, dimA(X) <∞ is a necessary condition for a subset X ⊂ H to be embedded

in a bi-Lipschitz way into RN . Hence, if A is a global attractor of a dynamical

system possessing an inertial manifold, which we define in Section 3.2.1, then its

Assouad dimension must be finite. Therefore many dissipative equations, such as

the Kuramoto-Sivashinsky equation, have global attractors with finite Assouad di-

mension. However, there is still no general method to bound the Assouad dimension

of global attractors associated with dissipative equations.

Movahedi-Lankarani (1992) was the first to introduce the Assouad dimen-

sion in the study of projections. In order to obtain an example of a set X with

finite fractal dimension which cannot be bi-Lipschitz embedded into any Euclidean

space, he constructed a set X with infinite Assouad dimension. Therefore, if one is

interested in whether X may be nicely embedded into a finite-dimensional space, it

seems reasonable to investigate what happens if X has finite Assouad dimension.

Indeed, Olson and Robinson (2010) used this dimension to obtain greater

regularity for the inverse of the embedding map.

Theorem 1.3.8 (Olson and Robinson, 2010). Let X be a compact subset of a real

Hilbert space H such that the set X −X of differences between elements of X has

Assouad dimension dimA(X −X) < s < N , where N ∈ N. If

γ >
2 + 3N

2(N − s)
, (1.7)

then there exists a prevalent set of bounded linear maps π : H → RN that are

injective on X and γ-almost bi-Lipschitz, that is, there exist δπ > 0, cπ > 0 such

that
1

cπ

‖u− v‖
(− log ‖u− v‖)γ

≤ |π(u)− π(v)| ≤ cπ‖u− v‖, (1.8)

for all u, v ∈ X with ‖u− v‖ ≤ δπ.

Note that, for any γ > 3/2 we can choose N large enough to obtain a γ-almost bi-

Lipschitz embedding into RN . However, the exponent γ > 3/2 is not asymptotically

sharp. Moreover, it is important to remark that, although reasonable, the hypothesis

dimA(X −X) <∞ is quite restrictive. Olson (2002), for instance, gave an example

of a set X for which dimA(X) = 0, but dimA(X −X) =∞.
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In order to improve the exponent γ, Robinson (2010) used a result due to

Ball (1986), concerning the maximum volume of hyperplane slices of the unit cube,

and obtained the following result.

Theorem 1.3.9 (Robinson, 2010). Let X be a compact subset of a real Hilbert space

H such that dimA(X −X) < s < N , where N ∈ N. If

γ >
2 +N

2(N − s)
, (1.9)

then there exists a prevalent set of bounded linear maps π : H → RN that are

injective on X and γ-almost bi-Lipschitz, i.e. there exist δπ > 0, cπ > 0 such that

1

cπ

‖u− v‖
(− log ‖u− v‖)γ

≤ |π(u)− π(v)| ≤ cπ‖u− v‖, (1.10)

for all u, v ∈ X with ‖u− v‖ ≤ δπ.

Note that, for any γ > 1/2 we can choose N large enough to obtain a γ-almost

bi-Lipschitz embedding into RN . Hence, using the Assouad dimension, Robinson

(2010) was able to obtain more regularity for the inverse of embeddings of finite-

dimensional sets into Euclidean spaces. In section 2.1.3, we present an example of

an orthogonal sequence in a Hilbert space H, whose norm decays exponentially, for

which γ > 1/2. Therefore, the exponent of the logarithmic correction term γ in

Theorem 1.3.9 is sharp as N →∞.

An analogous result to Theorem 1.3.9 is also true for Banach spaces.

Theorem 1.3.10 (Robinson, 2010). Let X be a compact subset of a Banach space

B such that dimA(X −X) < s < N , where N ∈ N. If

γ >
N + 1

N − s
, (1.11)

then there exists a prevalent set of bounded linear maps π : B → RN that are

injective on X and γ-almost bi-Lipschitz, i.e. there exist δπ > 0, cπ > 0 such that

1

cπ

‖u− v‖
(− log ‖u− v‖)γ

≤ |π(u)− π(v)| ≤ cπ‖u− v‖, (1.12)

for all u, v ∈ X with ‖u− v‖ ≤ δπ.

Note that the limiting value of γ as N →∞ is strictly greater than one (see Robinson

(2010) for more details). In section 2.2, we present an example that shows that the

limiting value γ > 1 is also sharp.

12



1.4 Finite-dimensional asymptotic dynamics

The existence of global attractors with finite upper box-counting dimension for a

wide class of dissipative equations (see Babin and Vishik (1992), Foias and Temam

(1979), Hale (1988), Temam (1997), for example) strongly suggests that it might be

possible to construct a system of ordinary differential equations whose asymptotic

dynamics reproduces the dynamics on the original attractor A. However, because of

the complexity of the flow on the attractor A and its irregular structure, the finite

dimensionality of A alone is not immediately sufficient to guarantee the existence

of such a system of ordinary differential equations.

To illustrate the problem, consider a dissipative differential equation written

as an abstract evolution equation of the form

du

dt
= G(u), u ∈ H, (1.13)

defined on a real separable Hilbert space H and associated with a global attractor

A. Ideally, one would like to construct a finite-dimensional system of ordinary

differential equations in some RN

dx

dt
= H(x), x ∈ RN , (1.14)

such that

(i) the attractor A would be embedded in RN via some homeomorphism

L : A −→ LA ⊆ RN ,

(ii) the solutions of the finite-dimensional system (1.14) would be unique,

(iii) the dynamics of (1.14) on LA would reproduce those of (1.13) on A, i.e.

H(x) = LG(L−1x), for every x ∈ LA, and

(iv) the set LA would be the global attractor for (1.14).

Indeed, the existence of such a system of ordinary differential equations with

analogous asymptotic dynamics has only been proved for dissipative partial differ-

ential equations that possess an inertial manifold. Introduced by Foias et al. (1985),

inertial manifolds are positively invariant finite-dimensional Lipschitz manifold that

contain the global attractor and attract all orbits exponentially (see Constantin and

Foias (1988), Constantin et al. (1988), Foias et al. (1988a), Foias et al. (1988b),

Temam (1997), for more details). All the methods available in the literature con-

struct inertial manifolds as graphs of functions from a finite-dimensional eigenspace
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associated with the low Fourier modes into the complementary infinite-dimensional

eigenspace corresponding to the high Fourier modes.

Foias et al. (1988b) showed that if a ‘certain spectral gap condition’ holds

for a given system, then it will possesses an inertial manifold. Unfortunately, this

sufficient condition is quite restrictive, and there are many equations, such as the 2D

Navier-Stokes equations, that do not satisfy it. Nonetheless, Kukavica (2003) and

Kukavica (2005) showed that the global attractor of certain dissipative equations,

such as the Burgers equation in one space dimension, lies in a Lipschitz graph over

a finite number of Fourier modes independently of the theory of inertial manifolds.

In the cases in which an inertial manifold has not been shown to exist, other

approaches have been explored to reconstruct the dynamics on the attractor within

a finite-dimensional system. They usually involve embedding the attractor A of

an evolution equation and its dynamics into a Euclidean space of sufficiently high

dimension and then extending the vector field to the whole space, in such a way that

the image of A is the global attractor of the new system. For example, Eden et al.

(1994) projected the original dissipative partial differential equation and obtained

a finite system of ordinary differential equations which reproduce the dynamics on

the attractor A. The new system has as its global attractor the projection PA of

A. However, due to the lack of regularity of the vector field on PA (which need not

even to be continuous), there is no guarantee of uniqueness of the solutions of the

finite-dimensional system.

Romanov (2000) discussed the problem of a finite-dimensional description of

the asymptotic behaviour of dissipative equations more abstractly. He defined the

dynamics on the attractor A to be ‘finite-dimensional’ if there exists a bi-Lipschitz

map Π : A → RN , for some N , and an ordinary differential equation with a Lipschitz

vector field on RN such that the dynamics on A and Π(A) are conjugated under

Π. He then showed that this property is equivalent to the attractor being contained

in a finite-dimensional Lipschitz manifold, given as a graph over a sufficiently large

number of Fourier modes. Hence, his definition and that of an inertial manifold

are much more similar than they first appear. In Section 4.2, we investigate other

possible ways to define when the asymptotic dynamics of solutions of parabolic

equations are ‘finite-dimensional’. We discuss conditions under which an attractor

is a subset of a Lipschitz manifold given as a graph over a finite-dimensional space;

in particular, we give a concise proof of an important part of Romanov’s result.

Now suppose there exists a linear map L : H → RN that is injective on A.
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In order to study the smoothness of the embedded equation on LA,

dx

dt
= h(x) = LGL−1(x), x ∈ LA, (1.15)

one needs to consider the continuity of the vector field on A and the continuity

of the inverse of the embedding L restricted to LA. If one would like a system of

ordinary differential equations with unique solutions that generates a flow {St}t≥0,

then the embedded vector field h in LA does not need to be Lipschitz; it is sufficient

for h to be 1-log-Lipschitz2. Hence, one needs to show that there exist

(i) an exponent η > 0 such that the vector field on the attractor A is η-log-Lipschitz

in H, and

(ii) an exponent γ > 0 such the inverse of linear embedding L : H → RN is γ-log-

Lipschitz when restricted to LA,

for which the inequality η + γ ≤ 1 holds so that the solutions are unique. It is,

therefore, reasonable to consider separately the problem of the regularity of the

vector field G on the global attractor A associated with certain parabolic equations

and the one of the smoothness of the inverse of linear embeddings L restricted to

LA.

In Chapter 4, we will focus our discussion on the regularity of the vector

field G in (1.13). If we assume the very strong condition that L is a bi-Lipschitz

embedding, then we would only need the vector field to be 1-log-Lipschitz to guar-

antee existence and uniqueness of solutions of the embedded equation. In Section

4.3, we specifically show that the linear operator A : H → H from the 2D Navier-

Stokes equations is 1-log-Lipschitz continuous using methods developed by Kukavica

(2007).

In Section 4.4, we prove that the 1-log-Lipschitz continuity of the linear term

implies that there exists a family of Lipschitz manifoldsMN such that the distance

between the N -dimensional manifoldMN and the attractor A is exponentially small

in N . We then apply the methods developed in Section 3.2 to show that, for certain

dissipative equations, one can then make the Hölder exponent in (1.4) as close to

one as required by taking N sufficiently large.

In Chapter 5, we continue to discuss the problem of a finite-dimensional de-

scription of the asymptotic dynamics of dissipative equations such as (1.13), but

now focussing on the consequences of the existence of bounded linear embeddings

2It is, then, possible to extend h : LA → RN to 1-log-Lipschitz function H : RN → RN (see
McShane (1934) for details)
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L|A : A −→ RN with a sufficiently regular inverse (namely, Lipschitz with a loga-

rithmic correction). In Section 5.1, we construct a system of ordinary differential

equations in RN that reproduces the dynamics on A in LA without discussing

whether the new system possess a global attractor. We then use the regularity of

L−1 restricted to LA to guarantee uniqueness of solutions for the system of ordinary

differential equations.

Ideally, one would like to construct a smooth system of equations that gen-

erates a dynamical system with a prescribed global attractor possessing non-trivial

dynamics. Garay (1991) recognized cellularity3 as a distinctive property of attrac-

tors for flows and showed that, given a cellular compact subset of a Euclidean space,

there exists a dynamical system whose attractor is the given set. However, the dy-

namics on this compact set is trivial. Garay’s proof was based on a paper of McCoy

(1973) on cells and cellularity of normed linear spaces of infinite dimension and on

results from infinite-dimensional topology, in particular from shape theory. Intro-

duced by Borsuk (1975), shape theory is a powerful tool in the study of topological

dynamics (see Günther and Segal (1993), Günther (1995), Sanjurjo (1995), Robinson

(1999)).

It is important to note that Theorem 2.7 in Garay (1991) does not guarantee,

as would be desirable, the existence of a smooth system of ordinary differential equa-

tions whose attractor is the image of the original attractor, but only of a flow. The

existence of such a system of ordinary differential equations was proved by Günther

(1995), generalising a result obtained by Günther and Segal (1993). Using smooth-

ing results from piecewise linear topology to replace general flows by flows arising

from differential equations, Günther (1995) showed that, for any finite-dimensional

compact set A with the shape of a finite polyhedron, there is a differentiable flow in

a finite-dimensional Euclidean space with an attractor homeomorphic to the given

set. However, once again the flow constructed is stationary on the attractor. There-

fore, the general question of whether the dynamics on the global attractor A may

be embedded into a finite-dimensional system of ordinary differential equations re-

mains an open problem. It is nevertheless clear that, in order to preserve the original

dynamics, certain continuity properties of the embedding L are crucial.

Following Garay (1991) and Günther (1995), we exploit in Section 5.2 certain

topological properties of the global attractor A to construct a system of ordinary

differential equations with the prescribed compact set LA×{0} as global attractor.

However, the dynamics on LA × {0} is trivial. In Section 5.3 we combine our

previous results in such a way that we obtain a new dynamical system generated by

3Cellularity and other topological properties are defined in Section 5.2.1 and in Appendix B.
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an ordinary differential equation that has a global attractor X arbitrarily close to

LA× {0}.
We conclude this introduction by remarking on two outstanding problems.

First, in contrast to the Hausdorff and box-counting dimensions, there are no general

techniques to bound the Assouad dimension of invariant sets of infinite-dimensional

dynamical systems. And, finally, the smoothness of the original vector field on

the attractor A is, in general, known only to be 1-log-Lipschitz. The question of

whether the vector field is in fact η-log-Lipschitz with η < 1/2 remains open. Such

regularity would, when combined with the sharp bound γ > 1/2 given by Theorem

1.3.9, guarantee that γ + η ≤ 1, which implies the existence of unique solutions to

the ODE on the projected attractor.
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Chapter 2

Orthogonal sequences and

regularity of embeddings into

finite-dimensional spaces

2.1 Orthogonal Sequences in Hilbert Spaces

A general class of orthogonal sequences A in a Hilbert space H, whose elements

tend to zero, was considered by Ben-Artzi et al. (1993) to show that the existence

of a finite rank projection P and a constant C > 0 such that

‖x− y‖ ≤ C‖Px− Py‖ζ , for all x, y ∈ A,

impose a restriction on the Hölder exponent ζ:

ζ ≤ (1 + dimbox(A)/2)−1.

In this section we consider the same class of orthogonal sequences in a real

separable Hilbert space H in order to show that the upper bound on the Hölder

exponent in Hunt and Kaloshin’s embedding (Theorem 1.3.4) is sharp as N → ∞.

Let {an : n = 1, 2, ...} be an orthogonal sequence in H \ {0} with limn→∞ ‖an‖ = 0.

Throughout this chapter we consider A to be the compact set

A = {a1, a2, ...} ∪ {0} (2.1)

and assume without loss of generality that ‖an‖ ≥ ‖an+1‖ > 0, for n = 1, 2, ....

Next we shall study the thickness and the Assouad dimension of A. The upper
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box-counting dimension of such sets A has already been discussed in Ben-Artzi et

al. (1993).

2.1.1 Hölder exponent when dimbox(A) <∞

In their Lemma 3.1, Ben-Artzi et al. (1993) showed that the upper box-counting

dimension of A, dimbox(A), is given by

dimbox(A) = lim sup
n→∞

log n

log(1/‖an‖)
= inf

{
ν :

∞∑
n=1

‖an‖ν <∞
}
. (2.2)

In order to show that the thickness exponent of A is given by the same expression,

we use the following lemma. This result, due to M. Doré (personal communication),

gives an explicit lower bound on dH(X, ε) for finite-dimensional subspaces X that

approximate orthogonal sets in Hilbert spaces.

Lemma 2.1.1. Let X = {v1, . . . , vn} be an orthogonal set of nonzero vectors in a

Hilbert space H. Then

dH(X, ε) ≥ n(1− ε2/M2),

where M = min{‖v1‖, . . . , ‖vn‖} and dH(X, ε) is as in Definition 1.3.2.

Proof. If dH(X, ε) = d then there exist v′i ∈ H such that ‖v′i − vi‖ < ε, and such

that the space spanned by {v′1, . . . , v′n} has dimension d. Let P be the orthogonal

projection onto U , the n-dimensional space spanned by {v1, . . . , vn} and let v′′i =

Pv′i. Since Pvi = vi, we still have the inequality ‖v′′i − vi‖ < ε and clearly the

dimension of the linear span of {v′1, . . . , v′n} is at least that of the linear span of

{v′′1 , . . . , v′′n}.
Suppose that the linear span of {v′′1 , . . . , v′′n} has dimension n − r. We can

write any element of U in terms of the {v′′j }nj=1 and an orthonormal basis for their

r-dimensional orthogonal complement in U , {u1, . . . , ur}. So

nε2 ≥
n∑
i=1

‖v′′i − vi‖2 ≥
n∑
i=1

r∑
j=1

|(vi, uj)|2

=

r∑
j=1

n∑
i=1

‖vi‖2
∣∣∣∣(uj , vi

‖vi‖

)∣∣∣∣2
≥ M2

r∑
j=1

n∑
i=1

∣∣∣∣(uj , vi
‖vi‖

)∣∣∣∣2 = M2r.

It follows that dH(X, ε) ≥ n(1− ε2/M2) as claimed.
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Now we prove a result analogous to (2.2) for the thickness exponent of A.

Lemma 2.1.2. The thickness τ(A) is given by

τ(A) = lim sup
n→∞

log n

log(1/‖an‖)
(2.3)

Proof. We know from Lemma 1.3.3 that τ(A) ≤ dimbox(A). Therefore, it follows

from equality (2.2) that

τ(A) ≤ lim sup
n→∞

log n

log(1/‖an‖)
.

The argument leading to the reverse inequality is similar to the proof of

Lemma 3.1 in Ben-Artzi et al. (1993), but makes use of our Lemma 2.1.1. Let n be

a positive integer, large enough so that ‖an‖ < 1. Denote by n′ the unique integer

such that n′ ≥ n and

‖an‖ = ‖an+1‖ = ... = ‖an′‖ > ‖an′+1‖,

and define εn > 0 via ε2
n = (‖an′‖2 + ‖an′+1‖2)/4. Note that since ‖an′‖2 > 2ε2

n,

1− ε2
n

‖an′‖2
> 1/2

and, consequently, it follows from Lemma 2.1.1 that

dH(A, εn) ≥ n′
(

1− ε2
n

‖an′‖2

)
>
n′

2

Combining this inequality with 2εn > ‖an′‖, n′ ≥ n, and ‖an‖ = ‖an′‖, we obtain

τ(A) ≥ lim sup
n→∞

log dH(A, εn)

− log εn
≥ lim sup

n→∞

log(n/2)

log(2/‖an‖)
= lim sup

n→∞

log n

− log ‖an‖
.

Next we will see that this example shows that the upper bound on the Hölder

exponent in Hunt and Kaloshin’s Theorem 1.3.4 is asymptotically sharp (N →∞),

and hence provides a simpler alternative for that in Hunt and Kaloshin (1999). The

following decomposition lemma allows us to work with orthogonal projections with

Hölder continuous inverse, instead of general linear maps.

Lemma 2.1.3 (Theorem 3.5, Roman, 2007). Let B be a Banach space and let

L : B → RN be a surjective linear map with kernel V . Then the quotient space
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U = B/V has dimension N , and L can be decomposed uniquely as MP , where P is

a projection onto U and M : U → RN is an invertible linear map.

Let {an : n = 1, 2, ...} be the orthogonal sequence defined above. Consider

the compact set A = {a1, a2, ...} ∪ {0} in (2.1) with upper box-counting dimension

d and thickness exponent τ . If there exists an orthogonal projection P : H → RN

such that

‖a− ā‖ ≤ C‖P (a)− P (ā)‖ζ for all a, ā ∈ A,

where C > 0 is a constant, then

‖a‖ ≤ C‖Pa‖ζ for every a ∈ A,

since 0 ∈ A. In their Theorem 3.2, Ben-Artzi et al. (1993) showed that, for 0 < ζ < 1,

if there exists a finite-dimensional projection P in H and a positive number C such

that ‖a‖ ≤ C‖Pa‖ζ , for each a ∈ A, then

∞∑
n=1

‖an‖2(1/ζ−1) <∞.

We will prove a similar result in Section 2.1.3.

It follows from Corollary 3.3 in Ben-Artzi et al. (1993) that the existence of

such a projection implies that ζ ≤ (1 + dimbox(A)/2)−1. Therefore,

ζ ≤ (1 + τ(A)/2)−1,

since we have shown that dimbox(A) = τ(A). Finally, as N →∞, the upper bound

on the Hölder exponent ζ in (1.3) tends to (1 + τ(A)/2)−1. Hence, we recover the

upper bound given by this example.

2.1.2 Properties of the Assouad dimension of orthogonal sequences

The Assouad dimension of orthogonal sequences particularly differs from its box-

counting dimension. Due to the scale invariance property, the Assouad dimension is

sensitive to inhomogeneities in the set. For example, Olson (2002) showed that the

number N (r, r/2) of r/2-balls required to cover any r-ball in the the compact set

Â = {0} ∪ {en/nα : n ∈ N}

is unbounded as r →∞, where {en} is an orthonormal sequence. Therefore, Â has

infinite Assouad dimension while dimbox Â = 1/α. Hence, a set A has finite Assouad
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dimension only if it has the scaling property needed for N (r, r/2) to be bounded.

Proposition 2.1.4 (Fact 4.2, Olson, 2002). Let A = {0} ∪ {anen : n ∈ N}. If there

exist K ≥ 1 and 0 < α < 1 such that

(1/K)αn ≤ an ≤ Kαn, (2.4)

then dimA(A) = 0.

Here dimA is the Assouad dimension given in Definition 1.2.6. The example pre-

sented in Section 2.1.3 relies on this result, which appears without proof in Olson

(2002).

Proof. Let r and ρ be such that 0 < ρ < r. Since we are considering orthogonal

sequences in H, whose terms are converging to zero, the inhomogeneities of A are

localized near the origin. So, the number of ρ-balls required to cover any r-ball in

A, NA(r, ρ), is bounded above by the the number of ρ-balls required to cover the

ball of radius r centered at the origin.

So, consider the ball of radius r = Kαm centered at the origin, where m ∈ N,

B(0, r) ∩ {a ∈ A : ‖a‖ < r} = {0} ∪ {anen : n > m}.

Cover B(0, r) by ρ balls. Each point a distance more than ρ from the origin will

require a separate ball. As 0 < α < 1, the estimates on n are:

log r + logK

logα
< n <

log ρ− logK

logα
. (2.5)

Hence, the number of terms an such that ρ < ‖an‖ < r is less than or equal to

log ρ− logK

logα
−
(

log r + logK

logα

)
.

Therefore,

NA(r, ρ) ≤ − 1

logα
log

(
r

ρ

)
− 2 logK

logα
+ 1.

So, it follows that, for any s > 0, there exists C > 0 such that

NA(r, ρ) ≤ C
(
r

ρ

)s
,

which implies that dimA(A) = 0.
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Moreover, the terms in any compact set A with finite Assouad dimension

must decay at least exponentially.

Lemma 2.1.5. If dimA(A) < ∞, then there exist C > 0 and λ > 0 such that

‖an‖ < Ce−nλ.

Proof. First note that if dimA(A) <∞, then A has the doubling property, i.e., given

r > 0 there exists M > 0 such that N (r, r/2) ≤ M . Hence, the number of points

ai ∈ A with r/2 < ‖ai‖ ≤ r is smaller or equal to M . In particular, if r = ‖a1‖,
then the number of points ai with ‖a1‖/2 < ‖ai‖ ≤ ‖a1‖ is smaller or equal to M .

Hence,

‖aM+1‖ ≤ ‖a1‖/2 = 2−1‖a1‖.

Using induction, we can show that

‖aMj+1‖ ≤ 2−j‖a1‖, for all j ∈ N.

Next, if Mj + 1 ≤ n ≤M(j + 1), then

‖an‖ ≤ ‖aMj+1‖ ≤ 2−j‖a1‖ ≤ 2−(n/M−1)‖a1‖ = 2‖a1‖2−n/M .

So,

‖an‖ ≤ 2‖a1‖e−n(log 2/M) = 2‖a1‖e−nλ,

where λ = log 2/M > 0. Consequently, if dimA(A) <∞, then there exist constants

C > 2‖a1‖ > 0 and λ > 0 such that ‖an‖ < Ce−nλ.

In particular, if an = e−n
α
en, for some α < 1, then ‖an‖ decreases more slowly

than e−nλ, with λ > 0. Hence, if Ā = {0} ∪ {e−nαen}∞n+1, then dimA(Ā) is infinity.

Finally, it is interesting to remark that there are also compact sets A with terms

converging arbitrarily fast to zero with infinite Assouad dimension (see Theorem 4.3

in Olson (2002) for details).

2.1.3 Logarithmic exponent when dimA(A−A) <∞

Next we show a proposition similar to Theorem 3.2 in Ben-Artzi et al. (1993), but

with a logarithmic correction term. Note, however, that (ii) ⇒ (iii) is the most

important fact, since we will use it to obtain an asymptotically sharp bound for the

exponent of the logarithmic term in Theorem 1.3.9.

Proposition 2.1.6. For A defined in (2.1) and any γ > 0, the following conditions

are equivalent:
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(i) There exists a rank one projection P in H and a positive constant C such that

‖Pa‖ ≥ C‖a‖
(− log ‖a‖)γ

, for each a ∈ A.

(ii) There exists a finite dimensional projection P in H and a positive constant C

such that

‖Pa‖ ≥ C‖a‖
(− log ‖a‖)γ

, for each a ∈ A.

(iii)
∑∞

n=1(− log ‖an‖)−2γ <∞.

Proof. Clearly (i) ⇒ (ii). Next we will show that (ii) ⇒ (iii). Let {en}∞n=1 be an

orthonormal basis for H. Let P be an orthogonal projection with rank k such that,

for γ > 0,

‖Pa‖ ≥ C‖a‖
(− log ‖a‖)γ

,

for each a ∈ A. So, there exists an orthonormal basis {u1, ..., uk} for the range of

P , such that

Pen =

k∑
i=1

(en, ui)ui,

for every n = 1, 2, ... . Hence,

∞∑
n=1

(Pen, en) =

∞∑
n=1

(
k∑
i=1

(en, ui)ui, en

)
=

k∑
i=1

∞∑
n=1

|(en, ui)|2 =

k∑
i=1

‖ui‖2 = k

Therefore,

rank(P ) ≥
∞∑
n=1

(Pan, an)‖an‖−2 =
∞∑
n=1

‖Pan‖2‖an‖−2

≥
∞∑
n=1

C2‖an‖2

(− log ‖an‖)2γ
‖an‖−2 =

∞∑
n=1

C2(− log ‖an‖)−2γ .

Since the rank of P is finite,
∑∞

n=1(− log ‖an‖)−2γ <∞.
Next we will prove (iii)⇒ (i). Assume

∑∞
n=1(− log ‖an‖)−2γ <∞. Define a

vector a0 in H by

a0 =

∞∑
n=1

(− log ‖an‖)−γ‖an‖−1an.
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Note that a0 is well defined, since {an}∞n=1 is an orthogonal sequence and

‖a0‖2 =

( ∞∑
n=1

(− log ‖an‖)−γ‖an‖−1an,
∞∑
n=1

(− log ‖an‖)−γ‖an‖−1an

)

=

∞∑
n=1

(− log ‖an‖)−2γ <∞.

Set P = ‖a0‖−2a0 ⊗ a0. Hence, Pan = (a0, an)‖a0‖−2a0, and consequently

‖Pan‖ = |(a0, an)|‖a0‖−2‖a0‖ =

∣∣∣∣∣
( ∞∑
k=1

(− log ‖ak‖)−γ‖ak‖−1ak, an

)∣∣∣∣∣‖a0‖−1

= (− log ‖an‖)−γ‖an‖−1‖an‖2‖a0‖−1 = (− log ‖an‖)−γ‖an‖‖a0‖−1.

Therefore, ‖Pa‖ ≥ C(− log ‖a‖)−γ‖a‖ for every a ∈ A, where C = ‖a0‖−1.

It is interesting to note that one can obtain the following result parallel to Ben-Artzi

et al. (1993, Theorem 3.4).

Proposition 2.1.7. If
∑∞

n=1(− log ‖an‖)−2γ < ∞, then there exists a rank one

projection P and a constant C such that

‖Pa− Pa′‖ ≥ C ‖a− a′‖
(− log ‖a− a′‖)3γ

,

for every a and a′ in A.

Proof. First, assume that ‖a1‖ < 2−1/2. Let ηn =
∑∞

j=n(− log ‖aj‖)−2γ for n =

1, 2, ... Define a vector a0 ∈ H by

a0 =
∞∑
n=1

ηn(− log ‖an‖)−γ‖an‖−1an.

The vector a0 is well defined because

‖a0‖2 =

∞∑
n=1

η2
n(− log ‖an‖)−2γ

≤ η2
1

∞∑
n=1

(− log ‖an‖)−2γ = η3
1 <∞.
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Set P = ‖a0‖−2a0 ⊗ a0. Then

Pan = (a0, an)‖a0‖−2a0

=

( ∞∑
k=1

ηk(− log ‖ak‖)−γ‖ak‖−1ak, an

)
‖a0‖−2a0

= ηn(− log ‖an‖)−γ‖an‖−1(an, an)‖a0‖−2a0

= ηn(− log ‖an‖)−γ‖an‖−1‖an‖2‖a0‖−2a0

= ηn(− log ‖an‖)−γ‖an‖‖a0‖−2a0.

Now let n and m be two natural numbers with n < m. Hence,

ηn(− log ‖an‖)−γ‖an‖ ≥ ηn+1(− log ‖an‖)−γ‖an‖ ≥ ηm(− log ‖am‖)−γ‖am‖,

which implies that

‖Pan − Pam‖ =
∣∣∣ηn(− log ‖an‖)−γ‖an‖ − ηm(− log ‖am‖)−γ‖am‖

∣∣∣‖a0‖−2‖a0‖

≥ |ηn − ηn+1|(− log ‖an‖)−γ‖an‖‖a0‖−1

=

∣∣∣∣∣
∞∑
j=n

(− log ‖aj‖)−2γ −
∞∑

j=n+1

(− log ‖aj‖)−2γ

∣∣∣∣∣(− log ‖an‖)−γ‖an‖‖a0‖−1

= (− log ‖an‖)−2γ(− log ‖an‖)−γ‖an‖‖a0‖−1

= (− log ‖an‖)−3γ‖an‖‖a0‖−1.

Therefore

‖Pan − Pam‖ ≥ ‖a0‖−1(− log ‖an‖)−3γ‖an‖.

Since an and am are orthogonal vectors with ‖an‖ ≥ ‖am‖,

‖an − am‖2 = ‖an‖2 + ‖am‖2 ≤ 2‖an‖2, (2.6)

and consequently ‖an − am‖ ≤
√

2‖an‖. Hence,

‖Pan − Pam‖ ≥
‖a0‖−1

√
2

(− log ‖an‖)−3γ‖an − am‖. (2.7)
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Next it follows from (2.6) that there exists a constant K such that

− log ‖an − am‖ ≥ − log
√

2− log ‖an‖ =

(
log
√

2

log ‖an‖
+ 1

)(
− log ‖an‖

)
≥

(
log
√

2

log ‖a1‖
+ 1

)(
− log ‖an‖

)
= K

(
− log ‖an‖

)
,

since ‖a1‖ ≥ ‖an‖ for every n ∈ N. As ‖a1‖ < 2−1/2,

−1 <
log
√

2

log ‖a1‖
< 0 implies that 0 < K < 1.

So, (
− log ‖an − am‖

)3γ
≥ K3γ

(
− log ‖an‖

)3γ
,

and consequently(
− log ‖an − am‖

)−3γ
≤ K−3γ

(
− log ‖an‖

)−3γ
.

Therefore, it follows from (2.7) that

‖Pan − Pam‖ ≥
‖a0‖−1

√
2

(− log ‖an‖)−3γ‖an − am‖

≥ ‖a0‖−1

√
2

K3γ(− log ‖an − am‖)−3γ‖an − am‖.

Now let C = ‖a0‖−1
√

2
K3γ . Since n and m are two arbitrary natural numbers with

n < m, the previous inequality implies that

‖Pa− Pa′‖ ≥ C ‖a− a′‖
(− log ‖a− a′‖)3γ

.

Next, in order to show that exponent in Theorem 1.3.9 is sharp, we consider

a particular orthogonal sequence in a Hilbert space H. Let Ã = {a1, a2, ...} ∪ {0}
with an = e−nen for every n ∈ N. Since there exist K and α such that 0 < α < 1

and (1/K)αn ≤ e−n ≤ Kαn, it follows from Proposition 2.1.4 that dimA(Ã) = 0.

Since Ã is an orthogonal sequence, it follows from Lemma 8.4 in Olson and Robinson

(2010) that dimA(Ã − Ã) = 0.
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Now, if there exists an orthogonal projection with rank N such that

‖Pa− Pa′‖ ≥ ‖a− a′‖
(− log ‖a− a′‖)γ

,

for each distinct a, a′ ∈ Ã, then

‖Pa‖ ≥ ‖a‖
(− log ‖a‖)γ

,

since 0 ∈ Ã. Therefore, (iii) of Proposition 2.1.6

∞∑
n=1

(− log |e−n|)−2γ =

∞∑
n=1

n−2γ <∞.

Since the rank of P is finite,
∑∞

n=1 n
−2γ < ∞ implies that γ > 1/2. Hence, this

example gives a lower bound for the exponent γ of 1/2. Therefore, the limiting

value (as N →∞) of the exponent γ in Theorem 1.3.9 is optimal.

2.2 Sequences in c0

Motivated by the results obtained for orthogonal sequences in Section 2.1, we study

in this section a general set of sequences A in c0 that allow us to obtain results

analogous to those shown by Ben-Artzi et al. (1993) but in the Banach space setting.

The space c0 consists of all scalar sequences x = (x1, x2, ...) for which

lim
n→∞

xn = 0

and the norm of an element x ∈ c0 is

‖x‖∞ = sup
n
|xi| <∞.

Note that c0 is a separable Banach space with the `∞-norm and c0 ⊂ `∞.

Let {ei}∞i=1 be the standard basis for c0, where ei = (0, ..., 0, 1, 0, ...) is a

vector with 1 in the ith place and 0 in every other place. Let {ai}∞i=1 be a sequence

in R \ {0} such that |an| ≥ |an+1| > 0 and limn→∞ |an| = 0. Consider the compact

set A = {α1, α2, ...} ∪ {0} in c0, where αi = aiei for every i = 1, 2, ...
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Proposition 2.2.1. The upper box-counting dimension dimbox(A) is given by

dimbox(A) = lim sup
n→∞

log n

log(1/‖αn‖∞)

= inf{D > 0 : sup
n

(‖αn‖∞n1/D) <∞}

= inf

{
ν :

∞∑
n=1

‖αn‖ν∞ <∞
}

The proof of this proposition is similar to that of Lemma 3.1 in Ben-Artzi et al.

(1993) provided we make some simple adjustments. Hence we will only prove the

first equality.

Proof. For each 0 < ε < ‖α1‖∞, denote by n(ε) the unique positive integer such

that ‖αn(ε)‖∞ > ε ≥ ‖αn(ε)+1‖∞. Since an ε-ball centered at the origin covers all

the points in X except the first n(ε) points, it follows that N(X, ε) ≤ n(ε) + 1.

Therefore,

dimbox(X) = lim sup
ε→0

logN(X, ε)

− log ε

≤ lim sup
ε→0

log n(ε) + 1

− log ‖αn(ε)‖∞
= lim sup

n→∞

log n

log(1/‖αn‖∞)
.

Next, we prove the reverse inequality. Let n be a positive integer, large enough so

that ‖αn‖∞ < 1. Denote by n′ the unique integer such that n′ ≥ n and

‖αn‖∞ = ‖αn+1‖∞ = ... = ‖αn′‖∞ > ‖αn′+1‖∞,

and define ε(n) > 0 via ε(n) = (‖αn′‖∞ + ‖αn′+1‖∞)/4.

Since inf
(
‖αi − αj‖∞

)
= inf

(
‖αi‖∞

)
≥ ‖αn′‖∞, for i, j = 1, ..., n′ with

i < j, ‖αi − αj‖∞ ≥ ‖αn′‖∞. Hence the distance between two elements of the set

{α1, ..., αn′} is at least equal to ‖αn′‖∞ > 2ε(n). This implies that N(X, ε(n)) ≥ n′.
Now if we combine this inequality with 4ε(n) > ‖αn′‖∞, n′ ≥ n, and

‖αn‖∞ = ‖αn′‖∞, we obtain

log n

log(1/‖αn‖∞)
≤ log n′

log(1/‖αn′‖∞)
≤ logN(X, ε(n))

log(1/4ε(n))
.
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Since ε(n)→ 0 as n→∞, it follows that

lim sup
n→∞

log n

log(1/‖αn‖∞)
≤ lim sup

n→∞

logN(X, ε(n))

log(1/4ε(n))

≤ lim sup
ε→0

logN(X, ε)

log(1/4ε)

= dimbox(X).

Next consider the canonical basis of the sequence space c0 and `1 = (c0)∗

with en = (0, ..., 0, 1, 0, ...) ∈ c0 and e∗n = (0, ..., 0, 1, 0, ...) ∈ `1, where there is a 1 in

the nth place and 0 in every other place. We find that ‖en‖∞ = ‖e∗n‖1 = e∗n(en) = 1

and e∗n(em) = 0, for every n 6= m. A pair of sequences {en; e∗n}n∈N satisfying these

conditions is called a normalized biorthogonal system in c0 × `1. For more details,

see Hájek et al. (2008).

Next define the vectors α∗i ∈ `1 by setting α∗i = aie
∗
i so that α∗i (αi) = |ai|2

and α∗i (αj) = 0 for every i 6= j. Finally note that a projection P in c0 is a bounded

linear operator in c0, such that P 2 = P .

Proposition 2.2.2. If there exists a finite-dimensional projection P in c0 and θ ∈
(0, 1) such that

‖α‖∞ ≤ C‖Pα‖θ∞, for each α ∈ A,

then
∞∑
i=1

|ai|(1/θ−1) <∞. (2.8)

As in the Theorem 3.2 in Ben-Artzi et al. (1993), the converse statement is also

true. Moreover it is interesting to note that the same result remains valid for similar

sequences in `p, with (2.9) replaced by
∑∞

i=1 |ai|(q/θ−1) <∞, where p−1 + q−1 = 1.

Proof. Let P be a finite-dimensional projection in c0 such that

‖α‖∞ ≤ C‖Pα‖θ∞,

for each α ∈ A, where C > 0. Let U be the range of P . Since P is a finite-dimensional

projection, U is a finite-dimensional subspace of c0. By Lemma 10.5 in Meise and

Vogt (1997), U has an Auerbach basis {u1, ...un} with the coefficient functionals

{f∗1 , ...f∗n} ∈ U∗, such that |ui|U = 1, |fi|U∗ = 1 and f∗i (uk) = δik for 1 ≤ i, k ≤ n. It

follows from the Hahn-Banach Theorem that each fi can be extended to an element
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φi ∈ `1 with ‖φi‖1 = 1 and such that φi(uk) = δij for 1 ≤ i, k ≤ n. Hence,

φi =
∞∑
k=1

λike
∗
k, for each i = 1, 2, ...

with
∑∞

k=1 |λik| = 1. Thus, for every element x ∈ c0, we can write

Px =
n∑
i=1

φi(x)ui.

On the one hand, for each j = 1, 2, ...,

Pej =

n∑
i=1

φi(ej)ui,

where each φi ∈ `1. Using the triangle inequality, for each j = 1, 2, ...,

‖Pej‖∞ =

∥∥∥∥ n∑
i=1

φi(ej)ui

∥∥∥∥
∞

≤
n∑
i=1

‖φi(ej)ui‖∞ =

n∑
i=1

|φi(ej)|

=

n∑
i=1

∣∣∣∣ ∞∑
k=1

λike
∗
k(ej)

∣∣∣∣ =

n∑
i=1

|λij |.

Therefore,
∞∑
j=1

‖Pej‖∞ ≤
∞∑
j=1

n∑
i=1

|λij | =
n∑
i=1

( ∞∑
j=1

|λij |

)
= n.

On the other hand, using the fact that ‖Pαj‖∞ = |aj |‖Pej‖∞ and that

|aj |1/θ = ‖αj‖1/θ∞ ≤ C1/θ‖Pαj‖∞, we have

C1/θ
∞∑
j=1

‖Pej‖∞ = C1/θ
∞∑
j=1

|aj |‖Pej‖∞
|aj |

= C1/θ
∞∑
j=1

‖Pαj‖∞‖αj‖−1
∞

≥
∞∑
j=1

|aj |1/θ|aj |−1 =
∞∑
j=1

|aj |(1/θ−1).

Since
∑∞

j=1 ‖Pej‖∞ <∞,
∑∞

i=1 |ai|(1/θ−1) <∞.

Using Lemma 2.1.3, one can show that Theorem 1.3.6 remains true when linear

maps are replaced by finite-rank projections.
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Consider the compact set A in c0, with upper box-counting dimension d and

dual thickness exponent τ∗(A) (see Chapter 1 for more details). If there exists a

projection P in c0 with rank N and a constant cP > 0 such that

‖a− ā‖∞ ≤ cP ‖Pa− P ā‖θ∞ for all a, ā ∈ A,

then

‖a‖∞ ≤ cP ‖Pa‖θ∞,

for every a ∈ A, since 0 ∈ A. It follows from Proposition 2.2.1 and Proposition

2.2.2 that the existence of such a projection implies that

θ ≤ (1 + dimbox(A))−1.

Therefore, this example gives an upper bound on the Hölder exponent of the inverse

of P restricted to PA.

In addition, we note that dimbox(A) = τ∗(A), since τ∗(A) ≤ dimbox(A). If

not, τ∗(A) < dimbox(A) which implies that as N → ∞ the upper bound on the

Hölder exponent θ in Robinson’s Theorem 1.3.6 would tend to

(1 + τ∗(A))−1 > (1 + dimbox(A))−1,

which, as we have seen, is not possible. Hence, as N →∞, the upper bound on the

Hölder exponent θ tends to (1 + τ∗(A))−1. So, we recover the limiting exponent

1/(1+τ∗(A)). Therefore, this example shows that the Hölder exponent in Theorem

1.3.6 is asymptotically sharp.

One can adapt the methods developed above to show a result similar to

Proposition 2.2.2, but with a logarithmic correction.

Proposition 2.2.3. If there exists a finite-dimensional projection P in c0 and γ > 0

such that

‖Pα‖∞ ≥
‖α‖∞

(− log ‖α‖∞)γ
, for each α ∈ A,

then
∞∑
i=1

(− log |aj |)γ <∞. (2.9)

Proof. Let P be a finite-dimensional projection in c0 such that, for γ > 0,

‖Pα‖∞ ≥
‖α‖∞

(− log ‖α‖∞)γ
,
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for each α ∈ A. On the one hand, we can bound
∑∞

j=1 ‖Pej‖∞ just as in the proof

of Proposition 2.2.2. On the other hand, using the fact that ‖Pαj‖∞ = |aj |‖Pej‖∞
and that ‖Pαj‖∞ ≥ ‖α‖∞/(− log ‖α‖∞)γ = |aj |/(− log |aj |)γ , we have

∞∑
j=1

‖Pej‖∞ =

∞∑
j=1

|aj |‖Pej‖∞
|aj |

=

∞∑
j=1

‖Pαj‖∞|aj |−1

≥
∞∑
j=1

|aj |
(− log |aj |)γ

|aj |−1 =

∞∑
j=1

(− log |aj |)γ .

Since
∑∞

j=1 ‖Pej‖∞ < n,
∑∞

i=1(− log |aj |)γ <∞.

Next, in order to show that the limiting value of the exponent γ in the Banach

space version of Theorem 1.3.9 is sharp, we consider a particular sequence in c0. Let

Ã = {α1, α2, ...} ∪ {0} with αn = e−nen, for every n ∈ N. Since there exists K and

β such that 0 < β < 1 and (1/K)βn ≤ e−n ≤ Kβn, it follows from Fact 4.2 in Olson

(2002) (Proposition 2.1.4) that dimA(Ã) = 0. Moreover, it follows from Lemma 8.4

in Olson and Robinson (2010) that dimA(Ã− Ã) = 0.

Now, if there exists a projection P in c0 with rank N such that

‖Pα− Pα′‖∞ ≥
‖α− α′‖

(− log ‖α− α′‖∞)γ
,

for each distinct α, α′ ∈ Ã, then

‖Pα‖∞ ≥
‖α‖∞

(− log ‖α‖∞)γ
,

since 0 ∈ Ã. Therefore, it follows from Proposition 2.2.3

∞∑
n=1

(− log |e−n|)−γ =

∞∑
n=1

n−γ <∞,

implies that γ > 1. Hence, this example shows that the limiting value of the log-

arithmic exponent γ as N → ∞ in the Banach space version of Theorem 1.3.9 is

sharp (γ > 1).
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Chapter 3

Lipschitz deviation and

embeddings of global attractors

3.1 The Lipschitz deviation

3.1.1 Definition of Lipschitz deviation

Inspired by the work of Hunt and Kaloshin (1999), Olson and Robinson (2010)

defined a new quantity that measures how well a compact set X in a Hilbert space

H can be approximated by graphs of Lipschitz functions (with prescribed Lipschitz

constant) defined over a finite-dimensional subspace of H.

Definition 3.1.1 (Olson and Robinson, 2010). Let X be a compact subset of a real

Hilbert space H. Let δm(X, ε) be the smallest dimension of a linear subspace U ⊂ H
such that

dist
(
X,GU [ϕ]

)
< ε,

for some m-Lipschitz function ϕ : U → U⊥, i.e.

∥∥ϕ(u)− ϕ(v)
∥∥ ≤ m‖u− v‖ for all u, v ∈ U,

where U⊥ is orthogonal complement of U in H and GU [ϕ] is the graph of ϕ over U :

GU [ϕ] =
{
u+ ϕ(u) : u ∈ U

}
.

The m-Lipschitz deviation devm(X) of X is given by

devm(X) = lim sup
ε→0

log δm(X, ε)

− log ε
.
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Since this quantity is bounded and non-increasing in m, the limit as m tends to in-

finity exists and is equal to the infimum. We therefore make the following definition,

which is independent of m.

Definition 3.1.2. Let X be a compact subset of a real Hilbert space H. The Lips-

chitz deviation dev(X) of X is given by

dev(X) = lim
m→∞

devm(X). (3.1)

Since δm(X, ε) ≤ δ0(X, ε) = dH(X, ε) (where dH(X, ε) was introduced in Definition

1.3.2), devm(X) ≤ τ(X), for all m > 0. Therefore, the Lipschitz deviation is

bounded above by the thickness exponent.

We now give an example of a set X, for which dev(X) is strictly smaller than

τ(X). Let {ej}∞j=1 be an orthonormal basis for a Hilbert space H, and consider the

compact set

X =

{
1

n
e1 +

1

n2
en : n ≥ 2

}
∪ {0}.

It is relatively easy to show that X is contained in the graph of a 3-Lipschitz function

over the one-dimensional subspace E1 spanned by e1: define φ on the discrete set

of points {e1/n}n∈N ∪ {0} by

φ(e1/n) =
en
n2
, n ≥ 2 and φ(0) = 0.

On its domain of definition, φ is Lipschitz: for m > n,

∣∣∣φ(e1/n)− φ(e1/m)
∣∣∣ =

∣∣∣∣∣enn2
− em
m2

∣∣∣∣∣ = n−2 +m−2 ≤ n−2 + (n+ 1)−2 <
3

n(n+ 1)

and ∣∣∣∣∣e1

n
− e1

m

∣∣∣∣∣ =

∣∣∣∣ 1n − 1

m

∣∣∣∣∣ ≥
∣∣∣∣∣ 1n − 1

n+ 1

∣∣∣∣∣ =
1

n(n+ 1)
,

and so ∣∣∣φ(e1/n)− φ(e1/m)
∣∣∣ ≤ 3

∣∣∣∣∣e1

n
− e1

m

∣∣∣∣∣.
This implies that δ3(X, ε) = 1, for every ε > 0. Standard results (see for example

Wells and Williams, 1975), allows one to extend φ to a 3-Lipschitz function defined

on the whole of E1. It follows that dev3(X) = 0, and so in particular dev(X) = 0.

However, τ(X) ≥ 1. To show this result, we will use Lemma 2.1.1 that gives an ex-

plicit lower bound on dH(X, ε) for finite-dimensional subspaces X that approximate
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orthogonal sets in Hilbert spaces.

The argument adopted here follows from the method developed by Ben-Artzi

et al. (1993) for finding lower bounds on the box-counting dimension of orthogonal

sequences. For n ≥ 1 set

an =
e1

n+ 1
+

en+1

(n+ 1)2
;

note that ‖an‖ > ‖an+1‖ and limn→∞ ‖an‖ = 0. Let ε2
n =

(
‖an‖2 + ‖an+1‖2

)
/4.

Since ‖aj‖2 ≥ ‖an‖2 > 2ε2
n for j = 1, . . . , n, it follows from the Lemma 2.1.1 that

dH(X, εn) ≥ d
(
{a1, . . . , an}, εn

)
≥ n

(
1− ε2

n

‖an‖2

)
>
n

2
.

Since (n+ 1)−1 < ‖an‖ < 2εn,

τ(X) ≥ lim sup
n→∞

log dH(X, εn)

− log εn
≥ lim sup

n→∞

log(n/2)

log 2(n+ 1)
= 1.

It is interesting to observe that, in contrast to the thickness exponent, the

Lipschitz deviation is not preserved under bounded linear transformations that have

a bounded linear inverse. This observation is a direct consequence of the fact that the

orthogonal splitting of a Hilbert space is not preserved under such transformations.

Nevertheless the Lipschitz deviation provides us with more freedom to approximate

compact sets than the thickness, while still maintaining sufficient control to obtain

results that parallel those obtained using the thickness, as we shall now see.

3.1.2 Hölder embedding of compact sets

The following result is stated without proof as Theorem 6.5 in Olson and Robinson

(2010) in terms of the m-Lipschitz deviation (for some m > 0). Since the focus of

this chapter is the Lipschitz deviation, it is worthwhile to present here a proof of

this theorem.

Theorem 3.1.3. Let X be a compact subset of a real Hilbert space H with box-

counting dimension d and let dev(X) be the Lipschitz deviation of X. Let N > 2d

be an integer and let ζ be a real number with

0 < ζ <
N − 2d

N
(
1 + dev(X)/2

) . (3.2)

Then for a prevalent set of bounded linear function there exists a C > 0 such that

C
∣∣f(x)− f(y)

∣∣ζ ≥ ‖x− y‖ for all x, y ∈ X. (3.3)
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In particular, these maps are injective on X.

The proof follows that of Hunt and Kaloshin (1999), but with some significant

changes, since we are using the Lipschitz deviation rather than the thickness.

Proof. Note that if (3.2) holds, then it holds if dev(X) is replaced by devm(X), for

m sufficiently large. So we will work with a fixed m and prove the theorem in terms

of the m-Lipschitz deviation.

For j = 1, 2, ..., let dj = δm(X, 2−jζ/6m) be the dimension of a linear sub-

space Uj ⊂ H such that

dist
(
X,GUj [ϕj ]

)
< 2−jζ/6m,

for some m-Lipschitz function ϕj : Uj → U⊥j , where GUj [ϕj ] is the graph of ϕj over

Uj . By definition,

devm(X) = lim sup
ε→0

log δm(X, ε)

− log ε
. (3.4)

Thus, for all σ > devm(X), there exists C1 > 0, that depends only on X and σ,

such that dj ≤ C12jζσ.

Let Sj be the closed unit ball in the linear subspace Uj . For any u ∈ H,

denote u∗ the element of H∗ given by u∗(x) = (u, x) where (·, ·) is the inner product

in H. Let L (H,RN ) denote the space of bounded linear functions from H into RN .

Every bounded linear function π : H → RN can be written π = (π1, π2, ..., πN ),

where each πn is a linear functional on H.

As required by the definition of prevalence, we need to construct a probability

measure µ on a compact subset Q ⊂ L (H,RN ) of perturbations. We define this

‘probe set’ Q as

Q =

{
π = (π1, ..., πN ) : πn =

∞∑
j=1

j−2φ∗nj with φnj ∈ Sj , for all j

}
.

Under the obvious identification L (H,RN ) = L (H,R) × . . . × L (H,R),

which is an isomorphism of Banach spaces and in particular a homeomorphism, the

set Q is mapped bijectively onto C × . . .× C, where

C :=

{ ∞∑
j=1

j−2φ∗j with φj ∈ Sj , for all j

}
.

Hence Q is homeomorphic to a product of N copies of C. Therefore, in order to

show that Q is compact, it suffices to show that C is compact.
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First note that the map Sj 3 φ 7→ φ∗ ∈ L (H,R) is continuous, and in

fact an isometry. Now consider
∏
j∈N Sj endowed with the product topology. It is

well known that the product topology of a countable collection of metric spaces is

metrizable; in our case a suitable metric is given by

d
(
(φj), (ψj)

)
=
∑
j∈N

j−2
∥∥φj − ψj∥∥, where (φj), (ψj) ∈

∏
j∈N

Sj .

Define the map

u :
∏
j∈N

Sj → L (H,R) such that u
(
φ1, φ2, . . .

)
=
∑
j∈N

j−2φ∗j

Let ε > 0. If d
(
(φj), (ψj)

)
< ε, then

∥∥∥u(φ1, φ2, . . .
)
− u
(
ψ1, ψ2, . . .

)∥∥∥ =

∥∥∥∥∑
j∈N

j−2
(
φ∗j − ψ∗j

)∥∥∥∥
≤

∑
j∈N

j−2
∥∥φ∗j − ψ∗j∥∥

=
∑
j∈N

j−2
∥∥φj − ψj∥∥ = d

(
(φj), (ψj)

)
< ε.

Hence the map

(φj) 7→
∑
j∈N

j−2φ∗j

is continuous.

Since each sphere Sj is finite-dimensional, they are compact, so by Ty-

chonoff’s theorem
∏
j∈N Sj is compact as well. Consequently, the set C, which

is the image of
∏
j∈N Sj under the map given above, is also compact. Therefore, Q

is a compact subset of L (H,RN ).

Since we can identify Sj with the unit ball Bdj in Rdj , it is possible to define a

probability measure λdj on Sj that corresponds to the uniform probability measure

on Bdj . Let µ be the probability measure on Q that results from choosing each φnj

randomly with respect to λdj , such that

µ :=

∞⊗
j=1

λdj · · ·
∞⊗
j=1

λdj︸ ︷︷ ︸
N copies

,

with the product measure
⊗∞

j=1 λdj defined on×∞j=1 Sj . See Appendix A.2 for more
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details.

We want to show that the set S of bounded linear maps f : H → RN , for

which there exists a C > 0 such that

C
∣∣f(x)− f(y)

∣∣ζ ≥ ‖x− y‖ for all x, y ∈ X

is prevalent. So, we need to show that µ(S + f) = 1 for all f ∈ L (H,RN ) or,

equivalently, that µ
(
Q\ (S+f)

)
= 0. Thus, given f ∈ L (H,RN ), we want to verify

that µ-almost every π ∈ Q can be written in the form s+ f , for some s ∈ S. Thus

π− f ∈ S, for µ-almost every π ∈ Q. Since S = −S and Q = −Q, this is equivalent

to showing that f + π ∈ S for µ-almost every π ∈ Q.

For j ≥ 1, define

Zj =
{

(x, y) ∈ X ×X : ‖x− y‖ ≥ 2−jζ
}
,

with norm
∥∥(x, y)

∥∥ = ‖x‖ + ‖y‖. Let Qj be the set of linear maps that includes

those which fails to satisfy the required continuity property, i.e.

Qj =

{
π ∈ Q :

∣∣∣f(x) + π(x)−
(
f(y) + π(y)

)∣∣∣ ≤ 2−j , for some (x, y) ∈ Zj
}
.

Denote L the Lipschitz constant that is valid for all f + π, with π ∈ Q.

We want to find an upper bound for µ(Qj). It follows from the definition of

box-counting dimension that, if δ > d, then, for all j ≥ 1 such that 2−j ∈ (0, 1),

there exists C2 > 0 depending only on X and δ such that X can be covered by at

most C22jδ balls of radius 2−(j+1). Hence Zj ⊂ X ×X can be covered by at most

Mj = C2
222jδ balls of radius 2−j . Let Y be the intersection of Zj with one of these

balls.

Note that if (x, y), (x0, y0) ∈ Y , then
∥∥(x, y)− (x0, y0)

∥∥ ≤ 2−j+1. So,∣∣∣f(x0) + π(x0)−
(
f(y0) + π(y0)

)∣∣∣ ≥ (4L+ 1)2−j

implies that
∣∣∣f(x) + π(x)−

(
f(y) + π(y)

)∣∣∣ ≥ 2−j , for all (x, y) ∈ Y . Hence,

Qj ⊆
Mj⋃
i=1

{
π ∈ Q :

∣∣∣f(xi) + π(xi)−
(
f(yi) + π(yi)

)∣∣∣ ≤ (4L+ 1)2−j
}
,

where (xi, yi) ∈ Yi and Yi is the intersection of Zj with the i-th ball in the covering

mentioned earlier. Therefore, we wish to bound the probability that π ∈ Q, chosen
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randomly with respect to µ, satisfies∣∣∣f(x0) + π(x0)−
(
f(y0) + π(y0)

)∣∣∣ =
∣∣f(x0)− f(y0) + π(x0 − y0)

∣∣ ≤ (4L+ 1)2−j .

Define Pj as the orthogonal projection onto Uj and (I −Pj) its complement.

Let z be the orthogonal projection of x0 − y0 onto Uj . Lemma 5.5 in Olson and

Robinson (2010) - which provides a more explicit proof than the argument developed

in Hunt and Kaloshin (1999) - guarantees that

µ
{
π ∈ Q :

∣∣(f + π)(x0 − y0)
∣∣ < ε

}
≤ C3

(
j2d

1/2
j ε

∥∥Pj(x0 − y0)
∥∥−1

)N
,

where C3 is a constant independent of f and j. For the sake of completeness, we

include a simple proof of this lemma as Lemma A.2.1 in the Appendix A.2. It follows

from this result that

µ(Qj) ≤
Mj∑
i=1

µ

{
π ∈ Q :

∣∣∣f(x0) + π(x0)−
(
f(y0) + π(y0)

)∣∣∣ ≤ (4L+ 1)2−j
}

≤ MjC3

(
j2d

1/2
j (4L+ 1)2−j‖z‖−1

)N
,

where ‖z‖ =
∥∥Pj(x0 − y0)

∥∥.

Now we have to show that the images of nearby points on X remain far apart,

although distances between points on X are shrunk by f . Hence, to finish the proof,

it is necessary to find a lower bound for ‖z‖. So recall that (x0, y0) ∈ X ×X and

that every point of X lies within 2−jζ/6m of GUj [ϕj ]. As in Olson and Robinson

(2010), we have for all x ∈ X,

∥∥(I − Pj)x− ϕj(Pjx)
∥∥ =

∥∥(I − Pj)x− ϕj(u) + ϕj(u)− ϕj(Pjx)
∥∥

≤
∥∥(I − Pj)x− ϕj(u)

∥∥+
∥∥ϕj(u)− ϕj(Pjx)

∥∥
≤

∥∥(I − Pj)x− ϕj(u)
∥∥+m

∥∥u− Pjx∥∥
≤ 2m

∥∥∥x− (u+ ϕj(u)
)∥∥∥.

It follows that, for all x ∈ X,

∥∥(I − Pj)x− ϕj(Pjx)
∥∥ ≤ 2m dist

(
x,GUj [ϕj ]

)
.

So ∥∥(I − Pj)x− ϕj(Pjx)
∥∥ ≤ 2m

2−jζ

6m
=

2−jζ

3
.
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Thus we have

‖x0 − y0‖ =
∥∥Pjx0 + (I − Pj)x0 − Pjy0 − (I − Pj)y0

∥∥
≤ ‖Pjx0 − Pjy0‖+

∥∥(I − Pj)x0 − (I − Pj)y0

∥∥
= ‖z‖+

∥∥(I − Pj)x0 − ϕj(Pjx0) + ϕj(Pjx0)

−ϕj(Pjy0) + ϕj(Pjy0)− (I − Pj)y0

∥∥
≤ ‖z‖+

∥∥(I − Pj)x0 − ϕj(Pjx0)
∥∥

+
∥∥ϕj(Pjx0)− ϕj(Pjy0)

∥∥+
∥∥ϕj(Pjy0)− (I − Pj)y0

∥∥
≤ ‖z‖+ 2−jζ/3 +m‖z‖+ 2−jζ/3

≤ 2m‖z‖+ 2−jζ+1/3.

Since ‖x0 − y0‖ ≥ 2−jζ , it follows that ‖z‖ ≥ 2−(jζ+1)/3m. Then

µ(Qj) ≤ Mj

(
C4d

1/2
j (4L+ 1)j2 2−j(1−ζ)

)N
= C2

2 22jδ
(
C4d

1/2
j (4L+ 1)j2 2−j(1−ζ)

)N
,

where C4 = C
1/N
3 6m. As dj ≤ C1 2jζσ,

µ(Qj) ≤ C2
2 22jδCN4 C

N/2
1 2jζσN/2(4L+ 1)N j2N 2−j(1−ζ)N

≤ C5j
2N 2−j[N(1−ζ(1+σ/2))−2δ],

where C5 depends only on L, N , X, δ and σ. Since we can choose δ and σ sufficiently

close to d and devm(X), respectively, we obtain that

ζ <
N − 2d

N
(
1 + devm(X)/2

) .
Thus the exponent of 2−j in the bound on µ(Qj) is positive. It follows that

∞∑
j=1

µ(Qj) <∞.

By the Borel-Cantelli Lemma, µ-almost every f + π is contained in a finite number

of Qj . Hence there exists a J such that, for all j ≥ J , |x − y| ≥ 2−jζ implies∣∣∣f(x) + π(x)−
(
f(y) + π(y)

)∣∣∣ ≥ 2−j .
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Let C = max (2ζ , 2JζR), where R = sup
{
‖x‖ : x ∈ X

}
. Then

C
∣∣∣f(x)− π(x)−

(
f(y)− π(y)

)∣∣∣ζ ≥ ‖x− y‖ for all (x, y) ∈ X ×X.

Therefore the conclusion of the theorem holds for a prevalent set S in the space of

bounded linear functions from H into RN .

One can use the compact set A ⊂ H presented in Section 2.1.1 or the example

given in Hunt and Kaloshin (1999) to show that the upper limit on the Hölder

exponent (1.3) in terms of the thickness is sharp as N →∞, and so is the bound in

Theorem 1.3.4. However, dev(A) ≤ τ(A) implies that

1

1 + τ(A)/2
≤ 1

1 + dev(A)/2
.

Thus we must have in this case equality between those two terms, and consequently

the Lipschitz deviation of A is equal to its thickness. Therefore we obtain that the

upper limit (3.2) is sharp in the limit N →∞.

Since the upper limit (3.2) tends to one when dev(X) = 0, it would be

interesting to have conditions guaranteeing that the the Lipschitz deviation is zero;

we will give such conditions in Section 3.2.

3.1.3 Hausdorff dimension of compact sets and Lipschitz maps

We have just seen that a finite-dimensional compact subset X of a Hilbert space

can be embedded into a Euclidean space of sufficiently high dimension, using linear

maps whose inverse is Hölder continuous. It is interesting to study how the Hausdorff

dimension of a compact set is affected by this embedding. In the Introduction we

recalled (Theorem 1.3.7) a result of Ott et al. (2006) that provides a lower bound on

the Hausdorff dimension of the image of a compact set by a prevalent set of linear

mappings into finite-dimensional spaces, based on the thickness exponent. One can

prove an analogous result using the Lipschitz deviation. One just needs to adapt

the proof of Theorem 1.3.7 (see Ott et al., 2006, for details) by making similar

modifications to the ones outlined above.

Let M be any subspace of the space of the Borel measurable functions from

H to RN that contains the bounded linear functions.

Theorem 3.1.4. Let H be a Hilbert space. Let X ⊂ H be a compact set with
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Lipschitz deviation dev(X). For almost every function L ∈M ,

dimH(L(X)) ≥ min

{
N,

dimH(X)

1 + dev(X)/2

}
.

It is important to note that if dev(X) = 0, then the Hausdorff dimension of X is

preserved by ‘typical’ mappings L.

An analogue of Theorem 3.1.4 is not valid for the box-counting dimension,

because there are examples, given by Järvenpää (1994), Falconer and Howroyd

(1996) and Sauer and Yorke (1997), in which the box-counting dimension is not

preserved under linear functions.

3.2 Approximate inertial manifolds and the Lipschitz

deviation

In this section we will use the theory of approximate inertial manifolds to show that

the global attractors for a variety of semilinear parabolic equations have Lipschitz

deviation zero. This provides a partial answer to the conjecture of Ott, Hunt, and

Kaloshin that many such attractors have zero thickness exponent.

3.2.1 Approximate inertial manifolds

Our aim in this section is to prove that the global attractors of some dynamical

systems generated by a class of semilinear parabolic equations have zero Lipschitz

deviation. Note that the same setting and notation will be used in Chapter 4, where

more details will be given.

Following Eden et al. (1994) we consider a dissipative partial differential

equation written as an abstract evolution equation of the form{
du
dt

+Au = R(u),

u(0) = u0

(3.5)

in a separable real Hilbert space H with scalar product (·, ·) and norm ‖ · ‖. We

suppose that A is a positive self-adjoint linear operator with compact inverse A−1

and dense domain D(A) ⊂ H. For each α ≥ 0, we denote by D(Aα) the domain

of Aα, i.e. D(Aα) = {u : Aαu ∈ H}; these are Hilbert spaces with inner product

(u, v)α = (Aαu,Aαv) and norm ‖u‖α = ‖Aαu‖.
Since A is self-adjoint and its inverse is compact, H has an orthonormal basis

(wj)j∈N consisting of eigenfunctions of the operator A such that

43




Awj = λjwj , j = 1, ...,

0 < λ1 ≤ λ2 ≤ ... ≤ λj ≤ ...,
λj →∞ as j →∞.

(3.6)

For n ∈ N fixed, we consider the projection Pn onto the space spanned by the first

n eigenfunctions w1, ..., wn of A, and set Qn = I − Pn; H is the direct sum of the

orthogonal spaces PnH and QnH.

We assume that for any initial condition u0 ∈ H, there exists a unique

solution given by u(t;u0) = S(t)u0, where {S(t)}t≥0 is a continuous semigroup from

H into itself. We suppose that the system is dissipative in the sense that there

exists a compact absorbing set in H, i.e. a set that absorbs all bounded sets in

finite time. Consequently, standard results guarantee that equation (3.5) possesses

a global attractor A in H (see Hale (1988), Babin and Vishik (1992), Temam (1997),

Robinson (2001), for example).

Moreover we assume that, for some 0 < α ≤ 1/2, the nonlinear term R

restricted to A in (3.5) is uniformly Lipschitz into H such that,

∥∥R(u)−R(v)
∥∥ ≤ c

∥∥Aα(u− v)
∥∥, for u, v ∈ A, (3.7)

where c is a constant depending only on A. These assumptions are reasonable,

because usually A is bounded in a more regular space than H. For example, if we

consider the 2D Navier-Stokes equations with forcing f ∈ L2, then A is bounded in

H2, so ∥∥B(u, u)−B(v, v)
∥∥ ≤ c∥∥u− v∥∥

1/2
, for u, v ∈ A

(see Constantin and Foias (1988), Temam (1997) for details). We can then consider a

modified equation that provides the same asymptotic behaviour in a neighbourhood

of the global attractor. This abstract setting includes the reaction-diffusion and the

2D Navier-Stokes equations, among others (see Eden et al. (1994) for example). Note

that when the nonlinear term R is locally Lipschitz from D(Aα) into H standard

results show that the initial value problem (3.5) defines a continuous semigroup

{S(t)}t≥0 from D(Aα) into itself, for t ≥ 0 (see Henry (1981) for details). However,

we are assuming here that solutions exist for every u0 ∈ H and using the abstract

form (3.5) to deduce additional properties of the semigroup defined on H.

The theory of inertial manifolds was introduced as a convenient, although

indirect, method to study the long-term behaviour of dissipative dynamical systems.

The existence of an inertial manifold allows the construction of a finite-dimensional

system of ordinary differential equations that determines the dynamics on the at-
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tractor.

Definition 3.2.1 (Foias et al., 1985). An inertial manifold for the system (3.5) is

a finite-dimensional Lipschitz manifold M enjoying the following properties:

(i) M is positively invariant for the semigroup {S(t)}t≥0, i.e. S(t)M⊂M, t ≥ 0;

(ii) M attracts the orbits of {S(t)}t≥0 at an exponential rate.

Foias et al. (1985) also showed that, if a certain ‘spectral gap condition’ holds

- if there exists an n such that λn+1−λn > kλαn+1, where k is a constant depending

on R - then the system (3.5) possesses an inertial manifold M. Unfortunately, this

condition is very restrictive and there are many equations, such as the 2D Navier-

Stokes equations, that do not satisfy it.

Consequently other approaches have been explored in the cases where an

inertial manifold has not been shown to exist. In the context of the 2D Navier-

Stokes equations, Foias et al. (1988a) introduced the concept of an approximate

inertial manifold (AIM), which is a finite-dimensional Lipschitz manifold, whose

neighbourhood contains the global attractor A. Moreover, it is possible to obtain

approximate inertial manifolds without the restrictive spectral gap condition.

For equations of the above form we will appeal to a result due to Eden et

al. (1994) to prove the existence of a family of approximate inertial manifolds of

‘exponential order’, i.e. a family of Lipschitz manifolds that approximate the attrac-

tor at an exponential rate with respect to their dimension. Their result shows that

such equations satisfy a version of the ‘squeezing property’ that was introduced for

the Navier-Stokes equations by Foias and Temam (1979). This dichotomy property

states that it is possible to split the phase space into a finite-dimensional subspace

and its infinite-dimensional orthogonal complement in such a way that the flow is

essentially characterized by a finite number of parameters.

Proposition 3.2.2 (Eden et al., 1994). Suppose that equation (3.5) satisfies the

assumptions in (3.6) and (3.7). Then, there exists a time t∗ such that if S = S(t∗)

and n is sufficiently large, there exists a projection Pn of rank n such that for every

u, v ∈ A either

‖Qn(Su− Sv)‖ ≤ ‖Pn(Su− Sv)‖ (3.8)

(where Qn = I − Pn) or

‖Su− Sv‖ ≤ δn‖u− v‖, (3.9)

with

δn ≤ c0e−σλn+1 ,
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where c0 and σ are constants depending only on c and α, defined by equation (3.7).

If an infinite-dimensional dynamical system satisfies this property, it is pos-

sible to prove that its global attractor lies within a small neighbourhood of an

finite-dimensional Lipschitz manifold. The following result follows from an abstract

version of an argument due to Foias et al. (1988a).

Proposition 3.2.3 (Robinson, 2001). If (3.8) and (3.9) hold then there exists a

Lipschitz function Φ : PnH → QnH,

‖Φ(p)− Φ(p̄)‖ ≤ ‖p− p̄‖ for all p, p̄ ∈ PnH, (3.10)

such that A lies within a 4δnRH neighbourhood of the graph of Φ

GPnH [Φ] = {u ∈ H : u = p+ Φ(p), p ∈ PnH},

where RH is such that ‖u‖ ≤ RH , for all u ∈ A.

Therefore, if one considers the equation (3.5), that satisfies (3.6) and (3.7), it is

possible to combine this general result with Proposition 3.2.2 in order to obtain a

Lipschitz manifold Mn given as the graph of some 1-Lipschitz Φ : PnH → QnH

such that

dist(A,Mn) ≤ K0e−σλn+1 ,

where K0 = 4c0RH and σ are constants depending on the attractor A and on the

non-linear term R. Note that we are only using the theory of approximate inertial

manifolds to find a Lipschitz graph whose ε-neighbourhood contains the attractor.

The possible dynamical interpretation of the AIM is unimportant.

We remark here that Debussche and Temam (1994) and Rosa (1995) devel-

oped constructive methods to obtain a family of Lipschitz functions, whose graphs

Mn are n-dimensional smooth manifolds that approximate the attractor A at an

exponential order, such that

dist(A,Mn) ≤ c̄0e
−σ̄λ1−αn ,

where c̄0, c̄1 > 0 are constants. However, the non-constructive method of Proposi-

tion 3.2.3 is sufficient for our purposes. In Chapter 4, we present another method

that is based on the continuity of the linear term A.
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3.2.2 Zero Lipschitz deviation

In this section we use the above results to prove that the global attractors of models

that can be written in the form (3.5) have zero Lipschitz deviation. Recent papers,

such as Ott and Yorke (2005) and Ott et al. (2006), have highlighted the importance

of obtaining such a result for the thickness exponent. In light of the results of Section

3.1, a bound on the Lipschitz deviation serves as well as a bound on the thickness.

Proposition 3.2.4. Let A be the global attractor for a dynamical system gener-

ated by a dissipative partial differential equation of the form of (3.5) satisfying the

assumptions in (3.6) and (3.7). Assume in addition that

lim sup
n→∞

log n

λn
= 0. (3.11)

Then the Lipschitz deviation of A is zero.

As we want to take the limit superior through a sequence of εn that tends to zero

(rather than as ε → 0), we need hypothesis (3.11). Although this hypothesis may

seem a little strong, many dissipative equations satisfy it because, for an elliptic

equation of order 2p defined in Ω ⊂ Rm, λn ∼ n2p/m (for more details, see Davies

(1986)).

Proof. Note that {λn}∞n=1 is an increasing sequence that tends to infinity as n tends

to infinity and satisfies (3.11). Let εn = K0e−σλn+1 , where K0, σ are constants and

n is the rank of Pn.

It follows from Proposition 3.2.2 and 3.2.3 that the global attractor A is

contained in an εn-neighbourhood of a finite-dimensional Lipschitz manifold M,

defined as a graph of Φ : PnH → QnH , with

|Φ(p)− Φ(p̄)| ≤ |p− p̄| for all p, p̄ ∈ PnH.

Therefore, δ1(A, εn) = n and by hypotheses (3.11)

lim sup
n→∞

log δ1(A, εn+1)

− log εn
= lim sup

n→∞

log(n+ 1)

σλn+1 − logK0
= 0.

Now fix ε > 0 such that εn+1 ≤ ε < εn. Hence,

log δ1(A, ε)
− log ε

≤ log δ1(A, εn+1)

− log εn
.
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Then, it follows from

lim sup
n→∞

log δ1(A, εn+1)

− log εn
= 0

that

dev1(A) = lim sup
ε→0

log δ1(A, ε)
− log ε

= 0.

Therefore, any global attractor A for a dynamical system generated by a dissipative

partial differential equation of the form (3.5) has dev(A) = 0.

Hence, one can apply this result to show that the 2D Navier-Stokes equations

with forcing function f ∈ L2 has a global attractor with zero Lipschitz deviation.

Meanwhile, the attractor of the 2D Navier-Stokes equations has zero thickness ex-

ponent only if the forcing function f ∈ Hk for any k (see Constantin and Foias

(1988), and Friz and Robinson (1999)).

3.2.3 Consequences for attractors with zero Lipschitz deviation

Given the results of Section 3.1, Proposition 3.2.4 has two immediate consequences.

First, we can obtain embeddings of global attractors with zero Lipschitz deviation in

RN that have a Hölder continuous inverse whose exponent is arbitrarily close to 1 by

taking N sufficiently large (Theorem 3.1.3). Furthermore, the Hausdorff dimension

of these sets is preserved under typical Lipschitz mappings into RN (Theorem 3.1.4).

We now discuss briefly one further consequence for global attractors. Robin-

son (2005, Theorem 5.1) showed that the dynamics on finite-dimensional attractors

can be reconstructed using a sufficient number of observations at equally spaced

times, providing an infinite-dimensional version of results of Takens (1981) and

Sauer et al. (1991). Simply by using Theorem 3.1.3 instead of Theorem 1.3.4 in the

argument developed in Robinson (2005) one can replace the thickness exponent of

the original result with the Lipschitz deviation. The assumption that dev(A) = 0

is now natural, and the result in this form requires the same number of observa-

tions as are required by Sauer et al. (1991) for a finite-dimensional attractor in a

finite-dimensional system:

Theorem 3.2.5. Let A be a compact subset of a Hilbert space H that has upper

box-counting dimension d, zero Lipschitz deviation, and is an invariant set for a

Lipschitz map Φ : H → H. Choose an integer k > 2d, and suppose further that

the set Ap of p-periodic points of Φ satisfies dF (Ap) < p/2. Then a prevalent set

of Lipschitz maps L : H → R make the k-fold observation map Dk[L,Φ] : H → Rk

defined by Dk[L,Φ](u) = (L(u), L(Φ(u)), ..., L(Φk−1(u))), injective on A.
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Chapter 4

Log-Lipschitz continuity of the

vector field

In this chapter we discuss the conditions under which a global attractor A associated

with a dissipative parabolic equation lies in a Lipschitz graph over a finite number

of Fourier modes. We then study the smoothness of the vector field restricted to A.

4.1 Notation and general setting

Consider a dissipative parabolic equation written as an evolution equation of the

form
du

dt
+Au = F (u) (4.1)

in a separable real Hilbert space H with scalar product (·, ·) and norm ‖ · ‖. We

suppose that A is a positive self-adjoint linear operator with compact inverse and

dense domain DH(A) ⊂ H. For each α ≥ 0, we denote by DH(Aα) the domain of

Aα, i.e.

DH(Aα) = {u : Aαu ∈ H};

these are Hilbert spaces with inner product (u, v)α = (Aαu,Aαv) and norm ‖u‖α =

‖Aαu‖. We know that for α > β, the embedding DH(Aα) ⊂ DH(Aβ) is dense and

continuous such that

‖u‖β ≤ C̃(α, β)‖u‖α, for u ∈ DH(Aα) (4.2)

(see Sell and You (2002), for details). We assume that, for some 0 < α ≤ 1/2,

the nonlinear term F is locally Lipschitz from DH(Aα) into H, such that for u, v ∈
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DH(Aα),

∥∥F (u)− F (v)
∥∥ ≤ K(R)

∥∥Aα(u− v)
∥∥, with ‖Aαu‖, ‖Aαv‖ ≤ R, (4.3)

where K is a constant depending only on R. This abstract setting includes, among

others, the 2D Navier-Stokes equations and the original Burgers equation with

Dirichlet boundary values (see Eden et al. (1994), Temam (1997) for example).

Since A is self-adjoint densely defined operator and its inverse is compact, H

has an orthonormal basis {wj}j∈N consisting of eigenfunctions of A such that

Awj = λjwj for all j ∈ N

with 0 < λ1 ≤ λ2, ... and λj → ∞ as j → ∞. With n ∈ N fixed, define the

finite-dimensional orthogonal projections Pn and their orthogonal complements Qn

by

Pnu =
n∑
j=1

(u,wj)wj and Qnu =
∞∑

j=n+1

(u,wj)wj .

Hence, we can write u = Pnu+Qnu, for all u ∈ H. The orthogonal projections Pn and

Qn are bounded on the Hilbert spacesDH(Aα), for any α > 0 (see (4.2)). Notice that

PnH = PnDH(Aα) ⊂ DH(Aα), since PnH is a finite-dimensional subspace generated

by the eigenvectors of A corresponding to the first n eigenvalues of A. These spectral

projections commute with the operators e−At for t > 0, i.e., Pne−At = e−AtPn and

Qne−At = e−AtQn. Moreover, it follows from Henry (1981, Section 1.5) that

‖e−AtQnu‖α ≤ sup
j≥n+1

{
λαj e−λjt

}
‖Qnu‖ ≤ bn,α(t)‖Qnu‖,

where

bn,α(t) =


(

et

α

)−α
, for 0 < t ≤ α/λn+1

λαn+1e−λn+1t, for t ≥ α/λn+1

Therefore, ∥∥∥Aαe−AtQn

∥∥∥
L (H,H)

≤ bn,α(t). (4.4)

Within this general setting, one can prove the local existence and uniqueness

of solutions of (4.1) (see Henry (1981) for details). In particular, it follows from

Henry (1981, Lemma 3.3.2) that the solution of the nonlinear equation (4.1), with
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initial condition u(t0) = u0 ∈ DH(Aα), is given by the variation of constants formula

u(t) = e−A(t−t0)u0 +

∫ t

t0

e−A(t−s)F
(
u(s)

)
ds, (4.5)

for t > t0.

Thus, we can define {Φt}t≥0 to be the semigroup in DH(Aα) generated by

(4.1) such that, for any initial condition u0 ∈ DH(Aα), there exists a unique solution

given by u(t;u0) = Φtu0. We assume that this system is dissipative, i.e. that there

exists a compact invariant absorbing set. It follows from standard results that (4.1)

possesses a global attractor A, the maximal compact invariant set in DH(Aα) that

uniformly attracts the orbits of all bounded sets (see Hale (1988), Babin and Vishik

(1992), Temam (1997), Robinson (2001)). So, if u(0) = u0 ∈ A, then there is a

unique solution u(t) = Φtu0 ∈ A that is defined for all t ∈ R.

4.2 Finite-dimensionality of flows

Inertial manifolds, as discussed in Definition 3.2.1 of Chapter 3, are a convenient,

although indirect, method to obtain a system of ordinary differential equations that

reproduces the asymptotic dynamics on the global attractor. Romanov (2000) con-

sidered a more general definition of what it means for a system to be asymptotically

finite-dimensional. We will see that this definition implies the existence of a Lips-

chitz manifold that contains the attractor, but does not require it to be exponen-

tially attracting. Romanov (2000) defined the dynamics on a global attractor A to

be finite-dimensional if for some N ≥ 1 there exist:

(i) an ordinary differential equation ẋ = H(x) with a Lipschitz vector field H(x)

in RN ,

(ii) a corresponding flow {St} on RN and

(iii) a bi-Lipschitz embedding Π : A → RN , such that Π(Φtu) = StΠ(u) for any

u ∈ A and t ≥ 0.

It follows from this definition that the evolution operators Φt are injective on A for

t > 0. If we set Φ−t = Π−1S−tΠ, then we see that in fact Φt is Lipschitz on A even

for t < 0. Hence, we obtain a Lipschitz flow {Φt} defined on A for all t ∈ R. In

particular, there exist C ≥ 1 and µ > 0 such that

∥∥Φtu− Φtv
∥∥
α
≤ C

∥∥u− v∥∥
α
eµ|t|, (4.6)
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for every t ∈ R.

Considering the general Banach space case, Romanov (2000) proved that the

finite-dimensionality of the dynamics on the attractor A is equivalent to five different

criteria. In this chapter, however, we are only interested in the consequences of

the finite-dimensionality of the dynamics on A. Since our setting is simpler than

Romanov (2000), the arguments involved in the proof become more transparent.

Hence, we include here a concise and self-contained proof that if the attractor A
has ‘finite-dimensional dynamics’ in Romanov’s sense, then it must lie on a finite-

dimensional manifold, defined as the graph of a Lipschitz function over PnH, for

some n <∞.

Theorem 4.2.1 (Romanov, 2000). If the dynamics on A is finite-dimensional, then

given any γ with α ≤ γ < 1 there exists an n0 such that for any n ≥ n0∥∥Qn(u− v)
∥∥
γ
≤ c
∥∥Pn(u− v)

∥∥
α

for all u, v ∈ A, (4.7)

where c = c(A, n, γ, α).

Proof. First consider the variation of constants formula (4.5) with t = 0 and u(0) =

u ∈ A. If we apply the projection operator Qn to both sides of (4.5), then

Qnu = QneAt0u(t0) +

∫ 0

t0

eAsQnF
(
u(s)

)
ds.

Now, since the compact set A is bounded in DH(Aα) and u(t) ∈ A, it follows from

(4.4) that limt0→−∞ ‖QneAt0u(t0)‖α = 0. Consequently, letting t0 tend to −∞ we

obtain

Qnu =

∫ 0

−∞
eAsQnF (Φsu) ds,

which converges in DH(Aα). It follows from (4.6) that, for u, v ∈ A,

∥∥Qnu−Qnv∥∥γ ≤
∫ 0

−∞

∥∥∥eAsQn
(
F (Φsu)− F (Φsv)

)∥∥∥
γ

ds

≤ K

∫ 0

−∞

∥∥∥AγeAsQn

∥∥∥
op

∥∥Φsu− Φsv
∥∥
α
ds

≤ KC
∥∥u− v∥∥

α

∫ 0

−∞

∥∥∥AγeAsQn

∥∥∥
op

eµ|s|ds.
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Using estimate (4.4) with t = −s, we find that

∥∥Qnu−Qnv∥∥γ ≤ KC∥∥u− v∥∥α ∫ 0

−∞
bn,γ(−s)e−µsds

from which we obtain the inequality

∥∥Qnu−Qnv∥∥γ ≤ ϑn∥∥u− v∥∥α, (4.8)

where

ϑn :=
1

KC

{(
e

γ

)−γ( γ

λn+1

)1−γ 1

1− γ
+

λγn+1

λn+1 − µ
e
−γ(λn+1−µ)s

λn+1

}
,

can be obtained by simple algebraic manipulation.

Note that, since γ < 1 and λn+1 tends to infinity as n→∞, one can choose

n sufficiently large to ensure that ϑn < 1. Since Pn +Qn = I, it follows that

‖Qn(u0 − v0)‖γ ≤ ϑn‖Pn(u0 − v0)‖α + ϑn‖Qn(u0 − v0)‖α

≤ ϑn
1− ϑn

‖Pn(u0 − v0)‖α.

Under the assumption that the non-linear term F is in C2(DH(Aα), H),

Romanov (2000) showed that the finite-dimensionality of the dynamics on A implies

that the vector field G(u) = −Au+F (u) is Lipschitz1. However, it is not clear how to

adapt his argument to prove that A is Lipschitz. Nevertheless, a simple argument

shows that finite-dimensionality implies that the operator Aβ is Lipschitz in A,

provided that α+ β < 1.

Corollary 4.2.1. If the dynamics on A is finite-dimensional, then, for β with

α+ β < 1, Aβ is Lipschitz on A, i.e.

∥∥Aβ(u− v)
∥∥
α
≤M

∥∥u− v∥∥
α
, for all u, v ∈ A,

where α is given by (4.3).

1If F ∈ C2
(
DH(Aα), H

)
, then it follows from Henry (1981, Corollary 3.4.6) that the map

(u0, t) 7→ u(t) is also in C2
(
R+ × DH(Aα), DH(Aα)

)
. Hence, the function (u0, t) 7→ du(t)/dt

is C1 with respect to (u0, t). Since du(t)/dt = G
(
u(t)

)
, for a fixed time (we choose t = 1),

the map u0 7→ G
(
u(1)

)
is also a C1-function and, consequently, a Lipschitz function. The finite

dimensionality of the dynamics on A implies that the map u0 7→ u(1) is bi-Lipschitz on A. And,
therefore, the map u(1) 7→ G

(
u(1)

)
is Lipschitz continuous.
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Proof. It follows from Theorem 4.2.1 that, for all u, v ∈ A,

∥∥Aβ(u− v)
∥∥
α

=
∥∥u− v∥∥

α+β
≤
∥∥Pn(u− v)

∥∥
α+β

+
∥∥Qn(u− v)

∥∥
α+β

≤
(
λβn +

ϑn
1− ϑn

)∥∥Pn(u− v)
∥∥
α
≤M

∥∥u− v∥∥
α
.

Note, however, that the requirement in Romanov’s definition that A admits

a bi-Lipschitz embedding into some RN is very strong and unlikely to be satisfied in

general. A sensible way to weaken this definition would be to relax the bi-Lipschitz

assumption and assume the embedded vector field H to be just log-Lipschitz. How-

ever, the argument used in the proof of Theorem 4.2.1 would, then, not work.

Another possible option would be to remove the assumption that the flow

is generated by an ODE and obtain the following minimum requirement for the

dynamics on the attractor to be finite-dimensional:

Definition 4.2.2. The dynamics on a global attractor A is finite-dimensional if,

for some N ≥ 1, there exist an embedding Π : A → RN that is injective on A, a

flow {St} in RN and a global attractor X, such that the dynamics on A and X are

conjugate under Φ via Π(Φtu) = StΠ(u), for any u ∈ A and t ≥ 0.

(One can weaken this definition by assuming A to be just an invariant set.) However,

even in this weak sense, it is still an open problem whether the finite-dimensionality

of the global attractor A implies that the dynamics on A is finite-dimensional.

4.3 Log-Lipschitz continuity of the vector field

In the last section, we showed that if the dynamics on the attractor is finite-

dimensional, then Aβ is Lipschitz on A provided that α + β < 1, where α is given

by (4.3). It is relatively easy to show that the converse is also true (see Robinson

(2003)).

Proposition 4.3.1. Suppose that Aβ is Lipschitz continuous on the global attractor

A from DH(Aα) into itself, i.e.

‖Aβu−Aβv‖α ≤M‖u− v‖α for all u, v ∈ A

for some M > 0. Then, the attractor is a subset of a Lipschitz manifold given as a

graph over PNH for some N .
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The proof of this result follows from a similar argument to the one developed for

the proof of Proposition 4.4.1 below.

Now consider the embedded vector field on X = LA

ẋ = h(x) = LGL−1(x), x ∈ X.

As remarked in Chapter 1, we would like the inverse of the embedding L to be as

smooth as possible and to obtain as much regularity as we can for G. However,

in general, the regularity of G is determined by the regularity of the linear term

A, which can be related to the smoothness of functions on the attractor A. For

example, it follows from the standard interpolation inequality

‖Au−Av‖ ≤ ‖u− v‖r/(1+r)‖A1+r(u− v)‖1/(1+r), for u, v ∈ A, (4.9)

that, if A is bounded in DH(A1+r), A is Hölder continuous on A. In this way,

the continuity of F on A can be deduced from the regularity of solutions on the

attractor.

As an example of how one can develop this approach, Foias and Temam

(1979) showed that, in the two dimensional case, the solutions of the Navier-Stokes

equations are analytic in time and that the attractor is bounded in DH(A1/2eτA
1/2

).

Now, if u ∈ DH(A1/2eτA
1/2

), then there exists an uniform constant M > 0, such

that ‖A1/2eτA
1/2
u‖2 < M . Hence, ‖Aku‖2 ≤M ′(4k)!/(2τ)4k, where M ′ is a constant

depending uniquely on M . It follows from (4.9), that

‖A(u− v)‖ ≤
[
M ′(4j)!

(2τ)4j

]1/2j

‖u− v‖1−1/j .

If we minimise the right-hand side over all possible choices of j, using the estimate[
M ′(4j)!

(2τ)4j

]1/2j

≤ cj2,

we obtain that A : A → H is 2-log-Lipschitz (see Robinson (2003) for example).

This result relies only on the smoothness of solutions. But one can do much

better by making use of the underlying equation. Indeed, Kukavica (2007) used the

structure of the differential equation (4.1) and far less restrictive conditions on A
than above to show that A1/2 : A → H is 1/2-log-Lipschitz. We briefly outline

his argument, which was primarily developed to study the problem of backwards

uniqueness for nonlinear equations with rough coefficients, and then show that it

can be used to prove that A : A → H is 1-log-Lipschitz.
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In what follows we will consider the same equation as in Section 5.1

du

dt
+Au = F (u). (4.10)

However, here, we will assume that α = 1/2 such that the nonlinear term F is

locally Lipschitz from DH(A1/2) into H, i.e.

∥∥F (u)− F (v)
∥∥ ≤ K(R)

∥∥A1/2(u− v)
∥∥, for all u, v ∈ DH(A1/2), (4.11)

with ‖A1/2u‖, ‖A1/2v‖ ≤ R, where K is a constant depending only on R. Moreover,

we assume that the maximal invariant set A is bounded in DH(A1/2). The argument

that follows is simple – the key observation is that the result is sufficiently abstract

that one can make a variety of choices of H (e.g. we will take H = L2 and H = H1).

Let u(t) and v(t) be solutions of (4.10). The equation for the evolution of

the difference w(t) := u(t)− v(t) can be expressed as

dw

dt
+Aw = f, (4.12)

where f(t) := F
(
u(t)

)
− F

(
v(t)

)
. Our assumptions imply that

1

2

d

dt
(Aw,w) = (wt, Aw) = −(Aw,Aw) + (f,Aw) (4.13)

and
1

2

d

dt
(Aw,Aw) = (wt, A

2w) = −(Aw,A2w) + (f,A2w). (4.14)

Moreover, it follows from (4.11) that

‖f‖ ≤ ‖F (u)− F (v)‖ ≤ K1‖A1/2w‖, (4.15)

where K1 = K(R) and R is the bound on A in DH(A1/2). Consequently,

(f, w) ≥ −K2‖w‖‖A1/2w‖ (4.16)

for some K1,K2 ≥ 0.

Under these mild regularity assumptions, Kukavica (2007) proved the back-

ward uniqueness property, i.e. if w : [T0, 0]→ H is a solution of (4.12), then w(0) = 0

implies that w(t) = 0 for all t ∈ [T0, 0]. His approach consists in establishing upper
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bounds for the log-Dirichlet quotient

Q̃(t) =
(Aw(t), w(t))

‖w(t)‖2
(

log M2

‖w(t)‖2

) ,
where M is a sufficiently large constant. This quantity is a variation of the standard

Dirichlet quotient Q(t) = ‖A1/2w‖2/‖w‖2 (see Ogawa (1965), Bardos and Tartar

(1973) for details). Kukavica showed that, for equations of the form of (4.12), the

log-Dirichlet quotient is bounded for all t ≥ 0 and, as an application of this result,

stated the following theorem.

Theorem 4.3.2 (After Kukavica, 2007). Under the above assumptions on the equa-

tion (4.10) with F : DH(A1/2) → H and A ⊂ DH(A1/2), there exists a constant

C > 0 such that

‖A1/2(u− v)‖2 ≤ C‖u− v‖2 log(M2/‖u− v‖2), for all u, v ∈ A, u 6= v,

where M = 4 supu∈A ‖u‖.

We give a quick summary of Kukavica’s proof, filling in some details in the closing

part of the argument.

Proof. Let

L(‖w‖) = log
M2

‖w‖2
,

where M is any constant such that

M ≥ 4 sup
u0∈A

‖u0‖.

Note that L(‖w(t)‖) ≥ 1 for all t ∈ [0, T0]. For t ∈ [0, T0], denote L̃(t) = L
(
‖w(t)‖

)
.

Define the log-Dirichlet quotient as

Q̃(t) =
Q(t)

L
(
‖w‖

) =
‖A1/2w‖2

‖w‖2L
(
‖w‖

) =
‖A1/2w‖2

‖w‖2L̃(t)

where Q(t) = ‖A1/2w‖2/‖w‖2.

Using (4.13) and (4.14), Kukavica (2007) showed in the proof of his Theorem

2.1 that

Q̃′(t) +K3Q̃(t)2 ≤ K4, (4.17)
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with K3 = 1/2 and K4 = 2K4
1 . Applying a variant of Gronwall’s inequality2 proved

in Temam (1997, Lemma 5.1) to (4.17), we obtain that there exists T such that

Q̃(t) ≤ C(K3,K4), for all t ≥ T,

where C(K3,K4) and T are constants independent of Q̃(0).

Now, consider u0, v0 ∈ A. Since solutions in the attractor exist for all time,

we know there exists t ≥ T such that u0 = S(t)u(−t) and v0 = S(t)v(−t) with

u0 6= v0. So, u(−t) 6= v(−t). Moreover, Q̃(−t) <∞ implies that Q̃(0) ≤ C(K3,K4).

Hence,

sup
u0,v0∈A, u0 6=v0

Q̃(t) ≤ C(K3,K4).

We now show that this result can be used to show that A : A → H is 1-log-

Lipschitz. Write w = u− v. If (4.15) and (4.16) hold with H = L2, then there exits

a constant C0 > 0 such that

‖A1/2w‖2L2 ≤ C0‖w‖2L2 log
(
M2

0 /‖w‖2L2

)
, (4.20)

where

M0 ≥ 4 sup
u∈A
‖u‖L2 .

This is the result of Kukavica (2007, Theorem 3.1) for the 2D Navier-Stokes equation.

Now assume that A is bounded in DH(A). If (4.15) and (4.16) hold with

with H = DL2(A1/2), then there exits a constant C1 > 0 such that

‖Aw‖2L2 ≤ C1‖A1/2w‖2L2 log
(
M2

1 /‖A1/2w‖2L2

)
(4.21)

where

M1 ≥ 4 sup
u∈A
‖A1/2u0‖L2 .

So,

‖Aw‖2L2 ≤ C0C1‖w‖2L2 log
(
M2

0 /‖w‖2L2

)
log
(
M2

1 /‖w‖2H1

)
.

2Lemma 5.1 (p167 in Temam, 1997): Let y be a positive absolutely continuous function on (0,∞),
which satisfies

y′ + γyp ≤ δ (4.18)

with p > 1, γ > 0, δ ≥ 0. Then, for t > 0

y(t) ≤
(
δ

γ

)1/p

+
(
γ(p− 1)t

)−1/(p−1)
. (4.19)
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Since ‖w‖L2 ≤ ‖w‖H1 ,

‖Aw‖2L2 ≤ C0C1‖w‖2L2 log
(
M2

0 /‖w‖2L2

)
log
(
M2

1 /‖w‖2L2

)
.

One can choose M0 and M1 such that M0 ≤M1. Hence,

‖Aw‖L2 ≤ C‖w‖L2 log
(
M2

1 /‖w‖2L2

)
, (4.22)

where C =
√
C0C1.

Corollary 4.3.1. Under the above assumptions on the equation (4.10), if A is

bounded in DH(A), then there exists a constant C > 0 such that

‖A(u− v)‖ ≤ C‖u− v‖ log(M2
1 /‖u− v‖2), for all u, v ∈ A, u 6= v,

where M1 ≥ 4 supu∈A ‖A1/2u‖.

Unfortunately, this result is not strong enough to prove the existence of a

smooth finite-dimensional invariant manifold that contains the attractor. Hence, it

would be interesting to know whether, in such a general setting, the 1-log-Lipschitz

continuity, obtained for the linear term A, is sharp or if it can be improved. Never-

theless, one can use Corollary 4.3.1 to show that there exists a family of approximat-

ing Lipschitz manifoldsMN , given as Lipschitz graphs defined over a N -dimensional

spaces, such that the global attractor A associated with equation (4.10) lies within

an exponentially small neighbourhood ofMN without a making use of the squeezing

property.

4.4 Family of Lipschitz manifolds

Using the inequality (4.22) obtained in Section 4.3, one can show, for a wide class of

parabolic equations, the existence of a family of Lipschitz manifolds MN such that

dist(MN ,A) ≤ Ce−kλN+1 ,

where MN is an N -dimensional manifold and C and k are positive constants. To

obtain this result, we just assume the log-Lipschitz continuity of linear term A.

Proposition 4.4.1. Suppose that, for some C > 0,

‖Aw‖L2 ≤ C‖w‖L2 log
(
M2

1 /‖w‖2L2

)
, (4.23)
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where w = u− v for u, v ∈ A. Then, under the above conditions on equation (4.12),

for each n > 0, there exists a Lipschitz function Φn : PnH → QnH,

‖Φn(p1)− Φn(p2)‖L2 ≤ ‖p1 − p2‖L2 for all p1, p2 ∈ PnH,

such that A lies within a 2M2
1 e−λn+1/

√
2C-neighbourhood of the graph Φn,

G[Φn] = {u ∈ H : u = p+ Φn(p), p ∈ PnH}.

Note that the method developed in this proof can also be used to prove Proposition

4.3.1.

Proof. Let w = u− v, for u, v ∈ A. We can split w = Pnw+Qnw, and observe that

‖Aw‖2L2 = ‖A(Pnw +Qnw)‖2L2 = ‖A(Pnw)‖2L2 + ‖A(Qnw)‖2L2

≥ λ2
n+1‖Qnw‖2L2 .

It follows from (4.23) that

‖Aw‖2L2 ≤ C2‖w‖2L2

(
log
(
M2

1 /‖w‖2L2

))2

≤ C2
(
‖Pnw‖2L2 + ‖Qnw‖2L2

)(
log
(
M2

1 /‖Qnw‖2L2

))2
.

Since log
(
M2

1 /‖Qnw‖2L2

)
> 1,

λ2
n+1‖Qnw‖2L2(

log
(
M2

1 /‖Qnw‖2L2

))2 ≤ C
2‖Pnw‖2L2 + C2‖Qnw‖2L2

Consider a subset X of A that is maximal for the relation

‖Qn(u− v)‖L2 ≤ ‖Pn(u− v)‖L2 for all u, v ∈ X. (4.24)

Note that if the Pn components of u and v agree, so that Pnu = Pnv, then Qnu =

Qnv. Hence, for every u ∈ X, we can define uniquely φn(Pnu) = Qnu such that

u = Pnu+ φn(Pnu). Moreover, it follows from (4.24) that

‖φn(p1)− φn(p2)‖L2 ≤ ‖p1 − p2‖L2 for all p1, p2 ∈ PnX.
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Standard results (see Wells and Williams (1975), for example) allow one to extend

φn to a function Φn : PnH → QnH, that satisfies the same Lipschitz bound.

Now, if u ∈ A but u /∈ X, it follows that

‖Qn(u− v)‖L2 ≥ ‖Pn(u− v)‖L2 ,

for some v ∈ X. Thus, if w = u− v, then

λ2
n+1‖Qnw‖2L2(

log
(
M2

1 /‖Qnw‖2L2

))2 ≤ 2C2‖Qnw‖2L2 .

Hence,

‖Qnw‖2L2 ≤M2
1 e−λn+1/

√
2C ,

which implies that

‖w‖2L2 = ‖Pnw‖2L2 + ‖Qnw‖2L2 ≤ 2‖Qnw‖2L2

≤ 2M2
1 e−λn+1/

√
2C .

Therefore,

dist(u,G[Φn]) ≤ 2M2
1 e−λn+1/

√
2C . (4.25)

A similar statement would hold if one used the inequality (4.20) obtained by Kukav-

ica (2007), involving A1/2, rather than (4.23) that considers A. However, one would

obtain a worse exponent in (4.25), since λn+1 would be replaced by λ
1/2
n+1 ≤ λn+1.

To illustrate this result, we consider the incompressible Navier-Stokes equa-

tions

∂tu− ν4u+ u · ∇u+∇p = F,

∇ · u = 0,

with periodic boundary conditions on Ω = [0, 2π]2 and initial condition u(x, 0) =

u0(t) . Here u(x, t) is the velocity vector field, p(x, t) the pressure scalar function,

ν the kinematic viscosity and F (x, t) represents the volume forces that are applied

to the fluid.

We restrict ourselves to the space-periodic case for simplicity. Let H be the

space of all the C∞ periodic divergence-free functions that have zero average on Ω.

Let H be the closure of H with scalar product (·, ·)L2 and norm ‖ · ‖L2 , and let V
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be similarly the closure of H with scalar product (·, ·)H1 and norm ‖ · ‖H1 . Let A

be the Stokes operator defined by

Au = −4u,

for all u in the domain D(A) of A in H. Now consider the Navier-Stokes equations

written in its functional form

du

dt
+ νAu+B(u, u) = F, (4.26)

using the operator A and the bilinear operator B from V × V into V ′ defined by

(B(u, v), w) = b(u, v, w), for all u, v, w ∈ V.

If F ∈ H is independent of time, then the equation (4.26) possesses a global attractor

A =

{
u0 ∈ H : S(t)u0 exists for all t ∈ R, sup

t∈R
‖S(t)u0‖L2

per(Ω) <∞
}
,

where S(t)u0 denotes a solution starting at u0 on its maximal interval of existence

(cf. Constantin and Foias (1988)). Under these assumptions, the difference of

solutions w = u− v will satisfy

dw

dt
+ νAw = −

[
B(w, u) +B(v, w)

]
.

So, in this case we use Kukavica’s Theorem with f = −
[
B(w, u) + B(v, w)

]
. Note

that

‖f‖H1 ≤ K1‖A1/2w‖H1 ,

and consequently

(f,Aw) ≥ −K2‖w‖H1‖A1/2w‖H1 .

Hence, one can apply Proposition 4.4.1 to the two dimensional Navier-Stokes equa-

tion with forcing F ∈ L2 to show the existence of a family of approximate inertial

manifolds of exponential order.

It follows from the arguments developed in Chapter 3 that the existence of a

family of approximating Lipschitz manifolds for a dissipative equation of the form

of (4.10) implies that the associated global attractor have zero Lipschitz deviation.

Proposition 4.3.1 implies that if the linear term A is Lipschitz continuous, the inverse

of the projection operators Pn, for some n, is also Lipschitz continuous. However,
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if A is only log-Lipschitz continuous, the projection operators Pn has a Hölder

continuous inverse, whose exponent can be made arbitrarily close to one by choosing

n sufficiently large.
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Chapter 5

Embedded vector field with

non-trivial dynamics on the

global attractor

The material in this chapter was produced in collaboration with Dr. Jaime J.

Sánchez-Gabites.

5.1 Embedding the dynamics on the global attractor

into a Euclidean space

In this section, we construct a system of ordinary differential equations with unique

solutions that reproduces the dynamics on A, under the assumption that dimA(A−
A) < ∞. However, we postpone any discussion of the existence of an attractor for

the new system until Section 5.3.

Proposition 5.1.1. Suppose that the dissipative evolution equation

du

dt
= G(u), u ∈ H, (5.1)

has a global attractor A such that d := dimA(A − A) < ∞, where dimA denotes

Assouad dimension. Assume that the vector field G is Lipschitz continuous on A.

Then, for any m > 2(1 + d), there exist a system of ordinary differential equations

dx

dt
= g(x), x ∈ Rm, (5.2)

and a bounded linear map L : H −→ Rm such that:
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1. the function g : Rm −→ Rm is bounded and Lipschitz continuous except for a

logarithmic correction term,

2. the ordinary differential equation (5.2) has unique solutions,

3. the restriction L|A : A −→ LA is an embedding whose image is invariant

under (5.2),

4. for every solution u(t) of (5.1) on the global attractor A, there exists a unique

solution x(t) of (5.2) such that

u(t) = L−1
(
x(t)

)
. (5.3)

Since the focus of our discussion is now the regularity of the inverse of the linear

embedding L when restricted to A, we assumed the very strong condition that the

vector field G is Lipschitz continuous from A into itself. In the above proposition,

one can relax the condition on G and assume that the vector field is log-Lipschitz

with exponent α < 1/2 (see Pinto de Moura et al., 2010), but this is stronger than

the result we obtained in the previous chapter (1-log-Lipschitz).

Proof. It follows from Theorem 1.3.9 that there exists a bounded linear map L from

H into Rm, that is injective on A and has a Lipschitz continuous inverse on LA
except for a logarithmic correction term with logarithmic exponent γ.

If x(t) = Lu(t), where u(t) ∈ A, then the embedded vector field on LA that

reproduces the dynamics on A is given by

dx

dt
= LGL−1(x), x ∈ LA.

The function g1 : LA −→ Rm such that g1(x) = LG(L−1(x)) is certainly continuous

and bounded, since LA is compact.1

Next we shall consider the modulus of continuity of g1. Given any u, v ∈ A,

define Lu = x and Lv = y. It follows from Theorem 1.3.9 that there exist CL, γ

and δL such that

CL‖L−1x− L−1y‖ ≥ |x− y| ≥ 1

CL

‖L−1x− L−1y‖(
− log

(
‖L−1x− L−1y‖

))γ ,
1Note that Eden et al. (1994) are careful to show that the linear embedding L does not create

artificial fixed points. In our construction this result follows from the fact that we have enough
smoothness to guarantee the uniqueness of solutions.
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for ‖u− v‖ ≤ δL. Consequently, since |Lu− Lv| ≤ CL‖u− v‖, for every x, y ∈ LA,

‖L−1x− L−1y‖ ≤ CL

(
− log

(
‖L−1x− L−1y‖

))γ
|x− y|

≤ CL

(
log

(
CL
|x− y|

))γ
|x− y| ≤ CL f1(|x− y|),

where

f1(|x|) = |x|

(
log

(
CL
|x|

))γ
. (5.4)

Since we assumed that G is Lipschitz continuous, it follows that

∣∣g1(x)− g1(y)
∣∣ =

∣∣∣LG(L−1(x)
)
− LG

(
L−1(y)

)∣∣∣
≤ ‖L‖op

∣∣∣G(L−1(x)
)
− G

(
L−1(y)

)∣∣∣
≤ ‖L‖opK

∥∥L−1(x)− L−1(y)
∥∥

≤ CLK‖L‖opf1

(
|x− y|

)
.

Hence g1 is Lipschitz continuous except for a logarithmic correction term. The

modulus of continuity ω of g1 is therefore the convex continuous function defined by

ω(r) = CLK‖L‖opf1(r) = C0r
(

log
(
CL/r

))γ
, for r ≥ 0,

where C0 = CLK‖L‖op is a constant.

However g1 is only defined on the compact set LA. To extend g1 to the whole

of Rm, maintaining essentially the same modulus of continuity, first note that

ω(0) = 0 (5.5)

and that

ω(r) > 0, if r > 0. (5.6)

Furthermore,

ω(r + s) = C0(r + s)
(

log
(
CL/(r + s)

))γ
= C0r

(
log
(
CL/(r + s)

))γ
+ C0s

(
log
(
CL/(r + s)

))γ
≤ C0r

(
log
(
CL/r

))γ
+ C0s

(
log
(
CL/s

))γ
= ω(r) + ω(s)
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Hence the modulus of continuity of g1 is convex. Therefore, ω is a positive increasing

function of r, and regular in the sense that:

(i) ω(r)/r = C0

(
ln
(
CL/r

))γ
is increasing as r → 0 and

(ii) ω(2r) ≤ c ω(r), for some constant c > 0.

As the modulus of continuity ω satisfy all the above conditions, we can use the ex-

tension theorem due to (McShane, 1934, Theorem 2) (see also Stein, 1970, Corrolary

of Theorem VI.3) to extend the function g1 to a function g : Rm −→ Rm that is

Lipschitz continuous except for a logarithmic correction term such that

|g(x)− g(y)| ≤Mω
(
|x− y|

)
, (5.7)

for some M > 0. It follows from (5.7) that there exists a T > 0 such that the initial

value problem
dx

dt
= g(x), x(0) = x0 (5.8)

has at least one solution on [0, T ].

Now assume that x(t) and y(t) are solutions of (5.8) with initial conditions

x(0) = x0 and y(0) = y0, respectively. Let r(t) = |x(t)− y(t)|. Since the modulus of

continuity ω(r) of g is continuous for r ≥ 0, convex and verifies∫ 1

0

dr

ω(r)
=

∫ ∞
ln(CL)

s−γds = +∞, for 0 < γ ≤ 1, (5.9)

we can use Osgood’s Criterion (see Hartman, 1964, for example) to show that (5.8)

has at most one solution on any interval [0, T ], if the exponent γ of the logarithmic

term in (5.4) is no larger than one. Since g is continuous and bounded from Rm into

Rm, it follows that any solution of the initial value problem (5.8) exists for all time.

Therefore the solution of (5.8) through x0 = Lu0 with u0 ∈ A can be uniquely given

by

x(t) = Lu(t).

It is important to remark that the regularity of the embedding obtained for

Banach spaces is not enough to construct a finite-dimensional dynamical system

with the same asymptotical behaviour as the original infinite-dimensional system.

Since the limiting value of the logarithmic correction term γ in Theorem 1.3.10 is

strictly greater than one, uniqueness of solutions of the embedded equation cannot

be guaranteed even if G is Lipschitz.
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5.2 Construction of an ordinary differential equation

with prescribed global attractor

In the previous section, we have embedded the global attractor A into some Eu-

clidean space Rm via a linear map L : H −→ Rm and showed that there is a

differential equation (5.2) in Rm that has unique solutions and reproduces the dy-

namics of A on LA. Ideally we would like to construct a new system of ordinary

differential equations that reproduces the dynamics of A on LA and has LA as

a global attractor. However we do not know if one can construct such a system,

because of a topological obstruction.

Although every global attractor in a Euclidean space has the cellularity prop-

erty - whose definition is recalled below - one can not guarantee that LA is a cellular

set in Rm (see Garay, 1991). So, we will have to modify L by increasing the dimen-

sion m of the target space by one in order to obtain a new linear map L′ such that

L′A := LA× {0} is indeed a cellular set in Rm+1. Influenced by Garay (1991) and

Günther (1995), we show in this section that every cellular set in a Euclidean space

is a global attractor, comprised of equilibria, for an entirely new system of ordinary

differential equations in Rm+1 and then apply this result to L′A.

In Section 5.3, we will use this new system to modify (5.2) in such a way

that its solutions enter asymptotically any prescribed neighbourhood of L′A. Con-

sequently, we will obtain a dynamical system that reproduces the dynamics of A
on L′A and has a global attractor X lying within any prescribed (arbitrarily small)

neighbourhood of L′A.

5.2.1 Improving the linear embedding L

Definition 5.2.1. A set C is called a m-cell if there exists a homeomorphism from

BRm(1) onto C, where BRm(1) is the closed unit ball centered at the origin in Rm.

Definition 5.2.2. A subset X ⊆ Rm is cellular in Rm if there exists a cellular

sequence for X, that is, a sequence {Ci}i∈N of m-cells in Rm such that Ci+1 ⊂ IntCi

and
⋂∞
i=1Ci = X. Alternatively, X ⊂ Rm is cellular if and only if for each open set

U ⊃ X there exists a m-cell C such that X ⊂ IntC ⊂ C ⊂ U .

It is important to remark that whether a set X is cellular or not depends not only

on its topological type2, but also on how it is embedded in Rm. For example, the

unit ball in R3 can be embedded in the standard way and therefore be cellular in R3.

Or it can be embedded as an Alexander’s horned ball (cf. Alexander, 1924), which

2Two spaces have the same topological type if they are homeomorphic.
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is not cellular in R3 as its complement is not simply connected (see Blankinship and

Fox, 1950). However, it follows from Daverman (1986, Corollary 5A, p.145) that it

is cellular in R4.

Proposition 5.2.3. Let A be a global attractor in H and let L : H −→ Rm be a

linear embedding. Then the map L′ : H −→ Rm+1 defined by L′u = (Lu, 0) is a

linear embedding whose image L′A is cellular in Rm+1, provided m ≥ 3.

Note that, although A is cellular and homeomorphic to LA, LA is not necessarily

cellular because the cellularity of a set depends on the embedding. Hence, we need

to use a different property of A which is invariant under homeomorphisms.

Introduced by Borsuk in 1968, shape theory is a weakening of homotopy

theory which makes it extremely useful to deal with complicated sets, by roughly

overlooking their local structure. If two spaces have the same homotopy type, then

they will have the same shape. In particular, if two spaces are homeomorphic, then

they will have the same shape. For detailed information on shape theory see Borsuk

(1975), Mardes̆ić and Segal (1982).

Proof of Proposition 5.2.3. It follows from Theorem 3.6 in Kapitanski and Rodni-

anski (2000, p. 233) that the global attractor A has the same shape as H. Since the

map H × [0, 1] 3 (u, t) −→ (1− t) ·u ∈ H provides a homotopy between the identity

id : H −→ H and the constant map 0 : H −→ H, it follows from Theorem B.1.1

that H has the homotopy type of a point. Therefore H has the shape of a point

and consequently A also has the shape of a point. Since shape is invariant under

homeomorphisms, LA has also the shape of a point. Thus3 by Daverman (1986,

Corollary 5A, p.145) the set LA × {0} is cellular in Rm+1, provided m ≥ 3. But

LA× {0} is precisely L′A.

5.2.2 Cellular sets are global attractors for systems of ordinary

differential equations

Next we will show that if X is a cellular subset of Rm+1, then there exists a system

of ordinary differential equations with X as its global attractor consisting entirely

of fixed points. Günther (1995) proved a similar result for compact sets with the

shape of a finite polyhedron, but did not need to control the size of the region of

attraction (whereas we want it to be all of Rm+1). By restricting ourselves to a less

general setting and considering only compacts sets with the shape of a point, we

3Daverman uses the concept of cell-likeness instead of “having the shape of a point”, but both
are equivalent. See Section 15 in Daverman (1986).
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are able to give a significantly simpler proof that does not involve piecewise linear

topology.

Lemma 5.2.4. Given a cellular subset X of Rm+1, with m > 5, there is a mapping

φ : Rm+1 −→ [0,+∞) of class Cr, where r can be chosen to be arbitrarily large, such

that the system generated by

ẋ = −∇φ(x) (5.10)

has X as a global attractor. Furthermore, the mapping φ can be chosen such that

(i) φ(x) = 0 if x ∈ X and φ(x) > 0 if x /∈ X;

(ii) φ is proper, i.e. φ−1([s, t]) is compact for any s < t ∈ R.

It follows from Lemma 5.2.4 that ∇φ(x) = 0 if and only if x ∈ X, because the

zeros of ∇φ(x) are precisely the equilibria of (5.10) that cannot be outside of X.

Conversely, if φ : Rm+1 −→ [0,+∞) is any Cr mapping such that ∇φ(x) = 0 if and

only if x ∈ X, and φ(x) = 0 if and only if x ∈ X, then by Lyapunov’s theorem

(Theorem 2.2 in Bhatia and Szegö, 1992) X is a global attractor for ẋ = −∇φ(x).

Thus we only need to construct such a φ, which we do first on Rm+1\X and then

extend to all of Rm+1.

Since cellularity is purely a topological notion and we want to obtain a differ-

entiable map φ, we will need two auxiliary propositions. Denote Sm the unit sphere

in Rm+1, that is, Sm = {x ∈ Rm+1 : ‖x‖ = 1}.

Proposition 5.2.5. Let X be a cellular subset of Rm+1. There exists a homeo-

morphism h : Rm+1\X −→ Sm × (0,+∞) such that the second coordinate of h(x)

converges to zero when x tends to X.

Proof. Let Q be a ball in Rm+1 centered at the origin such that X is contained in

the interior of Q. It follows from Theorem 1 in Brown (1960) that there exists a

continuous map c : Q −→ Q that is surjective, injective on Q \ X, collapses X to

a single point p in the interior of Q and is the identity on the boundary of Q. It

is easy to construct a homeomorphism of Q onto itself that takes p to 0 and is the

identity on the boundary, so we can assume that p = 0.

The properties of c imply that c|Q\X : Q\X −→ Q\{0} is a homeomorphism

and if x −→ X then c(x) −→ 0. Extend c|Q\X to all of Rm+1\X by letting it be the

identity outside Q. Finally,

h(x) :=

(
c(x)

‖c(x)‖
, ‖c(x)‖

)
has the required properties.
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In order to make h differentiable it will be necessary to use some smooth-

ing results for manifolds, rather than maps, from Kirby and Siebenmann (1977).

In Appendix C, we recall the definitions and some useful properties of differential

manifolds, differential structures and differential maps. For more details, see Kirby

and Siebenmann (1977).

Proposition 5.2.6. Let X be a cellular subset of Rm+1, with m ≥ 5. There exists

a mapping ψ : Rm+1\X −→ (0,+∞) of class C∞ such that:

(i) ∇ψ(x) 6= 0 for every x ∈ Rm+1\X,

(ii) ψ(x) −→ 0 when x −→ X and

(iii) ψ is proper.

Proof. Consider the map h obtained in Proposition 5.2.5. We would like ψ to

be the second coordinate of h, but this choice would not be differentiable in gen-

eral. Thus we first have to smooth h out. Let Σ be the differentiable structure

Rm+1\X inherits from Rm+1 as an open subset, and transport it via h to ob-

tain a new differentiable structure hΣ on Sm × (0,+∞); clearly by construction

h :
(
Rm+1\X

)
Σ
−→ (Sm × (0,+∞))hΣ is a diffeomorphism. It follows from Theo-

rem 5.1 in Kirby and Siebenmann (1977, p. 31) and Remark 1 following this theorem

that there is a diffeomorphism q :
(
Sm × (0,+∞)

)
hΣ
−→ (Sm)σ × (0,+∞), where

σ is some suitable differentiable structure on Sm (we need the hypothesis m > 5

precisely for this theorem to work). By Remark 1 following Kirby and Siebenmann

(1977, Theorem 5.1, p. 31) one can require, and it will be technically convenient to

do so, that dist
(
y, q(y)

)
≤ 1 for every y ∈ Sm× (0,+∞), where dist is the maximum

of the distances in Sm and (0,+∞).

It follows from the definition of a product differentiable structure that the

projection onto the second factor pr2 : (Sm)σ×(0,+∞) −→ (0,+∞) is a C∞ mapping

and its differential is never zero. Then define ψ := pr2 ◦ q ◦ h, which makes the

diagram

(Rm+1\X)Σ
h //

ψ
,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY (Sm × (0,+∞))hΣ

q // (Sm)σ × (0,+∞)

pr2
��

(0,+∞)

commutative. Clearly ψ is C∞, because it is a composition of C∞ maps. Now we

have to check that ψ satisfies all the properties in the statement of the proposition:
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(i) It is clear that ∇ψ(x) 6= 0, because q and h are diffeomorphisms (thus their

differentials are invertible) and pr2 satisfies ∇pr2(x) 6= 0.

(iii) Let s < t ∈ R, consider a sequence (xi)i∈N ⊆ ψ−1([s, t]) and denote by

(yi, zi) := q ◦ h(xi). By hypothesis
(
(yi, zi)

)
i∈N ⊆ Sm × [s, t], which is a com-

pact set, so the sequence
(
(yi, zi)

)
i∈N must have a convergent subsequence.

The pre-image of this subsequence under the homeomorphism q ◦ h is a con-

vergent subsequence of (xi)i∈N. This shows that ψ−1([s, t]) is compact and ψ

is proper.

(ii) Let (xi)i∈N be a sequence in Rm+1\X converging to X. We first show that(
ψ(xi)

)
i∈N converges either to 0 or +∞. Suppose not. Then it has some

subsequence
(
ψ(xij )

)
j∈N that is contained in a compact interval and, since

ψ is proper, (xij )j∈N is contained in some compact subset of Rm+1\X. This

contradicts the fact that (xi) converges to X.

Since we required that q moves points no more than 1 unit, we have

dist
(
q ◦ h(xi)), h(xi)

)
< 1.

Given that we chose dist as the maximum of the distances in Sm and (0,+∞),

this implies that

dist
(
ψ(xi),pr2 ◦ h(xi)

)
= dist

(
pr2 ◦ q ◦ h(xi), pr2 ◦ h(xi)

)
< 1

as well. Since ψ(xi) converges to either 0 or +∞ and pr2 ◦ h(xi) −→ 0 as

stated in Proposition 5.2.5, it follows that ψ(xi) −→ 0.

Proof of Lemma 5.2.4. We shall construct by induction a sequence of maps ψk :

Rm+1 → [0,+∞) of class Ck, such that φ := ψk proves the lemma for r = k. First

extend the mapping ψ given by Proposition 5.2.6 to the whole of Rm+1 by letting

it assume the value 0 on X, and call it ψ0. The mapping ψ0 is continuous but not

differentiable near X. Hence we will use an argument given in Günther (1995) to

improve ψ0 to ψk.

The idea is to define ψ1 := b ◦ ψ0, where b : [0,+∞) −→ [0,+∞) is a

diffeomorphism of class C1 whose derivative near 0 is sufficiently small to overcome

the “roughness” of ψ0 near X. Formally, for x ∈ Rm+1\X,

∂

∂xi
(b ◦ ψ0)(x) = (b′ ◦ ψ0)(x)

∂ψ0

∂xi
(x),
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so we need to choose b such that b′
(
ψ0(x)

)∂ψ0

∂xi
(x) converges to zero as x tends to X.

When ψk is already constructed, we set ψk+1 := b◦ψk, where b : [0,+∞) −→
[0,+∞) is a suitable Ck+1 diffemorphism. However, we now need to impose condi-

tions on the rate at which b(l)(t) −→ 0 as t −→ 0 for every 0 ≤ l ≤ k + 1. Indeed,

for any multi-index α with |α| = k + 1,

∂αψk+1

∂xα
= (b′ ◦ ψk)

∂αψk
∂xα

+ P

(
∂βψk
∂xβ

, b(l)
)

on Rm+1\X, where P is a polynomial in partial derivatives of ψk of order |β| ≤ k

and derivatives of b of order l ≤ k + 1. Hence, it suffices to choose b subject to the

conditions b(l)(0) = 0 for every l ≤ k + 1 and b′
(
ψk(x)

)∂αψk
∂xα (x) −→ 0 as x tends to

X and for |α| = k + 1 (observing that x tends to X if and only if ψk(x) tends to

zero). The existence of b is not entirely obvious, details are given in Pinto de Moura

et al. (2010).

5.3 Modified vector field with non-trivial dynamics on

the global attractor

In this final section we combine the previous results to obtain a system of ordinary

differential equations (5.11) that reproduces on LA the dynamics on A and has a

global attractor X as close to LA as required. More precisely, we prove the following

Theorem 5.3.1. Suppose that the dissipative evolution equation

du

dt
= G(u), u ∈ H, (5.1)

has a global attractor A such that

d := dimA(A−A) <∞,

where dimA denotes Assouad dimension. Assume that the vector field G is Lipschitz

continuous on A. Then, for any m > max{3 + 2d, 6} and any prescribed ε > 0,

there exist a system of ordinary differential equations

dx

dt
= H(x), x ∈ Rm (5.11)

and a bounded linear map L : H → Rm such that:
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1. the ordinary differential equation (5.11) has unique solutions,

2. the restriction L|A : A −→ LA is an embedding whose image LA is invariant

under the dynamics of (5.11),

3. for every solution u(t) of (5.1) on the attractor A there exists a unique solution

x(t) of (5.11) such that

u(t) = L−1(x(t)),

4. the ordinary differential equation (5.11) has a global attractor X that contains

LA and is contained in the ε–neighbourhood of LA i.e. distH(X , LA) ≤ ε.

Note that although item 4. is not ideal, we do obtain uniqueness of solutions which is

certainly desirable. The construction in Eden et al. (1994, Chapter 10), for example,

has the projection of A as a global attractor, but the finite-dimensional system of

ordinary differential equations obtained lacks uniqueness (in fact H is not even

continuous).

Proof. First one can use Proposition 5.2.3 to replace the mapping L obtained in

Proposition 5.1.1 by a new one L′ : H → Rm+1 with the additional property that

its image is cellular. To keep notation simple we rename L′ as L and m+ 1 as m.

Then we can use Lemma 5.2.4 to obtain a Cr mapping φ : Rm → [0,+∞) such

that LA is a global attractor for ẋ = −∇φ. Denote by Bε(LA) the ε-neighbourhood

of LA in Rm. Since φ is proper, one can prove by contradiction using compactness

that there exists δ > 0 such that P := {x ∈ Rm : φ(x) ≤ δ} ⊆ Bε(LA).

Let Pn := {x ∈ Rm : φ(x) ≤ 1/n}. Suppose, by contradiction, that there

exists ε > 0 such that C ∩ Pn 6= ∅, for every n ∈ N, where C =
(
Bε(LA)

)c
. Choose

{xn}∞n=1 such that xn ∈ C ∩ Pn for each n. Since Pn ⊃ Pm, for every n ≤ m,

xn ∈ C ∩ P1, for every n. Since φ is proper, each Pn is compact, and since C is

closed, C ∩ Pn is compact, for every n. So, {xn}∞n=1 ⊂ C ∩ P1 has a convergent

subsequence {xnk}∞k=1.

Let x = limk→∞ xnk ∈ C ∩ P1. Since φ is continuous,

φ(x) = φ
(

lim
k→∞

xnk

)
= lim

k→∞
φ
(
xnk
)

= lim
k→∞

1

nk
= 0.

So, x ∈ LA, since φ(x) = 0, which is a contradiction as x ∈ C ∩ P1.

Finally, let θ : Rm → [0, 1] be a C∞ cut-off function such that θ ≡ 1 on LA
and θ ≡ 0 outside of P . Take the mapping g obtained in Proposition 5.1.1 and

multiply it by θ to make it zero outside of P . We shall call f := θg; clearly ẋ = f(x)

still reproduces the dynamics of A on LA.
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Now consider the equations

ẋ = −∇φ(x), (5.10)

ẋ = f(x)−∇φ(x). (5.12)

Observe that the right hand sides of (5.10) and (5.12) coincide for x 6∈ P . Therefore,

since Rm\P is negatively invariant for (5.10), it is also negatively invariant for (5.12)

and it follows from Bhatia and Szegö (1992, Theorem 1.4, p.13) that P is positively

invariant for (5.12).

The sets P · [t,+∞) are compact (being closed subsets of P ) and decreasing

with increasing t. It is standard that

X :=
⋂
t≥0

P · [t,+∞)

is invariant and attracts P , i.e. given any δ > 0 there exists Tδ > 0 such that

P · [Tδ,+∞) ⊆ Bδ(X ) (see Ladyzhenskaya, 1991, Theorem 2.1). By construction, X
is contained in Bε(LA).

(1) X is a global attractor: Fix a bounded set B ⊆ Rm and let

M := sup
x∈B

φ(x) and µ := inf
x∈B\P

‖∇φ(x)‖2.

Observe that µ > 0 because ∇φ only vanishes on LA, of which P is a neigh-

bourhood. Thus there exists T > 0 big enough so that M − µT < δ holds.

We now claim that x · [T,+∞) ⊆ P for any x ∈ B. Since P is positively

invariant it clearly suffices to show that x · t ∈ P for some t ∈ [0, T ]. We

reason by contradiction, so assume that x · [0, T ] ⊆ Rm\P . By the mean value

theorem

φ(x · T ) = φ(x) +
d

ds
φ(x · s)

∣∣∣∣
s=ξ

T

for some ξ ∈ [0, T ]. Now

d

ds
φ(x · s)

∣∣∣∣
s=ξ

= 〈∇φ(x · ξ), ẋ(ξ)〉 = −‖∇φ(x · ξ)‖2 ≤ −µ,

where we have used the fact that ẋ(ξ) = −∇φ(x · ξ) because x · ξ 6∈ P by

assumption and ‖∇φ(x ·ξ)‖2 ≥ µ by the same token. With the above equation
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and the fact that φ(x) ≤M because x ∈ P ,

φ(x · T ) ≤M − µT < δ

which is a contradiction since then x · T ∈ P by definition.

Thus we see that B · [T,+∞) ⊆ P . Since given any δ > 0 there exists Tδ > 0

such that P ·[Tδ,+∞) ⊆ Bδ(X ), B·[T+Tδ,+∞) ⊆ P ·[Tδ,+∞) ⊆ Bδ(X ). Thus

for t ≥ T + Tδ one has dist(B · t,X ) < δ. This implies that dist(B · t,X )→ 0

as t→ +∞.

(2) X contains LA: Since ∇φ vanishes on LA and θ ≡ 1 on it, (5.12) reduces to

ẋ = g(x) when x ∈ LA. Thus LA is invariant for (5.12) and it is an immediate

consequence of the fact that LA ⊆ P and the expression for X that LA ⊆ X
(alternatively, since X is the maximal compact invariant set in Rm, clearly

LA ⊆ X ).

76



Chapter 6

Conclusion

Following Ben-Artzi et al. (1993), we have presented in Chapter 2 a simpler example

than the one given by Hunt and Kaloshin (1999) to show that linear embeddings

of finite-dimensional subsets of a Hilbert space or a Banach space into a Euclidean

space, as proved by Hunt and Kaloshin (1999) and Robinson (2009), have sharp

asymptotic bounds for the Hölder exponent of their inverses. Similarly, we proved

that the exponent of the logarithmic correction term in the embedding theorem

proved by Robinson (2010) is sharp as N →∞.

In Chapter 3, we have refined the definition of the Lipschitz deviation, a

quantity that measures how well a compact subset X of a Hilbert space H can be

approximated by Lipschitz graphs over a finite-dimensional spaces. We have shown

that the existing results that rely on the ‘thickness exponent’ remain valid when

this is replaced by the Lipschitz deviation. Moreover, one can find simple examples

for which the Lipschitz deviation is strictly less than the thickness exponent.

Furthermore, answering in part the conjecture of Ott et al. (2006) that ‘many

of the attractors associated with evolution equations of mathematical physics have

thickness exponent zero’, we have shown that the attractors of a large class of semi-

linear parabolic equations have zero Lipschitz deviation. In particular, we showed

that for the attractor of the 2D Navier-Stokes equations with forcing f ∈ L2 the

Lipschitz deviation is zero.

However, the definition of the Lipschitz deviation (and hence all the results

presented in Chapter 3) is restricted to subsets of Hilbert spaces. In Banach spaces

one can define the ‘dual thickness exponent’ (Robinson, 2009), a quantity that is

bounded above by the Lipschitz deviation in Hilbert spaces. Using this definition

one can prove a result parallel to Theorem 3.1.3 that is valid for subsets of Banach

spaces. It would be interesting to see whether the corresponding version of Theorem

77



3.1.4 remains true in Banach spaces using this definition.

In Chapter 4, we studied conditions under which the global attractor A is a

subset of a Lipschitz manifold given as a graph over a finite-dimensional eigenspace

of the linear term A. Then, we showed that, since the linear term of a wide class of

dissipative partial differential equations is 1-Log-Lipschitz continuous, the associated

global attractorA lies within a small neighbourhood of a finite-dimensional Lipschitz

manifold. Consequently, we are able to use the arguments developed in Chapter

3 to obtain linear embeddings of the attractor into RN , whose inverse is Hölder

continuous with exponent arbitrarily close to one by choosing N sufficiently large.

The existence of a system of ordinary differential equation whose asymptotic

behaviour reproduces the dynamics on an arbitrary finite-dimensional global attrac-

tor remains an interesting open problem. Nevertheless, if we are able to show that

there exist exponents η > 0 and γ > 0 such that the vector field on the attractor A
is η-log-Lipschitz and the inverse of linear embedding L : H → RN is γ-log-Lipschitz

when restricted to LA, then we will obtain an embedded equation ẋ = h(x) with

unique solution, provided η+ γ ≤ 1. Therefore, we would like to improve the expo-

nent 1 in Corollary 4.3.1. Indeed, if the result for the linear term A is optimal, then

we need a bi-Lipschitz embedding to guarantee uniqueness of solutions. However,

that Romanov (2000) obtained a better regularity result for the vector field, than

we obtained for the linear term A, suggests that it may be possible to improve the

logarithmic exponent in our result.

In Chapter 5, we showed that if the compact A ⊂ H is the global attractor

associated with a dissipative evolution equation in H such that the vector field

G is Lipschitz continuous on A and dimA(A − A) = d, then there is an ordinary

differential equation in Rm+1, with m > d, that has unique solutions and reproduces

the dynamics on A. Moreover, we proved that the dynamical system generated by

this new ordinary differential equation has a global attractor X arbitrarily close to

LA, where L is a bounded linear map from H into Rm+1 that is injective on A.

The results presented in this thesis highlight the importance of finding a

general method to bound the Assouad dimension of the set A − A, where A is a

global attractor associated with a partial differential equation in H. However Eden

et al. (1994, Lemma 2.1) showed that, for a large class of dissipative equations for

which the squeezing property holds, there exists a constant K > 0, such that the set

S(T )[A ∩ B(x, r)] can be covered by K balls of radius θr, for some T > 0. Hence,

given its similarity with the doubling property, it might be possible to use their result

to bound dimA(A). In addition one might be able to combine the above result with

the fact, proved by Romanov (2000), that the function u 7→ G
(
u(T )

)
is Lipschitz on
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A, for any fixed T > 0, to construct a system of ODEs whose asymptotic behaviour

reproduces that of the original flow.
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Appendix A

Estimates of ‘how many’ vectors

in a ball have their image

landing in a given small ball

A.1 Estimate for finite-dimensional case

For every j ∈ N, let Bdj be the unit ball in Rdj and denote λj the uniform probability

measure on Bdj .

Lemma A.1.1 (Lemma 5.4, Olson and Robinson (2010)). If x ∈ Rdj and η ∈ R,

then

λj
{
ω ∈ Bdj : |η + (ω · x)| < ε

}
< c d

1/2
j ε‖x‖−1, (A.1)

where c is a constant that does not depend on η or j.

Proof. Let {ei}
dj
i=1 be the canonical basis of Rdj . Given x ∈ Rdj such that x =∑dj

i=1 xiei, let M = [x1 ... ... xdj ] be the corresponding 1× dj matrix. Let F be

the map from Rdj into R defined by F (ω) := Mω + η = (ω · x) + η.

If ω ∈ Bdj , i.e. ‖ω‖ ≤ 1, then it follows using Cauchy-Schwartz inequality

that

|Mω| = |(ω · x)| ≤ ‖ω‖‖x‖ ≤ ‖x‖.

Hence, M
(
Bdj
)

lies in the interval [−‖x‖, ‖x‖] in R.

The set

{ω ∈ Bdj : |F (ω)| ≤ ε} = {ω ∈ Bdj : |η +Mω| ≤ ε}

consists of the vectors in Bdj whose image by M lands in an interval of length 2ε.
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If ω ∈ Bdj , then Mω ∈ [−ε, ε] if and only if ‖ω‖ ≤ ε/‖x‖. Therefore, the set

F−1([−ε, ε]) ∩Bdj = {ω ∈ Bdj : |F (ω)| ≤ ε}

is a cylindrical subset of Bdj with base the interval [−ε‖x‖−1, ε‖x‖−1]. This subset

has a dj-dimensional volume less than 2ε‖x‖−1Ωdj−1, where Ωr = πr/2/Γ
(
1 + r

2

)
denotes the volume of the r-dimensional unit ball. Since the volume of Bdj is Ωdj ,

λj
{
ω ∈ Bdj : |η + (ω · x)| < ε

}
<

2ε‖x‖−1Ωdj−1

Ωdj

< c d
1/2
j ε‖x‖−1.

A.2 Estimate for the infinite-dimensional case

Let H be a real Hilbert space. Let {Uj}∞j=1 be a sequence of finite-dimensional

subspaces of H such that dimUj = dj . Let Sj be the closed unit ball in the linear

subspace Uj . For any u ∈ H, denote u∗ the element of H∗ given by u∗(x) = (u, x).

Now define

Q =

{
π = (π1, ..., πN ) : where πn =

∞∑
j=1

j−2φ∗nj , φnj ∈ Sj
}
.

First note that Q is a compact subset of L (H,RN ). Since one can identify Sj with

the unit ball Bdj in Rdj , denote λj be the probability measure on Sj that corresponds

to the uniform probability measure on Bdj . Let µ be the probability measure on Q

that results from choosing each φnj randomly with respect to λdj .

Lemma A.2.1. Given x ∈ H, for any f ∈ L (H,RN ) and for any j ∈ N,

µ
{
π ∈ Q : |(f + π)x| < ε

}
< C

(
j2d

1/2
j ε‖Pjx‖−1

)N
,

where Pj denotes the orthogonal projection onto Uj and C is a constant independent

of f and j.

Proof. For any x ∈ H and f ∈ L (H,RN ), we wish to bound the probability that

π ∈ Q, chosen randomly with respect to µ, satisfies |f(x) + π(x)| < ε. It follows
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from the definition of µ that

µ
{
π ∈ Q : |f(x) + π(x)| < ε

}
=

∞⊗
j=1

λdj

{
(φnj)

∞
j=1 ∈

∞

×
j=1

Sj :

∣∣∣∣(f1(x) +

∞∑
j=1

j−2(φ1j , x),

. . . , fN (x) +

∞∑
j=1

j−2(φNj , x)
)∣∣∣∣ < ε

}

Since every component of the vector f(x)+π(x) must have modulus no larger

than ε, it follows from Fubini’s Theorem that

µ
{
π ∈ Q : |(f + π)x| < ε

}
≤
∞⊗
j=1

λdj

{
(φnj)

∞
j=1 ∈

∞

×
j=1

Sj :
∣∣∣fn(x) +

∞∑
j=1

j−2(φnj , x)
∣∣∣ < ε, for each n = 1, ..., N

}

=

N∏
n=1

[ ∞⊗
j=1

λdj

{
(φnj)

∞
j=1 ∈

∞

×
j=1

Sj :
∣∣∣fn(x) +

∞∑
j=1

j−2(φnj , x)
∣∣∣ < ε

}]
.

Now consider

∞⊗
j=1

λdj

{
(φnj)

∞
j=1 ∈

∞

×
j=1

Sj :
∣∣∣fn(x) +

∞∑
j=1

j−2(φnj , x)
∣∣∣ < ε

}

=

∞⊗
j=1

λdj

{
(φnj)

∞
j=1 ∈

∞

×
j=1

Sj :
∣∣∣ηn(x) + j−2(φnj , x)

∣∣∣ < ε

}
,

where

ηn(x) = fn(x) +
∑
i 6=j

i−2(φni, x).

It follows from Lemma A.1.1 that, for ηn(x) ∈ R fixed,

λdj

{
φnj ∈ Sj :

∣∣ηn(x) + j−2(φnj , x)
∣∣ < ε

}
≤ λdj

{
φnj ∈ Sj :

∣∣j−2(φnj , x)
∣∣ < ε

}
≤ λdj

{
φnj ∈ Sj :

∣∣j−2(φnj , Pjx)
∣∣ < ε

}
≤ cj2d

1/2
j ε‖Pjx‖−1 (A.2)

where Pj denotes the orthogonal projection onto Uj and c is a constant independent

of ηn(x) and j. Therefore, it follows from the product structure of the measure
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⊗∞
j=1 λdj that

∞⊗
j=1

λdj

{
(φnj)

∞
j=1 ∈

∞

×
j=1

Sj :
∣∣∣fn(x) +

∞∑
j=1

j−2(φnj , x)
∣∣∣ < ε

}
≤ λdj

{
φnj ∈ Sj :

∣∣j−2(φnj , x)
∣∣ < ε

}
.

Finally, since the bound obtained in (A.2) is independent of n

∏N
n=1

[⊗∞
j=1 λdj

{
(φnj)

∞
j=1 ∈×∞j=1 Sj :

∣∣fn(x) +
∑∞

j=1 j
−2(φnj , x)

∣∣ < ε
}]

≤ C
(
j2d

1/2
j ε‖Pjx‖−1

)N
,

where C is a constant independent of f and j.
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Appendix B

Notes on homotopy and shape

theory

In this appendix, we give some formal definitions of concepts used in Chapter 5.

For more details, see Singer and Thorpe (1967), Borsuk (1975) and Kapitanski and

Rodnianski (2000).

B.1 Homotopy theory

A homotopy between two continuous functions f and g from a topological space X

to a topological space Y is defined to be a continuous function H : X × [0, 1] → Y

from the product of the space X with the unit interval [0, 1] to Y such that, if x ∈ X
then H(x, 0) = f(x) and H(x, 1) = g(x).

Two spaces X and Y have the same homotopy type if there exist continuous

maps (called homotopy equivalences) f : X → Y and g : Y → X such that g ◦ f is

homotopic to the identity map idX : X → X and f ◦g is homotopic to idY : Y → Y .

A continuous map f : X → Y for which these homotopy relations hold true for

some g : Y → X is called a homotopy equivalence. In particular, two homeomorphic

spaces are of the same homotopy type, but the converse is not true. For example,

a solid disk is not homeomorphic to a single point, although the disk and the point

are of the same homotopy type.

A topological space X is contractible if the identity map idX : X → X is

homotopic to a constant map; that is, if idX ' c, where c : X → {x0} for some

x0 ∈ X.

Theorem B.1.1 (Singer and Thorpe, 1967). A topological space X is contractible

if and only if X is of the same homotopy type as a single point.
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B.2 Shape theory

The notion of homotopy type is especially well adapted for the study of ‘nice’ spaces.

Since attractors may have very complicated geometric structure, it may not be

productive to study its homotopy type. Instead, it is more reasonable to work with

the concept of shape, introduced by Borsuk (1975).

A compact set X ⊂ Rm has trivial shape (or the shape of a point) if for every

neighbourhood V of X, there exists another neighbourhood U of X, U ⊂ V , such

that the inclusion map ι : U → V is homotopic to a constant map c : U → V in

V . The concept of having the shape of a point is then equivalent to cell-likeness

(Daverman (1986, p.120) for more details).

Theorem B.2.1 (Borsuk, 1975, p.25). If X and Y have the same homotopic type,

then X and Y have the same shape.

In particular, if X is contractible, then X has the shape of a point. The follow-

ing result, used in the proof of Proposition 5.2.3, is an immediate consequence of

Theorem B.2.1.

Corollary B.2.1 (Borsuk, 1975, p.25). If X and Y are homeomorphic, then X and

Y have the same shape.

There are several papers concerning the shape of attractors of a finite-

dimensional (semi)-flow (see Garay (1991) Günther and Segal (1993), Günther (1995),

Sanjurjo (1995)). Under very mild assumptions, Kapitanski and Rodnianski (2000)

proved that the global attractor has the same shape as the state space.

Theorem B.2.2 (Theorem 3.6, Kapitanski and Rodnianski, 2000, p.233). Let X

be a complete metric space and E : X × R+ → X a continuous semiflow. Let A be

the global attractor associated with the semidynamical system (X, E). Then, A and

X have the same shape.

This result, used in the proof of Proposition 5.2.3, has shown to have many applica-

tions to partial differential equations, functional differential equations, and to more

general processes.
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Appendix C

Manifolds, Maps and

Differential Structures

In this appendix, we give some formal definitions of concepts used in Chapter 5. For

more details, see Hirsch (1976).

C.1 Differential Structures

A topological space M is called an n-dimensional manifold if it is locally homeomor-

phic to Rn. That is, there is an open cover U = {Ui}i∈Λ of M such that for each

i ∈ Λ there is a map ϕi : Ui → Rn which maps Ui homeomorphically onto an open

subset of Rn. We call (ϕi, Ui) a chart (or coordinate system) with domain Ui; the

set of charts Φ = {ϕi, Ui}i∈Λ is an atlas.

Two charts (ϕi, Ui), (ϕj , Uj) are said to have Cr overlap if the coordinate

change

ϕjϕ
−1
i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

is of differentiability class Cr, and ϕiϕ
−1
j is also Cr map. An atlas Φ on M is called

Cr if every pair of its charts has Cr overlap. In this case there is a unique maximal

Cr atlas Ψ which contains Φ. In fact Ψ is the set of all charts which have Cr overlap

with every chart in Φ.

A maximal Cr atlas α onM is a Cr differential structure; the pairMα is called

a manifold of class Cr. Note that to determine a Cr differential structure it suffices

to give a single Cr atlas contained in it. A differential manifold is a topological

manifold equipped with a C∞ differential structure. If M is a topological manifold,

a smoothing Mα of M is a C∞ atlas in M .

If MΦ and NΨ are manifolds, then their Cartesian product is the manifold
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(M ×N)Θ, where Θ is the differential structure containing all charts of the form

(ϕ× ψ,U × V ); (ϕ,U) ∈ Φ, (ψ, V ) ∈ Ψ.

Here ϕ × ψ maps U × V into Rm × Rn, which we identify with Rm+n. It follows

from Kirby and Siebenmann (1977) that if Θ is a smooth structure on M ×R, then

there exists a unique smooth structure σ on M , such that (M × R)Θ and Mσ × R
are diffeomorphic.

If MΦ is a manifold and W ⊂ M is an open set the induced differential

structure on W is

Ψ |W = {(ϕ,U) ∈ Φ : U ⊂W}.

Let M be a topological space, NΦ a manifold and h : M → N a homeomorphism of

M onto an open subset of N . The induced differential structure on M is

h∗Φ = {(ϕ ◦ h, h−1U) : (ϕ,U) ∈ Φ and U ⊂ h(M)}.

C.2 Differentiable Maps

In this section we shall suppress notation for the differential structure on a manifold

M . Let M and N be Cr manifolds and f : M → N a map. A pair of charts (ϕ,U)

for M and (ψ, V ) for N is adapted to f if f(U) ⊂ V . In this case the map

ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V )

is defined; we call it the local representation of f in the given charts, at the point x

if x ∈ U .

The map f is called differentiable at x if it has a local representation at x

which is differentiable. And, in this case, every local representation at x is differ-

entiable. This definition makes sense since a local representation is a map between

open sets in Cartesian spaces. Similarly, f is differentiable of class Cr if it has Cr

local representations at all points.

Let f : M → N and g : N → P be Cr maps between Cr manifolds. It is easy

to verify, using local representations, that the composition g ◦ f : M → P is also Cr.
The identity map and all constant maps are Cr.

A Cr diffeomorphism f : M → N is a Cr map between Cr manifolds M and

N which is a homeomorphism, and whose inverse f−1 : N → M is also of class Cr.
If such a map exists we call M and N Cr diffeomorphic manifolds.
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