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Abstract. Salicylic acid (SA) applied exogenously is a potential priming agent during abiotic stress. In our experiments,
the priming effect of SA was tested by exposing Arabidopsis thaliana (L.) Heynh. plants to 2-week-long 10�9

–10�5 M SA
pretreatments in a hydroponic medium, followed by 1 week of 100mMNaCl stress. The levels of reactive oxygen species
and H2O2, changes in antioxidant enzyme activity and the expression of selected glutathione transferase (GST) genes were
investigated. Although 10�9–10�7 M SA pretreatment insufficiently induced defence mechanisms during the subsequent
salt stress, 2-week pretreatments with 10�6 and 10�5 M SA alleviated the salinity-induced H2O2 and malondialdehyde
accumulation, and increased superoxide dismutase, guaiacol peroxidase, GST and glutathione peroxidase (GPOX) activity.
Our results indicate that long-term 10�6 and 10�5 M SA treatment mitigated the salt stress injury in this model plant.
Enhanced expression of AtGSTU19 and AtGSTU24 may be responsible for the induced GST and GPOX activity, which
may play an important role in acclimation. Modified GST expression suggested altered signalling in SA-hardened plants
during salt stress. The hydroponic system applied in our experiments proved to be a useful tool for studying the effects of
sequential treatments in A. thaliana.
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Introduction

Salicylic acid (SA) is known to regulate diverse physiological
and biochemical processes in plants, including seed germination,
growth and productivity, photosynthesis, senescence and water
relations (Rivas-San Vicente and Plasencia 2011). Elevated
SA levels were shown to correlate with enhanced resistance to
pathogen infection (Raskin 1992; Shirasu et al. 1997; Vlot et al.
2009). SA mediates the oxidative burst that leads to cell death
in the hypersensitive response. At the site of infection, a rapid
change in ion flux and reactive oxygen species (ROS) occurs,
which leads to the induction of defence responsive genes,
including those which are directly or indirectly involved in SA
synthesis (Dangl and Jones 2001; Métrauxs 2001; Ashraf et al.
2010; Xia et al. 2015). SA acts as a signal for the development
of the systemic acquired resistance, preventing further infection
of the plant by the pathogen, but it was also shown to provide
tolerance against various environmental stresses (Shirasu et al.
1997).

SA signalling has been studied intensively. One of the main
pathways is associated with the reduction of the intermolecular

disulfide bonds of the cytosolic oligomer Nonexpressor of
Pathogenesis-Related genes 1 (NPR1) protein. The resulting
monomers are then able to translocate to the nucleus and
activate the expression of defence genes in the NPR1-
dependent pathway (Mou et al. 2003). A novel and interesting
feature of NPR1, besides being a metalloprotein acting as
a transcription regulator, is that it acts as a SA receptor
(Wu et al. 2012; Kuai et al. 2015). However, recent evidence
suggests that H2O2-dependent changes in the glutathione pool
can activate SA-dependent defence responses independently of
NPR1 (Han et al. 2013). SA signalling transcriptional factors,
such as NPR1, TGACG motif-binding protein (TGA) factors,
TGA box and as-1-like elements were suggested to act as redox
sensors for temporal control of gene expression modulated by
SA, whereas early NPR1-independent and SA-activated gene
products may have antioxidant and detoxifying activity (Blanco
et al. 2009).

Although involvement of SA in plant defence against pathogen
attack is well documented, recent articles demonstrate that this
regulator can be implicated in responses to abiotic stresses,
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including high salinity (Jayakannan et al. 2015). Exogenous
application of SA has been used as a priming or hardening
compound to enhance the resistance of plants to biotic and
abiotic stresses (Hayat et al. 2010; Joseph et al. 2010). SA
was shown to protect several plant species against injuries of
salinity including Arabidopsis thaliana (L.) Heynh. (Lee and
Park 2010; Jayakannan et al. 2013), tomato (Solanum
lycopersicum L.) (Tari et al. 2002; Stevens et al. 2006),
mungbean (Vigna radiata (L.) R. Wilczek) (Khan et al. 2010),
maize (Zea mays L.) (Gunes et al. 2007), barley (Hordeum
vulgare L.) (El-Tayeb 2005), sunflower (Helianthus annuus
L.) (Noreen et al. 2009) and mustard (Brassica juncea L.)
(Syeed et al. 2011). It was suggested that SA treatment
alleviates the damage of salt stress through strengthening
the antioxidant capacity (Szepesi et al. 2008; Palma et al.
2009; Khan et al. 2010; Rivas-San Vicente and Plasencia
2011; Syeed et al. 2011). Nevertheless, some controversy
regarding the involvement of SA in salt stress responses still
exists. The results of experiments using A. thaliana mutants
with modified SA contents suggest that SA is directly involved
in the NaCl-induced growth inhibition and disturbance of
metabolism (Hao et al. 2012). Hao et al. (2012) reported that
SA deficiency or signalling blockage in A. thaliana plants was
favourable to salt adaptation whereas sid2 A. thaliana mutants,
which were impaired in SA biosynthesis, were shown to be
hypersensitive to salt stress (Alonso-Ramírez et al. 2009).

Salinity affects plant growth and development in a complex
manner. On the one hand, salt reduces the soil water potential
and causes osmotic stress; on the other hand, it imposes ionic
stress by excessive uptake ofNa+ andCl– ions (Munns 2005). Salt
stress leads to the accumulation of ROS, such as 1O2, O2

*–, OH
*

and H2O2, through the disruption of photosynthetic electron
transport, generation of H2O2 in the peroxisome, an increase
of respiration, and the activation of membrane-bound NADPH
oxidase and apoplastic diamine oxidase (Munns and Tester
2008; Abogadallah 2010). ROS are natural byproducts of
normal metabolism and have important roles in cell signalling
and control of redox homeostasis. Unbalanced generation of
these oxygen species, however, induces detrimental oxidation
of macromolecules, such as DNA, proteins and lipids. ROS-
mediated membrane damage is among the major causes of the
cellular toxicity provoked by salinity (Kim et al. 2005). In order
to keep ROS levels tightly regulated and to minimise ROS-
derived damage, different nonenzymatic antioxidants (such
as ascorbate, glutathione, carotenoids and tocopherols) and
enzymatic systems (superoxide dismutase (SOD), catalase
(CAT), guaiacol peroxidase; ascorbate peroxidase, glutathione
peroxidase (GPOX) and glutathione reductase) have evolved in
aerobic organisms. Zhang et al. (2012) evaluated the results of
proteomic studies conducted with 34 salt-treated plant species
(including A. thaliana and Oryza sativa L. model plants, 7
agricultural crops and 12 economic crops, 11 halophytes and 2
tree species) and revealed 184 protein identities as ROS
scavenging-related proteins, 143 were induced by salinity (for
more details, see the review of Zhang et al. 2012). In A. thaliana
plants, the abundanceofSOD,peroxidases, ascorbate peroxidase,
glutathione reductase, GST and other enzymes were affected by
salt treatment (Zhang et al. 2012).

GSTs are induced by diverse environmental stimuli and
were proposed to contribute to protection against various stress
conditions that promote oxidative stress (Marrs 1996). The
A. thaliana genome contains 55 GST genes, which can be
divided into eight classes, including seven soluble (tau, phi,
zeta, theta, lambda, dehydroascorbate reductase and
tetrachlorohydroquinone dehalogenase) and one membrane-
bound (microsomal) class (Dixon et al. 2010). The plant-
specific tau (GSTU) and phi (GSTF) classes of GSTs have
important roles in protection against cytotoxic and xenobiotic
compounds (Dixon et al. 2002). They are the two largest
GST classes in A. thaliana, comprising 28 and 13 members,
respectively (Dixon et al. 2010). Both the GSTU and GSTF
classes have members with high glutathione-conjugating (GST)
and glutathione-dependent peroxidase (GPOX) activities (Dixon
et al. 2009), and are known to be essential in alleviating oxidative
damages (Roxas et al. 2000). Gene expression and protein
abundance of GSTs can be altered by a wide variety of plant
growth regulators and stress factors, including SA, and also by
NaCl treatments used in different concentrations and durations
(Wagner et al. 2002; Sappl et al. 2004; Sappl et al. 2009; Zhang
et al. 2012). The spatial and temporal changes in the levels of
ROS and NO were shown to have a central role in the crosstalk
of different hormones, developmental regulation and stress
responses (Kocsy et al. 2013).

Previously, we found that priming tomato plants with SAwas
able to mitigate salt stress injury in a concentration-dependent
manner. Pretreatment of tomato plants with 10�4MSA increased
the efficiency of enzymatic and nonenzymatic antioxidant
systems, and provided protection against 100mM NaCl stress
in a hydroponic culture system (Szepesi et al. 2008; Szepesi et al.
2009; Gémes et al. 2011). More recent results suggest that GSTs
are important in SA-induced acclimation to high salinity in
tomato (Csiszár et al. 2014). In this work, we investigated the
effect of SA on A. thaliana plants’ overall oxidative state by
measuring the reactive oxygen content and the antioxidant
activity. Our aim was to characterise the effects of a long-term
SA treatment on 5-week-old A. thaliana plants and evaluate
the possibility of using SA as a priming compound in this
model plant. Here, we report that applying 10�6

–10�5 M SA
to the nutrient solution for two weeks successfully alleviates the
deleterious effects of the subsequent salt stress. We show that SA
priming may contribute to the fine-tuning of the H2O2 levels in
A. thaliana plants and reduce peroxides by increased guaiacol
peroxidase, GST and GPOX activity.

Materials and methods
Plant material and growth conditions

Arabidopsis thaliana (L.) Heynh. (ecotype Columbia) plants
were grown in Hoagland solution in a growth chamber
(Fitoclima S 600 PLH, Aralab, Rio de Mouro, Portugal) at
21�C under 100mmolm–2 s–1 light intensity with a 10 : 14 h
day : night photoperiod; the relative humidity was 70%. After
being kept under control conditions for 5 weeks, the plants were
treated with 10�9–10�4 M SA solutions for 2 weeks and were
subsequently exposed to salinity, imposed by adding 100mM
NaCl directly to themedium, for 1week. Hydroponic application
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of SA on 5-week-old A. thaliana plants revealed that 10�4 M SA
was lethal after 2 weeks of treatment (data not shown). Samples
were taken from fully expanded leaves and roots 1 and 2 weeks
after SA exposure, and 1 week after the 100mMNaCl treatment.
The experiments were repeated at least three times and the
measurements were performed with three replicates unless
indicated otherwise.

Investigation of ROS using fluorescent microscopy

A Zeiss Axiovert 200Mmicroscope (Carl Zeiss, Jena, Germany)
equipped with a high-resolution digital camera and suitable filter
sets was used for the fluorescent detection of ROS in 10-mm
diameter leaf disks and in the root tips of A. thaliana plants. To
detect ROS, 2’-7’-dichlorodihydrofluorescein diacetate (Sigma-
Aldrich, St Louis, MO, USA) was used at 37�C for 15min, then
the samples were washed four times in 20min with buffer
containing 10mM MES (2-(N-Morpholino)ethanesulfonic acid
hydrate) and 50mM potassium chloride (pH 6.15), according to
Peto�� et al. (2013). The intensity of ROS-dependent fluorescence
was measured on digital images with the help of Axiovision ver.
4.8 software (Carl Zeiss Inc., Munich, Germany). Fluorescence
intensity values were determined in 200-mm diameter circles
300mm from the root tip in roots and 600-mm diameter circles
in leaves. The diameter of circles was not modified during the
experiments. Themeasurements were performed in 10 replicates;
mean� s.e. are given on the figures.

Determination of the H2O2 level

The H2O2 level was measured spectrophotometrically as
described in Gémes et al. (2011). After homogenisation of
400mg of shoot or root tissue on ice with 750mL of 0.1%
trichloroacetic acid (TCA), the samples were centrifuged at
10 000g for 20min at 4�C. The reaction contained 0.25mL of
a 10-mM phosphate buffer (pH 7.0), 0.5mL of 1-M KI and
0.25mL of the supernatant. The absorbance of the samples was
measured after 10min at 390 nm. The amount of H2O2 was
calculated using a standard curve prepared with 0.1–5mmol
mL–1 H2O2 concentrations.

Malondialdehyde determination

Malondialdehyde (MDA) formation was followed by using the
thiobarbituric acid method (Ederli et al. 1997). In this step,
100mg shoot or root tissue was homogenised with 0.1% TCA;
100mL of 4% butylhydroxytoluene was added to avoid further
lipidperoxidation. The extracts were centrifuged at 10 000g for
20min at 4�C and after that, 0.25mL of supernatant was added
to 1mL of 20% TCA containing 0.5% thiobarbituric acid. The
mixture was incubated in 96�Cwater for 30min. The absorbance
wasmeasured at 532 nm and adjusted for nonspecific absorbance
at 600 nm.MDAconcentrationwas calculatedusinganextinction
coefficient of 155mM–1 cm–1.

Determination of antioxidant enzyme activity
Enzyme activity was determined as published earlier (Csiszár
et al. 2004) with some modifications. To analyse the enzyme
activity, 0.2 g tissuewas homogenised on ice in 1mLof a 100-mM
phosphate buffer (pH 7.0) containing 1mMphenylmethylsulfonyl

fluoride and 1% polyvinyl-polypirrolidone. The homogenate was
centrifuged for 20min at 10 000g at 4�C and the supernatant was
used for enzyme activity assays.

SOD (EC 1.15.1.1) activity was determined by measuring
the ability of the enzyme to inhibit the photochemical reduction
of p-Nitro-Blue tetrazolium chloride (Sigma-Aldrich) in the
presence of riboflavin in the light. One enzyme unit (U) of
SOD was calculated as the amount causing a 50% inhibition
of p-Nitro-Blue tetrazolium chloride reduction in light. The
enzyme activity was expressed as U g–1 FW. CAT (EC
1.11.1.6) activity was determined by the decomposition of
H2O2 and was measured spectrophotometrically by following
the decrease in absorbance at 240 nm. One U was equal to the
amount of H2O2 (in mmol) decomposed in 1min. Peroxidase
(EC 1.11.1.7) activitywas determined bymonitoring the increase
in absorbance at 470 nm during the oxidation of guaiacol
(molar extinction coefficient, e470 = 26.6mM–1 cm–1). The
amount of enzyme producing 1mmolmin–1 of oxidised
guaiacol was defined as 1 U. GST (EC 2.5.1.18) activity was
determined spectrophotometrically by using an artificial
substrate, 1-chloro-2,4-dinitrobenzene (CDNB, Sigma-
Aldrich). The reaction was initiated by the addition of CDNB
and the increase in absorbance at 340 nm was determined.
One U was the amount of the enzyme producing 1mmol of
conjugated product in 1min (e340 = 9.6mM�1 cm�1). GPOX
(EC 1.11.1.9) activity was measured with cumene
hydroperoxide (Sigma-Aldrich) as a substrate. The reaction
mixture contained 4mmol L�1 GSH, 0.2mmol L�1 NADPH,
0.05 U of glutathione reductase (from baker’s yeast, Sigma-
Aldrich), 100mL enzyme extract and 0.5mmol L�1 substrate
in a phosphate buffer (0.1mol L�1, pH 7.0) in a total volume
of 1mL. The decrease in NADPH was followed by measuring
the absorbance at 340 nm. The nonspecific NADPH decrease
was corrected for by using additional measurements without
the substrate (e340 = 6.22mM–1 cm–1). One U was equal to
mmol converted NADPH min–1.

RNA extraction, expression analyses with quantitative
real-time reverse transcription–PCR

The expression rate of A. thalianaGST genes was determined by
quantitative real-time reverse transcription–PCR (RT-qPCR)
after the purification of RNA from 100mg of plant material
according to Chomczynski and Sacchi (1987), as described in
Csiszár et al. (2014). The primers used for the RT-qPCR can be
found in Table S1, available as Supplementary Material to this
paper. Representative amplified products of RT-qPCR were
confirmed by sequencing. The expression rate of GST genes
wasmonitored as published earlier in Gallé et al. (2009). The 18S
rRNA (At3g41768 and At2g01010) and actin2 (At3g18780)
genes were used as high and low internal controls, respectively
(Masclaux-Daubresse et al. 2007; Papdi et al. 2008). The actin2
gene exhibited constant expression in our experiments, so it was
used for data normalisation. Data from the RT-qPCR were
calculated using the 2(–DDCt) formula (Livak and Schmittgen
2001). To demonstrate the differences between changes in the
expression levels of different GSTs, the relative transcript level
in the control root samples was arbitrarily considered to be 1 for
each gene.
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Statistical analysis
Statistical analysis was carried out with SigmaPlot ver. 11.0
software (Systat Software Inc., Erkrath, Germany) by
Duncan’s test and differences were considered significant at
P� 0.05. Data presented here are the means� s.d. of at least
three measurements unless indicated otherwise.

Results

The effect of SA and NaCl on plant growth

We applied 10�9–10�5 M SA to 5-week-old A. thaliana plants
grown hydroponically, and the effects of SA treatment on plant
growth and different physiological parameters were measured
at weekly intervals between the fifth and eighth weeks. SA
slightly promoted the growth of rosette size, shoot and root
weight (Fig. S1). Data on the changes in growth parameters,
ROS accumulation, ROS-triggered damage, and the activity of
SOD, CAT, guaiacol peroxidase, GST and GPOX during the
3-week SA treatment are documented in the Figs S1–S4.

The priming effect of SA on salt tolerance was investigated
by measuring these parameters on plants sequentially treated
with 10�9

–10�5 M SA and 100mM NaCl. Although the FW of
shoots was significantly higher in salt-stressed plants after SA
treatments, the FW of roots was higher only in plants pretreated
with 10�6 and 10�5M SA, and the length of roots did not change
significantly (Fig. 1). The improved growth parameters of
SA-treated plants indicate that successful priming took place
in salt-stressed plants in a concentration-dependent manner.

ROS accumulation and oxidative damage
in SA- and salt-treated plants

Total ROS levels transitionally increased in the leaf disks and root
tips of SA-treated plants but were reduced to constitutive levels
after 2 and 3 weeks of SA treatments (Fig. S2).

The results show that 100mM NaCl stress caused a two- to
threefold increase in the total ROS (especially H2O2) levels
in roots and leaves. Fluorescence microscopy investigations
revealed that SA pretreament significantly reduced ROS
accumulation in leaf discs and root tips after the 1-week salt
treatment. However, the H2O2 content (measured by a
photometric method) was further enhanced by 10�9 and 10�8

M SA pretreatment in the leaves but was lowered by most SA
concentrations in the roots during salt stress. A similar tendency
was observed in the MDA accumulation in leaves. Interestingly,
H2O2 and MDA contents were less elevated in plants pretreated
with 10�7–10�5 M SA. In roots, the H2O2 content was enhanced
by salt stress but it was not affected significantly by simultaneous
SA treatment, except for treatment with 10�8 M SA (Fig. 2).

The effect of SA pretreatment and salt stress on the activity
of selected antioxidative enzymes

The main enzymatic antioxidants in plants include SOD, which
converts O2

*– to the less toxic H2O2; CAT, which takes part in
removing the H2O2, and guaiacol peroxidases, which oxidise
various substrates in the presence of H2O2 but may also
produce ROS, such as O2

*–, OH
*

or HOO
*

via the hydroxylic
cycle (Passardi et al. 2004). SA treatment slightly reduced CAT
activity in a time-dependent manner, whereas the activity of

SOD did not change. Guaiacol peroxidase activity was not
affected by most SA concentrations during the 2-week
treatment (Fig. S3).

Adding 100mM NaCl to the hydroponic solution for 1 week
enhanced the activity of these antioxidant enzymes in roots but
did not affect or reduce them in shoots. Pretreatment with SA
reduced SOD in roots, but not in leaves, where 10�6 and 10�5 M
SA enhanced it. Salt stress caused a threefold induction in SOD
activity of the roots without pretreatment but the enhancement
was smaller in SA-pre-treated roots. CAT activity was either not
affected or reduced by SA pretreatment in salt-stressed plants.
Guaiacol peroxidase activity was higher in roots of plants treated
with 10�6 and10�5MSA,but theywere onlymoderately affected
by other SA treatments. Under salt stress, guaiacol peroxidase
activity was elevated in several cases compared with plants
without SA pretreatments (Fig. 3).

GST and glutathione-dependent peroxidase activity
in SA- and salt-treated plants

In leaves, GST activity was induced by SA treatment in a
concentration-dependent manner; in roots, GST was only
moderately affected by SA (Fig. S4). By the end of the 3 weeks
of treatment, 10�9- to 10�5-M SA concentrations elevated the
total GST activity in leaves; in roots, enhancement was significant
only in plants treated with 10�6

–10�5 M SA. GPOXwas induced
by 10�5M SA in roots and 10�6–10�5M SA in leaves (Fig. 4). In
both leaves and roots, 100mM NaCl increased the GST activity
but inhibited theGPOXenzyme activity. SA pretreatment resulted
in enhanced GPOX activity in salt-stressed plants (Fig. 4).

Transcript amounts of selected GST genes after SA
pretreatment and salt stress

To investigate whether SA and salt modulates GST activity
by affecting the expression of these genes, transcript levels of
selected salt- or SA-inducible A. thaliana GST genes were
investigated in 8-week-old A. thaliana plants, which were
subjected to sequential SA (10�5 and 10�7 M) and salt
(100mM NaCl) treatments as described above. Real-time
RT-qPCR was used to determine the expression of selected
GST genes after 1 week of salt stress with or without 10�5 and
10�7 M SA pretreatments. Considerable variation was detected
in transcript levels of individual GST genes. In control
conditions, AtGSTF8, AtGSTF9 and AtGSTU19 expression
was higher in leaves than roots, whereas AtGSTU24 and
AtGSTU25 had higher transcription in roots than in leaves
(Fig. 5). Salt stress considerably enhanced the transcription of
AtGSTU19 and AtGSTU24 in both leaves and roots, whereas
expression of the other three GST genes was reduced in both
organs. Pretreatment with 10�7 M SA enhanced transcription of
AtGSTU19 and AtGSTU24 genes in leaves, but did not affect
the expression of AtGSTF8, AtGSTF9 and AtGSTU25 genes in
salt-stressed plants. Pretreatment with a higher SA concentration
(10�5 M SA) had a negative effect on the expression of the
investigated genes (Fig. 5).

The significant up- or downregulation of selected GST genes,
whichwere induced by100mMNaCl treatment after 1week,was
still detected in plants pretreatedwith 10�7MSA; however, these
changes did not appear in plants treatedwith 10�5MSA after salt

1132 Functional Plant Biology E. Horváth et al.



stress, which indicates the more effective priming effect of the
higher SA concentration in alleviating the NaCl-induced stress
(Fig. 5).

Discussion

Although SA is a plant hormone mainly associated with the
induction of defence mechanisms against biotic stresses, an
increasing amount of evidence suggests that SA can influence
responses to abiotic stresses. Exogenous application of SA in a

suitable concentration exerts diverse physiological effects
on plants, like the activation of antioxidants, which, in turn,
can lead to a better stress tolerance (Horváth et al. 2007; Ashraf
et al. 2010). Looking for clues to understand the role of SA in
defence to salt stress, we focussed our attention on long-term
priming, followed by extended salt stress (1 week of 100mM
NaCl stress) in A. thaliana plants.

Our earlier results showed that similar SA pretreatments of
tomato plants significantly improved tolerance against high
salinity (triggered with 100mM NaCl for 1 week). In tomato,
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10�4M SA could stimulate the acclimation processes and
alleviate the deleterious effects of subsequently applied salt
stress. SA pretreatment of salt-stressed tomato plants reduced
the ratio of Na+ : K+ content; enhanced ABA levels; improved
water relations and osmotic adaptation (Szepesi et al. 2009;
Horváth et al. 2015), prevented the decline of photosynthetic
parameters (Poór et al. 2011); decreased ROS, nitric oxide and
MDA contents (Szepesi et al. 2008; Gémes et al. 2011); and
increased GST and GPOX activity (Szepesi et al. 2008; Csiszár

et al. 2014). This study was designed to evaluate the use of SA
priming in A. thaliana model plants, to gain deeper insights into
the molecular events behind the acclimation process.

The effect of exogenously applied SA was previously shown
to depend on the dose and the plant species tested (reviewed by
Rivas-San Vicente and Plasencia 2011). High SA doses can
induce an oxidative burst by increasing the plasma membrane-
localisedNADPHoxidase activity, and by decreasing the activity
of CAT andAPX (Vlot et al. 2009;Hayat et al. 2010). In contrast,
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low doses of exogenously applied SA increase the antioxidant
enzyme activity in plants and alleviate abiotic stress-induced
damage (Alonso-Ramírez et al. 2009). Addition of 10�9–10�5M
SA toHoagland solution for 3weeks did not have any deleterious
effect on A. thaliana (Fig. S1). However, some changes in the
levels of ROS and H2O2 could be observed in most of the SA
concentrations used in this study.Although SA treatment alone in
most cases did not significantly alter the activity of antioxidant
enzymes after 3 weeks, with the 10�6 and 10�5MSA treatments,
SOD, guaiacol peroxidase and GST activity were comparable to

the control or were even higher (Figs S2–4). The elevated SOD,
CAT, guaiacol peroxidase and GST activity in plants may
participate in the salt stress response in this experimental system.

The damaging and signalling effect of ROS is an important
consequence of NaCl stress and the antioxidant mechanism is a
keycomponentof salt stress tolerance inplants (MunnsandTester
2008). ROS accumulation is partially controlled by an enzymatic
detoxification system, which is usually induced upon stress
exposure (Gill and Tuteja 2010). Three days of 100mM NaCl
treatment increased H2O2 andMDA content, and SOD, CAT and
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peroxidase activity in A. thaliana leaves (Ellouzi et al. 2011).
Proteomic analysis of A. thaliana roots subjected to the 150mM
NaCl treatment revealed an increase in the amount of important
ROS-scavenging and detoxifying proteins, including ascorbate
peroxidase, glutathione peroxidase, Class III peroxidases, GST
and SOD (Jiang et al. 2007). However, Attia et al. (2008) could
not detect changes in SOD activity after 2 weeks of 50mMNaCl
treatment in A. thaliana plants. In our experiments, the 1-week-
long treatment with 100mM NaCl increased the intracellular
ROS and H2O2 contents and MDA accumulation in A. thaliana
plants, suggesting enhanced oxidative stress. Although SOD,
CAT and guaiacol peroxidase activities were enhanced by salt
stress in roots, these activities were reduced or did not change in
leaves. GST activity was enhanced but GPOX was reduced by
salt stress in both organs. Nevertheless, induction of antioxidant
capacity was insufficient to prevent the accumulation of
ROS and lipid peroxides. Differences in our results and those
reported in other studies can be explained by different
experimental conditions, the strength and length of salt stress,
and differences in the plant genotypes used.

In contrast to the enhanced ROS levels of salt-stressed
A. thaliana plants, the leaves of plants treated with 10�7–10�5

MSAhad lower levels of ROS andH2O2 after 1week of 100mM

NaCl treatment. Plants pretreated with 10�7–10�5 M SA had
higher guaiacol peroxidase activity even after applying
100mM NaCl for a week. Similarly, in sunflower, Noreen
et al. (2009) found that SA alleviated the effect of 120mM
NaCl, mainly due to enhanced peroxidase activity. Guaiacol
peroxidases were implicated in the responses to different biotic
and abiotic stresses, including pathogen attack, heavy metals,
cold, dehydration and salt stress, and in various physiological
processes such as auxin catabolism, biosynthesis of secondary
metabolites, lignification, suberisation and senescence (De Gara
2004; Cosio and Dunand 2009; Csiszár et al. 2012; Guo et al.
2014). These enzymes catalyse the reduction of H2O2 using
electrons from various donor molecules (Passardi et al. 2004).
Guaiacol peroxidase is suggested to be involved infine regulation
of H2O2 content, because it has a higher affinity to H2O2 than
CAT, whereas CATmay be implied in mass scavenging of H2O2

(Abogadallah 2010). Our results suggest that SA-triggered
acclimation during salt stress can at least partially be explained
by enhancedguaiacol peroxidase activity in SA-pretreated plants.
Moreover, enhanced GST and GPOX activity in SA-treated
plants could also contribute to salt tolerance.

Although pretreatment with 10�9–10�8 M SA significantly
increased the MDA content in leaves after applying salt stress, in
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the case of higher SA concentrations, the level of MDA was
similar to the control both in leaves and roots. Lower amounts
of thiobarbiturate-reactive lipid peroxidation products were
reported under salt stress in SA-pretreated tomato and bean
(Phaseolus vulgaris L.) plants (Tari et al. 2002; Palma et al.
2009). GSTs were suggested to play a pivotal role in protecting
of plants from oxidative damage under salt stress by preventing
the degradation of organic hydroperoxides to cytotoxic aldehyde
derivatives (Zhang et al. 2012). Our earlier results showed
that GSTs participate in the SA-induced priming in tomato
(Csiszár et al. 2014). Furthermore, some GSTs were identified
as SA-binding proteins (AtGSTF2, AtGSTF8, AtGSTF10 and
AtGSTF11) and thus they may be direct targets of SA (Tian et al.
2012).

To test whether the alteration in GST activity is controlled at
the transcription level, expression of selected GST genes were
tested by RT-qPCR in A. thaliana plants subjected to SA and
salt treatments. GST genes with relative high affinity towards the
used substrates (CDNB and cumene hydroperoxide) were chosen
(Dixon et al. 2009). AtGSTU19 provides high GST activity and
was themost abundant protein identified inA. thaliana cell culture
(Sappl et al. 2004). The expression of the AtGSTU19 gene was
induced by compatible pathogen interactions (Wagner et al.
2002), SA and H2O2 (Sappl et al. 2009). In a proteomic study,
AtGSTU24 proved to be SA-inducible (Sappl et al. 2004). The
overexpression of either AtGSTU24 or AtGSTU25 resulted in
elevated CDNB conjugating activity in A. thaliana plants under
control conditions, and these two genes exhibited a significantly
enhanced ability to withstand and detoxify 2,4,6-trinitrotoluene
(Gunning et al. 2014). In our experiments, the expression of
most GST genes was not altered significantly by SA treatments,
except for AtGSTU19 and AtGSTU24, for which the expression
was higher in plants treated with 10�7 M SA. Salt stress-
induced transcription of AtGSTU19 and AtGSTU24 was
further enhanced by 10�7 M SA pretreatment in leaves.
Higher SA, however, reduced salt induction of these genes.
These data suggest that alteration of GST activity in salt- and
SA-treated A. thaliana plants can be at least partially derived
from differential transcriptional activation of AtGSTU24 and
AtGSTU19.

Based on the results obtained in this study, the protective
effects of exogenously applied SA depend on the concentration
used and on the affected plant tissue. We demonstrated that the
proper SA concentrations in A. thaliana plants are 10�6–10�5 M
SA pretreatments for the induction of priming, which enhances
SOD, guaiacol peroxidase, GST and GPOX activity, and
reduced H2O2 and MDA accumulation compared with the salt-
treated control plants. These results suggest that SA-mediated
acclimation can reduce the oxidative damage caused by salt stress
through modulating the activity of some of the key ROS and
peroxide detoxifying enzymes. At least some of the alterations in
enzyme activity derive from modulation of the transcriptional
control of key detoxification genes, such as GSTs. Our results
show that long-term SA treatment on 5-week-old A. thaliana
plants resulted in priming and mitigated salt stress injury in this
model plant. The applied hydroponic experimental system can
be a useful tool to study the effect of sequential treatments in
A. thaliana and to gain deeper insights into the regulatory

Control

(a)

(b)

(c)

10–7 M SA

10–5 M SA

Fig. 5. Effect of three-weeksalicylic acid (SA)pretreatment on the transcript
levels of selected Arabidopsis thaliana GST genes in leaves and roots of
8-week-old A. thaliana plants after applying 100mM NaCl for 1 week.
(a) control treatment; (b) pretreatment with 10–7 M SA; (c) pretreatment
with 10–5 M SA. Data were normalised using the A. thaliana actin2 gene as
an internal control. The relative transcript level in control root samples was
arbitrarily considered to be 1 for each gene (indicatedwith a dashed line).Data
consist of means� s.d.; n= 3.
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mechanism that controls all aspects of SA-mediated stress
acclimation in higher plants.

Acknowledgements

We thank Dr Barnabás Wodala for critical reading of the manuscript. This
work was supported by the Hungarian National Scientific Research
Foundation (grant numbers OTKA K 101243 and K 105956) and by the
European Union and the State of Hungary, co-financed by the European
Social Fund in the framework of TÁMOP 4.2.4.A/2–11/1–2012–0001
National Excellence Program scholarship to EH and KB.

References

Abogadallah GM (2010) Antioxidative defense under salt stress. Plant
Signaling & Behavior 5, 369–374. doi:10.4161/psb.5.4.10873

Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-
Climent M, Gómez-Cadenas A, Nicolás C (2009) Evidence for a role
of gibberellins in salicylic acid-modulated early plant responses to
abiotic stress in Arabidopsis seeds. Plant Physiology 150, 1335–1344.
doi:10.1104/pp.109.139352

Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological,
biochemical and molecular roles of brassinosteroids and salicylic acid in
plant processes and salt tolerance. Critical Reviews in Plant Sciences 29,
162–190. doi:10.1080/07352689.2010.483580

Attia H, ArnaudN,KarrayN, LachaaM (2008) Long-term effects of mild salt
stress on growth, ion accumulation and superoxide dismutase expression
of Arabidopsis rosette leaves. Physiologia Plantarum 132, 293–305.
doi:10.1111/j.1399-3054.2007.01009.x

BlancoF,SalinasP,CecchiniNM, JordanaX,VanHummelenP,AlvarezME,
Holuigue L (2009) Early genomic responses to salicylic acid in
Arabidopsis. Plant Molecular Biology 70, 79–102. doi:10.1007/
s11103-009-9458-1

Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by
acid guanidinium thiocyanate–phenol–chloroform extraction. Analytical
Biochemistry 162, 156–159. doi:10.1016/0003-2697(87)90021-2

CosioC,DunandC(2009)Specific functionsof individual class III peroxidase
genes. Journal of Experimental Botany 60, 391–408. doi:10.1093/jxb/
ern318

Csiszár J, Szabó M, Erdei L, Márton L, Horváth F, Tari I (2004) Auxin
autotrophic tobacco callus tissue resist oxidative stress: the importance
of the glutathione S-transferase and peroxidase activities in auxin
heterotrophic and autotrophic calli. Journal of Plant Physiology 161,
691–699. doi:10.1078/0176-1617-01071

Csiszár J, Gallé Á, Horváth E, Dancsó P, Gombos M, Váry ZS, Erdei L,
Györgyey J, Tari I (2012) Different peroxidase activities and expression
of abiotic stress-related peroxidases in apical root segments of wheat
genotypes with different drought stress tolerance under osmotic stress.
Plant Physiology and Biochemistry 52, 119–129. doi:10.1016/j.plaphy.
2011.12.006

Csiszár J, Horváth E, Váry ZS, Gallé Á, Bela K, Brunner S, Tari I (2014)
Glutathione transferase supergene family in tomato: salt stress-regulated
expression of representative genes from distinct GST classes in plants
primedwith salicylic acid.Plant Physiology and Biochemistry 78, 15–26.
doi:10.1016/j.plaphy.2014.02.010

Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses
to infection. Nature 411, 826–833. doi:10.1038/35081161

De Gara L (2004) Class III peroxidases and ascorbate metabolism in plants.
PhytochemistryReviews3, 195–205. doi:10.1023/B:PHYT.0000047795.
82713.99

Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases.
Genome Biology 3, REVIEWS3004.

Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities
and subcellular localization of members of the Arabidopsis glutathione
transferase superfamily. Journal of Experimental Botany 60, 1207–1218.
doi:10.1093/jxb/ern365

DixonDP, SkipseyM,EdwardsR (2010)Roles for glutathione transferases in
plant secondary metabolism. Phytochemistry 71, 338–350. doi:10.1016/
j.phytochem.2009.12.012

Ederli L, Pasqualini S, Batini P, Antonielli M (1997) Photoinhibition and
oxidative stress: effects on xanthophyll cycle, scavenger enzymes and
abscisic content in tobacco plants. Journal of Plant Physiology 151,
422–428. doi:10.1016/S0176-1617(97)80006-5

El-Tayeb MA (2005) Response of barley grains to the interactive effect of
salinity and salicylic acid. Plant Growth Regulation 45, 215–224.
doi:10.1007/s10725-005-4928-1

Ellouzi H, Ben Hamed K, Cela J, Munné-Bosch S, Abdelly C (2011)
Early effects of salt stress on the physiological and oxidative status of
Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte).
Physiologia Plantarum 142, 128–143. doi:10.1111/j.1399-3054.2011.
01450.x

Gallé A, Csiszár J, Secenji M, Guóth A, Cseuz L, Tari I, Györgyey J, Erdei L
(2009) Glutathione transferase activity and expression patterns during
grain filling in flag leaves of wheat genotypes differing in drought
tolerance: response to water deficit. Journal of Plant Physiology 166,
1878–1891. doi:10.1016/j.jplph.2009.05.016

Gémes K, Poór P, Horváth E, Kolbert Z, Szopkó D, Szepesi Á, Tari I (2011)
Cross-talk between salicylic acid and NaCl-generated reactive oxygen
species and nitric oxide in tomato during acclimation to high salinity.
Physiologia Plantarum 142, 179–192. doi:10.1111/j.1399-3054.2011.
01461.x

Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery
in abiotic stress tolerance in crop plants. Plant Physiology and
Biochemistry 48, 909–930. doi:10.1016/j.plaphy.2010.08.016

Gunes A, Inal A, AlpaslanM, Eraslan F, Bagci EG, Cicek N (2007) Salicylic
acid induced changes on some physiological parameters symptomatic for
oxidative stress andmineral nutrition inmaize (ZeamaysL.) grown under
salinity. Journal of Plant Physiology 164, 728–736. doi:10.1016/j.jplph.
2005.12.009

Gunning V, Tzafestas K, Sparrow H, Johnston EJ, Brentnall AS, Potts JR,
RylottEL,BruceNC(2014)Arabidopsisglutathione transferasesU24and
U25 exhibit a range of detoxification activities with the environmental
pollutant and explosive, 2,4,6-trinitrotoluene. Plant Physiology 165,
854–865. doi:10.1104/pp.114.237180

Guo M, Gao W, Li L, Li H, Xu Y, Zhou C (2014) Proteomic and
phosphoproteomic analyses of NaCl stress-responsive proteins in
Arabidopsis roots. Journal of Plant Interactions 9, 396–401.
doi:10.1080/17429145.2013.845262

Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor GD (2013)
Functional analysis of Arabidopsis mutants points to novel roles for
glutathione in coupling H2O2 to activation of salicylic acid
accumulation and signaling. Antioxidants & Redox Signalling 18,
2106–2121. doi:10.1089/ars.2012.5052

Hao L, Zhao Y, Jin D, Zhang L, Bi X, Chen H, Xu Q, Ma C, Li G (2012)
Salicylic acid-altering Arabidopsis mutants response to salt stress. Plant
and Soil 354, 81–95. doi:10.1007/s11104-011-1046-x

Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous
salicylic acid under changing environment: a review. Environmental
and Experimental Botany 68, 14–25. doi:10.1016/j.envexpbot.2009.
08.005

Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance
by salicylic acid signaling. Journal of Plant Growth Regulation 26,
290–300. doi:10.1007/s00344-007-9017-4

HorváthE,Csiszár J,GalléÁ, Poór P, SzepesiÁ,Tari I (2015)Hardeningwith
salicylic acid induces concentration-dependent changes in abscisic acid

1138 Functional Plant Biology E. Horváth et al.

dx.doi.org/10.4161/psb.5.4.10873
dx.doi.org/10.1104/pp.109.139352
dx.doi.org/10.1080/07352689.2010.483580
dx.doi.org/10.1111/j.1399-3054.2007.01009.x
dx.doi.org/10.1007/s11103-009-9458-1
dx.doi.org/10.1007/s11103-009-9458-1
dx.doi.org/10.1016/0003-2697(87)90021-2
dx.doi.org/10.1093/jxb/ern318
dx.doi.org/10.1093/jxb/ern318
dx.doi.org/10.1078/0176-1617-01071
dx.doi.org/10.1016/j.plaphy.2011.12.006
dx.doi.org/10.1016/j.plaphy.2011.12.006
dx.doi.org/10.1016/j.plaphy.2014.02.010
dx.doi.org/10.1038/35081161
dx.doi.org/10.1023/B:PHYT.0000047795.82713.99
dx.doi.org/10.1023/B:PHYT.0000047795.82713.99
dx.doi.org/10.1093/jxb/ern365
dx.doi.org/10.1016/j.phytochem.2009.12.012
dx.doi.org/10.1016/j.phytochem.2009.12.012
dx.doi.org/10.1016/S0176-1617(97)80006-5
dx.doi.org/10.1007/s10725-005-4928-1
dx.doi.org/10.1111/j.1399-3054.2011.01450.x
dx.doi.org/10.1111/j.1399-3054.2011.01450.x
dx.doi.org/10.1016/j.jplph.2009.05.016
dx.doi.org/10.1111/j.1399-3054.2011.01461.x
dx.doi.org/10.1111/j.1399-3054.2011.01461.x
dx.doi.org/10.1016/j.plaphy.2010.08.016
dx.doi.org/10.1016/j.jplph.2005.12.009
dx.doi.org/10.1016/j.jplph.2005.12.009
dx.doi.org/10.1104/pp.114.237180
dx.doi.org/10.1080/17429145.2013.845262
dx.doi.org/10.1089/ars.2012.5052
dx.doi.org/10.1007/s11104-011-1046-x
dx.doi.org/10.1016/j.envexpbot.2009.08.005
dx.doi.org/10.1016/j.envexpbot.2009.08.005
dx.doi.org/10.1007/s00344-007-9017-4


biosynthesis of tomato under salt stress. Journal of Plant Physiology 183,
54–63. doi:10.1016/j.jplph.2015.05.010

Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic
acid improves salinity tolerance in Arabidopsis by restoring membrane
potential and preventing salt-induced K+ loss via a GORK channel.
Journal of Experimental Botany 64, 2255–2268. doi:10.1093/jxb/ert085

Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2015) Salicylic
acid in plant salinity stress signalling and tolerance. Plant Growth
Regulation 76, 25–40. doi:10.1007/s10725-015-0028-z

Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic
analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal
of Experimental Botany 58, 3591–3607. doi:10.1093/jxb/erm207

Joseph B, Jini D, Sujatha S (2010) Insight into the role of exogenous salicylic
acid on plants grown under salt environment. Asian Journal of Crop
Science 2, 226–235. doi:10.3923/ajcs.2010.226.235

Khan NA, Syeed S, Masood A, Nazar R, Iqbal N (2010) Application of
salicylic acid increases contents of nutrients and antioxidativemetabolism
inmungbean and alleviates adverse effects of salinity stress. International
Journal of Plant Biology 1, e1. doi:10.4081/pb.2010.e1

Kim SY, Lim JH, Park MR, Kim YJ, Park TI, Seo YW, Choi KG, Yun SJ
(2005) Enhanced antioxidant enzymes are associated with reduced
hydrogen peroxide in barley roots under saline stress. Journal of
Biochemistry and Molecular Biology 38, 218–224. doi:10.5483/
BMBRep.2005.38.2.218

KocsyG, Tari I, VankováR, ZechmannB,Gulyás Z, Poór P, GalibaG (2013)
Redox control of plant growth and development. Plant Science 211,
77–91. doi:10.1016/j.plantsci.2013.07.004

Kuai X, MacLeod BJ, Després C (2015) Integrating data on the Arabidopsis
NPR1/NPR3/NPR4 salicylic acid receptors; a differentiating argument.
Frontiers in Plant Science 6, 235. doi:10.3389/fpls.2015.00235

Lee S, Park CM (2010) Modulation of reactive oxygen species by salicylic
acid in Arabidopsis seed germination under high salinity.Plant Signaling
& Behavior 5, 1534–1536. doi:10.4161/psb.5.12.13159

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data
using real-time quantitative PCR and the 2–DDCT method. Methods (San
Diego, Calif.) 25, 402–408. doi:10.1006/meth.2001.1262

Marrs KA (1996) The function and regulation of glutathione S-transferases
in plants. Annual Review of Plant Physiology 47, 127–158. doi:10.1146/
annurev.arplant.47.1.127

Masclaux-Daubresse C, Purdy S, Lemaitre T, Pourtau N, Taconnat L, Renou
JP,Wingler A (2007) Genetic variation suggests interaction between cold
acclimationandmetabolic regulationof leaf senescence.PlantPhysiology
143, 434–446. doi:10.1104/pp.106.091355

Métrauxs JP (2001) Systemic acquired resistance and salicylic acid: current
state of knowledge. European Journal of Plant Pathology 107, 13–18.
doi:10.1023/A:1008763817367

MouZ, FanW,DongX (2003) Inducers of plant systemic acquired resistance
regulate NPR1 function through redox changes. Cell 113, 935–944.
doi:10.1016/S0092-8674(03)00429-X

Munns R (2005) Genes and salt tolerance: bringing them together. New
Phytologist 167, 645–663. doi:10.1111/j.1469-8137.2005.01487.x

MunnsM, TesterM (2008)Mechanisms of salinity tolerance. Annual Review
of Plant Biology 59, 651–681. doi:10.1146/annurev.arplant.59.032607.
092911

Noreen S, Ashraf M, Hussain M, Jamil A (2009) Exogenous application of
salicylic acid enhances antioxidative capacity in salt stressed sunflower
(Helianthus annuus L.) plants. Pakistan Journal of Botany 41, 473–479.

Palma F, Lluch C, Iribarne C, García-Garrido JM, Tejera García NA (2009)
Combined effect of salicylic acid and salinity on some antioxidant
activities, oxidative stress and metabolite accumulation in Phaseolus
vulgaris. Plant Growth Regulation 58, 307–316. doi:10.1007/s10725-
009-9380-1

Papdi C, Ábrahám E, Joseph MP, Popescu C, Koncz C, Szabados L (2008)
Functional identification of Arabidopsis stress regulatory genes using the

controlledcDNAoverexpression system.PlantPhysiology147, 528–542.
doi:10.1104/pp.108.116897

Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase
multigenic family in rice and its evolution in land plants. Phytochemistry
65, 1879–1893. doi:10.1016/j.phytochem.2004.06.023

Peto�� A, Lehotai N, Feigl G, Tugyi N, Ördög A, Gémes K, Tari I, Erdei L,
Kolbert ZS (2013) Nitric oxide contributes to copper tolerance by
influencing ROS metabolism in Arabidopsis. Plant Cell Reports 32,
1913–1923. doi:10.1007/s00299-013-1503-5

Poór P, Gémes K, Horváth F, Szepesi Á, Simon ML, Tari I (2011) Salicylic
acid treatment via the rooting medium interferes with stomatal response,
CO2 fixation rate and carbohydrate metabolism in tomato, and decreases
harmful effects of subsequent salt stress. Plant Biology 13, 105–114.
doi:10.1111/j.1438-8677.2010.00344.x

Raskin I (1992) Role of salicylic acid in plants. Annual Review of Plant
Physiology 43, 439–463. doi:10.1146/annurev.pp.43.060192.002255

Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its
role in plant growth and development. Journal of Experimental Botany
62, 3321–3338. doi:10.1093/jxb/err031

Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress
tolerance in transgenic tobacco seedlings that overexpress glutathione
S-transferase/glutathione peroxidase. Plant & Cell Physiology 41,
1229–1234. doi:10.1093/pcp/pcd051

Sappl PG,Onate-Sanchez L, SinghKB,Millar AH (2004) Proteomic analysis
of glutathione S-transferases ofArabidopsis thaliana reveals differential
salicylic acid-induced expression of the plant-specific phi and tau classes.
Plant Molecular Biology 54, 205–219. doi:10.1023/B:PLAN.0000028
786.57439.b3

Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Millar AH, Singh KB
(2009) The Arabidopsis glutathione transferase gene family displays
complex stress regulation and co-silencing multiple genes results in
altered metabolic sensitivity to oxidative stress. The Plant Journal 58,
53–68. doi:10.1111/j.1365-313X.2008.03761.x

Shirasu K, Nakajima H, Rajashekar K, Dixon RA, Lamb C (1997) Salicylic
acid potentiates an agonist-dependent gain control that amplifies pathogen
signal in the activationof defensemechanisms.ThePlantCell9, 261–270.
doi:10.1105/tpc.9.2.261

Stevens J, Senaratna T, Sivasithamparam K (2006) Salicylic acid induces
salinity tolerance in tomato (Lycopersicon esculentum cv. Roma):
associated changes in gas exchange, water relations and membrane
stabilisation. Plant Growth Regulation 49, 77–83.

Syeed S, AnjumNA,Nazar R, Iqbal N,MasoodA, KhanNA (2011) Salicylic
acid-mediated changes in photosynthesis, nutrients content and
antioxidant metabolism in two mustard (Brassica juncea L.) cultivars
differing in salt tolerance. Acta Physiologiae Plantarum 33, 877–886.
doi:10.1007/s11738-010-0614-7

Szepesi Á, Csiszár J, Gallé Á, GémesK, Poór P, Tari I (2008) Effects of long-
term salicylic acid pre-treatment on tomato (Lycopersicon esculentum
Mill. L.) salt stress tolerance: changes in glutathione S-transferase
activities and anthocyanin contents. Acta Agronomica Hungarica 56,
129–138. doi:10.1556/AAgr.56.2008.2.2

Szepesi Á, Csiszár J, Gémes K, Horváth E, Horváth F, Simon ML, Tari I
(2009) Salicylic acid improves acclimation to salt stress by stimulating
abscisic aldehyde oxidase activity and abscisic acid accumulation, and
increases Na+ content in leaves without toxicity symptoms in Solanum
lycopersicum L. Journal of Plant Physiology 166, 914–925. doi:10.1016/
j.jplph.2008.11.012

Tari I, Csiszár J, Szalai G, Horváth F, Pécsváradi A, Kiss G, Szepesi Á, Szabó
M, Erdei L (2002) Acclimation of tomato plants to salinity stress after a
salicylic acid pre-treatment. Acta Biologica Szegediensis 46, 55–56.

Tian M, von Dahl CC, Liu P-P, Friso G, van Wijk KJ, Klessig DF (2012)
The combined use of photoaffinity labeling and surface plasmon
resonance-based technology identifies multiple salicylic acid-binding
proteins. The Plant Journal 72, 1027–1038.

GSTs and SA-triggered hardening in A. thaliana Functional Plant Biology 1139

dx.doi.org/10.1016/j.jplph.2015.05.010
dx.doi.org/10.1093/jxb/ert085
dx.doi.org/10.1007/s10725-015-0028-z
dx.doi.org/10.1093/jxb/erm207
dx.doi.org/10.3923/ajcs.2010.226.235
dx.doi.org/10.4081/pb.2010.e1
dx.doi.org/10.5483/BMBRep.2005.38.2.218
dx.doi.org/10.5483/BMBRep.2005.38.2.218
dx.doi.org/10.1016/j.plantsci.2013.07.004
dx.doi.org/10.3389/fpls.2015.00235
dx.doi.org/10.4161/psb.5.12.13159
dx.doi.org/10.1006/meth.2001.1262
dx.doi.org/10.1146/annurev.arplant.47.1.127
dx.doi.org/10.1146/annurev.arplant.47.1.127
dx.doi.org/10.1104/pp.106.091355
dx.doi.org/10.1023/A:1008763817367
dx.doi.org/10.1016/S0092-8674(03)00429-X
dx.doi.org/10.1111/j.1469-8137.2005.01487.x
dx.doi.org/10.1146/annurev.arplant.59.032607.092911
dx.doi.org/10.1146/annurev.arplant.59.032607.092911
dx.doi.org/10.1007/s10725-009-9380-1
dx.doi.org/10.1007/s10725-009-9380-1
dx.doi.org/10.1104/pp.108.116897
dx.doi.org/10.1016/j.phytochem.2004.06.023
dx.doi.org/10.1007/s00299-013-1503-5
dx.doi.org/10.1111/j.1438-8677.2010.00344.x
dx.doi.org/10.1146/annurev.pp.43.060192.002255
dx.doi.org/10.1093/jxb/err031
dx.doi.org/10.1093/pcp/pcd051
dx.doi.org/10.1023/B:PLAN.0000028786.57439.b3
dx.doi.org/10.1023/B:PLAN.0000028786.57439.b3
dx.doi.org/10.1111/j.1365-313X.2008.03761.x
dx.doi.org/10.1105/tpc.9.2.261
dx.doi.org/10.1007/s11738-010-0614-7
dx.doi.org/10.1556/AAgr.56.2008.2.2
dx.doi.org/10.1016/j.jplph.2008.11.012
dx.doi.org/10.1016/j.jplph.2008.11.012


Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted
hormone to combat disease. Annual Review of Phytopathology 47,
177–206. doi:10.1146/annurev.phyto.050908.135202

WagnerU,EdwardsR,DixonDP,MauchF (2002)Probing thediversityof the
Arabidopsis glutathione S-transferase gene family. Plant Molecular
Biology 49, 515–532. doi:10.1023/A:1015557300450

WuY,ZhangD,Chu JY,Boyle P,WangY,Brindle ID,DeLucaV,DesprésC
(2012) The Arabidopsis NPR1 protein is a receptor for the plant defense
hormone salicylic acid. Cell Reports 1, 639–647. doi:10.1016/j.celrep.
2012.05.008

Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between
reactive oxygen species and hormones in the control of plant development
and stress tolerance. Journal of Experimental Botany 66, 2839–2856.
doi:10.1093/jxb/erv089

Zhang H, Han B,Wang T, Chen S, Li H, Zhang Y, Dai S (2012)Mechanisms
of plant salt response: insights from proteomics. Journal of Proteome
Research 11, 49–67. doi:10.1021/pr200861w

1140 Functional Plant Biology E. Horváth et al.

www.publish.csiro.au/journals/fpb

dx.doi.org/10.1146/annurev.phyto.050908.135202
dx.doi.org/10.1023/A:1015557300450
dx.doi.org/10.1016/j.celrep.2012.05.008
dx.doi.org/10.1016/j.celrep.2012.05.008
dx.doi.org/10.1093/jxb/erv089
dx.doi.org/10.1021/pr200861w

