
Volume 13 Number 1

ACTA
CYBERNETICA

Editor-in-Chief: J. Csir ik (Hungary)

Managing Editor: Z . Fülöp (Hungary)

Assistants to the Managing Editor: P. Gyenizse (Hungary), A. Pluhár (Hungary)

Editors: M. Arató (Hungary), S. L. Bloom (USA), H. L. Bodlaender (The Netherlands),
W. Brauer (Germany), L. Budach (Germany), H. Bunke (Switzerland), B. Courcelle
(France), J. Demetrovics (Hungary), B. Dömölki (Hungary), J. Engelfriet
(The Netherlands), Z. Ésik (Hungary), F. Gécseg (Hungary), J. Gruska (Slovakia),
B. Imreh (Hungary), H. Jürgensen (Canada), A. Kelemenová (Czech Republic),
L. Lovász (Hungary), G. Páun (Romania), A. Prékopa (Hungary), A. Salomaa (Finland),
L. Varga (Hungary), H. Vogler (Germany), G. Wöginger (Austria)

Szeged, 1997

Acta Cybernetica 13 (1997) 1-21.

Regular expression star-freeness is
PSPACE-complete

László Bernátsky *t

Abstract
It is proved that the problem of deciding if a regular expression denotes a

star-free language is PSPACE-complete. The paper also includes a new proof
of the PSPACE-completeness of the finite automaton aperiodicity problem.

1 Introduction
Star-free languages form an important subclass of regular languages: they are the
ones that can be obtained from the singleton languages by a finite number of appli-
cations of the operations of union, complement and product. By Schiitzenberger's
famous theorem [8], a regular language is star-free if and only if its syntactic monoid
is aperiodic, or equivalently, if it is recognized by an aperiodic DFA. Moreover, a
language is star-free if and only if it can be defined by a first-order formula of a
suitable formal language, see [10]. In his 1985 paper [9], Jacques Stern proved that
the problem of deciding whether a DFA is aperiodic is Co-NP-hard and belongs to
PSPACE. A few years later Sang Cho and Dung T. Huynh strengthened Stern's
result by showing that this problem is in fact PSPACE-complete, see [3]. Not
knowing about their work I proved the same result while Zoltán Esik and I were
working on the description of the free Conway theories, see [1]. The present paper
contains a slightly modified version of my original proof, which rests on the same
basic idea as the proof of Cho and Huynh, but uses a different construction, see
Construction 4.1. This different construction makes it easy to extend the proof to
regular expressions.

2 Definitions and preliminary facts

2.1 Sets and relations
The set of nonnegative integers is denoted N, and to stands for the set of positive
integers. For n £ N, [n] denotes thé set {1 , . . . ,n} , so that [0] is another name for
the empty set 0.

'Department of Computer Science, Attila József University, 6720 Szeged, Hungary, E-mail:
benny@inf.u-szeged.hu

^Supported in part by grant no. T7383 of the National Foundation of Scientific Research of
Hungary

1

mailto:benny@inf.u-szeged.hu

2 László Bernátsky

The power-set P (S) of a set S consists of all subsets of S, and the direct product
Ay. B of two sets A and B consists of all pairs (a, b) with a 6 A and b £ B. A
binary relation from A to B is just a subset of A x B, so that P {Ax B) is the set of
all binary relations from A to B. The composite of two binary relations p C A x B
and p' C B x C is the relation

pop' = { (a,c) | 3b 6 B (a,b) £ p A (6,c) £ p'} C AxC.

We use the infix notation apb instead of (a, b) 6 p. Suppose that A' is subset of A,
and B' is a subset of B. We write A'pB' if there exist a £ A' and b £ B' with apb.
The image of A' under p is denoted A'p, i.e.,

A'p = {b£B\3a£ A' apb}.

When A' = {a} is a singleton, we write ap instead of A'p.

2.2 Words and languages
Suppose that A and B are alphabets, i.e., nonempty finite sets. We denote by
A* the set of all finite words over A including the empty word e, while A+ stands
for A* \ {e}. The set Aw is the collection of all infinite words over A. The length
of a finite word u £ A* is denoted \u\, and the ith letter of a finite or infinite
word w £ A* U Aw is denoted Wi. Thus, any finite word u £ A* can be written as
U1U2 .. • U|u|, where each Ui is an element of A. A word v £ A* is called a prefix of
a word u £ A* U A" if u = vw, for some w £ A* U Aw. A function ip : A* ->• B* is
called a homomorphism if ip(uv) = ip(u)ip(v), for all words u,v £ A*. Note that
each homomorphism A* —> B* is totally determined by its restriction to A.

For the reader's convenience we restate the theorem of Schiitzenberger.

THEOREM 2.1 (Schiitzenberger [8]) A regular language I C S ' is star-free if and
only if there exists some integer k > 0 such that

uvkw £ L uvk+lw £ L,

for all words u,v,w £ £*.

A proof of the following lemma is given in the appendix.

LEMMA 2.1 Suppose that S = {eri,... ,<rn} is an alphabet and I = |~log2(n + 1)].
Then there exists an injective homomorphism tp : {0,1}* satisfying the fol-
lowing conditions.

• The ip-image of each letter a £ £ is a word of length 21 beginning with a
sequence of I zeros and containing the letter 1. In other words,

C 0 ' {0 ,1} '\ {0'2i}. (1)

Regular expression sfcar-freeness is PSPACE-complete 3

• For all words u,v,w e {0,1} *

uv2lw 6 ^>(E*) =>• 21 divides |v|. (2)

• For all regular languages L C S *

L is star-free <=> is star-free. (3)

2.3 Regular expressions
Let 7?. be the ranked alphabet consisting of the constant symbol 0, unary symbols
*, ~ and binary symbols U, fl. Suppose that E is an alphabet such that £f~l7£ = 0.
For any subset TV of TZ, the set SU71' can be considered as a ranked alphabet in
which the elements of E have rank 0, and the elements of TV have the same rank
as in TZ. An 72-'-type regular expression over E is a ground (E U 7£')-term,
i.e., a term over the ranked alphabet E U TV containing no variable symbols. A
{0, •, U, *}-type regular expression is simply called a regular expression, and an
(TZ \ {*})-type regular expression is also called a star-free regular expression.

As for the syntactical conventions, we use infix notation for the binary opera-
tions U, fl and •, postfix notation for *, and we write a instead of ~ a. The operation
symbol • is usually omitted. If E' = { o i , . . . , a n) is a subset of E, we simply write
E' instead of o\ U • • • U an.

The language L(E) C E* denoted by an 72,-type regular expression E over E is
defined in the usual way, see [7]. Note that a regular language L C E* is star-free
if and only if it is denoted by some star-free regular expression over E.

We recall from [7] that the star-height sh(E) of a regular expression E is
defined by

for all letters a S E and regular expressions E,F over E.

2.4 Finite automata
Most of our automata-theoretical notations and definitions are adopted from [4].

A (nondeterministic) finite automaton (NFA) is represented as a 5-tuple
A= (Q, E, r, I, F), where

sh(cr)
sh(0)

0
0
max{sh(£),sh(F)}
max{sh(E),sh(F)}
1 + sh (E),

sh(E U F)
sh(E • F)

sh (E*)

• Q is the finite set of states,

• E is the input alphabet,

4 László Bernátsky

• T : £ P(<2 x Q) is the transition function,

• I Q Q is the set of initial states,

• F C Q is the set of final states.

Note that for each input symbol a £ E, T(CT) is a binary relation on Q, called the
relation induced by a in the automaton A. We prefer the notation a^ to
T(CT). When u £ E* is an input word, ua denotes the relation induced by u in
A, defined by

uA := r(wi)o--or(w|u|).

Note that ca is the identity relation.
The automaton A can be visualized as a directed graph with vertices Q, and

edges labeled by input symbols in E. Motivated by this point of view, we shall
sometimes denote the relation UA by —*-A • Then q —*-A q' means that there is a
directed it-labeled path from vertex q to vertex q'.

The language L(A) recognized by A consists of those words it £ E* for which
there exists a w-labeled path from some initial state to a final state, formally

L(A) = {w £ £* | I-^aF}-

When A is understood, we sometimes omit the subscript in and ua-
We call A a deterministic finite automaton (DFA) if it has at most one

initial state, and each relation a a (C £ E) is a partial function Q —» Q. A deter-
ministic automaton is called complete if it has a unique initial state, and each of
its'input symbols induces a total function.

The automaton A is called a reset automaton if it has at most one initial
state and each input symbol a £ E induces either the identity function or a partial
constant function Q Q.

A state q of A is called accessible (respectively, coaccessible) if there exists
some input word u € E* with I-V4 {q} (respectively, {q} F). Note that each
initial state is accessible and each final state is coaccessible. A biaccessible state
is one which is both accessible and coaccessible. Two states q,q' £ Q are called
equivalent, denoted q ~a q', if

{9} - V a F <=> {q'}^AF,

for all input words u £ E*. Suppose that A is a DFA. Then A is called

minimal if all of its states are biaccessible, and it has no different equivalent states,

aperiodic if there exists an integer k > 0 such that (u k) A = (u k + 1) A , for all
u £ £*.

Observe that if A is a reset automaton then (u2)A = (u3)A, and if A is a complete
reset automaton then ua = (u2) 'A, for all words u £ E*.

Regular expression sfcar-freeness is PSPACE-complete 5

REMARK 2.1 It is well known (see [4]) that a deterministic automaton A —
(Q, £ , T, I, F) is aperiodic if and only if it satisfies the implication

uk u
Q—*-aq = > q-*-Aq,

for all states q £ Q, input words u 6 £+ and integers k > 2.

Suppose that n > 1, and Ai = (Qi,T,,Ti,Ii,Fi) is an NFA, for each i £ [n].
Then the product of the Aj's is the NFA

I I ^ = (I I G » E ' r > n **> I I
¿€[n] ¿G[rt] ie[n] »€["]

where

t(ct) = {((?!,• • .,qn), (r i , . . . , r n)) | Vi £ [n] (qi,ri) € n(a)},

for all a £ E. It is easy to see that

l(N A) = F | L

ie[n] ¿6(n]

2.5 Turing machines
A deterministic Turing machine (DTM) with a single one-way infinite tape is
a system M = (Q, T, E, 5, qo, q/), where

• Q is the finite set of states,

• T is the tape alphabet containing the special "blank" symbol b,

• E C T is the input alphabet, b ^ E,

• i : Q x T - > Q x T x { - l , 0 , l } i s the partial transition function,

• qo £ Q is the initial state,

• <7/ £ Q is the final state.

We say the machine M is in the configuration (q,i,u) for a state q £ Q, integer
i £ u) and infinite word u € if in state q it scans the ith tape cell and the
content of the tape is u. We define a binary relation Vm on the set Q x lo X RW of
configurations by

(q,i,u) \-M (r,j,v) S(q,Ui) = (r,Vi,j - i) A Vf € u (t ^ i => vt = ut).
«

Note that h ^ is a partial function. The machine M. accepts an input word u £ E*
if

(q0,l,ub") \-*M (qf,lX),

6 László Bernátsky

otherwise M. rejects u. The language L(M) C £* recognized by M. consists
of those words u £ £* which are accepted by M. Thus, for each word u £ L(M),
there exists a shortest sequence (gi,H,wi),..., (qk,U,uik) of configurations such
that

(ft, ¿1,101) = (9 0 , 1 , ^) ,
(qk,ik,wk) = (g/ , l ,bw) , and
Cqt,n,wt) hM (qt+i,it+i,m+i),

for all t £ [k — 1]. Then we define

SPACEJU(U) : = m a x it.
t€[fc]

Suppose that S : N —» N is a (space constructible) function. The machine M is said
to have space complexity S if SPACE^w) < S(|u|), for all words u £ L{M).
The language class PSPACE consists of those languages which are recognized by
some Turing machine M having space-complexity p, for some polynomial function
p : N-»N.

We assume the reader is familiar with the concept of logspace-reducibility (see
[2], for example).

Suppose L and L' are languages. In this paper, L <iog L' stands for "L is
logspace-reducible to L"'. The language L is called PSPACE-hard with respect
to logspace-reductions, written PSPACE <iog L, if every language in PSPACE
is logspace-reducible to L. Lastly, L is called PSPACE-complete with respect to
logspace-reductions if L £ PSPACE and PSPACE <log L.

3 Problems
We are interested in the computational complexity of the following decision prob-
lems:

1. The automata intersection problem (AIP):

INPUT: A sequence Ai,..., An (n > 2) of nondeterministic finite automata
with a common input alphabet.

QUESTION: Does flie[„] ¿ M ») ^ 0 hold?

2. A restricted version of the automata intersection problem (AIP^):

INPUT: A sequence Ai,...,An (n > 2) of minimal reset automata with a
common input alphabet.

*

QUESTION: D o e s FLIE[N] ^ ® h o l d ?

3. Automaton star-freeness (ASF):

Regular expression sfcar-freeness is PSPACE-complete 7

INPUT: A nondeterministic finite automaton A.
QUESTION: Does A recognize a star-free language?

4. A restricted version of automaton star-freeness (ASF/?):

INPUT: A minimal DFA A with input alphabet {0,1}.
QUESTION: Does A recognize a star-free language?

5. Regular expression star-freeness (RSF):

INPUT: A regular expression E.
QUESTION: Does E denote a star-free language?

6. A restricted version of regular expression star-freeness (RSF^):

INPUT: A regular expression E of star-height 2 over the alphabet {0 ,1 } .
QUESTION: Does E denote a star-free language?

Assuming some efficient encoding of automata and regular expressions (see [5])
with words over a fixed finite alphabet, all these problems can be considered as
languages. We are going to prove

PROPOSITION 3.1 The problems A I P , A I P f i , A S F , A S F f l , R S F and R S F f l are
PSPACE-complete with respect to logspace reductions.

4 Constructions
In this section we present the constructions of automata and regular expressions
which are needed to show that the restricted problems A I P a , A S F « and RSF/y are
PSPACE-hard. The first construction shows how can one replace a deterministic
Turing machine with a sequence of reset automata.

CONSTRUCTION 4.1 Input: A polynomial function p : N ->• N, a DTM M =
(Q, r, E, S, go, qf) of space-complexity p, and an input word u € £", n > 0.
Output: A sequence S, V,A\,..., Am of reset automata, where m = max{p(n), 1},
and

(4)
i € [m]

Description: Let

5 = (Q,A,TS, { ç 0 } , { g / })

V = ([m], A, Tp, {1},{1}),

and for each i G [m]

Ai = (R,A,TI,{(ybu)i},M),

8 László Bernátsky

where

A = {(q,k,-Y) \qeQ, k£[m], yeT}

and the transition functions ts, tv, n , . . . , rm axe defined as follows.

Suppose that a = {q, k, 7) is an element of A. If S(q, 7) is undefined then

Ts{a) = T-p (a) = n (o) = • • • = rm(a) = 0,

and if 5{q, 7) is defined, say S(q, 7) = (r, 7' , i) , then

r5(a)
tv (a)

Ti{a)

Proof. The intuition is that the automata S, V, Ai,..., Am together "simulate"
the computation of M. on the input word u, such that S knows the current state
of A4, V knows the position of the read-write head, and each Ai (i £ [m]) knows
the content of the ith tape-cell. An input symbol (q,k, 7) £ A corresponds to the
statement "the current state of M is <7, the position of the read-write head is k,
and the content of the fcth tape-cell is 7".

It is easy to see that each one of S, V, Ai,..., Arn is a reset automaton. (In fact
they are even more restricted: for all input symbols a £ A, the relation induced by
a in each one of the automata S,V,Ai,..., Am is either empty, or a singleton, or
the identity function.)

Consider the product automaton

A = S x V x JJ A{.
¿6[m]

We know

L{A) = L(S) fl L{V) fl p| L(Ai).
ie[m]

Observe that for all q, r £ Q, v, w £ r m , j, k £ [m], and a £ A

(q,j,v 1,... ,vm) {r,k,w 1,... ,wm)
a = (q,3,Vj) A S(q,Vj) = (r,Wj,k - j) A Vt € [m] (t ± j => wt = vt),

and thus

= { (9,r)}
Í {{k,k + t)} if k + t £ [m],
\ 0 iffc + i ^ [m] ,

_ Í 1 (7 , 7 ') } IF k = i
\ {(ff.tr) I ct € T} if k ^ i .

(q,j,vbw)\-M (r,k,wbu) 3 a e A(q,j,vi,... ,vm)-^A(r,k,W!,... ,wm).

Regular expression star-freeness is PSPACE-complete 9

It follows that

ueL(M) (q0,l,u\>«)^M(qf,\X)

^ 3v € A* (®»l , (« l»w) i> . . .) (ul»w)m) -V>t(g / , l>b> . . . I l>)

•

Although the automata S, V, Ai,. •., Am constructed above have a very simple
structure, they are not always minimal. In the next construction we show an
easy way of modifying these automata so that they become minimal. Note that
the standard procedure of automata minimization is not suitable for our purposes
since it requires linear space.

CONSTRUCTION 4.2 Input: A sequence Ai, • • • ,An (n > 2) of reset automata of
the form Ai = (Qi, E,Tj, {sj} , { /¿ }) .
Output: A sequence B\,..., Bn of minimal reset automata such that

F| L(Ai) = P) L(Bi). (5)
¿e[n] ¿e[n]

Description: For each i £ [n] let

Bi = (Qi.EUE'.r?, {«<},{/<}),

where

= {(q,3)\q£Qj, je N),

T '(t„i\\ - I i(p>q)\peQi> p^q} i f i = *>

rd{q,J)) - | 0 i i j ^ i ,

for all <7 € E, (q,j) € £'.
Proof. For each j £ [n] let Ê - denote the set {(q, j) | q € Qj}. Consider the
automaton Bi for some i g [n]. It is obvious that Bi is a reset automaton. Since
the elements of £ ' \ £• induce the empty relation in Bi,

L(Bi) C (EUE'a*.

Moreover, since each input symbol a £ E induces the same relation in Bi as in Ai,

L(Bi) fl E* = L(Ai).

These two observations and n > 2 imply (5). Lastly, for all states p, q £ Qi we have , <?,<> 9f Si => Si q,
, , (fiA ,

q r h = > q *~h,
pjiqAq^fi p(q,i)(fi,i) = {fi} A q{q,i){fi,i) =9,

I

10 László Bernátsky

showing Bi is minimal. •

The next construction shows that for each reset automaton A there exists a
"short" regular expression denoting the complement of the language recognized by
A. This fact plays a key role in proving that the problem RSF/j is PSPACE-hard.

CONSTRUCTION 4.3 Input: A reset automaton

A = (Q,Z,T,I,F).

Output: A regular expression E over the alphabet E such that

L(E) = L(A). (6)

Description: If I = 0 then (6) holds for the regular expression E = E*. From
now on we assume that A has an initial state qo. Let

Xq = {a G E | QaA = {q}}
Yg = {a G E | qaA = {?}}
Zq = {a G E | qaA = 0},

for all q G Q. Using these subsets of E we define the regular expressions

_ , E *XqYq* iíqjíqo
S Z*XqY' U Y* ifq = qQ,

for all q G Q. Lastly, let

Proof. We claim

and

E = (U E " I U I U

u G L{Eq) => q0u C { 9 } (7)

q0u = { 9 } u G L(Eg), (8)

for all q G Q, u G £*. Then (6) follows since the definition of E expresses the fact
that an input word u G £* is rejected by the automaton A either if qou = {<7} for
some non-final state q, or qou = 0.

As (7) is quite obvious, we only prove (8). Suppose that q$u = {g} for some state
q G Q and input word u G £ n , n > 0. Then there exist some states q\,..., qn~\
such that til tJ2 un-l tin q0 —qi — • • • qn-1 —q•

Regular expression sfcar-freeness is PSPACE-complete 11

If q0 = qx = • • • = qn_l = q then u £ Y* C L(Eq). Otherwise let k 6 [n] be the
largest index for which qu-i ^ q, so that

. Ufc Ufc + l v-n-l Un q ± qk-i — q • • • q —>- q.

Since A is deterministic it follows that Uk+i, • • • ,un £ Yq. Moreover, since q ^
q, the relation induced by u^ is not the identity function. Thus, u^

induces a partial constant function with range {<7}, so that u^ £ Xq. We see
u £ T,*XqY* C L(Eq). •

The next construction presents the main idea of reducing A I P « to A S F « . The
very same idea was used by Cho and Huynh in [3].

CONSTRUCTION 4.4 Input: A sequence B\,...,Bn {n > 2) of minimal reset au-
tomata of the form Bi = (Qi, S, Tj, /¿, Fi).
Output: A minimal DFA C such that

P| L(Bi) = 0 L(C) is star-free. (9)
¿e[n]

Description: If = 0 for some i £ [n] then let C be the minimal DFA with input
alphabet {0} recognizing the star-free language 0. From now on we assume that
each automaton Bi has a unique initial state Sj. Thus L(Bi) ± 0, for all i £ [n].
Let p be the least prime number with p > n. It is well known (see [6]) that p < 2n.
For integers i £ {n + l , n + 2 , . . . , p } let Bi = (Qi,S,Ti , {s i } ,Fi) be a minimal
DFA recognizing the language £*. For the sake of simplicity assume that the sets
Qi {i G [p]) are pairwise disjoint, and that # 0 S is a new input symbol. Let
u : N [p] be the function mapping each integer i to ((i — 1) mod p) + 1. Then
we define

C := (|J Qi.EU {#},•>-,•{*!}, W) .
¿e[p]

where

r(#) = \ j F t x {a„ (i+i)}
¿e[p]

t(V) = |J n(a) ,
ie[p]

for all input symbols a £ See Figure 1.

Proof. Clearly, C is a DFA with

L(C) = (L{Bl)#L{B2)#---L{Bn)#{?,*W-nY

12 Laszlo Bernatsky

Si B 2 B p

Figure 1: The automaton C

By Schiitzenberger's theorem, (9) is equivalent to the condition

P| L{Bi) ± 0 C is not aperiodic. (10)
ie[n]

The " = > " part of (10) is obvious: if u £ E* is a common element of the languages
L(Bi),..., L(Bn) then «i ^ ^ • c and si c S2 ^ si, so that C is not aperi-
odic by Remark 2.1. Before we prove the " part of (10) observe that if the
letter # appears I times in an input word u £ (E U { # }) * , and q £ Qi is a state
such that q(u#)c ± 0 then q(u#)c = {s„(j+ i + 1) } . Moreover, if S j (v #) c -fi 0 for
some integer j £ [p] and word v 6 E* then v £ L(Bj). Now suppose that C is not
aperiodic, i.e.

1 —+-c q, (11)

and

q - ^ c (12)

for some different states q .£ Qi, q' £ Q?, i, i' £ [p], input word u £ (E U { # }) +

and integer k > 2. Note that by (11) we have q(ut)c ^ 0, for all t > 0. Let I be the
number of # ' s in u, so that u can be written as

where i t ' 0 ' , . . . , u'1' are words in E*. If I were 0 then we would have i' — i,q " > g. q,
and q -VB, q' / q, contradicting the-fact that Bi is aperiodic. Thus, I > 0.

Let v denote the word • • • so that u = v#uO and

q —

where j = v(i + I). By (11) we have

u<"
-c Si —*~c q•

Regular expression sfcar-freeness is PSPACE-complete 13

If p were a divisor of I then it would follow that j = i and q —Si *-c q,
contradicting (12). Thus p is not a divisor of I.

Let j be an arbitrary element of [n]. As p is a prime not dividing I, there exists
some integer t > 0 such that v(i + It) = j. For this t we have

q *-c Sj.

Moreover, since ut~1v#u^uW# is a prefix of ut+1 and q(ut+l)c / 0, it follows
that

showing u^'w'0' £ L(Bj). Since j £ [n] was arbitrary,

u<'V°> € p| L(Bj).
¿GN

In order to prove C is minimal suppose that q £ Qj and r £ Qk are two different
states of the automaton C. For each i £ [p] choose an arbitrary word £ L(Bi).
Since q is a biaccessible state of Bj> there exist words v,w £ E* with

V U)
Sj -*-Bj q -+-B, Fj.

Then

si *~c q *-c si,

showing q is a biaccessible state of C. If j ^ k, say j < k, then

= { S l } and

- i + i j -

Lastly, suppose that j = k. Since Bj is minimal, there exists some word x £ £*
such that exactly one of the sets qxBJ C\Fj and rxnj n F j is empty, say rxsj P\Fj = 0.
Then q(xjf)c = {s„(.,+1)}, r (i #) c = 0 and we have

? № () ' + 1) f " # » (p) #) c = {si} and
w W #) c = 0.

•

The last construction gives the second part of the reduction AIP / j < i o g ASF/?-

CONSTRUCTION 4 . 5 Input: A minimal DFA C = (Q , E , T , I , F) .

Output: A minimal DFA C' with input alphabet {0,1} such that

L(C) is star-free L(C') is star-free. (13)

14 László Bernátsky

Description: Let ip : £* {0,1}* be an injective homomorphism satisfying the
conditions of Lemma 2.1. In particular, the image ip{a) of each symbol a € £ is a
word in {0, l } 2 i , where I = ["log2(|£| + 1)]. For each state q £ Q let

Sg " W ^ ' l a e E ,

so that Sq is a set of words over the alphabet {0 ,1 } U Q, more precisely, Sq C
{0,1 }2lQ- When 5 is a set of words and u is a word over the same alphabet, u\S
denotes the set {v) uv £ S } . For each integer j £ [21 - 1] let

Q) := M S , | q € Q, u £ {0, 1 } ' } \ {0} .

Thus each element of Q'j is a nonempty subset of {0, l} '2 l~JQ. Now let

C' := (Q U Q', {0, l } , r ' , I, F),

where

Q' = U Q'v
je[2/-i]

and T' is defined such that

{x\Sq} if x\Sq ^ 0,
otherwise,
if x\S = {<?'}, for some q' £ Q,

Sxc = ^ 0 if x\S — 0,
{a;\5} otherwise,

for all q £ Q, S £ Q', x £ {0 ,1} .

Proof. Let us denote Q by Q'0. It is easy to see that C' is a DFA satisfying

q-+oq' <!==> € £* it = ip(v) A q-^*-c q', (14)

and

Q'i - V c Q'j H=3-i (mod 21), (15)

for all q,q' £ Q, u £ {0,1}*, 0 < i,j < 21. It follows in particular that L(C') =
ip(L(C)), so that (13) holds by Lemma 2.1.

In order to prove C' is minimal suppose that s £ and s' £ Q'j (0 <i,j< 21)
are two different states of C'. It is clear from the description of C' that there exist
words v £ {0 ,1 } ' , v' £ {0, l } 2 i - t , and states q,q' £ Q such that q-^*-c< s - ^ - c q'•

Since C is minimal, there exist words u,u' £ £* with / - V c q and q' - % - c F. By
(14) we have

T </>(«) V v' , t/l(tl') 1 q —t-c- S —»-C' q *-c> F,

Regular expression sfcar-freeness is PSPACE-complete 15

showing s is a biaccessible state of C. If i ± j then s and s' are not equivalent by
(15), so suppose i = j. If i — j = 0 then s and s' are two different elements of
Q, and since C is minimal there exists a word w £ £* such that exactly one of the
two sets swc l~l F = stp(w)c, n F and s'wc fl F = s'ip(w)c, n F is empty. Lastly
suppose that i = j £ [21 — 1]. Then s and s' are two different subsets of the set
{0,1}2 '~*Q, say s % s'. Let uq be an arbitrary element in s which is not in s',
where u 6 {0, l } 2 i _ t and q £ Q. There are two possibilities: either s'uc = 0 or
s'uc = { ? ' } for some state q' £ Q,q' ^ q. In the first case we have suip(v)c, C\F ^ 0
and s'uip(v)c, fl F = 0, where v € £* is an arbitrary word with q -\-c F. (Such a v
exists since q is a coaccessible state of C.) The second case can be handled similarly
to the case i = j — 0. •

5 Results
THEOREM 5.1 The problems AIP and AIP^ are PSPACE-complete with respect
to logspace reductions.

Proof. We show

PSPACE <log AlPfl <i09 AIP € PSPACE.

Suppose that L C £* is a language in PSPACE. Then there exists a polynomial
function p : N —> N and a deterministic Turing machine M. of space-complexity
p such that L(A4) = L. Applying Construction 4.1 followed by Construction 4.2
to M and an input word u £ E*, we obtain a list A\,..., An of minimal reset
automata such that

U£L «=> f) L(Ai) ± 0.
¿eM

Since both constructions can be carried out by a logspace-bounded Turing machine,
PSPACE <iog AIP/j. The claim AIP« <log AIP is trivial. In order to prove
AIP £ PSPACE suppose that Ai,.".., An are NFA's with a common input alpha-
bet E, say Ai = (Qi,Yl,Ti,Ii,Fi). The following nondeterministic PASCAL-style
program accepts the automata A\,..., An if and only if flie^] ¿ M i) 0:

function Solve_AIP(X1 ; . . . An : NFA)-.boolean;
var

Si,...,S„ : set of state ;
a : input symbol;

begin
Si :=h;

16 László Bernátsky

while Si n Fx = 0 or • •• or Sn D Fn = 0 do
begin

guess a £ £ ;

Si := SiCMj ;

Sn -= Sn(7An

end;

Solve-AIP:=true;

end;

The space complexity of the program is linear. It follows by Savitch's theorem that
AIP 6 PSPACE. •

THEOREM 5.2 The problems ASF and ASFR are PSPACE-complete with respect
to logspace reductions.

Proof. We show

AIP^ <log ASFR <log ASF e PSPACE.

Suppose that B\,..., Bn (n > 2) are minimal reset automata with a common input
alphabet. Applying Construction 4.4 followed by Construction 4.5 to B i , . . . ,Bn ,
we obtain a minimal DFA C1 with input alphabet {0,1} such that

P| L(Bi) = 0 L(C') is star-free.

Since both constructions can be carried out by a logspace-bounded Turing machine,
AlPij <iog ASFr . The claim ASF^ <iog ASF is trivial. In order to prove
ASF e PSPACE suppose that A = (Q, S, T, / , F) is an NFA. By Schiitzenberger's
theorem, L(A) is star-free if and only if the minimal DFA recognizing L(A) is
aperiodic. Recall that the power automaton of A is the deterministic automaton

P M) = (P (Q) , S , T', { / } , F'),

where

F' = {SeP(Q) I S n F / 0 } ,
r ' (A) = { (S , S < M) | S € P (Q) } ,

for all a e S . The minimal DFA recognizing L(A) is obtained fr^m P(-4) by deleting
those states which are not biaccessible, and then identifying the equivalent states.
It follows that L(A) is star-free if and only if there exists some input word u € E*,
accessible state S of P(^4) and integer k > 2 such that S ~p(a) S(uk)A = S(uA.)k

and S t^p(a) Sua- The following nondeterministic procedure decides if S ^p(a) S'
holds for two states 5, S' of P(^l):

Regular expression sfcar-freeness is PSPACE-complete 17

function Not_Equiv(S, S' : set of state) ¡boolean;
var

a : input symbol;

begin

while (5 fl F = 0 and 5' n F = 0) or

(S n F ^ 0 and 5' n F ^ 0) do

begin

guess er £ £;

S := Sou;
£" := S'aA;

end;

Not_Equiv:=true;

end;

By Savitch's theorem we obtain a deterministic polynomial-space program Equiv
which decides if two states of P(-4) are equivalent. The following nondeterministic
program uses Equiv as a subroutine to decide if L(A) is not star-free:

function Not_ASF(yt : NFA) ¡boolean;

var

a : input symbol;

S, S' : set of state;

p : relation;
halt : boolean;

begin

S:=I;
repeat

guess a € £;

S := So a",
guess halt;

until halt;

repeat

guess a £ £;

p : = p o a a ;
guess halt;

until halt;
S' := Sp;
if Equiv (5, S') then

Not_ASF:=false

else begin

repeat

S' := S'p;
until Equiv(S, £');

Not_ASF:=true;

end;

18 László Bernátsky

end;

By Savitch's theorem and the fact that the language class PSPACE is closed
under complementation it follows that ASF 6 PSPACE. •

THEOREM 5.3 The problems RSF and RSF« are PSPACE-complete with respect
to logspace reductions.

Proof. We show

AIP* <iog RSFR <log RSF <log ASF.

The claim RSFr <iog RSF is trivial, and it is also easy to see that RSF <iog ASF:
given a regular expression E, a logspace-bounded Turing machine can construct a
nondeterministic automaton A such that L(E) = L(A).

Suppose that Bi,..., Bn (n > 2) axe minimal reset automata with a common
input alphabet E. Let C be the result of Construction 4.4 applied to the automata
B\,..., Bn. Then C is a minimal DFA with input alphabet E U { # } such that

P| L(Bi) = 0 L(C) is star-free.
t€[ra]

Applying Construction 4.3 to each one of the automata B\,..., Bn we get regular
expressions E\,...,En such that

L(Ei) = L(Bi),

for all i £ [n]. Recall that

L(C) = (L (B I) # L (B 2) # - - . L (B N) # (E * #) " - ") * ,

where p is the least prime number with p > n. It follows that a word v =
v (o) # v { i) # . . . v l k - i) # v W (k > 0) v(o) ^v(k) e belongs to L(C) if and only
if vW = e, k is a multiple of p, and v^ £ m0dP)+i)i for all i < k with
i mod p < n. The languages denoted by the regular expressions

Fj. = (EU #) * £

F2 = ((E*#)p)* [|J (£ * #) <] £ *
*e[p-i] J

F3 = ((E*#)*)* ((J] (EU #) '
Vi€[n) /

consist of those words v = t / C ' ^ l j j t • • • for which

Regular expression sfcar-freeness is PSPACE-complete 19

1. v ^ ± e,

2. k is not a multiple of p,

3. ^ ¿ (5 (i m o d p) + 1) for some i < k with i mod p < n,

respectively. Thus, the regular expression E := Ft UF? U-F-j denotes the complement
of the language L(C). Let ij) : (SU { # }) * -> {0,1}* be a homomorphism satisfying
the conditions of Lemma 2.1. Let E' be the regular expression obtained from
E by replacing each occurence of every letter i E S U { # } by the word tp(x) €
{0,1}*. Then E1 is a regular expression over the alphabet {0,1} having star-height
2. Moreover, L(E') = ip(L{E)) = rp(L(C)), so that

L(E') is star-free L(C) is star-free p| L(Bi) = 0.
i6[n]

The simple structure of E' assures that it can be constructed by a logspace-bounded
Turing machine. •

6 Open problems
The above results suggest that the following questions may be interesting.

1. What is the complexity of deciding whether n»e[n] L{Ai) ^ 0, for minimal
complete reset automata Ai,..., Anl

2. What is the complexity of deciding whether a regular expression of star-height
1 denotes a star-free language?

We conjecture that the answer for the first question is "NP-complete".
The second question seems to be harder. However, it is our conjecture that

restricting the problem RSF to regular expressions of star-height 1 substantially
decreases its computational complexity.

7 Acknowledgement
I would like to thank Zoltán Esik for encouragement and for many useful comments
and suggestions. I also thank Stephen L. Bloom and an anonymous referee whose
suggestions have been incorporated.

References
[1] L. Bernatsky and Z. Esik. Semantics of Flowchart Programs and the Free Con-

way Theories. Submitted for publication to RAIRO Theoretical Informatics
and Applications.

20 László Bernátsky

[2] D. P. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Pren-
tice Hall, 1994.

[3] Sang Cho and Dung T. Huynh. Finite-automaton aperiodicity is PSPACE-
complete. Theoretical Computer Science, 88:99-116, 1991.

[4] Samuel Eilenberg. Automata, Languages and Machines. Academic Press, New
York and London, 1974.

[5] Michael R. Garey and David S. Johnson. Computers and intractability, A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New
York, 1979.

[6] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, London, 3rd edition, 1954.

[7] A. Salomaa. Theory of Automata. Pergamon Press, 1969.

[8] M. P. Schiitzenberger. On Finite Monoids Having Only Trivial Subgroups.
Information and Control, 8:190-194, 1965.

[9] Jacques Stern. Complexity of Some Problems from the Theory of Automata.
Information and Control, 66:163-176, 1985.

[10] H. Straubing. Finite Automata, Formal Languages and Circuit Complexity.
Birkhauser, 1994.

A Appendix
Proof of Lemma 2.1. First of all note that n < 2l — 1, so that I bits are sufficient
to represent the number n in binary. Let tp : £* —{0 ,1 } * be the homomorphism
mapping each letter crj £ £ (i £ [n]) to the 2/-bit binary representation of i. Then
ijj is injective and satisfies (1).

Proof of (2). Suppose that (2) is not true. Then there exist some words u,v,w £
{0,1}* such that uv2lw £ tp(T,*), but 21 is not a divisor of |u|. Let us denote |n| by
m. Then m > 0 and gcd(2Z, m) < 21. Since none of the integers 1 + 1,1 + 2,... ,21 —1
is a divisor of 21,

Moreover, since no word in i/»(£*) may contain 02' as a subword, the letter 1 occurs
in the word v21, and thus in v. Let j £ [m] be an integer such that the th letter
of v is 1. If i £ [2lm] is an integer satisfying

gcd(2Z, TO) < I. (16)

i j (mod m) (17)

Regular expression sfcar-freeness is PSPACE-complete 21

then the ith letter of v11 is 1. By (1) it follows that if 1 < i < \uv2lw\ is an integer
such that (i — 1) mod 21 < I, then the ith letter of uv2lw is 0. In other words, if
i £ [2Im] is an integer satisfying

i = t - |u| (mod 21) (18)

for some t £ [Z], then the ith letter of v21 is 0. The diophantic system (17,18) is
solvable in the variable i if and only if

t-\u\ = j (mod gcd(2/,m)), (19)

and in this case every solution can be written in the form

i = io + h • lcm(2Z, TO),

where io is a fixed solution and h is an integer. Let t be the unique element of
[gcd(2Z,m)] satisfying (19). Then t £ [/], by (16). For this t there exists a unique
integer i £ [lcm(2Z,m)] C [2/m] such that both (17) and (18) hold. But then we
have, the contradiction that the ith letter of v21 is equal to both 0 and 1. This
contradiction was caused by the assumption that (2) fails.

Proof of (3). Suppose that L C £* is a language and tp(L) C {0,1}* is star-
free. Then L is regular and there exists an integer k > 0 such that for all words
u,v,w € £*,

uvkw £ L %p(u)il)(v)kil){w) £ ip(L)
tp{u)ip(v)k+1ip(w) £ ip(L)

<==> uvk+1w £ L,

showing L is star-free. Thus, for this direction no special property of the homo-
morphism if) is needed other than its injectivity.

For the converse direction, suppose that L C E* is a star-free language. Then
there exists an integer k > 0 such that

xykz £ L xyk+1z £ L, (20)

for all words x,y,z £ E*. Let m be the maximum of 21 and k + 1. Suppose that
uvmw £ ip{L), for some u,v,w £ {0,1}*. We want to show that uvm+1w £ ip(L).
This is obvius if = 0, so suppose that > 0. By (2) it follows that |?j| is a
multiple of 21, so that |t>| >21. Let a be the shortest prefix of v such that the length
of the word ua is a multiple of 21. Then v can be written as a(3, for some word
/3 £ {0,1}*. Since uvmw = ua(Pa)m~1 f3w £ ip(L) and the length of the words ua,
Pa and (3w are multiples of 21, there exist words x,y,z £ E* such that ip(x) = ua,
ip{y) = Pot, ip(z) = (3w and xym~1z £ L. Since m - 1 > k, it follows by (20) that
xymz £ L. Thus,

i>(xymz) = ua(f3a)ml3w = uvm+1w £ tp{L).

The implication uvm+1w £ ip{L) => uvmw £ ip(L) is proved in a similar way. •

Received January, 1996

