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We investigated the gender differences in heme-oxygenase (HO) enzyme, which produces endogenous vascular protective carbon
monoxide (CO). We studied (1) the activity and expression of HO enzymes in the left ventricle (LV) and aorta, (2) basal increase in
basal blood pressure provoked by arginine vasopressine (AVP) in vivo, (3) the heart perfusion induced by AVP, (4) the ST segment
depression provoked by adrenaline and 30 seconds later phentolamine, and (5) the aorta ring contraction induced by AVP in female
and male Wistar rats. We found that HO activity and the expression of HO-1 and HO-2 were increased in female rat aorta and LV.
We demonstrated that the basal blood pressure and administration of AVP provoked blood pressure response are increased in the
males; the female myocardium was less sensitive towards angina. Both differences could be aggravated by the inhibition of HO.
The aorta rings were more susceptible towards vasoconstriction by AVP in males; isolated heart perfusion decrease was higher in
males. The HO inhibition aggravated the heart perfusion in both sexes. In conclusion, the increased HO activity and expression in
females might play a role in the sexual dimorphism of cardiovascular ischemia susceptibility during the reproductive age.

1. Introduction

Gender-based differences in the incidence of hyperten-
sive and coronary artery disease, the development of ath-
erosclerosis, and myocardial remodelling after infarction
are attributable to the direct effect of oestrogen on the
myocardium, vascular smooth muscle (VSM), and endothe-
lium. Cardiovascular morbidity and mortality are far less in
premenopausal women compared to age-matched men, but
the basis of this discrepancy remains controversial. Ovarian
hormones are believed to be mainly responsible for this
“female advantages” in cardiovascular function although the
underlying mechanism has not been fully elucidated.

In the heart and vasculature oestrogen mediates rapid
vasodilation via production of nitric oxide (NO), protects
against neointimal injury in the balloon-injured rat and
facilitates the re-endothelialization of the damaged vessel
[1], reduces both myocardial infarct size and occurrence of

ischemia- and reperfusion-induced ventricular arrhythmias
in canine heart [2].

Carbon monoxide (CO) is a product of heme oxygenase
(HO) aswell and is not an antioxidant but can cause induction
of antioxidant genes [3–5]; it also decreases superoxide (O

2

−)
levels [6, 7], increases gluthione (GSH) levels [8], and has an
antiapoptotic effect [9, 10]. Further, CO is a vasodilator, which
has been shown to play an important role in the regulation of
basal and constrictor-induced vascular tone, in blood vessels
[11, 12].

Almost all CO produced in vivo comes from the degra-
dation of heme by HO. CO and NO have similar properties;
both behave as messenger signalling molecules, are able to
induce the relaxation of blood vessels through vasodilation
and inhibit the proliferation of vascular smooth muscle cells
(VSMC) [13]. Like NO, HO-derived CO influences the solu-
ble guanylyl cyclase (sGC) and cGMP pathways, which serve
to regulate both blood pressure and vascular contractility
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Figure 1: Experimental design: in vitro, ex vivo, in vivo measurements from heart aorta in intact female (in the proestrus phase) and male
Wistar rats HO-1: heme oxygenase 1; HO-2: heme oxygenase 2; AVP: Arginine vasopressin.

[14]. It has been demonstrated that by upregulating the HO
system in young (8-week-old) spontaneously hypertensive
rats, coincidently, sGC and cGMP levels rise, which leads to a
significant reduction of blood pressure. On the other hand,
by using an inhibitor of HO-1 activity, the blood pressure
of rats undergoing HO-1 inhibition significantly increases
[14, 15]. HO is the rate-limiting enzyme in heme catabolism;
it catalyzes the breakdown of heme into equimolar amounts
of carbon monoxide, biliverdin, and free iron [16]. Three
mammalian HO isoforms have been identified, one of which,
HO-1, is a stress-responsive protein induced by a remarkably
vast panoply of stimuli [16–19]. Mounting evidence indicates
that HO-1 plays an important cytoprotective role [20–23].
This enzyme has been found to have beneficial effects in a
wide variety of pathological conditions, such as inflamma-
tion, atherosclerosis, and ischemia/reperfusion injury [20–
22, 24, 25]. In noncardiac tissues, there is evidence that HO-
1 is regulated by NO [26, 27]. Of the metabolites generated
by HO-1 catalysis, biliverdin (and bilirubin) has been shown
to possess antioxidant activity, whereas carbonmonoxide has
been found to exert many salutary effects in various settings,
including myocardial ischemia [16, 28, 29].

The aimof the presentworkwas to investigate any gender-
based differences in HO expression and activity and to clarify
the role of HO enzyme system in cardiovascular protection
via usingHOenzyme system inhibitor tin protoporphyrin IX.

2. Materials and Methods

2.1. Examined Groups. We used male and female Wistar
rats (230–250 g) bred in our animal house; the breeding
stock was derived from the Laboratory Animals Producing
Institute (Gödöllő, Hungary). Each group consisted of at
least ten animals. Rats were housed in a light-controlled
roomunder constant environmental conditions and fed pellet

rat chow and tap water ad libitum after they were received
in our laboratory. The 12 : 12 h light-dark cycle started at
6:00AM, and the room temperature was maintained at 20–
23∘C. All OVX rats were in the proestrus stage, which is
characterized by the unique presence of nucleated epithelial
cells stained with a 0.1%Giemsa solution and observed under
light microscopy (×100) [30].

Heme-oxygenase enzymes were inhibited by tin proto-
porphyrine IX (SnPP; 30.0mg/kg, s.c., pH 7.4, 24 hours and
one hour before treatment). Experimental design is shown
in Figure 1. All manipulations were performed in accordance
with the standards of the European Community guideline
on the care, and use of laboratory animals and had been
approved by the Institutional Ethics Committee.

2.2. Cardiac and Aortic HO-2 and HO-1 Protein Expressions.
The expression of HO-2 and HO-1 enzymes was determined
by Western blot analysis. Cardiac and aorta tissues were
homogenized (Ultra Turrax T25; 13.500min-1; 2×30 s) in ice-
cold Tris-mannitol buffer (2.0mM Tris 7–9, 50.0mM man-
nitol, 100.0𝜇M phenyl-methyl-sulphonyl-fluoride, 2.0𝜇M
leupeptin, 0.50mU/mL aprotinin, 0.50% Triton X-100) and
were centrifuged for 20min at 12000 g at 4∘C. Protein content
was measured by spectrophotometric assay (Bio-Rad Protein
Assay).

Aliquots of 25.0 𝜇g of total cellular protein were dena-
tured by mixing and boiling with 20.0mM Tris 7–9, 3.0mM
EDTA, 2.0% sodium dodecyl sulphate (SDS), 10.0% 𝛽-
mercaptoethanol, and 20.0% glycerol. The samples were
electrophoresed (100V, 50mA) on 10.0% polyacrylamide gel
and transferred (100V, 100mA, 2 h) to nitrocellulose mem-
brane (Amersham, Pharmacia Biotech., Buckinghamshire,
UK). Equal protein loading was determined by staining
the blot with 0.10% Ponceau red in 5.0% acetic acid. Two
hours after blocking with PBS (pH 7.4), 0.25% tween 20,
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and 5.0% fat-free dried milk, the membrane was probed
with mouse anti-HO-1 monoclonal antibody (1/10.000; 2 h)
(StressGen Biotechnologies Corp., Victoria, Canada) or anti-
HO-2monoclonal antibody (1/1000; 2 h) (StressGen Biotech-
nologies Corp., Victoria, Canada) at room temperature,
washed 3 times with PBS-tween 20 and then incubated
with horseradish peroxidase-conjugated bovine antimouse
antibody (1/2000; 1 h; Santa Cruz Biotechnology Inc., Santa
Cruz, Ca, USA) for 1 h at room temperature. Membranes
(Hybond ECL Nitrocellulose membrane, Amersham, Phar-
macia Biotech., Buckinghamshire, UK) were developed by
using an enhanced chemiluminescence system (ECL+Plus,
Amersham Pharmacia Biotech., Buckinghamshire, UK) and
exposed to Hyperfilm (Biomax light-1, Eastman Kodak
Comp. Rochester, New York). Films were analysed by using
the ImageQuant Software (Amersham Pharmacia Biotech.,
Buckinghamshire, UK) after scanning with GelAnalyst 3.01
Software (Iconix, Toronto, Canada). Results are expressed as
%, and the 100% is the maximal expression.

2.3. Cardiac andAortaHOEnzymeActivities. Thecardiac left
ventricle and aortic tissues were homogenised (Ultra Turrax
T25; 13.500min-1; 2 × 30 s) in ice-cold 10.0mM N-2-hy-
droxyethylpiperazine-N󸀠-2-ethanesulfonic acid (HEPES),
32.0mM sucrose, 1.0mM dithiothreitol (DTT), 0.10mM
EDTA, 10.0 𝜇g/mL trypsin inhibitor, 10.0 𝜇g/mL leupeptin,
and 2.0𝜇g/mL aprotinin (pH: 7.4). The supernatant was
collected by centrifugation for 20min at 15000 g at 4∘C.
The reaction mixture contained the following compounds
in a final volume of 1.50mL: 2.0mM glucose-6-phosphate,
0.14U/mL glucose-6-phosphate dehydrogenase, 15.0 𝜇M
hemin, 120.0𝜇g/mL rat liver cytosol as a source of biliverdin
reductase, 2.0mM MgCl

2
× 6H
2
O, 100.0mM KH

2
PO
4
, and

150.0 𝜇L of supernatant. To start the reaction 100.0𝜇L of
𝛽-nicotinamide adenine dinucleotide phosphate, reduced
form (𝛽-NADPH; 150.0 𝜇M) was added to the samples; then
they were incubated in darkness at 37∘C for 60min. The
reaction was stopped by placing the samples on ice. Bilirubin
solution was used as standard (58.47 𝜇g/mL; 10.0 𝜇M). The
bilirubin formed was calculated from the difference between
optical densities obtained at 464 and 530 nm. Protein content
was determined by spectrophotometric assay (Bio-Rad
Protein Assay).

One unit of HO activity was defined as the amount of
bilirubin (nmol) produced per hour per mg protein.

2.4. Measuring of Basal Blood Pressure and the Response of
Blood Pressure to AVP. Animals were anaesthetized with
30.0% urethane (0.50mL/100 g, i.p.) and then pretreated with
phentolamine (10.0mg/kg, i.p). A single bolus injection of
arginine vasopressin (AVP; 0.02; 0.06; 0.12 𝜇g/kg, i.v.) was
administered into the tail vein following the stabilisation
of blood pressure. The procedure has been described in
detail previously [31]. Briefly, the elevation of blood pressure
(expressed as the percentage of maximal increase as com-
pared to the basal value) was measured in the right carotid
artery through a blood pressure transducer connected to the
HAEMOSYS computerised complex haemodynamic analysis

system (Experimetria UK, London).The core temperature of
rats was maintained at 37∘C with a homeothermic control
unit (Harvard Instrument, UK).

2.5. Measuring of Heart Perfusion According to Langendorff.
Animals received an intraperitoneal injection of heparin
(500 units) 10–20min before being euthanized. After cervi-
cal dislocation, hearts were rapidly excised (mean time to
perfusion 2min) and mounted on a Langendorff perfusion
system. Hearts were perfused via the aorta according to the
Langendorff method at a constant pressure of 70.0Hgmm at
37∘C. The perfusion medium was a Krebs-Henseleit buffer
consisting of 118.0mM NaCl, 4.70mM KCl, 2.50mM CaCl

2
,

1.18mM MgSO
4
, 25.0mM NaHCO

3
, 1.18mM KH

2
PO
4
, and

5.50mM glucose. The perfusate was bubbled with a 95%
O
2
/5% CO

2
through a glass oxygenator and adjusted to pH

7.4. After a stabilization period of 15min, the heart perfusion
was measured (expressed as the percentage of maximal
response as compared to the basal value) as a response toAVP
(AVP final concentration in Krebs solution: 1.0; 3.0; 10.0𝜇g).

2.6. Experimental Angina Provoked by Epinephrine Plus Phen-
tolamine. The standard limb lead II of the surface electro-
cardiogram (ECG) was recorded by the HAEMOSYS system.
The change in ST segment was measured and used as the
index of angina severity. The mean ECG voltage 13ms after
the peak of the S wave was defined as the value of the
ST segment, as described previously [32]. The difference
in the amplitude of the ST segment after and before the
administration of angina-provoking agents was calculated
and expressed as the depression of the ST segment in mV. In
the epinephrine plus phentolamine model, a single dose of
epinephrine (10.0𝜇g/kg) and 30 s later𝛼-adrenoceptor antag-
onist phentolamine (15.0mg/kg) were administered into the
tail vein of the rat. Each agent was dissolved in 0.20 mL of
physiological saline and injected over 2 s.TheECG, heart rate,
and blood pressure changes were recorded simultaneously.

2.7. Measurement of Surviving Aorta Contraction. The rats
were killed by cervical dislocation, and the abdominal aortas
were removed and placed in chilled Krebs-Henseleit bicar-
bonate solution (4∘C), which was gassed with 95% O

2
and

5% CO
2
. The composition of the incubation solution was

described in detail by [33]. The aortas were cleaned of all
adipose and connective tissue, the abdominal region was cut
into rings (3mm long), and their weights were measured.
Two adjacent aortic rings were studied from each animal in
paired fashion. The rings were mounted on two 25-gauge
stainless steel wires; the lower onewas attached to a stationary
stainless steel rod and the upper one to a force-displacement
transducer for the measurement of isometric tension. The
transducer was connected to an ISOSYS computerized pro-
gramme system (Experimetria, UK, London) for continuous
recording of the blood vessel tension.

Immediately after being mounted, the abdominal rings
were suspended in water-jacketed organ baths filled with
15.0mL of incubation solution maintained at 37∘C and
continuously gassed with 95% O

2
and 5% CO

2
. Before the



4 Oxidative Medicine and Cellular Longevity

36 kDa
HO-2

0

20

40

60

80

100

Male

H
O

-2
-e

xp
re

ss
io

n 
(%

)
Le

ft 
ve

nt
ric

le

Female

∗

(a)

0

20

40

60

80

100

∗

32 kDa
HO-1

Male

H
O

-1
-e

xp
re

ss
io

n 
(%

)
Le

ft 
ve

nt
ric

le

Female

(b)

Figure 2: Heme-oxygenase expression (HO-2 andHO-1 expressed as%) in the cardiac left ventricle ofmale (the black square) and female (the
grey square). Data are expressed as means± S.E.M. of the results of a minimum of 10 rats per group. Statistical significance: ∗𝑃 < 0.001. Panel
(a): heme-oxygenase 2 (HO-2) (expressed as %) in the cardiac left ventricle tissue of male (the black square) and female (the grey square)
rats with densitometric assessment (means± S.E.M. expressed as %, 100% is the maximal expression). Panel (b) shows heme-oxygenase 1
(HO-1) (expressed as %) in the left ventricle tissue of male (the black square) and female (the grey square) rats with densitometric assessment
(means± S.E.M. expressed as %, 100% is the maximal expression). Data are expressed as means± S.E.M. of the results of a minimum of 10
rats per group. Statistical significance: ∗𝑃 < 0.001 as compared to the female group.

start of the experiments, the blood vessels were gradually
stretched (over a 30min period) to an optimum passive
tension of 2.50 g and equilibrated for a period of 20–30min.
Following the equilibration period, we freshly added the same
dose of arginine vasopressin (2𝜇gmL−1) to the incubation
solution. The optimum contractile response to vasopressin
was calculated before the experiments by using gradually
increasing vasopressin doses. The contractile response to
vasopressin was expressed in terms of the tension of the aorta
ring (g/mg ring weight).

2.8. Chemicals. The following chemicals were ordered from
different companies: Arginine-vasopressine (AVP; Organon,
The Netherlands), Urethane (Reanal, Hungary), Phento-
lamine (Regitin, P; Ciba-Geigy, Switzerland) and tin pro-
toporphyrine IX (SnPP; Frontier Scientific Europe, United
Kingdom). All compounds not specified above were derived
from Sigma Aldrich.

3. Results

3.1. HO-2 and HO-1 Expression of Cardiac Left Ventricle and
Aorta . HO-2 andHO-1 protein was determined byWestern-
blot techniques. Significantly (𝑃 < 0.001) decreased cardiac
HO enzymes expression was found in males left ventricle
(HO-2: 33.857 ± 5.161%; HO-1: 39.0 ± 5.113%) and in aorta
(HO-2: 44.143±3.112%;HO-1: 40.286 ± 3.790%) as compared
to the females left ventricle (HO-2: 93.143 ± 1.792%; HO-1:
87.429 ± 3.015%) and aorta (HO-2: 87.286 ± 4.028%; HO-1:
85.286 ± 5.126%). Data are shown in Figures 2 and 3.

3.2. HO Activity of Cardiac Left Ventricle and Aorta. HO-
enzyme activity was determined bymeasurement of bilirubin
formation. In male group, activity of HO was significantly
(𝑃 < 0.05) decreased both in the cardiac left ventricle
(1.877 ± 0.369 nmol bilirubin/h/mg protein) and aorta
(5.045 ± 0.798 nmol bilirubin/h/mg protein) HO enzyme
activity decased as compared to the females cardiac left
ventricle (2.647 ± 0.288 nmol bilirubin/h/mg protein) and
aorta (9.709 ± 2.201 nmol bilirubin/h/mg protein). Data are
shown in Figure 4.

3.3. The Measuring of Basal Blood Pressure and the Effect of
HO Inhibition on Blood Pressure as a Response to AVP. The
basic blood pressure is shown in Figure 5(a). Significantly
(𝑃 < 0.05) higher blood pressure wasmeasured in the control
male rats as compared to the females (100.80 ± 6.49 versus
78.80 ± 2.19mmHg).

The arterial blood pressure was measured in the right
carotid artery and we demonstrated the increase in blood
pressure induced by intravenous administration of AVP
(0.02-0.18 𝜇g/kg) in catecholamine-depleted (phentolamine:
P, 10.0 mg/kg i.p.) female and male rats.

AVP caused a dose-dependent increase in arterial blood
pressure both in the female and male rats. In the females
(9.30 ± 1.62–24.0 ± 2.12%), AVP induced a significantly
(𝑃 < 0.05) lower elevation in blood pressure than in males
(21.60 ± 1.19–54.0 ± 1.26%). The inhibition of HO enzyme
system caused significant augmentation in all groups (female:
31.1 ± 2.23–49.5 ± 2.76%; male group: 24.90 ± 1.12–61.10 ±
1.53%). Data are shown in Figure 5(b).
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Figure 3: Heme-oxygenase expression (HO2 and HO-1 expressed as %) in the aortic of male (the black square) and female (the grey square).
Data are expressed as means± S.E.M. of the results of a minimum of 10 rats per group. Statistical significance: ∗𝑃 < 0.001. Panel (a): heme-
oxygenase 2 (HO-2) (expressed as %) in the aortic tissue of male (the black square) and female (the grey square) rats with densitometric
assessment (means± S.E.M. expressed as %, 100% is the maximal expression). Panel (b) shows heme-oxygenase 1 (HO-1) (expressed as %)
in the aortic tissue of male (the black square) and female (The grey square) rats with densitometric assessment (means± S.E.M. expressed
as %, 100% is the maximal expression). Data are expressed as means± S.E.M. of the results of a minimum of 10 rats per group. Statistical
significance: ∗𝑃 < 0.001 as compared to the female group.
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Figure 4: Heme-oxygenase activity (HO; expressed as nmol bilirubin/h/mg protein) in the cardiac left ventricle (a) and aorta tissues (b) of
male (the black square) and female (the grey square). Data are expressed as means± S.E.M. of the results of a minimum of 10 rats per group.
Statistical significance: ∗𝑃 < 0.05.

3.4. The Effect of Inhibition of HO on Isolated Heart Perfusion
as a Response to AVP. Theperfusionwasmeasured according
to Langendorff. The effect of AVP (1.0–10.0 𝜇g) on heart
perfusion proved to be dose dependent in all groups. In the
male animals (9.30 ± 1.108–26.70 ± 1.711%), AVP caused a
significantly (𝑃 < 0.05) higher decrease of heart perfusion
than in intact female group (3.30 ± 0.72–11.70 ± 2.61%). The
inhibition of HO enzyme system caused (SnPP, 30.0mg/kg,
pretreatment 24 hours and one hour prior to the measure-
ment) significant augmentation in all groups (female: 5.10 ±

0.83–15.0 ± 1.90%; male group: 15.10 ± 1.19–38.10 ± 2.72%).
Data are shown in Figure 6(a).

3.5. The Effect of Inhibition of HO on ST Depression. ST
segment changes were measured in a lead II standard surface
ECG following intravenous injection of epinephrine (A:
10.0 𝜇g/kg) and 30 s later phentolamine (P: 15.0mg/kg) in
female and male rats. The administration of phentolamine
30 s after epinephrine caused a significant (𝑃 < 0.05) ST
segment depression only in male group (−0.10 ± 0.0278mV).
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Figure 6: The diagrams show the effect of HO inhibition by tin protoporphyrin (SnPP) on the decrease in heart perfusion (a) expressed as
the percentage of change, measured by incubation liquid given AVP (1.0, 3.0, 10.0𝜇g) in hearts of male (the black square) and female (the
grey square).The Panel (b) demonstrates effect of the HO inhibitor tin protoporphyrin (SnPP) on ST segment changes (measured in a lead II
standard surface ECG; expressed inmV) following intravenous injection of epinephrine (10.0𝜇g/kg) and 30 s later phentolamine (15.0mg/kg).
White columns (the white square) show the intact groups without SnPP treatment. Patterned columns show the actions of SnPP (30.0mg/kg
pretreatment 24 hours and one hour prior to the measurement). Results are shown as means± S.E.M. for 10 animals in each group. Statistical
significance: ∗𝑃 < 0.05 as compared to the ovary intact group and #

𝑃 < 0.05 a significant difference between groups with and without SnPP
pretreatment.
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In females, an ST segment depression did not develop. Pre-
treatment with SnPP (30.0mg/kg, pretreatment 24 hours and
one hour prior to the measurement) caused ST depression in
female (−0.20 ± 0.03mV) and augmented the ST depression
in males (ST segment change: −0.28 ± 0.055mV). Data are
shown in Figure 6(b).

3.6. The Measurement of Aorta Contraction Provoked by AVP.
Results observed in the experiment involving the surviving
aorta ring contraction are demonstrated in Figure 3(b). The
vasoconstriction induced by AVP was much significantly
(𝑃 < 0.05) higher in the male than that observed in
the females (2.80 ± 0.37 versus 0.70 ± 0.18 g/mg aorta
ring). The inhibition of HO enzyme system caused (SnPP,
30.0mg/kg, pretreatment 24 hours and one hour prior to
the measurement) augmentation in all groups (male: 3.20 ±
0.45 g/mg aorta ring female group: 1.90 ± 0.39). Data are
shown in Figure 7.

4. Discussion

The present study revealed gender difference in vascular and
myocardial HO expression, and activity, which may con-
tribute to the gender-related difference of cardiac function.
The current experiments are reported, that are gender dif-
ferences in the basal blood pressure, basal aorta contraction,
the experimental angina, and heart perfusion. This notion
of “female advantage” is supported by the gender-related
differences in the clinical manifestations of cardiovascular
disease such as stroke, LV hypertrophy, and coronary heart
disease.

Several hypotheses have been postulated for the gender-
related difference of cardiovascular morbidity and mortality
including differences in hormones, lipid profile, myocardial,
endothelial, and vascular performance between male and
female genders and aging [34–36]. While a great part of
the observed gender differences in vascular reactivity has

been attributed to genomic modulation by sex hormones,
nongenomic effects of those hormones also exist. In fact,
relatively little is known about the HO activity changing
during aging in the heart. Lavrovsky et al. [37] found
enhanced oxidative stress during agingwhich is accompanied
by compensatory induction of the antioxidant enzyme HO-
1 through activation of the NFkB pathway in the rat liver.
Ariyoshi et al. [38] examined the effects of age and sex on
microsomal heme oxygenase activity and cytochrome P-450
content in rat liver. They observed that heme oxygenase
activity declinedwith an increase in age, namely, its activity in
100 days old (young) rats was 58% in male and 72% in female
rats as compared with respective 30-day-old (immature) rats,
and in 300-day-old (old) rats, it was 32% in male and 39%
in female rats. Results of Bitar fit into the literature data;
namely, testosterone treatment decreased the microsomal
concentration of heme in aged rats by 37%, respectively, as
compared to young values. In contrast, a marked increase in
the activity of microsomal heme oxygenase was seen in these
animals.

Oestrogen had generally been considered a protective
factor against cardiovascular disease, which was based on
epidemiological data showing that the incidence of coronary
heart disease among women was lower than among men
before menopause, and this disparity decreased at post-
menopause [39]. In postmenopausal women, the hormone
replacement therapy was found to reduce the rate of car-
diovascular disease. Moreover, many studies concerning the
effects of long-term oestrogen administration on systemic
haemodynamics in postmenopausal women. Choudhry et al.
[40] showed that oestrogen administration upregulates HO
activity following traumatic injury and trauma haemorrhage.
The upregulated HO inhibits the expression of adhesion
molecules and prevents subsequent leukocyte—endothelial
cell interactions under these conditions. Moreover, upregu-
lation of HO protects mitochondrial function and prevents
ATP-depletion after oxidative stress. Liver ontogenesis of
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HO has been examined, and high HO activity levels were
observed during fetal development and during development
and aging, the transcriptional response to oxidative stress
decreases, and HO-1 protein levels do not increase pro-
gressively during aging [41]. These phenomenon may be
explained by a decreased transcriptional ability to respond
to stress rather than by a reduction in oxidative stress
[42]. Abraham and Kappas [41] found that HO-1 responds
to known inducers when administered to young rats, but
induction of HO-1 in old animals (24-months of age) did
not change the levels of cytochrome P450 compared with the
perturbations seen in young rats [43].

However, the association between oestrogen and cardio-
vascular disease has been corrected. It was reported that
women had a worse prognosis after myocardial infarction
(MI) than men did. In support of clinical observation, it was
experimentally demonstrated that oestrogen replacement in
ovariectomized rats resulted in an increased size of infarct
after MI than placebo treatment. The authors speculated that
oestrogen attenuates or downregulates a number of stress
responses [44].

Rahimian et al. demonstrated a gender difference in
aortic eNOS mRNA expression [45]. In accordance, Morschl
et al. have reported that the cNOS activity is higher in the
aorta of female rat compared to its activity of male aortic
tissue [46].

In the present study, we first demonstrated gender dif-
ferences in HO enzyme system, which can also play role in
the cardiovascular protection and can be also upregulated
by endogen oestrogen. To clarify the exact role of HO, we
measured HO-2 and HO-1 protein levels and activity in the
presence of HO inhibitor.

Oestrogen exerts a protective action through favourable
effects on lipid profiles, decreased platelet and mono-
cyte adhesion, and decreased vascular reactivity [47, 48].
Although the mechanisms by which oestrogen affects vas-
cular tone are not completely understood, and a change in
the communication between the vascular endothelium and
smooth muscle is likely an important pathway for the action
of oestrogen. The mechanisms by which gender influences
CO production are unclear and may involve an increase in
HO expression and activity.

Contraction of mesenteric arteries to phenylephrine was
greater in arteries from male rats.

Arteries from male rats seem to be more sensitive to
the modulatory effects of 17𝛽-estradiol than arteries from
female rats [49]. In our experiment, we found also greater
contraction of abdominal aorta to AVP in male rats, and this
contraction can be augmented via using HO enzyme system
inhibitor.

The produced CO has been hypothesized to serve a
physiological role in regulating vascular tone, which is medi-
ated by cGMP-signalling pathway and by calcium activated
potassium channels [50]. The HO system is also present
and regulated in the heart. HO-1 and HO-2 differ in gene
organization and structure and in chromosomal localization
[51]. The two forms also vastly differ in cell type, tissue
distribution, and regulation. HO-1 enzymes have been char-
acterized as endoplasmic reticulum (ER) associated proteins,

due to the abundant detection of HO activity in microsomal
(104,000 g) fractions. BothHO-1 andHO-2 contain aCOOH-
terminal hydrophobic domain segment that suggests a gen-
eral membrane compartmentalization. Recent studies have
raised the possibility of the functional compartmentalization
of HO-1 in other subcellular domains beside the ER, includ-
ing but not limited to the nucleus and plasma membrane.
The potential functional subcellular compartmentalization of
HO enzymes raises an intriguing issue of organelle specific
function of HO metabolites, mainly, CO [16]. Relatively little
is known about the possible functional compartmentalization
of HOs to the nucleus. Preliminary studies indicate that heme
stimulates the nuclear translocation of HO-1. Furthermore,
HO-2 was detected constitutively in the nucleus of NIH3T3
(cells mouse embryonic fibroblast cells) and was proposed to
facilitate the entry of HO-1 [52]. The comparative expression
of HO-1 and HO-2 in kidneys, heart, and the vasculature
under normal conditions and the response to oxidative
stress have recently been examined; the findings of these
studies most likely have ramifications for cardiovascular
system physiology. In this system, HO-2 is the predominant
form expressed under normal conditions [16]. HO-2 protein
is normally expressed in the endothelial and the smooth
muscle layers of the blood vessels [53, 54] in the carotid
body chemoreceptors [55] and in the adventitial neurons
of blood vessels [53]. When stressed, there is an impressive
increase inHO-1mRNA expression in the heart, kidneys, and
vasculature. In the stressed heart, HO-1 protein is expressed
particularly at high levels in the arterioventricular (AV) node
[56] and in the myocytes [57] where normally HO-1 protein
is minimally expressed. HO-2 is reportedly absent from the
striatedmusculature and appears to be coexpressedwithNOS
in vascular endothelial cells and in select nerve cell popu-
lations of certain parasympathetic and sensory ganglia [58].
Using immunostaining techniques, a widespread expression
of HO-2 has been detected not only in blood vessel wall
constituents (arterial and venous endothelial cells, vascular
smooth muscle cells), but also in connective tissue elements
(fibrocytes/fibroblasts and fibroblast-like cells). The cardiac
HO system may have a role in preventing atherosclerosis,
regulating blood pressure, and modulating NO-mediated
myocardial preservation [59].

This experiment was designed to compare HO enzyme
system activity, basal HO-2 and HO-1 expressions, and CO
production in males and females in oestrus phase. The level
of oestrogen in blood is increased between the morning
and afternoon of proestrus and remained high during estrus
morning, and it then decreases again in metestrus and
diestrus. The circulating level of estradiol in the proestrus
phase induces elevated expression and activity of HO enzyme
system, compared to male rats [60].

The elevated expression and activity of HO enzyme
system in examined females caused moderated blood
pressure, aorta contraction, diminished ST depression, and
normal response of blood pressure and heart perfusion
provoked by AVP. HO expression and activity in heart and
abdominal aorta resulting enhanced generation of basal
CO. Although CO has been traditionally regarded as toxic
molecule, recent evidence has revealed that this gas exerts
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pleiotropic homeostatic effect. In particluar, CO has been
shown to promote vasorelaxation and to inhibit proliferation
of vascular smooth muscle cells, apoptosis, transplant
rejection, inflammation, platelet aggregation, microvascular
thrombosis, cytokine production, and oxidative stress [28].
Like NO, HO-derived CO influences the sGC and cGMP
pathways, which serve to regulate both blood pressure and
vascular contractility. By using an inhibitor of HO activity,
the blood pressure, the ST depression, and heart perfusion
are significantly augmented in both female andmale animals.

COhas been identified as an endogenous cellularmessen-
ger, and studies suggest an important role of CO in hemody-
namic regulation [61]. It has been shown that endogenously
produced CO is a signal molecule [62] and an activator of
guanylyl cyclase responsible for the generation of cGMP in
the vascular tissue [63]. These findings indicate that vessel
wall-derived CO could serve as an endogenous regulator of
vascular tone and platelet activity. HO-CO and NOS-NO
pathways show many similarities; both HO and NOS have
distinct constitutive and inducible isoforms, and bothCOand
NO stimulate sGC to produce cGMPas the secondmessenger
effector. Moreover, many of stimuli that induce iNOS, such
as catecholamines, cytokines, and ischemia/reperfusion, also
induce HO-1 [64]. The relative contribution of CO and NO
to the activation of GC in the cardiovascular system remains
unknown, even under physiological conditions. In many
pathological conditions, such as hypoxia, thermal injury,
and ischemia/reperfusion, CO mediated effects may be pre-
dominant. For instance, it was found that an HO inhibitor
blocked cGMP production, whereas an NOS inhibitor has no
effect [65]. Results from the present study tend to implicate
CO as an important cardioprotective agent in the “female
advantage” in cardiovascular function. The activation of HO
enzyme system in a gender-dependent manner may help
explain differences observed in cardiovascular disease risk
between the sexes and supports the potential beneficial effect
of physiological oestrogen.
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